On-The-Fly Testing of Reactive Systems*

Margus Veanes!, Colin Campbell', Wolfram Schulte', and Pushmeet Kohli?**

1 Microsoft Research, Redmond, WA, USA
margus,colin,schulte@microsoft.com
2 Oxford Brookes University, Oxford, UK
pushmeet .kohli@brookes.ac.uk

Abstract. On-the-fly testing is a technique in which test derivation
from a model program and test execution are combined into a single
algorithm. It can also be called online testing using a model program,
to distinguish it from offline test generation as a separate process. We
describe a practical on-the-fly testing algorithm that is implemented in
the model-based testing tool developed at Microsoft Research called Spec
Explorer. Spec Explorer is being used daily by several Microsoft product
groups. Model programs in Spec Explorer are written in a high level spec-
ification language AsmL or Spec#. We view model programs as implicit
definitions of interface automata. The conformance relation between a
model and an implementation under test is formalized in terms of re-
finement between interface automata, and testing amounts to a game
between the test tool and the implementation under test.

1 Introduction

In this paper we consider testing of reactive systems. Reactive systems take
inputs as well as provide outputs in form of spontaneous reactions. Testing of
reactive systems can very naturally be viewed as a two-player game between the
tester and the implementation under test (IUT). Transitions are moves that may
originate either from the tester or from the IUT. The tester may use a strategy
to choose which of the inputs to apply in a given state.

We describe a new on-the-fly technique for testing reactive systems. In our
approach we join test derivation from a model program and test execution into a
single algorithm. This combines the benefits of encoding transitions as method
invocations of a model program with the benefits of a game-based framework for
reactive systems with the benefits of online state exploration as part of a game
strategy.

We consider model programs as implicit definitions of interface automata
and formulate the conformance relation between a model program and a sys-
tem under test in terms of alternating refinement. We discovered that several

* Microsoft Research Technical Report MSR-TR-2005-05, January 2005. This work
would not have been possible without the contributions by Wolfgang Grieskamp
and Nikolai Tillmann.

** The author contributed to this work during his summer 2004 internship at Microsoft
Research.

communities have been working more or less independently on closely related
problems in this area and attempt to bring them together.

Finally, we address in a practical way the scalability issues of testing the large
state spaces that arise from dynamic object graphs and output nondeterminism
of the system under test.

The technique we describe was motivated by problems that we observed while
testing large-scale commercial systems, and the resulting algorithm has been
implemented in a model-based testing tool developed at Microsoft Research.
This tool, called Spec Explorer [1], is in daily use by several product groups
inside of Microsoft. Our on-the-fly technique has been used in an industrial
setting to test operating system components and Web service infrastructure.

The rest of the paper is organized into sections as follows: In Section 2 we
formalize what it means to specify a reactive system using a model program.
This includes a description of how the Spec Explorer tool uses a model program
as its input. Then in Section 3, we show the algorithm for on-the-fly testing.
We then present in Section 4 a concrete example that runs in the Spec Explorer
tool. Finally, we discuss related work.

2 Specifying reactive systems using model programs

To describe the behavior of a reactive system, we use the notion of interface
automata [8,7] following the exposition in [7].

Definition 1. An interface automaton M has the following components:

— A set S of states.

— A nonempty subset St of S called the initial states.

— Mutually disjoint sets of input actions A' and output actions A°.

— Enabling functions I' and I'° from S to subsets of A" and A°, respectively.

— A transition function ¢ that maps a source state and an action enabled in
the source state to a target state.

Remark about notation: In order to identify a component of an interface automa-
ton M, we index that component by M, unless M is clear from the context.

We write Ay for the set Al, U A}, of all actions in M, and we let I'y(s)
denote the set '} (s) U I'§;(s) of all enabled actions in a state s. We say that an
action a transitions from s to t if dps(s,a) = t.

2.1 Model program as interface automaton

Model programs in Spec Explorer are written in a high level specification lan-
guage AsmL [13] or Spec# [4]. A model program P is an implicit definition of a
transition system by using a finite collection of guarded update rules. A guarded
update rule in P is defined as a parameterized method using Spec# (or AsmL),
similar to the way methods are written in normal programming languages like
C#. The execution of a single step of a guarded update rule is an ASM step [12],

for the ASM semantics of the core of AsmL see [10]. A guarded update rule de-
fined by a method is called an action method.

