
TIME DELAY ESTIMATION IN THE PRESENCE OF CORRELATED NOISE 

AND REVERBERATION 
Yong Rui and Dinei Florencio 

Microsoft Research 

One Microsoft Way, Redmond, WA 98052 

ABSTRACT 

We propose a new two-stage framework for time delay 

estimation in the presence of correlated noise and 

reverberation. The new framework allows us to develop a set 

of new approaches as well as to unify existing ones. We 

further develop the maximum likelihood estimation when 

reverberation is present. The corresponding weighting 

function is a more accurate form of the weighting function 

proposed in [10], one of the best existing techniques. We 

compare our new algorithms with the existing ones and report 

superior performance. 

1. INTRODUCTION 

Using microphone arrays to locate sound source has been an 

active research topic since the early 1990’s [2].  It has many 

important applications including video conferencing 

[1][5][10], video surveillance, and speech recognition [8]. In 

general, there are three categories of techniques for sound 

source localization, i.e. steered-beamformer based, high-

resolution spectral estimation based, and time delay of arrival 

(TDOA) based [2].  So far, the most studied and widely used 

technique is the TDOA based approach.  Various TDOA 

algorithms have been developed at Brown University [2], 

PictureTel [10], Rutgers [6], University of Maryland [12], 

USC [3], UCSD [4], and UIUC [8].  This is by no means a 

complete list.  Instead, it is used to illustrate how much effort 

researchers have put into this problem.    

While researchers are making good progress on various 

aspects of TDOA, there is still no good solution in real-life 

environment where two destructive noise sources exist: 1. 

spatially correlated noise, e.g., computer fans; and 2. room 

reverberation.  With a few exceptions, most of the existing 

algorithms either assume uncorrelated noise or ignore room 

reverberation.  Based on our own experience, testing on data 

with uncorrelated noise and no reverberation will almost 

always give perfect results.  But the algorithm will not work 

well in real-world situations.  In this paper, we explore various 

noise removal techniques to handle issue 1, and different 

weighting functions to deal with issue 2.  The focus of this 

paper is on improving "single-frame" estimates. Multiple-

frame techniques, e.g., temporal filtering [11], are outside the 

scope of this paper, but can always be used to further 

improve the "single-frame" results. On the other hand, better 

single frame estimates should also improve algorithms based 

on multiple frames.  

The rest of the paper is organized as follows.  In Section 

2, we briefly review the general TDOA framework and 

various existing approaches.  In Section 3, we look at the 

TDOA framework from a new two-stage perspective.  The 

new perspective allows us to develop a set of new approaches 

as well as to unify existing ones. In Section 4, we give detailed 

comparisons between the set of proposed new approaches and 

the existing ones. The results show better performance of the 

proposed techniques.  We give concluding remarks in Section 

5.

2. TDOA FRAMEWORK 

The general framework for TDOA is to choose the highest 

peak from the cross correlation curve of two microphones. Let 

s(n) be the source signal, and x1(n) and x2(n) be the signals 

received by the two microphones: 
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where D is the TDOA, a1 and a2 are signal attenuations, n1(n)

and n2(n) are the additive noise, and h1(n)*s(n) and h2(n)*s(n)

represent the reverberation. If one can recover the cross 

correlation between s1(n) and s2(n), )(ˆ
21ssR , or equivalently its 

Fourier transform )(ˆ
21ssG , then D can be estimated. In the 

most simplified case [3][8], the following assumptions are 

made: 

1. signal and noise are uncorrelated 

2. noises at the two microphones are uncorrelated 

3. there is no reverberation 

With the above assumptions, )(ˆ
21ssG can be approximated by 

)(ˆ
21xxG , and D can be estimated as follows:
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While the first assumption is valid most of the time, the 

other two are not. Estimating D based on (2) therefore can 

easily break down in real-world situations. To deal with this 

issue, various frequency weighting functions have been 



proposed, and the resulting framework is called generalized

cross correlation:
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where W(w) is the frequency weighting function.  

In practice, choosing the right weighting function is of 

great significance. Early research on weighting functions can 

be traced back to the 1970’s [6]. As can be seen from (1), 

there are two types of noise in the system, i.e., the ambient 

noise n1(n) and n2(n) and reverberation h1(n)*s(n) and 

h2(n)*s(n). Previous research [2][6] suggests that the 

traditional maximum likelihood (TML) weighting function is 

robust to ambient noise and phase transformation (PHAT) 

weighting function is better dealing with reverberation: 
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where Xi(w) and |Ni(w)|2 , i = 1,2, are the Fourier transform of 

the signal and the noise power spectrum, respectively. It is 

interesting to note that while WTML(w) can be mathematically 

derived [6], WPHAT(w) is purely heuristics based. Most of the 

existing work [2][3][6][8][12] use either WTML (w) or

WPHAT(w). 

3. A TWO-STAGE PERSPECTIVE 

In this section, we look at the TDOA estimation problem as a 

two-stage process: remove the correlated noise and try to 

minimize the reverberation effect. 

