
2005-04-20 19:53:23 1

���������	��
������
�����	��	����	�����	�����
�������
���� �
��
�	� �
� �������� ������
	�
����	�
����

� ����� ���������� � ���� �
����� ���
���
�
�� �! ������� ����

��� �� �� �	
 �� ���
 �� �� � 	�
 �
 � ��� 	���� �� ��� ��� � ���� ���� � � � � � �� �� 	
 � ��� �
 �
 � �� ! �
 �" 	" #��� � 	�
 �
 � ��$ % &�'� % �$
 () ��� * � ��+ � ��� � �, �� * � " (�
��

������ ��	�
���
�	����	�����	���! �"����� �� ��

The following is a detailed description of the Stochastic Pi-
Calculus and the Stochastic Pi Machine, as presented in (13). All
references in this Supplementary Material refer to the main paper.

P,Q::= new x P Restriction Σ::= 0 Null

| P | Q Parallel | π.P + Σ Action
| Σ Choice π::= !x(n) Output
| *π.P Replication | ?x(m) Input

�
��$�% $�- � � �
 . �" #��� � �- �"
 �
 	��
 �/ ��

 �
 � �� 	

�

!x(n).P + Σ | ?x(m).Q + Σ'
rate(x)
→

P | Q{n/m} [1]

P
r

→

P' � P | Q

r

→

P' | Q [2]

P
r

→

P' � new x P

r

→

new x P' [3]

Q ≡ P
r

→

P' ≡ Q' � Q

r

→

Q' [4]

��$�&$�� � � �
 ��" � ��� ��� � �- �"
 �
 	��
 �/ ��

 �
 � �� 	

�	�����	���! �"����� �� �$ A biological system can be modeled in the
stochastic pi-calculus, by representing each component of the
system as a calculus process P that precisely describes what the
component can do. According to Def. 1, the most basic component
is a choice Σ between zero or more output !x(n) or input ?x(m)
actions that the component can perform. Two components P and
Q can be combined together using parallel composition P|Q, and a
component P can be given a private interaction channel x using
restriction new x P. In addition, multiple copies of a given
component π.P can be cloned using replication *π.P. Standard
syntax abbreviations are used, such as writing π for π.0 and π.P
for π.P + 0.

Two components in a biological system can interact by
performing complementary input and output actions on a common
channel. During such an interaction, the two components can also
exchange information by communicating values over the channel.
Each channel x is associated with a corresponding interaction rate
given by rate(x) and the interaction between components is
defined using reduction rules of the form P→rP’. Each rule of
this form describes how a process P can evolve to P’ by
performing an interaction with rate r. According to Def. 2, a
choice containing an output !x(n).P can interact with a parallel
choice containing an input ?x(m).Q. The interaction occurs with
rate(x), after which the value n is assigned to m in process Q
(written Q{n/m}) and processes P and Q{n/m} are executed in

parallel (Eq. 1). Components can also interact in parallel with
other components (Eq. 2) or inside the scope of a private channel
(Eq. 3), and interactions can occur up to re-ordering of
components (Eq. 4), where P ≡ Q means that the component
P can be re-ordered to match the component Q. In particular, the
re-ordering *π.P ≡ π.(P | *π.P) allows a replicated input *?x(m).Q
to clone a new copy of Q by reacting with an output !x(n).P.

V,U::= new x V Restriction A,B::= [] Empty

 A List Σ:: A Choice

��$�'$�- � � �
 . �" #��� � �- �"
 �
 	��
 �/ ��!

 � �� �

x,τ = Gillespie(A)
∧ A>(?x(m).P + Σ):: A'
∧ A'>(!x(n).Q + Σ'):: A''

 � A

 rate(x)
→

P{n/m}: Q: A'' [5]

V
r

→

V' � new x V

r
→

new x V' [6]

��$�($�� � � �
 ��" � ��� ��� � �- �"
 �
 	��
 �/ ��!