The interface automaton Mp defined by a model program P is a complete
unwinding or expansion of P as explained next. We omit the suffix P from Mp
as it is clear from the context. Typically the methods of a model program P
create objects and use unbounded data structures, like integers, strings, sets,
maps, etc., in which case M is infinite. The program declares a finite vocabulary
of model wvariables. A model state is a mapping of those variables to concrete
values.? The set of initial states S¥* of M is the singleton set containing the
initial assignment of variables to values as declared in P.

Each action method m, is associated in a state s with a set Enabled,,(s) of
enabled actions (m,v), where v is a sequence of concrete values matching the
signature of m. (In Spec Explorer, the enabling conditions of action methods
are defined by using state based parameter domain expressions and method
preconditions.) The set of all enabled actions I'y/(s) in a state s is the union of
all Enabled,,(s) for all action methods m.

For a sequence of parameters v of a method call below, we write v;, for the
input parameters, i.e. the arguments, and we write vy, for the output parame-
ters, in particular including the return value.

The transition function dj; maps a source state s and an action a = (m, v)
to a target state ¢, given that the method call m(v;,) in P produces the output
parameters ve,t, produces updates on s that yield the sequel state ¢, and that
a is enabled in s. The set of states Sy is the least set that contains S3j* and is
closed under dy;. The set Ajs of actions is the union of all 'y (s) for s in Syy.

Reactive behavior In order to distinguish behavior that a tester has full con-
trol over from behavior that can only be observed about the implementation
under test (IUT), the action programs of a model program are disjointly par-
titioned into controllable and observable ones. This induces, for each state s,
a corresponding partitioning of I'y/(s) into controllable (output) actions I'5;(s)
enabled in s, and observable (input) actions I'},(s) enabled in s. The action set
Ay is partitioned accordingly into A}, and AS,. A state s where Il ,(s) is empty
is called stable; s is called unstable otherwise. A state s where I'y(s) is empty
is called terminal.

Accepting States In Spec Explorer the user associates the model program with
an accepting state condition that is a Boolean expression based on the model
state. The notion of accepting states is motivated by the practical need to identify
model states where tests are allowed to terminate. This is particularly important
when testing distributed or multi-threaded systems, where IUT does not always
have a global reset that can bring it to its initial state. Thus ending of tests is
only possible from certain states from which reset is possible. For example, as a
result of a controllable action that starts a thread in the IUT, the thread may

3 In terms of mathematical logic, states are first-order structures.

acquire shared resources that are later released. The test should not be finished
before the resources have been released.

From the game point of view, the player, i.e. the test tool, may choose to make
a move from an accepting state s to a terminal goal state identifying the end of
the play (or test), irrespective of whether there are any other moves (either for
the player or the opponent) possible in s. Typically accepting states are stable.
Notice that an accepting state does not oblige the player to end the test. By
restating that in terms of the interface automaton M, there is a controllable
reset action in Ap; and a goal state g in Sy, such that, for all accepting states s,
Onr (s, reset) = g. In IUT, the reset action must transition from a corresponding
state t to a terminal state as well, reflecting the assumption that IUT can reset
the system at this point. Thus, ending the test in an accepting state, corresponds
to choosing the reset action.

2.2 IUT as interface automaton

In the Spec Explorer tool the model program and the IUT are both given by
a collection of APIs in form of managed .NET libraries (or dlls). Typically the
IUT is given as a collection of one or more “wrapper” APIs of the actual system
under test. The actual system is often multithreaded if not distributed, and the
wrapper is connected to the actual system through a customized test harness
that provides a particular high-level view of the behavior of the system. The
wrapper provides a serialized view of the observable actions resulting from the
execution of the actual system. It is very common that only a particular aspect
of the TUT is being tested through the harness. In this sence the IUT is an open
system.

The program of the IUT, typically written in C# (that is a proper subset
of Spec#), is a restricted form of a model program. We view the behavior of
the IUT in the same way as that of the specification. The interface automaton
corresponding to IUT is denoted by Miyr.

