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Abstract. This paper presents a graphical representation for the sto-
chastic π-calculus, which is formalised by defining a corresponding graph-
ical calculus. The graphical calculus is shown to be reduction equivalent
to stochastic π, ensuring that the two calculi have the same expressive
power. The graphical representation is used to model a couple of ex-
ample biological systems, namely a bistable gene network and a mapk
signalling cascade. One of the benefits of the representation is its ability
to highlight the existence of cycles, which are a key feature of biological
systems. Another benefit is its ability to animate interactions between
system components, in order to visualise system dynamics. The graphical
representation can also be used as a front end to a simulator for the sto-
chastic π-calculus, to help make modelling and simulation of biological
systems more accessible to non computer scientists.

1 Introduction

The stochastic π-calculus has been used to model and simulate a range of bio-
logical systems [9,17,19]. One of the main benefits of the calculus is its ability
to model large systems incrementally, by composing simpler models of subsys-
tems in an intuitive way [2]. Various stochastic simulators have been developed
for the calculus [19,14], in order to perform virtual experiments on biological
system models. Such in silico experiments can be used to formulate testable
hypotheses on the behaviour of biological systems, as a guide to future experi-
mentation in vivo. The calculus also facilitates mathematical analysis of systems
using a range of techniques, including types, behavioural equivalences and model
checking. In future, such analysis could help provide insight into some of the fun-
damental properties of biological systems. In spite of these benefits, the mathe-
matical nature of the stochastic π-calculus can sometimes limit its accessibility
to a wider audience. In such cases, it can be useful to present an alternative
graphical representation for the calculus, to complement its textual notation.
From our experience, such a representation would be particularly welcomed by
experimental systems biologists.

This paper presents a graphical representation for the stochastic π-calculus,
which is formalised by defining a corresponding graphical calculus. The paper



is structured as follows. Section 2 presents a variant of the stochastic π-calculus
that supports internal transitions and recursive definitions, based on [18]. Sec-
tion 3 presents a graphical representation for the stochastic π-calculus, and ex-
plains why additional syntax constraints are needed to define a corresponding
graphical execution model. Section 4 presents the graphical stochastic π-calculus,
which formalises the syntax constraints identified in Sec. 3. The graphical cal-
culus is shown to be reduction equivalent to the stochastic π-calculus of Sec. 2,
ensuring that the two calculi have the same expressive power. Section 5 uses the
graphical stochastic π-calculus to model a couple of example biological systems,
namely a bistable gene network [4] and a mapk signalling cascade [8]. Finally,
Section 6 shows how the graphical representation can be used as a front end to
a simulator for the stochastic π-calculus.

2 The Stochastic π-calculus

This section presents a variant of the stochastic π-calculus that supports internal
transitions and recursive definitions, based on [18]. Recursive definitions have
been argued in [19] to be a more practical programming abstraction for biological
systems than the basic replication semantics of the π-calculus. This paper also
shows how internal transitions labelled with a stochastic delay can provide a
useful programming abstraction.

The syntax of the stochastic π-calculus (Sπ) used in this paper is summarised
in Definition 1. A system E ` P of the calculus consists of a process P together
with a constant environment E. Each definition X(m) = P in the environment
maps a given identifier X to a corresponding process P , parameterised by m.
Since the definitions themselves do not change over time, the environment E
remains constant during execution. Stochastic behaviour is incorporated into
the calculus by associating each channel x with a corresponding interaction rate
given by rate(x), and by associating each internal transition τ with a rate r.
Each rate characterises an exponential distribution, such that the probability of
an interaction with rate r occurring within time t is given by F (t) = 1 − e−rt.
The average duration of the interaction is given by the mean of this distribution,
which is 1/r. In this paper, it is assumed that all recursive calls to definitions
are guarded inside an action prefix π. This prevents undesirable definitions such
as X = X, or X = Y, Y = (X | X). More precisely, it is assumed that for every
infinite unfolding of definitions there are infinitely many occurrences of actions.

The execution rules for the calculus are summarised in Definition 3. In the
general case, each rule is of the form E ` P

α−→ E ` P ′, which states that
a system E ` P can reduce to a system E ` P ′ by doing an interaction α.
The definition of interaction labels is summarised in Definition 2. Since the
environment E remains constant over time, the rules can be abbreviated to the
form P

α−→ P ′. Where necessary, additional predicates are used to denote the
presence of specific definitions in the environment.

The probability of performing an interaction is determined by basic princi-
ples of chemical kinetics, and is proportional to the apparent rate of the interac-
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P, Q ::= νx P Restriction

| P | Q Parallel

| M Choice

| X(n) Instance

M ::= π.P + M Action

| 0 Null

E ::= X(m)=P Definition, fn(P ) ⊆ m

| E1, E2 Union

| ∅ Empty

π ::= ?x(m) Input

| !x(n) Output

| τr Delay

Definition 1. Syntax of Sπ, with processes P, Q, actions π, channels x, y and tuples

m, n. In a biological setting, each process typically describes the behaviour of a mole-

cule, such as a gene or protein, and each action describes what a given molecule can

do. A delay action τr describes a change in the internal structure of a molecule, such

as a radioactive decay or a change in shape. Each delay is associated with a rate r

that characterises an exponential distribution. In the case of radioactive decay, the

rate determines the half-life of the reaction. Two molecules can interact by performing

a complementary input ?x(m) and output !x(n) on a common channel x. This can rep-

resent two proteins with complementary shapes, or two chemicals with complementary

electronic configurations. In practice, reactions between more than two molecules are

extremely rare, since the probability of three or more molecules interacting simulta-

neously is very low. Thus, the binary interaction model of the stochastic π-calculus

fits well with the biological reality. Values m, n can also be sent and received during a

reaction, e.g. to represent the transfer of an electron or a phosphate from one molecule

to another. A choice of actions π1.P1 + . . .+πN .PN represents the ability of a molecule

to react in N different ways, while a parallel composition P1 | . . . | PM represents the

existence of M molecules in parallel. A definition of the form X(m) = P represents a

particular type of molecule X, parameterised by m. The parameters are assumed to

contain all of the free names of P , written fn(P ) ⊆ m. The definitions are recorded

in a constant environment E, which is assumed to contain a single definition for each

instance X(n). A process P together with its constant environment E denotes a sys-

tem in the calculus, written E ` P . Finally, a restriction νx P is used to represent the

formation of complexes between molecules, where a complex of two processes P and

Q is modelled as νx (P | Q). The restriction denotes a private channel x on which the

two molecules can synchronise to split the complex.

tion [6]. The apparent rate of a delay τr is simply the rate r of the delay, while
the apparent rate of an interaction on a given channel x is equal to the number
of possible combinations of inputs and outputs on x, multiplied by the rate of
x [15]. The function R(x, P ) calculates the apparent rate of channel x in process
P and is defined by:

R(x, P ) = rate(x)× (Inx(P )×Outx(P )−Mixx(P )) (12)
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α Description fn(α) bn(α)

?x(n) Receive a value n on channel x {x, n} ∅
!x(n) Send a value n on channel x {x, n} ∅
!x(νy) Send a private channel y on channel x {x} {y}

x Interact on channel x {x} ∅
r Perform an action with apparent rate r ∅ ∅

Definition 2. Interaction labels in Sπ, where fn(α) and bn(α) denote the set of free
and bound names in α, respectively. Each label α denotes an interaction that a given
process can perform. The labels for receive ?x(n), send !x(n) and private send !x(νy)
are defined as in [18]. The label x denotes an interaction on channel x, where the rate
of interaction depends on the number of inputs and outputs on the channel. The label
keeps track of the channel name so that the rate can be re-calculated whenever new
inputs or outputs are added in parallel. Finally, the label r denotes an interaction with
constant apparent rate r, such as a stochastic delay or an interaction on a private
channel.