 � �� �

�	�����	��� ! �� �����
�$ The Stochastic Pi Machine is a formal
description of how a process of the stochastic pi-calculus can be
simulated. A given process P is simulated by first encoding the
process to a corresponding simulator term V, consisting of a list of
choices with a number of private channels:

new x1 ... new xN (Σ1::Σ2::...::ΣM::[])
This term is then simulated in steps, according to the reduction
rules in Def. 4. A list of choices A is simulated by first using a
function Gillespie(A) to stochastically determine the next
interaction channel x and the corresponding interaction time τ.
Once an interaction channel x has been chosen, the simulator uses
a selection operator (>) to randomly select a choice ?x(m).P + Σ
containing an input on channel x and a second choice !x(n).Q + Σ'
containing an output on x. The selected components can then
interact by synchronizing on channel x, where the value n is sent
over channel x and assigned to m in process P (written P{n/m}).
After the interaction, the unused choices Σ and Σ' are discarded
and the processes P{n/m} and Q are added to the remainder of the
list to be simulated, using a construction operator (:) (Eq. 5). An
interaction can also occur inside the scope of a private channel
(Eq. 6). The simulator continues performing interactions in this
way until no more interactions are possible.

The function Gillespie(A) is based on the Gillespie Algorithm
(14), which uses a notion of channel activity to stochastically
choose a reaction channel from a set of available channels. The
activity of a channel corresponds to the number of possible
combinations of reactants on the channel. Channels with a high
activity and a fast reaction rate have a higher probability of being
selected. A similar notion of activity is defined for the Stochastic
Pi Machine, where Actx(A) denotes the number of possible
combinations of inputs and outputs on channel x in A:

2 2005-04-20 19:53:23 2

Actx(A) = Inx(A) × Outx(A) - Mixx(A)
Inx(A) and Outx(A) are defined as the number of available inputs
and outputs on channel x in A, respectively, and Mixx(A) is the
sum of Inx(Σi)×Outx(Σi) for each choice Σi in A. The formula takes
into account the fact that an input and an output in the same choice
cannot interact, by subtracting Mixx(A) from the product of the
number of inputs and outputs on x. Once the values x and τ have
been calculated, the simulator increments the simulation time by
delay τ and uses the selection operator to randomly choose one of
the available interactions on x according to (Eq. 5). This is
achieved by randomly choosing a number n∈[1..Inx(A)] and
selecting the nth input in A, followed by randomly selecting an
output from the remaining list in a similar fashion. The application
of the Gillespie algorithm to the Stochastic Pi Machine is
summarized in Def. 5, where fn(A) denotes the set of all channels
in A.

1. For all x∈fn(A) calculate ax = Actx(A) × rate(x)
2. Store non-zero values of ax in a list (xµ,aµ), where

µ∈1...M.
3. Calculate a0=�ν=0

M aν
4. Generate two random numbers n1,n2∈[0,1] and calculate

τ,µ such that:

τ = (1/a0)ln(1/n1)

µ-1
�

ν=1
 aν<n2a0≤

µ
�

ν=1
 aν

5. Gillespie(A) = (xµ,τ).

��$�)$�$
 �
 � �
 ��� * ������������	�

 " �� �� * ��" �0123

For improved efficiency, the simulator can be modified to store a
list of values for each channel x in A, of the form:

x,Inx(A),Outx(A),Mixx(A),ax
After each reduction has been performed, it is only necessary to
update the values for those channels that were affected by the
reduction, and then use Def. 5 on the updated values to choose the
next reaction channel and calculate the delay.

* ���������+ ��	�� �����
This section describes how a number of spatially homogeneous
model chemical systems can be simulated in the Stochastic Pi
Machine. Each of the systems presented here was previously
defined as a set of reaction equations, which were simulated in
(14) using the Gillespie algorithm. This section describes how
comparable results can be obtained by modeling each system as a
pi-calculus process and simulating the resulting processes in the
Stochastic Pi Machine. For further details on the models and the
references to the original literature, see (14).