The reset action in the IUT typically kills the processes or terminates the
threads (if any) in the actual system under test.

2.3 Conformance relation

The conformance relation between a model an an implementation is formalized
as refinement between two interface automata. In order for the paper to be self
contained we define first the notions of alternating simulation and refinement
following [7]. The view of the model and the implementation as interface au-
tomata is a mathematical abstraction. We discuss below how the conformance
relation is realized in the actual implementation.

In the following we use M to stand for the specification interface automaton
and N for the implementation interface automaton.

Definition 2. An alternating simulation p from M to N is a relation p C Sy x
Sn such that, for all (s,t) € p,

1. I'g(s) C I'§(t) and T, (s) 2 I'(t), and
2. forall a € I'Y(s) UT(t), (6nm(s,a),dn(t,a)) € p.

The intuition is as follows. Condition 1 ensures that, on one hand all controllable
actions in the model are possible in the implementation, and on the other hand
that all possible responses from the implementation are enabled in the model.
Condition 2 guarantees that if condition 1 is true in a given pair of source states
then it is also true in the resulting target states of any controllable action enabled
in the model and any observable action enabled in the implementation.

Definition 3. An interface automaton M refines an interface automaton N if

1. A3, C A%, and A}, C Al and
2. there is an alternating simulation p from M to N, s € SWi and t € Si*
such that (s,t) € p.

We say that an IUT conforms to a model P if Mp refines Miyr. The first
condition of refinement is motivated in the following section. Intuition for the
second condition can be explained in terms of a conformance game. Consider
two players: a controller and an observer. the game starts in an initial state in
Sinit x St During one step of the game one of the players makes a move. When
the controller makes a move, it chooses an enabled controllable action a in the
current model state s and transitions to (dps(s,a),dn(t,a)), where the chosen
action must be enabled in the current implementation state ¢ or else there is a
conformance failure. Symmetrically, when the observer makes a move, it chooses
an enabled observable action in the current IUT state ¢ and transitions to the
target state (dar(s,a),0n(t,a)), where the chosen action must be enabled in the
current model state s or else there is a conformance failure. The game continues
until the controller decides to end the game by transitioning to the goal state.

2.4 Conformance checking in Spec Explorer

We provide a high level view of the conformance checking engine in Spec Ex-
plorer. We motivate the view of IUT as an interface automaton and explain the
mechanism used to check acceptance of actions.

Spec Explorer provides a mechanism for the user to bind the actions methods
in the model to methods with matching signatures in the IUT. Without loss of
generality, we assume here that the signatures are in fact the same. Usually
the IUT has more methods available in addition to those that are bound to the
action methods in the model, which explains the first condition of the refinement
relation. In other words, the model usually addresses one aspect of the IUT that
is not necessarily complete.

The user partitions the action methods into observable and controllable ones.
Method level binding of observable action is provided automatically through in-
strumentation of the IUT at the binary (MSIL) level. During execution, IUT
makes callbacks to the conformance engine of the tool through such bindings. A

typical scenario is that a controllable action starts a thread in the implementa-
tion, during the execution of which several observable actions (callbacks) may
happen.

A controllable action a = (m,v) is chosen in the model program P and its
enabledness in the IUT is checked as follows. First, input parameters v;, for
m are generated such that the precondition of the method call m(vi,) holds in
P. Second, m(wviy) is executed in the model and the implementation, producing
output parameters v,y and w, respectively. Thus a is an enabled action in the
model. Third, to determine enabledness of a in the IUT, the expected output
parameters vo,t of the model and the output parameters w of the IUT are
compared for equality, if voyy # w then a is enabled in the model but not in
the TUT, resulting in a conformance failure. For example, if v, is the special
return value void but IUT throws and exception when m(vj,) is invoked, (i.e.
w is an exception value) then a conformance failure occurs.

An observable action a = (m, v) happens as a spontaneous reaction from the
IUT. To determine enabledness of a in the model the following steps are taken.
First, the precondition of the method call m(vi,) is checked in P. If the precon-
dition does not hold, a is not enabled in the model and a precondition failure
occurs. Second, m(vi,) is executed in the model yielding either a conformance
failure in form of a model invariant or postcondition failure (i.e. a is not enabled
in the model), or the invocation returns w as the expected output parameters. If
Vous 7 W then a is not enabled in the model, resulting in an unexpected return
value (or output parameter) conformance failure. If a is enabled in the model
then the model transitions from its current state s to darp (a, s).