!x(n).P + M
!x(n)−→ P (1)

?x(m).P + M
?x(n)−→ P{n/m} (2)

τr.P + M
r−→ P (3)

P
!x(n)−→ P ′ Q

?x(n)−→ Q′ ⇒ P | Q x−→ P ′ | Q′ (4)

n /∈ fn(Q) P
!x(νn)−→ P ′ Q

?x(n)−→ Q′ ⇒ P | Q x−→ νn (P ′ | Q′) (5)

P
x−→ P ′ ⇒ νx P

R(x,P )−→ νx P ′ (6)

x 6= y P
!x(y)−→ P ′ ⇒ νy P

!x(νy)−→ P ′ (7)

x /∈ fn(α) ∪ bn(α) P
α−→ P ′ ⇒ νx P

α−→ νx P ′ (8)

M
α−→ P ′ ⇒ π.P + M

α−→ P ′ (9)

bn(α) ∩ fn(Q) = ∅ P
α−→ P ′ ⇒ P | Q α−→ P ′ | Q (10)

X(m)=P P{n/m}
α−→ P ′ ⇒ X(n)

α−→ P ′ (11)

Definition 3. Reduction in Sπ. An output !x(n).P can send the value n on channel x

and then execute process P (1). An input ?x(m).P can receive a value n on channel x

and then execute process P , in which the received value is assigned to m (2). A delay

τr.P can perform an internal action with apparent rate r and then execute the process

P (3). If a process P can send a value n on channel x and a process Q can receive a

value n on channel x then P and Q can interact on x (4). If n is private then the scope

of n is extended over the resulting processes, where νn (P ′ | Q′) denotes the formation

of a complex between P ′ and Q′ (5). If two processes interact on a private channel

x then the apparent rate of the interaction is constant, and is given by R(x, P ) (6).

Rule (7) allows a private channel to be sent. Finally, rules (8), (9), (10) and (11) allow

an action to be performed inside a restriction, a choice, a parallel composition and a

definition, respectively. For each of the rules (4), (5) and (10) there exists a symmetric

rule (not shown) in which P | Q and P ′ | Q′ are commuted.
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where Inx(P ) and Outx(P ) are the number of unguarded inputs and outputs on
channel x in P , respectively, and Mixx(P ) is the sum of Inx(Mi)×Outx(Mi) for
each choice Mi in P . The definition takes into account the fact that an input
and an output in the same choice cannot interact, by subtracting Mixx(P ) from
the product of the number of inputs and outputs on x.

3 Graphical Representation

This section presents a graphical representation for the stochastic π-calculus, and
explains why additional syntax constraints are needed to define a corresponding
graphical execution model. The principle of the graphical representation is to
display each process P as a node in a graph and to draw an edge from the node
to each nested process in P . This allows the syntax tree of a given process to be
represented as a tree of nodes. In addition, each definition in the environment
assigns a unique identifier to a node. The identifiers are used to define additional
edges between nodes, as in standard graph notations.

The graphical representation of the stochastic π-calculus is defined in Fig. 1
and Fig. 2, and is based on an abbreviated syntax for the calculus, presented
in Definition 4. The abbreviated syntax is equivalent to the syntax of the sto-
chastic π-calculus presented in Definition 1, but uses a more compact notation
for restriction, parallel composition, choice and union. As an example, Figure 3
uses the graphical representation to visualise a stochastic π-calculus model of a
gene with inhibitory control, as presented in [2].

The graphical representation described so far is essentially a static way of
visualising systems of the stochastic π-calculus. The next stage is to define a
dynamic representation, in order to visualise system execution. The principle of
the dynamic representation is to add a token to each node in the graph that
corresponds to a currently executing process. For example, in Fig. 3 a token is
added to the Gene node to represent the execution of a single gene, and a new
token is added to the Protein node each time a new protein is created. Similarly,
a token needs to be added to the corresponding node whenever the gene becomes
blocked after doing an input on a. However, in order for a token to be added, the
node needs to be associated with a suitable identifier. This can be achieved by
augmenting the model in Fig. 3 with the definition Blocked(a, b)=τu.Gene(a, b)
and by replacing ?a.τu.Gene(a, b) with ?a.Blocked(a, b). In the general case, each
choice needs to be defined separately in the environment, so that a token can be
added to the appropriate node during execution. It turns out that this simple
constraint is sufficient to derive a graphical execution model for the stochastic
π-calculus, as shown in the next section.
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P ::= νz
PN

i=1 πi.Pi Choice

| νz
QM

i=1 Pi Parallel

| νz X(n) Instance

E ::= X(m)=P Definitiom

|
SN

i=1 Ei Union

Definition 4. Abbreviated Syntax of Sπ, where N ≥ 0 and M ≥ 2. A sequence of
zero or more restricted names is abbreviated to a tuple z, which may be empty. A
choice between zero or more actions π1.P1 + . . . + πN .PN + 0 is abbreviated to a sumPN

i=1 πi.Pi. The choice can also be written π1.P1 + . . . + πN .PN if N ≥ 1. A parallel

composition of two or more processes P1 | . . . | PM is abbreviated to a product
QM

i=1 Pi.

Finally, a union of zero or more environments E1, . . . , EN is abbreviated to
SN

i=1 Ei.
The abbreviated syntax is used as the basis for the graphical representation.

Definition Union
E X(m)=P E1, . . . , EN

Fig. 1. Graphical representation of environments in Sπ. Each process in the environ-
ment represents a node in a graph, and each definition assigns an identifier to a given
node. The identifiers are used to define edges between nodes, as in standard graph
notations. A definition X(m)=P is displayed as the process P , where the name X is
used as an identifier for P . By convention, any edges leading to X are connected to
the node of P . A union of environments E1, . . . , EN is displayed by drawing the en-
vironments E1, . . . , EN next to each other. Edges between nodes in the environments
are determined by the node identifiers.