� ������	�, �� # ����$ One of the simplest systems that can be
simulated is the irreversible isomerization reaction, commonly
referred to as radioactive decay. In this system, a species of
molecule X decays with rate c to a species Z:

X
c

→

Z [1]

This can be modeled in the stochastic pi-calculus as a process X(),

which performs a stochastic delay τc with rate c and then executes
the process Z():

X() = τc.Z() [2]

This system was simulated up to time t=10, with c=0.5 and an
initial number of X molecules X0=1000. The number of X
molecules was then plotted versus time. The SPiM code for this
simulation is given in Fig. S1, together with the corresponding
simulation results. Note that since the process Z() does not
participate in any reactions it can be omitted from the pi-calculus
model. The correspondence between the SPiM code and the more
compact syntax used in the main paper should be obvious,
knowing the following: “do P or Q” stands for “P + Q”,
“delay@r” stands for “τr”, “val” introduces constant definitions,
“let” introduces process definitions, and “new a@r : chan”
introduces a new channel named “a” with rate “r”.

In this simple example, it is possible to solve analytically the
stochastic formulation of Eq. 1 and calculate the mean and rms
deviation. It turns out that the stochastic mean X(1)(t) = X0e-ct and
the deviation ∆(t) = (X0e

-ct(1-e-ct))1/2. The two-standard deviation
envelope, defined as X(1)(t) ± ∆(t), was superimposed on the
simulation results for Fig. S1 in order to compare them with the
predictions of the stochastic formulation. One can observe that the
stochastic fluctuations of a given simulation generally lie within
the boundaries of the two-standard deviation envelope.

directive sample 10.0
directive plot X()
val c = 0.5

let X() = delay@c
run 1000 of X()

- �� $��% $�- / �! �
 " � � �
 � � �	�(� �
 ��" � ��� 	� ��	�#" ��4 � 5���6 ��� �
7'5��
 � � ��'71'''5�8 � � �
�6 " �	�
 � �
 �� �� � � �
 ��" � �� � � � �" � � �0� " ��� � 3� �
 	�) � � � �

 �
 � �
 �� � � #�" (��� � �	�"
 �
 	��
 �
#" �(� �
 ��" � �" #�4 � 5�1�
 � � �	� � � ��(� " 	� � �" � ��� � ��� 	� ��	5�

����� "��
���
". �������
���	��
$ The following system of reactions
was once proposed as a refutation of the basic stochastic
hypothesis:

X+Y

c1
→

2Y+X

2Y
c2
→

Z

 [3]

In particular, Malek-Mansour and Nicolis showed that the
stochastic formulation of this system based on a Master equation
has only a single steady-state solution at Y=0, while the

2005-04-20 19:53:23 3

deterministic formulation has two steady-state solutions, an
unstable one at Y=0 and a stable one at Y=c1X/c2. As a result, they
concluded that the stochastic formulation destroys the stable
solution of the deterministic formulation, and preserves only the
trivial unstable solution. They hypothesized that even if the system
is started with a large number of Y molecules it will eventually
reach a steady state at Y=0, in apparent contradiction with the
deterministic formulation.

In order to check this hypothesis, the system of Eq. 3 can be
modeled as a pi-calculus process and simulated in SPiM. Each X
molecule is modeled as a process X(), which can perform an input
on channel c1 and remain as X(). Each Y molecule is modeled as a
process Y(), which can either perform an output on c1 and evolve
to two parallel copies of Y(), or perform an input on c2 and evolve
to Z(), or perform an output on c2.

 X() = ?c1.X()
Y() = !c1.(Y() | Y()) + ?c2.Z() + !c2

 [4]

The input and output on c2 are used to model the fact that two Y
molecules can interact with each other to produce a Z molecule. In
this model, a given pair of Y molecules can interact in two
possible ways: either the first Y molecule can perform an input on
c2 and the second molecule can perform an output on c2, or vice-
versa. As a result, the rate of channel c2 needs to be adjusted so
that rate(c2) in the pi-calculus model (Eq. 4) is equal to c2/2 in the
reaction model (Eq. 3).