3.1. Correlated noise removal 

In offices and conference rooms, there exist noise sources, 

e.g., ceiling fan, computer fan and computer hard drive.  

These noises will be heard by both microphones.  It is 

therefore unrealistic to assume n1(n) and n2(n) as uncorrelated. 

They are, however, stationary or short-time stationary, such 

that it is possible to estimate the noise spectrum over time. We 

discuss three techniques to remove correlated noise.  While 

the first one appeared in the literature [10], the other two did 

not appear explicitly. 

3.1.1. Gnn subtraction (GS) 

If n1(n) and n2(n) are correlated, then 

)(ˆ)(ˆ)(ˆ
212121 nnssxx GGG . We therefore can obtain a 

better estimate of )(ˆ
21ssG as: 
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where )(ˆ
21nnG is estimated when there is no speech. 

3.1.2. Wiener filtering (WF) 

Wiener filtering reduces stationary noise.  If we pass each 

microphone’s signal through a Wiener filter, we expect to see 

less amount of correlated noise in )(ˆ
21xxG .
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where |Ni(w)|2 is estimated when there is no speech. 

3.1.3. Wiener filtering and Gnn subtraction (WG) 

Wiener filtering will not completely remove the stationary 

noise.  The residual can further be removed by using GS: 

))(ˆ)(ˆ)(()()(ˆ
212121 21 nnxx

WG

ss GGWWG (8)

3.2. Alleviate reverberation effects 

While there exist reasonably good techniques to remove 

correlated noise as discussed above, no effective technique is 

available to remove reverberation.  But it is possible to 

alleviate the reverberation effect to a certain extent.  We next 

derive the maximum likelihood weighting function when 

reverberation presents. 

If we consider reverberation as another type of noise, we 

have 
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where |Ni
T(w)|2 represents the total noise. If we assume that the 

phase of Hi( ) is random and independent of S( ), then 

E{S( )Hi( )S*( )}=0, and, from (1), we have the following 

energy equation  
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Both the reverberant signal and the direct-path signal are 

caused by the same source. The reverberant energy is 

therefore proportional to the direct-path energy, by a constant 

p:
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The total noise is therefore: 
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where q = p / (ai + p). If we substitute (12) into (4), we have 

the ML weighting function for reverberant situation:  
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To see the relationship between our derived WMLR(w) and the 

PictureTel one proposed in [10], we list the following 

approximations: 
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With the above approximations, the PictureTel approach

WAMLR(w) [10] approximates our proposed WMLR(w):
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There are several observations can be made based on WMLR(w)

and WAMLR(w): 



1. When the ambient noise dominates, they reduce to the 

traditional ML solution without reverberation WTML(w)

(see (4)). 

2. When the reverberation noise dominates, they reduce to 

WPHAT(w)(see (5)).  This agrees with the previous 

research that PHAT is robust to reverberation when there 

is no ambient noise [2]. 

3. Given the nature of WTML(w) (robust to ambient noise) 

and WPHAT(w) (robust to reverberation), WMLR(w) and 

WAMLR(w) can also be obtained by simply linearly 

combining the two basic weighting functions, hoping to 

obtain the benefits from the both worlds:
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We therefore can view WMLR(w) and WAMLR(w) as 

designed to simultaneously combat ambient noise and 

reverberation. 

In practice, a precise estimation of q may be hard to obtain. 

Fortunately, the above observations allow us to design another 

weighting function heuristically, which performs almost as 

well as the optimum solution.  Specifically, when the signal to 

noise ratio (SNR) is high, we choose WPHAT(w) and when SNR 

is low we choose WTML(w). We call this weighting function 

WSWITCH(w): 
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where SNR0 is a predetermined threshold, e.g., 15dB. 

3.3. Putting the two stages together 

If we put the various correlated noise removal techniques and 

different weighting functions in a 2D grid, we have the 

following table. It illustrates some of existing algorithms, as 

well as two of the proposed algorithms. Note that some of the 

existing algorithms also include further improvements, but fall 

generally in the category indicated. 
Table 1. Different noise removal techniques and weighting functions. 

 NR GS WF WG 

WBASE(w) [8]    

WPHAT(w) [2][3] [6]     

WTML(w) [2][7][12]    

WSWITCH(w)    * 

WMLR(w)    * 

WAMLR(w)  [10]   

In Table 1, NR means no noise removal, and columns 3-5 

correspond to the three techniques discussed in 3.1.1 to 3.1.3.  

WBASE(w) means the weighting function is a constant, i.e., 

WBASE(w) = 1 for all frequencies. The symbol * represents 

proposed combinations that we observed can perform better 

than existing approaches, as shown in the next section. 

4. EXPERIMENTAL RESULTS 

We have done experiments on all the major combinations 

listed in Table 1. Furthermore, for the test data, we cover a 

wide range of sound source angles from -80 to +80 degrees. 

Detailed simulations results are available at our web site [13]. 

But due to limited space, here we report only three sets of 

experiments designed to compare different techniques on the 

following aspects: 

1. For a uniform weighting function, which noise removal 

techniques is the best? 

2. If we turn off the noise removal technique, which 

weighting function performs the best? 