Choice Parallel Instance
P νz (π1.P1 + . . . + πN .PN ) νz (P1 | . . . | PM ) X(m)=P ` νz X(n)

Fig. 2. Graphical representation of processes in Sπ. A choice π1.P1 + . . . + πN .PN

with restricted names z is displayed as an elliptical node with label z and with edges
to processes P1, . . . , PN . Each edge to a process Pi is labelled with an action πi and
denotes an alternative execution path in the system. The node can also be annotated
with an optional name X. A parallel composition P1 | . . . | PM with restricted names z
is displayed as a rectangular node with label z and with edges to processes P1, . . . , PM .
Each edge to a process Pi denotes a concurrent execution path in the system. An
instance X(n) with restricted names z is displayed as a rectangular node with label z
and with an edge to the process identified by X. If X(m) = P and m 6= n then the
tip of the edge is labelled with the substitution {n/m}. This represents the passing of
parameters from one process to another. If z is empty then edges from a choice or
parallel composition can be connected directly to node X by omitting the rectangle.
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Gene(a, b) = τt.(Gene(a, b) | Protein(b))
+ ?a.τu.Gene(a, b)

Protein(b) = !b.Protein(b) + τd

Fig. 3. A stochastic π-calculus model of a gene with inhibitory control, as presented
in [2]. The gene can transcribe a protein by first doing a stochastic delay at rate t
and then executing a new protein in parallel with the gene. Alternatively, it can block
by doing an input on its promoter region a and then unblock by doing a stochastic
delay at rate u. The transcribed protein can repeatedly do an output on the promoter
region b, or it can decay at rate d. The gene is parameterised by its promoter region
a, together with the promoter region b that is recognised by its transcribed proteins.
The functional behaviour of the gene can be visualised using a corresponding high-level
representation (right), which abstracts away from the internal dynamics. According to
the reduction rules of the calculus, the output !b of the transcribed protein can interact
with the input ?b of a corresponding Gene(b, c), which becomes blocked as a result.
This simple model of a gene can be used to build arbitrarily complex networks, as
described in [2]. An example of one such network is presented in Sec. 4.

4 Graphical Calculus

This section presents the graphical stochastic π-calculus, which formalises the
syntax constraints identified in Sec. 3. The graphical calculus is shown to be
reduction equivalent to the stochastic π-calculus of Sec. 2, ensuring that the two
calculi have the same expressive power. The syntax of the graphical stochastic
π-calculus (GSπ) is presented in Definition 5, and a corresponding abbreviated
syntax is presented in Definition 6. The graphical calculus GSπ is a subset of the
calculus Sπ, with the additional constraint that each choice is defined separately
in the environment. Similarly, the graphical representation of GSπ is a subset of
the graphical representation of Sπ, as shown in Fig. 4 and Fig. 5.

The graphical calculus can also be used as the basis for a graphical execution
model. In this setting, a system E ` P is displayed in two parts, a static envi-
ronment E which remains constant over time, and a dynamic process P which
is updated after each execution step. The environment E is displayed using the
static representation of environments and processes defined in Fig. 4 and Fig. 5,
whereas the process P is displayed using a dynamic representation, defined in
Fig. 6. The principle of the dynamic representation is to display each instance
X(n) of a definition X(m) = P by attaching a substitution token {n/m} to the
node identified by X. In addition, a dotted edge is drawn from each restricted
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P, Q ::= νx P Restriction

| P | Q Parallel

| 0 Null

| X(n) Instance

M ::= π.P + M Action

| 0 Null

E ::= X(m)=D Definition, fn(P ) ⊆ m

| E1, E2 Union

| ∅ Empty

D ::= P Process

| M Choice

| νx D Restriction

Definition 5. Syntax of GSπ. This is a subset of the syntax of Sπ, with the additional
constraint that processes in GSπ can only contain empty choices, and definitions in GSπ
can only contain a choice at the top-level. The constraints ensure that each choice is
defined separately in the environment.

P ::= νz 0 Null

| νz
QM

i=1 Pi Parallel

| νz X(n) Instance

E ::= X(m)=νz
PN

i=1 πi.Pi Choice

| X(m)=P Process

|
SN

i=1 Ei Union

Definition 6. Abbreviated syntax of GSπ, where N ≥ 0 and M ≥ 2. This is a subset of
the abbreviated syntax of Sπ, and is used as the basis for the graphical representation.

Choice Process Union
E X(m)=νz (π1.P1 + . . . + πN .PN ) X(m)=P E1 | . . . | EN

Fig. 4. Graphical representation of environments in GSπ, which is a subset of the
graphical representation of environments in Sπ. For a definition of a choice, the node can
also be annotated with the name X of the definition, or with the name and parameters
X(m). Note that all node annotations are optional.

Null Parallel Instance
P νz 0 νz (P1 | . . . | PM ) X(m)=P ` νz X(n)

Fig. 5. Graphical representation of processes in GSπ, which is a subset of the graphical
representation of processes in Sπ.
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Null Parallel Instance
P νz 0 νz (P1 | . . . | PM ) X(m)=P ` νz X(n)

Fig. 6. Dynamic graphical representation of processes in GSπ. A null process 0 with
restricted names z is not displayed. An instance X(n) of a definition X(m) = P is
displayed by placing a substitution token {n/m} next to the node identified by X. For
clarity, the node is highlighted when at least one token is present, and any restricted
names z are connected to the token by a dotted edge. A collection of parallel processes
P1 | . . . | PM with restricted names z is displayed by drawing a dotted edge from z to
each of the processes P1, . . . , PM . This represents the formation of a complex between
the processes, where the names z can be used to split the complex. If Pi is an instance
X(n) then the dotted edge is connected to the corresponding substitution token.

name to all of the tokens that share this name, in order to represent the formation
of complexes. For example, a process νx ( X1(n1) | X2(n2) ) where X1(m1)=P1

and X2(m2)=P2 is displayed by placing tokens {n1/m1} and {n2/m2} next to the
nodes identified by X1 and X2, respectively. A dotted edge is drawn from the
name x to both tokens, in order to represent the formation of a complex between
X1 and X2. The resulting graph is displayed as: X1 {n1/m1} · · ·x · · ·{n2/m2} X2.

Additional syntactic sugar can be defined for the dynamic representation, in
order to improve the display of processes. For example, if N identical substitution
tokens are attached to the same node, they can be replaced by a single token
preceded by the number N . Furthermore, if the substitution token is empty it
can be omitted, leaving just the number N . Similarly, if there are N copies
of a restriction νxP they can be replaced by a single copy of the restriction,
where the name x is preceded by the number N . The scope of a restricted
channel can be further clarified by only drawing a dotted edge to a token if
it contains a free occurrence of the channel name. For example, a restriction
νx1 νx2 (P1 | P2 | P3) where x1 6∈ fn(P3) and x2 6∈ fn(P1) can be displayed
as: P1 · · ·x1 · · ·P2 · · ·x2 · · ·P3. The graphical representation is more informative
than the corresponding textual syntax, since it clearly shows that P1 and P3

do not share any restricted names. In contrast, to verify this property for the
textual syntax one needs to check which names occur inside which processes,
and whether any of the names are shared. The extra clarity is not a particular
property of the calculus, but simply a consequence of the fact that the graphical
representation uses two dimensions, whereas the textual syntax uses just one.

More generally, if multiple substitution tokens of different values are attached
to the same node X, a separate copy of the graph connected to X can be spawned
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r−→ (3)

x−→ (4)

x−→ (5)

Fig. 7. Example graphical reductions in GSπ, where P1, . . . , PN and Q1, . . . , QM are
assumed to represent choices. A given process is executed graphically by first applying
one of the calculus reduction rules and then displaying the resulting process.

for each token of a given value. This can be used to visualise the execution of
different types of components in the system, where a token of a given value
corresponds to a particular type of component. At the finest level of granularity,
a separate graph can be spawned for each individual token, in order to visualise
the execution of individual components in the system. In this setting, only a
single token is present in the graph at a given instant. This allows successive
nodes in the graph to be highlighted after each reduction step, in the style of
state machines.