3 On-The-Fly testing with Spec Explorer

On-the-fly testing is a technique in which test derivation from a model program
and test execution are combined into a single algorithm. It can also be called
online testing using a model program, to distinguish it from offline test gener-
ation as a separate process. By generating test cases at run time, rather than
precomputing a finite transition system and its traversals, this technique is able
to:

— Resolve the nondeterminism that typically arises in testing reactive, concur-
rent and distributed systems. This avoids generating huge pre-computed test
cases in order to deal with all possible responses from the system under test.

— Stochastically sample a large state space rather than attempting to exhaus-
tively enumerate it.

— Provide user-guided control over test scenarios by selecting actions during
the test run based on a dynamically changing probability distribution.

In Spec Explorer, the on-the-fly testing algorithm (OTF) uses a (dynamically
changing) strategy to select controllable actions. OTF also stores information
about the current state of the model, by keeping track of the state transitions
due to controllable and observable actions. The behavior of OTF depends on

various user configurable settings. The most important ones are timeouts and
action weights. Before explaining the algorithm we introduce the OTF settings
and explain their role in the algorithm.

3.1 Timeouts

In Spec Explorer there is a timeout function A, given by a model-based expres-
sion, that in a given state s evaluates to a value A(s) of type System. TimeSpan
in the .NET framework. The primary purpose of the timeout function is to con-
figure the amount of time that OTF should wait for to get a response from the
IUT. The timeout value may vary from state to state and may be 0 (which is
the default). The definition of the timeout function may depend on network la-
tencies, performance of the actual machine under test, time complexity of the
action implementations, test harnessing, etc, that may vary between different
test setups. In some situations, the use of the timeout function is reminiscent of
checking for quiescence in the sense of ioco theory [16], e.g., when a sufficiently
large time span value is associated with a stable state.

The exact time-span values do not affect the conformance relation. To make
this point precise, we introduce a timeout extension M*® of an interface automa-

ton M as follows. The timeout extension of an interface automaton is used in
OTF.

Definition 4. A timeout extension M*® of an interface automaton M is the fol-
lowing interface automaton. The state vocabulary of Mt is the state vocabulary
of M extended with a Boolean variable timeout. The components of M* are:

— Sy = {sT, s . s € Syr}, where timeout is true in s7 and false in s%.

— St = {sF": s € St}
— AS,. = A3, and A}, = A}, U{o}, where o is called a timeout event.
— Observable actions are only enbled if timeout is false:

N =ri,s)u{oc}y, Ti(sT)=0, forallsc Sy,
and controllable actions are only enabled if timeout is true:

I (sTYy =Tg(s), Tep(st)y =10, forallse Sy.

The transition function d,s¢ is defined as follows. For all s,t € Sy, and
a € I'y(s) such that dp(s,a) =1,
e If a is controllable then dyt(a, s
e If a is observable then 6y (a, s™) = ¥
The timeout event sets timeout to true: 5y (o, s7) = s7.,

We say that a state s is M* an observation state if timeout is false in s, we say
that s is a control state otherwise.

3.2 Action weights

Action weights are used to configure the strategy of OTF to choose controllable
actions. There are two kinds of weight functions: per-state weight function and
decrementing weight function. Each action method in P is associated with a
weight function of one kind. Let #(m) denote the number of times a controllable
action method has been chosen during the course of a single test run in OTF.

— A per-state weight function is a function w® that maps a state s in Mg and
a controllable action method m to a non-negative integer.

— A decrementing weight function is a function w? of the OTF algorithm that
maps a controllable action method m to the value max(w* — #(m),0),

where w™ is an initial weight assigned to m.

We use w(s, m) to denote the value of w®(s,m) if m is associated with a per-state
weight function, we use w(s,m) to denote the value of wd(m) otherwise.