3. Overall, which algorithm (e.g., a particular cell in Table 

1) is the best? 

4.1. Test data description 

We take into account both correlated noise and reverberation 

into account when generating our test data. We generated a 

plenitude of data using the imaging method [9]. The setup 

corresponds to a 6m 7m 2.5m room, with two microphones 

15cm apart, 1m from the floor and 1m from the 6m wall (in 

relation to which they are centered). The absorption 

coefficient of the wall was computed to produce several 

reverberation times, but results are presented here only for T60

= 50ms. Furthermore, two noise sources were included: fan 

noise in the center of room ceiling, and computer noise in the 

left corner opposite to the microphones, at 50cm from the 

floor. The same room reverberation model was used to add 

reverberation to these noise signals, which were then added to 

the already reverberated desired signal. For more realistic 

results, fan noise and computer noise were actually acquired 

from a ceiling fan and from a computer. The desired signal is 

60-second of normal speech, captured with a close talking 

microphone.  

The sound source is generated for 4 different angles: 10, 

30, 50, and 70 degrees, viewed from the center of the two 

microphones.  The 4 sources are all 3m away from the 

microphone center. The SNRs are 0dB when both ambient 

noise and reverberation noise are considered.  The sampling 

frequency is 44.1KHz, and frame size is 1024 samples 

(~23ms). We band pass the raw signal to 800Hz-4000Hz.   

Each of the 4 angle testing data is 60-second long.   Out of the 

60-second data, i.e., 2584 frames, about 500 frames are 

speech frames.  The results reported in this section are 

obtained by using all the 500 frames.   

There are 4 groups in each of the Figures 1-3, 

corresponding to ground truth angles at 10, 30, 50 and 70 

degrees.  Within each group, there are several vertical bars 

representing different techniques to be compared.  The 

vertical axis in figures is error in degrees.  The center of each 

bar represents the average estimated angle over the 500 

frames.  Close to zero means small estimation bias. The height 

of each bar represents 2x the standard deviation of the 500 

estimates.  Short bars indicate low variance. Note also that the 

fact that results are better for smaller angle is expected and 

intrinsic to the geometry of the problem. 

4.2. Experiment 1: Correlated noise removal 

Here, we fix the weighting function as WBASE(w) and compare 

the following four noise removal techniques : No Removal 

(NR), Gnn Subtraction (GS), Wiener Filtering (WF), and both 



WF and GS (WG). The results are summarized in Figure 1, 

and the following observations can be made: 

1. All the three correlated noise removal techniques are 

better than NR.  They have smaller bias and smaller 

variance. 

2. WG is slightly better than the other two techniques.  This 

is especially true when the source angle is small. 

4.3. Experiment 2: Alleviating reverberation effects 

Here, we turn off the noise removal condition (i.e., NR in 

Table 1), and then compare the following 4 weighting 

functions: WPHAT(w), WTML(w), WMLR(w) (q=0.3), and 

WSWITCH(w). The results are summarized in Figure 2, and the 

following observations can be made: 

1. Because the test data contains both correlated ambient 

noise and reverberation noise, the condition for WPHAT(w)

is not satisfied.  It therefore gives poor results, e.g., high 

bias at 10 degrees and high variance at 70 degrees. 

2. Similarly, the condition for WTML(w) is not satisfied 

either, and it has high bias especially when the source 

angle is large. 

3. Both WMLR(w) and WSWITCH(w) perform well, as they 

simultaneously model ambient noise and reverberation. 

4.3. Experiment 3: Overall performance 

Here, we are interested in the overall performance.  Due to 

limited space, we report only two most promising techniques 

and compare them against the PictureTel approach [10], one 

of the best available. From the techniques involved, it is clear 

that WMLR(w)-WG and WSWITCH(w)-WG are the best 

candidates. The PictureTel technique [10] is WAMLR(w)-GS 

when use our terminology (see Table 1). The results are 

summarized in Figure 3. The following observations can be 

made: 

1. All the three algorithms perform well in general – all 

have small bias and small variance. 

2. WMLR(w)-WG seems to be the overall winning algorithm. 

It is more consistent than the other two.  For example, 

WSWITCH(w)-WG has big bias at 70 degrees and 

WAMLR(w)-GS has big variance at 50 degrees. 

5. CONCLUSIONS 

In this paper, we proposed a new two-stage perspective for 

estimating TDOA for real-world situations.  The first stage 

concerns with correlated noise removal and the second stage 

tries to alleviate the reverberation effect. The new perspective 

allows us to develop a set of new approaches as well as to 

unify the existing ones. We have investigated a number of new 

combinations, and detailed experimental results are available 

at [13]. Two of the most promising ones are WMLR(w)-WG and 

WSWITCH(w)-WG. We also derived the ML weighting function 

for reverberant situation WMLR(w). It has nice physical 

interpretations as discussed in Section 3.2.  The very 

successful PictureTel approach WAMLR(w) [10] is an 

approximation to our WMLR(w). We showed better 

performance of the new algorithms on realistically generated 

test data. 
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