Since the graphical calculus GSπ is a subset of the calculus Sπ, reduction in
GSπ can be defined using the rules for Sπ presented in Definition 3. The only
required change is to replace P with D in rule (11), since definitions in GSπ are
of the form X(m) = D . A graphical execution model is obtained by applying
these rules to a given process in GSπ, and then displaying the resulting process
after each reduction step. Figure 7 illustrates a number of example graphical
reductions, based on the reduction rules of Definition 3. Figures 8 and 9 illustrate
the execution of a single gene and a network of genes, respectively, based on
the model in Fig. 3. During execution, it is also useful to expand instances of
definitions that are not choices, so that tokens are only attached to nodes that are
waiting to execute. This can be achieved by defining an additional normalisation
rule, such that if X(m)=P then the process X(n) is expanded to P{n/m}, where
P does not contain a choice of actions.

So far, the graphical stochastic π-calculus has been used for both the static
and dynamic visualisation of calculus processes. The next stage is to prove its
equivalence with respect to the stochastic π-calculus, in order to ensure that the
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1 2 3

Gene(a, b) Gene(a, b) | Protein(b) Blocked(a, b) | Protein(b)

Gene(a, b) = τt.(Gene(a, b) | Protein(b)) + ?a.Blocked(a, b)
Blocked(a, b) = τu.Gene(a, b)

Protein(b) = !b.Protein(b) + τd

Fig. 8. Execution trace for a gene with inhibitory control, based on Fig. 3, where each
choice is defined separately in the environment. The sequence of transitions is given

by 1
t−→ 2

?a−→ 3
u−→ 2. All substitution tokens in the graphs are empty, since the

arguments of each instance are equal to the formal parameters. Parallel execution is
represented by highlighting two different nodes on the same graph at the same time.

(a) (b)

Gene(c, a) | Gene(a, b) | Gene(b, c) (c)

Fig. 9. Constructing a simple network using the gene of Fig. 8. The network consists of
three genes that mutually repress each other, and was previously genetically engineered
in living bacteria [3]. The network has been dubbed the repressilator, since the mutual
repression of the three genes gives rise to alternate oscillations in the expression levels
of the corresponding proteins. The network is displayed by adding substitution tokens

{c,a/a,b}, {a,b/a,b} and {b,c/a,b} to the node identified by Gene, as shown in (a). By
default, the parameters are not shown explicitly on the node label but can be optionally
included, as stated in Fig. 4. For clarity, a separate graph can be generated for each
token (b), where the names of the parameters are used to distinguish between the
different genes. A high-level graphical representation of the network is also given (c).
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(E ` P ) , (E), E′ ` P ′ (13)

where E′ ` P ′ = (P )

(νz 0) , ∅ ` νz 0 (14)

(νz M) , (X(n)=νz M) ` X(n) (15)

where X fresh M 6= 0 n = fn(νz M)

(νz
QM

i=1Pi) ,
SM

i=1Ei ` νz
QM

i=1P
′
i (16)

where Ei ` P ′
i = (Pi)

(νz X(n)) , ∅ ` νz X(n) (17)

(X(m)=νz
PN

i=1πi.Pi) ,
SN

i=1Ei, X(m)=νz
PN

i=1πi.P
′
i (18)

where Ei ` P ′
i = (Pi)

(X(m)=P ) , E, X(m)=P ′ (19)

where E ` P ′ = (P ) P 6= νz M

(
SN

i=1Ei) ,
SN

i=1(Ei) (20)

Definition 7. Encoding Sπ to GSπ. The function (E ` P ) encodes a given system
E ` P in Sπ to a corresponding system in GSπ (13). The encoding relies on a function
(P ), which encodes a process P in Sπ to a process and environment in GSπ as follows.
An empty choice νz 0 is unchanged. A fresh definition is created for each non-empty
choice νz M , and the choice is replaced by an instance of this definition (15). Each
process Pi in a parallel composition νz

QM
i=1Pi is replaced by its encoding, and any

new definitions are added to the environment (16). An instance νz X(n) is unchanged.
The encoding also relies on a function (E), which encodes an environment E in Sπ to
an environment in GSπ as follows. Each process Pi in a choice νz

P
i πi.Pi is replaced

by its encoding, and any new definitions are added to the environment (18). A process
P that is not a choice is replaced by its encoding, and any new definitions are added
to the environment. (19). Finally, each environment Ei in a union

SN
i=1Ei is replaced

by its encoding (20).

[E ` P ] , E ` P (21)

Definition 8. Decoding GSπ to Sπ. Since the graphical calculus GSπ is a subset of

the calculus Sπ, the decoding is simply the identity function.

two calculi can be used interchangeably. This can be achieved by defining an
encoding from the calculus Sπ to the graphical calculus GSπ, as presented in
Definition 7, where the function (E ` P ) encodes a given system E ` P in Sπ
to a corresponding system in GSπ.

Lemma 1 ensures that the encoding is well-defined. The lemma states that
if a system E ` P is in the calculus Sπ then its encoding (E ` P ) is in the
graphical calculus GSπ.
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Lemma 1. ∀E,P ∈ Sπ.(E ` P ) ∈ GSπ

Proof. By straightforward induction on the definition of encoding in Sπ. ut
Lemma 2 ensures that the graphical calculus GSπ is a subset of the calculus Sπ.
The lemma states that if a system E ` P is in the graphical calculus GSπ, then
it is also in the calculus Sπ. This allows reduction in GSπ to use the same rules
as reduction in Sπ.

Lemma 2. ∀E,P ∈ GSπ.E ` P ∈ Sπ

Proof. By straightforward induction on the syntax of GSπ. By definition, the
calculus GSπ requires each choice to be defined separately in the environment,
which is nothing more than a syntactic constraint on the calculus Sπ. ut
Theorem 1 ensures that the syntax of the graphical calculus is preserved by
reduction. The theorem states that if a system E ` P in GSπ can reduce to
E ` P ′ then the resulting system is also in GSπ. This ensures that a given
process can be graphically displayed after each reduction step.

Theorem 1. ∀E,P ∈ GSπ.E ` P
α−→ E ` P ′ ⇒ E ` P ′ ∈ GSπ

Proof. By straightforward induction on the definition of reduction in GSπ. It
is clear that if each choice is defined separately in the environment then this
property will also hold after a reduction, since the reduction rules do not expand
definitions of choices. This is the only additional constraint that needs to be
preserved with respect to reduction in Sπ. ut
Finally, Theorem 2 and Theorem 3 ensure that the graphical calculus GSπ and
the calculus Sπ are reduction equivalent. This ensures that the two calculi have
the same expressive power, and can therefore be used interchangeably.

Theorem 2. ∀E,P ∈ GSπ.E ` P
α−→ E ` P ′ ⇒ [E ` P ]

α−→ [E ` P ′]

Proof. The proof is immediate, since the graphical calculus GSπ is a subset of
the calculus Sπ, where the decoding [E ` P ] is given in Definition 8 as the
identity function. ut
Theorem 3. ∀E,P ∈ Sπ.E ` P

α−→ E ` P ′ ⇒ (E ` P )
α−→ (E ` P ′)

Proof. The proof is by straightforward induction on the definition of reduction
in Sπ. The encoding (E ` P ) merely creates a separate definition X(n)=νz M
in the environment E for each choice νz M in the system. Moreover, rule (11)
ensures that if a given process can perform a reduction, then the same reduction
can be performed if the process is defined separately in the environment. There-
fore, any reductions that are possible in the system E ` P will also be possible
in the corresponding encoding. Note that the definitions created in the encoding
(E ` P ) can have different names to those created in (E ` P ′). Furthermore,
the encoding (E ` P ′) can have less definitions than the encoding (E ` P ), e.g.
if some of the choices in (E ` P ) are reduced. Therefore, in order to ensure that
(E ` P )

α−→ (E ` P ′) the proof assumes that systems E ` P of the graphical
calculus are equal up to renaming of definitions and up to garbage-collection of
unused definitions. ut
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5 Biological Examples

This section uses the graphical stochastic π-calculus to model a couple of example
biological systems, namely a bistable gene network [4] and a mapk signalling
cascade [8]. A visual comparison between the stochastic π-calculus models and
their corresponding reaction equations is provided in Appendix B.