In a given model state s the action weights are used to make a weighted
random selection of an action method as follows. Let my,...,m; be the all the
controllable action methods enabled in s, i.e. in I'y/(s), the probability of an
action method m; being chosen is

b 0, if w(s,m;) =0;
prob(s,mi) = {w(s,mi)/ Z?:l w(s, m;), otherwise.

A per-state weight can be used to guide the direction of the exploration
according to the state of the model. These weights can be used to selectively
increase or decrease the probability of certain actions based on certain model
variables. For example, assume P has a state variable stack whose value is a
sequence of integers, and a controllable action method Push(zx) that pushes a new
value z on stack. One can associate a per-state weight expression MazStackSize—
Size(stack) with Push that will make the probability of Push less as the size of
stack increases and gets closer to the maximum allowed size.

Decrementing weights are used when the user wants to call a particular action
method a specific number of times. With each invocation of the method, the
associated weight decreases by 1 until it reaches zero, at which point the action
will not be called again during the run. A useful analogy here is with a bag
of colored marbles, one color per action method — marbles are pulled from the
bag until the bag is empty. Using decrementing weights produces a random
permutation of actions that takes enabledness of transitions into account.

3.3 On-The-Fly testing algorithm

We provide here a high level description of the OTF algorithm. We are given a
model program P and an implementation under test IUT. The purpose of the
OTF algorithm is to generate tests that provide evidence for the refinement from
the interface automaton M to the interface automaton Mfy,p, where M is the
timeout extension M}, of Mp.

It is convenient to view OTF as a conservative extension of M where the
information about #(m) is stored in the OTF state, since the controller strategy
may depend on this information. This does not affect the conformance relation.
In the initial state of OTF, #(m) is 0 for all controllable action methods m.

A controller strategy (or output strategy) m maps a state s € Sorr to a
subset of I'y,(s|M). A controller step is a pair (s,t) of OTF states such that
tIM = 6pr(s[M, (m,v)) for some action (m, v) in 7(s), and #(m)* = #(m)* +1.
In general, OTF may also keep more information, e.g. limited history of the
test runs or, projected state machine coverage data, etc, that may affect the
overall controller strategy in successive test runs of OTF. Such extensions are
orthogonal to the description of the algorithm below, as they affect only 7. An
observer step is a pair (s,t) of OTF states such that ¢t|M = dpr(s]M, a) for some
a €'l (sIM), and #° = #.

By a test run of OTF we mean a trace s = spS1...8k € SgTF where s is
the initial state and, for each ¢, (s;, s;+1) is a controller step or an observer step.
A successful test run is a test run that ends in the goal state.

We are now ready to describe the top-level loop of the OTF algorithm. We
write sorr for the current state of OTF. We say that an action a is legal (in the
current state) if a is enabled in soTr[M, a is illegal otherwise. Initially soTr is
the initial state of OTF. The following steps are repeated subject to additional
termination conditions (see following section):

Step 1 (observe) Assume sorr is an observation state (timeout is false). OTF
waits for an observable action from the TUT until A(sorr[M) amount of
time elapses. If an observable action a occurs within this time, there are two
cases:

1. If a is illegal then the test run terminates with a FAILURFE verdict.
2. If a is legal, OTF makes an observable step (sorr, s) and sets soTr to s.
OTF continues from Step 1.
If no observable action happened, OTF makes an observable step by setting
timeout to true.

Step 2 (control) Assume soTr is a control state (timeout is true). Assume
m(sorr) # 0. OTF chooses an action a € 7(soTr), such that the probability
of the method of a being m is prob(sorr[M, m), and invokes a in the TUT.
There are two cases:

1. If @ is not enabled in IUT, the test run terminates with a FAILURE
verdict.

2. If a is enabled in IUT, OTF makes a controllable step (sorw, s), where s
is an observation state, and sets sotr to s. OTF continues from Step 1.

Step 3 (terminate) Assume w(sorr) = 0. If sorr[M is the goal state then
the test run terminates with a SUCCESS verdict, otherwise the test run
terminates with a FAILURE verdict.

Notice that the timeout event in Step 1 happens immediately if A(sorr[M) =
0. In terms of M, a timeout event is just an observable action.