 The system was simulated up to time t=5, with rate(c1)=5.0,
rate(c2)=0.0025 and an initial number of Y molecules Y0=10. The
number of Y molecules was plotted over time and the simulation
was then repeated with Y0=3000. The SPiM code for the first
simulation is given in Fig. S2, together with the results for both
simulations. As with the previous system, the process Z() does not
participate in any reactions and can be omitted from the pi-
calculus model.

directive sample 5.0
directive plot Y()
new c1@5.0:chan
new c2@0.0025:chan

let X() = ?c1; X()
let Y() =
 do !c1; (Y() | Y())
 or !c2
 or ?c2
run (X() | 10 of Y())

- �� $��&$� - / �! �
 " � � �
 � � � 	�(� �
 ��" � � �� 	� ��	� #" �� 04 � 5� 23� 6 ��� � �
 ��0
137���
�
 ��0
�37'5''��
 � � � �� ���
 �� �
 �� � 	� �'71'5� 8 � � � 	�(� �
 ��" � � �� 	� ��	� #" ���'7&'''�
 �� �

 �	" �* �� � � 5�

The simulation results show that different initial conditions of
Y0=10 and Y0=3000 lead to a situation in which the number of Y
molecules fluctuates in an apparently stable manner around the
steady state value of c1X/c2=1000, as predicted by the
deterministic formulation of Eq. 3. Although in theory the number
of Y molecules will eventually reach 0 as t→∞, in practice the
system will continue to oscillate indefinitely around the steady
state value of c1X/c2, with a very low probability of randomly
fluctuating from this steady state value to Y=0. In fact, analytical
calculations (14) have shown that the variance about the steady-
state mean Ys

(1) is given by ∆s
2=(3/2)Ys

(1), which gives a standard
deviation of about 39 for a steady state value of 1000. This
comparison between analytical calculation and simulation results
illustrates how stochastic simulations can help clarify the subtle
differences between deterministic and stochastic formulations of
chemical systems.

+ ��� � �	� ��� ���	��
�$ The Lotka reactions can be used to model a
simple predator-prey ecosystem, in which a prey species Y1 feeds
on an inexhaustible food source X to reproduce, a predator species
Y2 feeds on Y1 to reproduce and the predator species Y2 can die of
natural causes:

X+Y1

c1
→

2Y1+X

Y1+Y2

c2
→

2Y2

Y2

c3
→

Z

 [5]

This system can be given a deterministic formulation using
differential equations, which can be shown to have a steady state
of Y1=Y1s=c3/c2 and Y2=Y2s=c1X/c2. Therefore, if the system has
initial populations Y1=Y1s and Y2=Y2s at time t=0, the deterministic
formulation predicts that this situation will persist indefinitely.

The system of Eq. 5 can be modeled as a pi-calculus process
and simulated in SPiM. The inexhaustible food source X is
modeled as a process X(), which can be “eaten” by performing an
input on channel c1 and then remain as X(). The prey Y1 is
modeled as a process Y1(), which can eat by performing an output
on c1 and then reproduce as two Y1() processes in parallel, or be
killed by performing an input on c2 and then disappear. The
predator Y2 is modeled as a process Y2(), which can eat by
performing an output on c2 and then reproduce as two Y2()
processes, or die of natural causes by performing a stochastic
delay τc3 and then disappear.

X() = ?c1.X()

Y1() = !c1.(Y1() | Y1()) + ?c2
Y2() = !c2.(Y2() | Y2()) + τc3

 [6]

This system was simulated up to time t=30, with rate(c1)=10.0,
rate(c2)=0.01, c3=10.0, initial populations Y1=Y2=1000 and an
inexhaustible species X. The SPiM code for the simulation is
given in Fig. S3, together with the corresponding simulation
results. The results show that, instead of remaining at a constant
value of 1000, the number of Y1 and Y2 species oscillates with a
fairly stable frequency and phase, but markedly unstable
amplitude. Fig. S3(a) shows how the predator population lags
behind that of the prey, Fig. S3(b) shows the stability of the
frequency and instability of the amplitude of the oscillations in the
prey population and Fig. S3(c) shows the counter-clockwise orbits
traced out in the Y1Y2 plane.