5.1 Bistable Gene Network

In [4], a number of gene networks were evolved in silico to perform specific
functions. At each stage in the evolution, various criteria were used to select
the networks that best matched the desired behaviour. One of the networks was
evolved to perform the function of a bistable switch, as summarised in Fig. 10.
The evolved network was shown to be considerably more stable than the simpler,
more intuitive network in which two genes mutually repress each other.

+A

  a  

A B

B

  b    b  A+
A

Fig. 10. A bistable gene network obtained by evolution in silico, as presented in [4]. The
genes a and b can transcribe proteins A and B respectively, at constitutive transcription
rates. Proteins A and B can bind irreversibly to produce the complex AB, which
eventually degrades. Protein A can also bind reversibly to gene b, in order to inhibit
the transcription of B. Initially, if A binds to b then production of A stabilises at a
high level, since B is produced at a much lower rate. Alternatively, if A binds to B then
production of B stabilises at a high level, since each subsequent A that is produced
immediately binds to B and is degraded.

A graphical stochastic π-calculus model of this system is presented in Fig. 11,
and the corresponding code for the model is presented in Fig. 22 of Appen-
dix A. The model is directly executable, in contrast with the informal diagram
of Fig. 10. Example execution traces for the model are shown in Fig. 12, which
help to clarify the overall system function. Stochastic simulation results for the
model are shown in Fig. 13, which match those presented in [4]. The results
indicate that the system does indeed behave as a bistable switch.
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z= inhibit, bind
a(z)=τtA.(A(z) | a(z))
A(z)=νu

(τdA

+!bind(u).A B(u)
+!inhibit(u).A b(u, inhibit, bind))

A b(u, inhibit, bind)=?u.A(z)
A B(u)=τdAB

b(z)=τtB .(B(z) | b(z))
+?inhibit(u).b A(u)

b A(u)=τtB′ .(B(z) | b A(u))
+!u.b(z)

B(z)=τdB

+?bind(u).B A(u)
B A(u)=0

a(z) | b(z)

Fig. 11. A graphical stochastic π-calculus model of the bistable gene network presented
in [4]. The corresponding textual representation of the network is also given. Each gene
a and b is modelled as a separate process with parameters z. Gene a can transcribe a
protein A by doing a stochastic delay at rate tA and then executing a new process A
in parallel with the gene. Protein A can either degrade by doing a stochastic delay at
rate dA, or bind to gene b by doing an output on channel inhibit, or bind irreversibly
to protein B by doing an output on channel bind. When protein A binds to gene b it
sends a private channel u and then executes the process A b, which can unbind from
the gene by doing an input on u. When protein A binds irreversibly to protein B it
executes the process A B, which can degrade by doing a stochastic delay at rate dAB.
Thus, protein A is neutralised by protein B. Conversely, gene b can either transcribe
a protein B by doing a stochastic delay at rate tB, or bind to protein A by doing an
input on channel inhibit. When gene b binds to protein A it receives a private channel
u and then executes the process b A, which can either unbind from the protein by
doing an output on u, or transcribe a protein B at a much slower rate tB′. Thus, gene
b is inhibited by protein A. Protein B can either degrade by doing a stochastic delay
at rate dB, or bind irreversibly to protein A by doing an input on channel bind.
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1 1b

2a 2b

3a 3b

Fig. 12. Execution traces for the bistable gene network of Fig. 11. Initially there are
two genes a and b that can transcribe proteins A and B at rates tA and tB, respectively
(1). The transcription rate tB is only slightly faster than tA, giving a similar probability
for transcribing either protein A or B. If protein A is transcribed first (2a) it can bind
to gene b and inhibit the production of protein B (3a). Since protein B is transcribed
at a much slower rate tB′, a higher proportion of protein A is produced. Alternatively,
if protein B is transcribed first (1b), any subsequently transcribed protein A (2b) can
bind irreversibly to protein B and be degraded (3b). Since protein B is transcribed
faster than protein A, a higher proportion of protein B is produced.
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(a) (b)

(c)

Fig. 13. Simulation results for the bistable gene network of Fig. 11, which show the
evolution of the number of proteins over time. The results were obtained by executing
the code from Fig. 22 of Appendix A using the SPiM simulator, assuming that the
rates are in s−1. Initially, there is a single copy of each gene a and b, with a similar
probability of transcribing either protein A or protein B. Depending on the initial
transcriptions, the system will either transcribe a high proportion of protein A (a)
or a high proportion of protein B (b). When a high proportion of a given protein is
transcribed, it suppresses the other protein and the system remains in a stable state.
It is possible to toggle between two stable states by injecting a large amount of protein
into the system after a given time interval. For example, a system that has a stable
production of protein B can be “switched” by artificially injecting a large amount of
protein A at time t ' 2500, and then “switched” again by injecting a large amount of
protein B at time t ' 5000 (c).

5.2 Mapk Cascade

In [8], a model of the mitogen-activated protein kinase (mapk) cascade was pre-
sented, and the cascade was shown to perform the function of an ultrasensitive
switch. The cascade was studied using a set of reaction equations, which were
converted to ordinary differential equations. The equations were solved numeri-
cally, and the response curves for the cascade were shown to be steeply sigmoidal.
The basic function of the cascade is summarised in Fig. 14.

A graphical stochastic π-calculus model of this system is presented in Fig. 17,
and the corresponding code for the model is presented in Fig. 23 of Appendix A.
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E1 (input)

KKK*KKK

E2

KK KK-PPKK-P

KK-Pase

K K-PP (output) K-P

K-Pase

Fig. 14. A model of the mitogen-activated protein kinase (mapk) cascade, as presented
in [4]. Initially the cascade contains a large reservoir of substrates KKK, KK and K.
When a single enzyme E1 is added, it drives the transformation of KKK to KKK*,
which in turn drives the transformation of KK to KK-P to KK-PP, which in turn
drives the transformation of K to K-P to K-PP. The effect of these transformations is
to produce a rapid increase in the output level of K-PP when an input E1 is added.
The transformations can also be driven in the reverse direction by the enzymes E2,
KK-Pase and K-Pase, respectively. This allows the output level of K-PP to revert back
to zero when the input E1 is removed, so that the cascade can be re-used.

The model represents the reaction between an enzyme E and a substrate K in
two stages, as shown in Fig. 15. First, the enzyme binds to the substrate, after
which it can either unbind or transform the substrate into a product. An execu-
tion trace of a reaction between an enzyme and a substrate is shown in Fig. 16.
Stochastic simulation results for the mapk cascade are shown in Fig. 18. The
results highlight the increase in signal response as the cascade is traversed from
KKK, to KK to K, in accordance with the predictions of [8]. Further simulations
across a range of values indicate that the overall function of the system is robust
to changes in reactions rates. Even when all of the rates were set to a nominal
value of 1.0, the system still behaves as an ultrasensitive switch. Such robustness
in system behaviour is perhaps not a coincidence, given that the cascade is used
to trigger important processes such as cell division in living organisms.