The failure verdict in Step 3 is justified by the assumption that a successful
run must end in the goal state. Step 3 implicitly adds a new controllable action

10

fail to Aoty and, upon failure, a transition 0 (soTr, fail) = soTr, such that fail
is never enabled in MyyT. For example, if a timeout happens in a nonaccepting
state and the subsequent control state is terminal then the test run fails.

3.4 Termination conditions and cleanup phase

The algorithm uses several termination conditions. Most important of these is
the desired length of test runs and the total length of all the test runs. When a
limit is reached, but the current state of the algorithm is not an accepting state,
then the main loop is executed as above but with the difference that the only
controllable actions that are used must be marked as cleanup actions. A cleanup
action is a controllable action that has been marked by the user as an action
that will help drive the system to an accepting state. For example, actions like
closing a file or aborting a transition may be labeled as cleanup actions, whereas
actions like opening a new file or starting a new task would not be so labeled by
the user.

4 Example: Chat Server

We illustrate here how to model and test a simple reactive system, a sample
called a chat system, using the Spec# specification language [4] and the Spec
Explorer tool.

Overview The chat system lets clients enter or exit the chat session. Clients
that have entered the session are called members of the chat session and may
post messages. The chat system forwards each post, in the order received, to all
members of the chat session. The system may forward the current message to
members in any order. The specification prescribes that all members must receive
the current message before any member receives the next queued message.

System State The state of the system consists of four global variables:

class Client {}

static Set<Client> members = Set{};
static Set<Client> nonmembers = Set{};
static Seq<string> messages = Seq{};
static Set<Client> recipients = Set{};

State is defined as the tuple <members, nonmembers, messages, recipients>.
Each instance of the class Client is a distinct abstract value. Set and Seq types
denote sets and sequences of values. Set{} denotes the empty set; Seq{} denotes
the empty sequence.

11

Acccepting state condition The method IsAcceptingState() is true for states
that may terminate a test sequence. A valid run always ends in a state where
there are no entries in the queue of pending messages and all clients have exited
the chat session.

static bool IsAcceptingState() {
return members.IsEmpty && messages.IsEmpty;

}

Controllable Actions There are four controllable actions in the chat system,
see Figure 1. Controllability and observability of actions are attached to the
respective methods by using .NET attributes. An action is enabled if the Boolean
expressions given by the requires clauses are true with respect to the actual
parameters and the values of the state variables in the current state.

[Action] static Client Create()
requires true;

{
Client ¢ = new Client();
nonmembers += Set{c};
return c;

}

[Action] static void Enter(Client c)
requires c¢ in nonmembers;

{
members += Set{c};
nonmembers -= Set{c};

}

[Action] static void Exit(Client c)
requires ¢ in members;

{
nonmembers += Set{c};
members -= Set{c};

}

[Action] static void Post(Client c, string content)
requires ¢ in members;

{
if (messages.IsEmpty) recipients = members;
messages += Seq{content};

}

Fig. 1. Controllable actions of chat system example.

Create It is always possible to create new clients. A new client is initially added
to the set of nonmember clients.

12

Enter A client that is not already a member of the session may join. The
variables members and nonmembers reflect the change in status.

Exit An existing member of the session may leave it.

Post A client may post a new message for all to receive, provided it is member
of the session. The state is updated to include a new message at the end of
the queue of pending messages. If the queue of pending messages is empty,
then the new message becomes the current message whose recipients will
be the current members.

Observable Actions There are two observable actions, see Figure 2.

[Action(Kind=ActionAttributeKind.Observable)]

static void Received(Client c, string msg)
requires !messages.IsEmpty && msg == messages.Head;
requires c¢ in recipients;

{
recipients -= Set{c};

}

[Action(Kind=ActionAttributeKind.Observable)]

static void Finished(string msg)

requires !messages.IsEmpty && msg == messages.Head;
requires (recipients * members).IsEmpty;
{
messages = messages.Tail;
recipients = messages.IsEmpty ? Set{} : members;
X

Fig. 2. Observable actions of chat system example.

Received This may be observed only when the system has a posted message
to forward and only for a client that is in the set of expected recipients for
this message. The method is marked as an observable action; think of it
as a notification callback that occurs whenever the chat system forwards a
particular message to a particular client. After we observe this transition,
we update the state by removing the client from the set of clients that may
receive this message. This reflects the constraint of the specification that
messages are delivered just one time per recipient.