In previous work, the stochastic π-calculus was used to construct a high-level
library of genes, which was used to build networks of varying size and complexity
[2]. In principle, a similar approach can also be applied to signalling pathways,
such as the mapk cascade in Fig. 17. The cascade is a fairly regular system that
consists of proteins with only two types of behaviour, namely enzyme and sub-
strate. The complexity of the system lies in the way multiple combinations of
behaviours can be defined for the same protein. The ability to combine behav-
iours in this way can be modelled more directly by defining a high-level library
of enzymes and substrates, as shown in Fig. 19. The library uses simple syn-
tactic sugar, which enables a stochastic π-calculus model for the mapk cascade
to be constructed by a combination of calls to the library, as shown in Fig. 20.
Taking things a step further, one can also envisage a high-level graphical repre-
sentation for the library, as illustrated in Fig. 20. In general, one can envision
multiple high-level (graphical) libraries for different types of systems, such as
gene networks and signalling cascades, all defined in terms of a single underlying
(graphical) programming language.
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E(a)=νd νk !a(d, k).EK(a, d, k)
EK(a, d, k)=?d.E(a) + ?k.E(a)

K(a)=?a(d, k).KE(a, d, k)
KE(a, d, k)=!d.K(a) + !k.P ()

E(a) | K(a)

Fig. 15. A stochastic π-calculus model of enzymes and substrates. The reaction be-
tween an enzyme E and a substrate K takes place in two stages. First, the enzyme
binds to the substrate with a given rate a, after which the enzyme can either unbind
with rate d, or transform the substrate to a product P with rate k. This is represented
by the reaction equation E + K d 
a E : K →k E + P . A reaction of this form is
modelled in the stochastic π-calculus by defining separate processes E(a) and K(a) for
the enzyme and substrate, respectively. The enzyme E can bind to the substrate by
sending private channels d and k on channel a. The bound enzyme can either unbind
by doing an input on d, or react by doing an input on k. Similarly, the substrate K
can bind to an enzyme by receiving private channels d and k on channel a. The bound
substrate can either unbind by doing an output on d, or react by doing an output on
k to produce a product P .

1 2 3

Fig. 16. Execution trace for the enzyme and substrate of Fig. 15. Initially, there is an
enzyme E and a substrate K that can interact on channel a (1). The enzyme binds
to the substrate by sending private channels d and k on channel a (2). The bound
enzyme and substrate can unbind by doing a complementary input and output on
channel d, and return to their original state (1). Alternatively, they can react by doing
a complementary input and output on channel k. The enzyme returns to its original
state, while the substrate is transformed into a product P (3).
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Fig. 17. A graphical stochastic π-calculus model of the mapk cascade presented in [8].
The cascade consists of proteins that can act as enzymes or substrates, as defined in
Fig. 15. The process E1 can act as an enzyme on a1, and the process KKK can act as
a substrate on a1 to produce a product KKKst . Conversely, the process KKKst can act
as a substrate on a2 to produce a product KKK . It can also act as an enzyme on both
a3 and a5. The remaining enzymes and substrates are defined in a similar fashion.

(a) (b)

Fig. 18. Simulation results for the mapk cascade of Fig. 17. The results were ob-
tained by executing the code from Fig. 23 of Appendix A, using the SPiM simula-
tor. Simulation (a) was obtained using rates and quantities derived from [8], with
rate(ai) = 1.0s−1, rate(di) = rate(ki) = 150.0s−1, starting with one of E1, E2 and
KKPase, 120 of KPase, 3 of KKK and 1200 of KK and K. Simulation (b) was obtained
by setting all the rates to a nominal value of 1.0, starting with the quantities in Fig. 17.
Both simulations exhibit an increase in signal response as the cascade is traversed from
KKK to KK and K. Functionally similar response profiles were observed for the output
KPP in both simulations, in spite of the differences in simulation conditions.
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Enz(E, a)=νd νk !a(d, k).ES(E, a, d, k)
ES(E, a, d, k)=?d.E() + ?k.E()

Sub(S, P, a)=?a(d, k).SE(S, P, a, d, k)
SE(S, P, a, d, k)=!d.S() + !k.P ()

Fig. 19. A library of enzymes and substrates, based on the definitions in Fig. 15. The
library uses a higher-order variant of the stochastic π-calculus, in which process names
can be passed as parameters. The definition of an enzyme Enz is parameterised by
the name of the enzyme E, while the definition of a substrate Sub is parameterised
by the names of the substrate S and the product P . This allows multiple enzyme and
substrate behaviours to be defined for a given protein, by simple combinations of calls
to the library. For example, X()=Sub(X, P, a2) + Enz(X, a3) + Enz(X, a5) defines a
protein X that can act as a substrate on a2 to produce a product P , as an enzyme
on a3, or as an enzyme on a5. The definition relies on additional syntactic sugar for
placing an instance inside a choice, where νz′ (X(n) + N) is short for νzz′ (M + N),
assuming X(n)=νz M and z ∩ z′ = ∅.

E1 (input)

KKK*KKK

E2

KK KK-PPKK-P

KK-Pase

K K-PP (output) K-P

K-Pase

a1 a3 a5 a7 a9

a2 a4 a6 a8 a10

E1() = Enz(E1, a1)
E2() = Enz(E2, a2)

KKPase() = Enz(KKPase, a4)
+ Enz(KKPase, a6)

KPase() = Enz(KPase, a8)
+ Enz(KPase, a10)

KKK() = Sub(KKK, KKKst, a1)
KKKst() = Sub(KKKst, KKK, a2)

+ Enz(KKKst, a3)
+ Enz(KKKst, a5)

KK() = Sub(KK, KKP, a3)
KKP () = Sub(KKP, KK, a4)

+ Sub(KKP, KKPP, a5)
KKPP () = Sub(KKPP, KKP, a6)

+ Enz(KKPP, a7)
+ Enz(KKPP, a9)

K() = Sub(K, KP, a7)
KP () = Sub(KP, K, a8)

+ Sub(KP, KPP, a9)
KPP () = Sub(KPP, KP, a10)

Fig. 20. High-level program code for the mapk cascade of Fig. 17. The code is con-
structed by calls to the library of enzymes and substrates defined in Fig. 19. The
structure of the code gives a clear indication of the function of each protein in the
cascade. A corresponding high-level graphical representation for the code is also given.
The representation is similar to the biological diagram of Fig. 14, but also contains ex-
plicit channel names to denote possible interactions. If the stochastic π-calculus model
is closed by restricting channels a1, . . . , a10 then the set of possible interactions is fixed,
and we obtain exactly the diagram of Fig. 14.
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6 Implementation

The variant of the stochastic π-calculus described in this paper has been used to
implement the current version of the SPiM programming language, which is used
to simulate models of biological systems [14]. The language extends the syntax of
the calculus by allowing mutually recursive processes to be defined at arbitrary
levels of nesting. This gives rise to a more scalable syntax, which facilitates
programming of large systems. A collection of mutually recursive processes is of
the form:

let X1(m1) = P1 and . . . and XN (mN ) = PN in Q

This is encoded into the calculus by expanding the scope of each definition
Xi(mi) = Pi to the top level, adding parameters to each top-level definition to
ensure that fn(Pi) ⊆ mi, and renaming process definitions where necessary to
ensure that all top-level definitions are distinct. The transformations are based
on standard encodings presented in [21,11,20]. A core syntax of the SPiM pro-
gramming language is presented in Appendix A.

The implementation can display a process of the graphical stochastic π-
calculus by exporting to an open graph syntax such as DOT [5]. DOT is a
textual syntax for representing directed graphs, which can be rendered using the
Graphviz DOT layout engine. A symbolic core syntax for DOT graphs is de-
scribed in Definition 9. An encoding {|E ` P |} for generating a DOT graph from
a system E ` P in GSπ is presented in Definition 10. The encoding maps each
definition of X to a corresponding node with identifier X. This allows mutually
recursive definitions to be encoded compositionally, since the DOT layout engine
can link edges to nodes based on their identifiers.

Theorem 4. ∀E,P ∈ GSπ.{|E ` P |} ∈ DOT

Proof. By straightforward induction on the definition of encoding in DOT. ut

The way in which nodes, edges and labels are displayed can be customised for
a given DOT graph. A node X that corresponds to a choice is displayed as an
ellipse with label X, whereas a node that corresponds to a parallel composition
is displayed as a solid rectangle. A node X with toplabel z is displayed with
label z near the top left of the node. An edge X

π−→σ Y from a node X to a
node Y is displayed as a directed edge from X to Y , with the label π at the
midpoint of the edge and the label σ at the head of the edge. A subgraph z{G}
is displayed by creating a new text node with name z and drawing a dotted edge
to each of the nodes in G. If the number of nodes in G is sufficiently large then
an alternative representation can be used, in which the nodes are enclosed in a
dotted rectangle with label z.

The encoding has been used to implement a graph generating tool, which
produces a DOT graph from a given source file written in the SPiM language.
First, the SPiM program is encoded to a process of the graphical calculus by
adding new definitions according to Definition 7. The resulting process is then
encoded to a corresponding DOT graph, according to Definition 10. The graphs
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G ::= X
π−→σ Y Edge from node X to Y with label π and headlabel σ

| X −→σ Y Edge from node X to Y with headlabel σ

| zX Node X with toplabel z

| Xσ Node X with bottomlabel σ

| z{G} Subgraph G with label z

|
SN

i=1 Gi Union of graph declarations G1; . . . ; GN where N ≥ 0

Definition 9. Symbolic Syntax of DOT Graphs.

{|E ` P |} , {|E|}E ; {|P |}E (22)

{|νz
QM

i=1Pi|}E , z{
SM

i=1{|Pi|}E} (23)

{|νz 0|}E , ∅ (24)

{|νz X(n)|}E , z{X{n/m}} (25)

where X(m)=D ∈ E

{|
SN

i=1Ei|}E ,
SN

i=1{|Ei|}E (26)

{|X(m)=νz
PN

i=1πi.Pi|}E , zX;
SN

i=1X
πi−→ bPicE (27)

{|X(m)=νz
QM

i=1Pi|}E , zX;
SM

i=1X −→ bPicE (28)

{|X(m)=νz Y (n)|}E , zX; X −→ bY (n)cE (29)

bX(n)cE , {n/m}X (30)

where X(m)=D ∈ E

bP cE , Y ; {|Y (m)=P |}E (31)

where P 6= X(n) Y fresh m = fn(P )

Definition 10. Encoding from GSπ to DOT. The function {|E ` P |} generates a DOT

graph from a given system E ` P in GSπ. The encoding relies on a function {|E′|}E

and a function {|P |}E , which generate a DOT graph from an environment E′ and a

process P , respectively. Both functions take the initial environment E as a parameter,

which is needed for looking up definitions. The encoding also relies on a function bP cE ,

which ensures that each process P has a corresponding process identifier when drawing

an edge to P . This is because the DOT syntax requires each node in the graph to have

a unique identifier. If P is of the form X(n) then the identifier X is used. Otherwise, a

fresh definition is generated, and the definition name is used as the identifier for P .
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in this paper were generated using this tool, and further examples of generated
graphs are available from [14]. In practice, some of the elements in the high-level
DOT syntax of Definition 9 need to be fine-tuned to improve layout, but the
additional modifications are mostly straightforward.

Finally, an abstract machine has been defined for the variant of the stochastic
π-calculus presented in this paper, based on the abstract machine presented in
[15]. The abstract machine has been used to implement a simulator for the
calculus, based on the current implementation available from [14]. In a future
version of the simulator, we plan to adapt the encoding of Definition 10 to
generate a DOT graph from a machine term after each execution step, in order
to render a graphical debugger for visualising the current state of a simulation.

7 Related Work

Pioneering work on Statecharts [7] highlighted the need for a scalable, self-
contained graphical representation of concurrent systems. More recent work
proposed a synchronous variant to Statecharts, in which concurrent processes
can synchronise on shared labels [1]. Our graphical representation uses a sim-
ilar principle, in contrast with foundational work on graphical representations
for the π-calculus [10], which uses more elaborate rules for graph re-writing. In
general, graphical representations for process calculi are still an active area of
research. For example, [12] describes an automata-based representation for the
π-calculus, in which each state of the system is represented as a node in the
graph of an automaton. In this paper we adopt a less ambitious but perhaps
more scalable approach, which allows new copies of a graph to be generated on
demand. From a biological perspective, each new copy represents a new molecule
or component, whose internal behaviour is described by a separate graph. Mole-
cules can interact by synchronising on common channels and can also degrade,
after which the corresponding graph is deleted. The use of substitution tokens
in the graphical calculus is also reminiscent of Petri Nets [?], where each token
represents a separate entity in the system.

Preliminary informal ideas on a graphical representation for the stochastic
π-calculus were previously presented in [15]. This paper formalises and extends
these ideas to produce a novel representation, in which different node types
are used to distinguish between stochastic choice and parallel composition. An
extended abstract for this paper is presented in [16].

The reduction semantics of [15] relies on a notion of structural congruence
for the re-ordering of processes. Although this gives rise to a simplified definition
of reduction, it cannot be used in the context of the graphical calculus, since it
does not preserve the syntax of processes. In particular, the following structural
congruence rule allows X(n) to be instantiated with D, which may contain a
choice:

X(n)=D ⇒ X(n) ≡ D{n/m}

This violates the syntax of the graphical calculus, since a choice should only
occur inside a definition of the environment. In contrast, the transition system
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of Definition 3 does not violate the syntax of the graphical calculus, since the
corresponding rule (11) allows a reduction to occur without instantiating X(n):

X(m)=D D{n/m}
α−→ P ′ ⇒ X(n) α−→ P ′

8 Conclusion

This paper presented a graphical representation for the stochastic π-calculus,
which was used to model a bistable gene network and a mapk signalling cascade.
One of the benefits of the representation is its ability to highlight the existence of
cycles, which are a key feature of biological systems. Another benefit is its ability
to animate interactions between system components, in order to visualise system
dynamics. Such graphical animations are particularly valuable when debugging
complex system models.