Finished This transition may be observed when there are no more recipients
(that haven’t already exited the chat session) for the current message. The
operator * is set intersection.

By exploring the chat model program for a maximum of one Client instance,
one message input value (“hello”) and a maximum message queue length of one,
we get an interface automaton as shown in Figure 3.

13

Posi(cO, " hello™")

Exit(c0) Enter(c0) Finished(""hello”")

Received(c0, ’hello”)

Create()/cO

Fig. 3. Partial interface automaton view of the chat model, generated by SpecExplorer.
Diamods represent unstable states and observable actions are prefixed by ‘7’.

Configuration Before we can run the model program against a chat server imple-
mentation, here realized using TCP /IP and implemented in .NET, Spec Explorer
requires that we configure the test. First, we have to establish conformance bind-
ings, which are isomorphic mappings between the signature of the model pro-
gram, henceforth simply called P, and IUT. Next, we provide parameters for the
Post call, here we just use the strings “hello” and “goodby”. We also restrict the
number of clients to be at most 100 (if we wouldn’t restrict it at all, we might
have a garbage collection problem, since we remember all generated clients). We
do not give any weights, which means that each operation has equal probability
to being chosen.

Ezecution Our methodology also requires that objects in the model that are
passed as input arguments, must have a 1:1 correspondence with objects in the
IUT. This dynamic binding is implicitly established by the Create call, which,
when run, binds the object created in the model space automatically to the
object returned by the implementation.

Running this example in the Spec Explorer tool with the on-the-fly algorithm
showed a number of conformance discrepancies with respect to a TCP /IP-based
implementation of this specification written in C#. Our experience matched that
of our users: when our customers discover discrepancies using our tool, typically
about half originate in the model and only half are due to coding errors in the
implementation under test.

5 Related work

Games have been studied extensively during the past years to solve various con-
trol and verification problems for open systems. A comprehensive overview on

14

this subject is given in [7], where the game approach is proposed as a general
framework for dealing with system refinement and composition. The paper [7]
was influential in our work for formulating the testing problem as a refinement
between interface automata. The notion of alternating simulation was first in-
troduced in [2].

The basic idea of on-the-fly testing is not new. It has been introduced in the
context of labeled transition systems using ioco theory [6, 16, 18] that is imple-
mented in the TorX tool [17]. ioco theory is a formal testing approach based
on labeled transition systems (that are sometimes also called I/O automata);
the main difference to interface automata is the input enabledness requirement
on systems that takes a closed view of the system under test. There are other
important differences. Regarding the modeling approach: In this paper states are
full first-order structures from mathematical logic. The update semantics of an
action method is given by an abstract state machine [12]. This enables us to
use state-based evaluation of expressions to adapt the algorithm for different
purposes, e.g. by using state-based action weight expressions, state-based pa-
rameter generation for actions, etc. It also allows to reason about dynamically
instantiated object instances, which is essential in testing object-oriented sys-
tems. Support for dynamic object graphs is also present in the Agedis tools [14].
Regarding the conformance relation: In ioco theory tests can terminate in arbi-
trary states, and accepting states are not part of the theory. Instead of timeouts
the ioco theory uses quiescence to represent the absence of observable actions.
An extension of ioco theory to symbolic transition systems has recently been
proposed in [9].

The main difference between aternating refinement and ioco is that, unlike
in alternating refinement, IUT is supposed to accept any controlable action in
ioco. This difference boils down to the fundamental difference between alternat-
ing refinement used for open systems, versus refinement (trace inclusion) used
for closed systems. This difference is discussed at length in [7]. One may argue
for the favor of both. We believe that the open system view for testing is more
appropriate. It also allows the view of testing as a game with a nice separation
of concerns of how you test (strategies) from what you test for (conformance
relation). This separation of concerns is for example clear in the on-the-fly al-
gorithm where the use of strategies is orthogonal to the conformance relation
checking part. Until now, ioco has only been used in the context of testing,
whereas alternating refinement is also of fundamental importance for closely
related verification problems.