There are various areas for future work. One issue is to investigate how high-
level libraries for different types of biological systems could be built on top of
the stochastic π-calculus, as discussed in Sec. 5. It would be interesting to define
high-level graphical representations for these libraries, inspired by diagrams such
as [13] that are currently being used by biologists.

Another area for future work is to explore ways of minimising the occur-
rence of substitution labels in the graphical representation of a given process.
Such labels are needed whenever a definition is instantiated with arguments that
are different from the formal parameters. Interestingly, for the examples consid-
ered in this paper, it was always possible to rename the formal parameters in
a collection of mutually recursive definitions so that they were same as the ap-
plied arguments. For example, in the gene network of Fig. 8 the arguments for
Gene(a, b), Protein(b) and Blocked(a, b) were such that the substitution labels
in the corresponding graphical representation were all empty. It would be inter-
esting to define algorithms for parameter renaming in the general case, in order
to minimise the occurrence of substitution labels.

A somewhat unexpected property of the graphical calculus is that it can
potentially be used as the basis for an efficient execution algorithm for the sto-
chastic π-calculus. In particular, the requirement to define each choice separately
in the environment is a way of partially mapping out the state space of the sys-
tem. Thus, instead of generating a new copy of a given process, one can simply
keep track of the number of identical copies being executed. In this setting, two
processes are considered identical if they instantiate the same process definition
with the same parameters. This optimisation would be particularly useful when
executing large numbers of identical processes, and could be formally described
in terms of the graphical calculus presented in this paper.

In the short term, we plan to use our graph generation tool to implement
a graphical debugger for the SPiM simulator. In the longer term, it would be
interesting to develop a tool for drawing graphical models, which could auto-
matically generate the corresponding π-calculus code. One can also envisage an
interactive visualisation environment, in which disjoint graphs can be displayed
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separately or collapsed to a single node by clicking on the graph. Such features
are crucial for the scalability of a graphical representation, since they allow a
user to visualise parts of the system in a modular fashion, rather than trying to
visualise the entire system at once. This ongoing research on graphical interfaces
can be used to complement the existing textual interface to the simulator, to
help make modelling and simulation of biological systems more accessible to non
computer scientists.
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A Program Code

Dec ::= new x{@r} : t Channel Declaration
| type n = t Type Declaration
| val m = v Value Declaration
| run P Process Declaration
| let D1 and . . . and DN Definitions, N ≥ 1

D ::= X(m1, . . . ,mN) = P Definition, N ≥ 0

P ::= () Null Process
| (P1 | . . . | PM) Parallel, M ≥ 2
| X(v1, . . . ,vN) Instantiation, N ≥ 0
| π{; P} Action
| do π1{; P1} or . . . or πM{; PM} Choice, M ≥ 2
| (Dec1 . . . DecN P) Declarations, N ≥ 0

π ::= !x {(v1, . . . ,vN)} Output, N ≥ 0
| ?x {(m1, . . . ,mN)} Input, N ≥ 0
| delay@r Delay

Fig. 21. The core SPiM language, where optional elements are enclosed in braces {}.

val tA = 0.20 val dA = 0.002

val tB = 0.37 val dB = 0.002

val tB’ = 0.027 val dAB = 0.53

new bind@0.72:chan new inhibit@0.19:chan(chan)

let a() = delay@tA; ( A() | a() )

and A() = (

new u@0.42:chan

do delay@dA

or !bind; A B()

or !inhibit(u); A b(u)

)

and A b(u:chan) = ?u; A()

and A B() = delay@dAB

let b() =

do delay@tB; ( B() | b() )

or ?inhibit(u); b A(u)

and b A(u:chan) =

do !u; b()

or delay@tB’; B(); b A(u)

and B() = do delay@dB or ?bind

run (a() | b())

Fig. 22. Program code for the bistable gene network of Fig. 11.
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let E1() = (

new k1@rk1:chan new d1@rd1:chan

!a1(d1,k1); do ?d1; E1() or ?k1; E1()

)

let E2() = (

new k2@rk2:chan new d2@rd2:chan

!a2(d2,k2); do ?d2; E2() or ?k2; E2()

)

let KKK() = ?a1(d,k); (do !d; KKK() or !k; KKKst())

and KKKst() = (

new d3@rd3:chan new k3@rk3:chan

new d5@rd5:chan new k5@rk5:chan

do ?a2(d,k); (do !d; KKKst() or !k; KKK())

or !a3(d3,k3); (do ?d3; KKKst() or ?k3; KKKst())

or !a5(d5,k5); (do ?d5; KKKst() or ?k5; KKKst())

)

let KK() = ?a3(d,k); (do !d; KK() or !k; KKP())

and KKP() =

do ?a4(d,k); (do !d; KKP() or !k; KK())

or ?a5(d,k); (do !d; KKP() or !k; KKPP())

and KKPP() = (

new d7@rd7:chan new k7@rk7:chan

new d9@rd9:chan new k9@rk9:chan

do ?a6(d,k); (do !d; KKPP() or !k; KKP())

or !a7(d7,k7); (do ?d7; KKPP() or ?k7; KKPP())

or !a9(d9,k9); (do ?d9; KKPP() or ?k9; KKPP())

)

let K() = ?a7(d,k); (do !d; K() or !k; KP())

and KP() =

do ?a8(d,k); (do !d; KP() or !k; K())

or ?a9(d,k); (do !d; KP() or !k; KPP())

and KPP() = ?a10(d,k); (do !d; KPP() or !k; KP())

let KKPase() = (

new d4@rd4:chan new k4@rk4:chan

new d6@rd6:chan new k6@rk6:chan

do !a4(d4,k4); (do ?d4; KKPase() or ?k4; KKPase())

or !a6(d6,k6); (do ?d6; KKPase() or ?k6; KKPase())

)

let KPase() = (

new d8@rd8:chan new k8@rk8:chan

new d10@rd10:chan new k10@rk10:chan

do !a8(d8,k8); (do ?d8; KPase() or ?k8; KPase())

or !a10(d10,k10); (do ?d10; KPase() or ?k10; KPase())

)

run (10 of KKK() | 100 of KK() | 100 of K())

run ( 1 of E2() | 1 of KKPase() | 1 of KPase() | E1())

Fig. 23. Program code for the mapk cascade of Fig. 17.
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B The Stochastic π-calculus vs. Reaction Equations

This appendix gives a visual comparison between the stochastic π-calculus and
reaction equations, using the example biological systems described in the main
text. The stochastic π-calculus allows the description of a biological system to
be decomposed into distinct components, where each component is described
by a separate connected graph. Each node in the graph represents a state of
the component, and each labelled edge represents a potential interaction with
another component. The interactions between components are determined by the
complementarity of actions on the edges, and do not need to be given explicitly.
This allows new components to be added directly, without modifying the existing
system. As a result, large and complex systems can be defined incrementally,
by direct composition of simpler components. In contrast, reaction equations
require the interactions between components to be defined explicitly, resulting
in a highly connected graph. If a new component is added to the system, each
interaction with an existing component needs to be defined by an additional edge
to the component. If each new component can interact with multiple existing
components, this leads to a combinatorial explosion in the number of edges.

Fig. 24. Visual comparison between stochastic π-calculus processes (left) and reaction
equations (right) for the bistable gene network of Fig. 11.
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Fig. 25. Visual comparison between stochastic π-calculus processes (top) and reaction
equations (bottom) for the mapk cascade of Fig. 17.
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