An early version of a model-based on-the-fly testing algorithm presented
here, was implemented in the AsmLT tool [3] (AsmLT is a predecessor of Spec
Explorer), in AsmLT accepting states and timeouts are not used. A brief intro-
duction to the Spec Explorer tool is given in [11]. Besides on-the-fly testing, the
main purpose of Spec Explorer is to provide offline test case generation support
from model programs, where test cases are represented in form of finite game
strategies [15, 5]. Spec Explorer is being used daily by several Microsoft product
groups. The tool can be obtained from [1].

6

15

Ongoing work and open problems

There are a number of open problems in testing large, reactive systems. Among
these are achieving and measuring coverage and controlling test scenarios. Some
of these can be recast as problems of test strategy in the game-based sense. For
this a unifying formal testing theory based on games and first-order state seems
promising.

References

1.

2.

10.

11.

12.

13.

Spec Explorer. URL:http://research.microsoft.com/specexplorer, released January
2005.

R. Alur, T. A. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement
relations. In Proceedings of the Ninth International Conference on Concurrency
Theory (CONCUR’98), volume 1466 of LNCS, pages 163178, 1998.

. M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and

M. Veanes. Towards a tool environment for model-based testing with AsmL. In Pe-
trenko and Ulrich, editors, Formal Approaches to Software Testing, FATES 2003,
volume 2931 of LNCS, pages 264—280. Springer, 2003.

M. Barnett, R. Leino, and W. Schulte. The Spec# programming system. In
M. Huisman, editor, Cassis International Workshop, Marseille, LNCS. Springer,
2004.

A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. Technical
Report MSR-TR-2005-04, Microsoft Research, January 2005.

E. Brinksma and J. Tretmans. Testing Transition Systems: An Annotated Bibli-
ography. In Summer School MOVEP’2k — Modelling and Verification of Parallel
Processes, volume 2067 of LNCS, pages 187—-193. Springer, 2001.

L. de Alfaro. Game models for open systems. In N. Dershowitz, editor, Verification:
Theory and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th
Birthday, volume 2772 of LNCS, pages 269 — 289. Springer, 2004.

L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 8th
European Software Engineering Conference and the 9th ACM SIGSOFT Sympo-
stum on the Foundations of Software Engineering (ESEC/FSE), pages 109-120.
ACM, 2001.

L. Franzen, J. Tretmans, and T. Willemse. Test generation based on symbolic
specifications. In J. Grabowski and B. Nielsen, editors, Proceedings of the Work-
shop on Formal Approaches to Software Testing (FATES 2004), pages 3-17, Linz,
Austria, September 2004. To appear in LNCS.

U. Gléasser, Y. Gurevich, and M. Veanes. Abstract communication model for dis-
tributed systems. IEEE Transactions on Software Engineering, 30(7):458-472, July
2004.

W. Grieskamp, N. Tillmann, and M. Veanes. Instrumenting scenarios in a model-
driven development environment. Information and Software Technology, 2004. In
press, available online.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL. Theoretical
Computer Science, 2005. To appear in special issue dedicated to FMCO 2003,
preliminary version available as Microsoft Research Technical Report MSR-TR-
2004-27.

16

14

15.

16.

17.

18.

. A. Hartman and K. Nagin. Model driven testing - AGEDIS architecture interfaces
and tools. In Ist European Conference on Model Driven Software Engineering,
pages 1-11, Nuremberg, Germany, December 2003.

L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal
strategies for testing nondeterministic systems. In ISSTA 04, volume 29 of Software
Engineering Notes, pages 55—64. ACM, July 2004.

J. Tretmans and A. Belinfante. Automatic testing with formal methods. In Eu-
roSTAR’99: 7th European Int. Conference on Software Testing, Analysis € Review,
Barcelona, Spain, November 8-12, 1999.

J. Tretmans and E. Brinksma. TorX: Automated model based testing. In 1st Furo-
pean Conference on Model Driven Software Engineering, pages 31-43, Nuremberg,
Germany, December 2003.

M. van der Bij, A. Rensink, and J. Tretmans. Compositional testing with ioco.
In A. Petrenko and A. Ulrich, editors, Formal Approaches to Software Testing:
Third International Workshop, FATES 2003, volume 2931 of LNCS, pages 86—100.
Springer, 2004.