4 2005-04-20 19:53:23 4

(a)

(b)

(c)

directive sample 30.0
directive plot Y1(); Y2()
new c1@10.0:chan
new c2@0.01:chan
val c3 = 10.0

let X() = ?c1; X()
let Y1() =
 do !c1; (Y1() | Y1())
 or ?c2
let Y2() =
 do !c2; (Y2() | Y2())
 or delay@c3
run (X() | 1000 of Y1() | 1000 of Y2())

- �� $��'$� - / �! �
 " � � �
 � � � 	�(� �
 ��" � � �� 	� ��	� #" �� �� � � 9 " �:
 � ��

 ��" � 	� 04 � 5� � 3� 6 ��� �
�
 ��0
1371'5'�� �
 ��0
�37'5'1��
&71'5'�
 � � � �� ���
 �� �
 �� � 	��17��71'''5� � � 	� ��	� #" ��
0
 3��1����� 	5���6 ��� �'; �≤1'��0) 3��1�� 	5���6 ��� �'; �≤&'�
 � � �0
 3����� 	5��15��

The simulation results can be logically explained by the fact that
a rise in the prey population provides additional food for the
reproduction of the predators, resulting in a rise in predator
population shortly afterwards. This in turn leads to an increase in
consumption of prey species, resulting in a decline in the prey
population, followed closely by a decline in predator population,
and so on. The results can also be explained by analyzing the
stability of the solutions of the deterministic formulation. Such
analysis shows that the orbits in the Y1Y2 plane are neutrally
stable, i.e. when perturbed slightly to a point (Y11,Y21) off the
orbit, the system will begin orbiting on the solution orbit that
passes through the new point (Y11,Y21). Therefore, any random
fluctuations in Y1 and Y2 will result in the system wandering
between neutrally stable orbits.

 Furthermore, the wide amplitude fluctuations indicate that it is
only a matter of time before the orbits intersect with either the Y1
or Y2 axis. Therefore, as t→∞ either the Y1 prey species
becomes extinct and the Y2 predator species dies out soon
afterwards, or the Y2 predator species becomes extinct and the Y1
species tends to infinity. This contrasts with the predictions of the
deterministic formulation, which suggest that the populations of
predator and prey will remain constant over time. These results
indicate the importance of taking into account stochastic
fluctuations when trying to predict the behavior of a system.

A number of variations on the Lotka reactions (Eq. 5) can also
be simulated. In particular, the food source X can be made finite
by changing the definition of reaction c1:

X+Y1

c1
→

2Y1

This can be modeled in the pi-calculus by changing the
corresponding definition of process X():

X() = ?c1
The resulting system can be simulated in SPiM by starting with a
large quantity of food source X, as shown in Fig. S4. The
simulation results indicate that the depletion of the food source X
is more detrimental to the predator than to the prey. They show
that the predators become extinct at t~21, after which the
remaining food source X is consumed by the prey for
reproduction.

- �� $��($� - �(� �
 ��" � � �� 	� ��	�#" �� �� � � 9 " �:
 � ��

 ��" � 	�04 � 5� � 3�) � �� 6 ��� � ��(��� � �� � () � ��
" #� �� 	� �
 �� 	5� - �(� �
 ��" � � � � � �" � ��(� � �7&'�� 6 ��� � �
 ��0
137'5'''1�� �
 ��0
�37'5'1��

&71'5'5��� ���
 ���
 �� � 	��17��71'''���71'�5��

2005-04-20 19:53:23 5

A more realistic system can be defined by adding a reaction that
allows the prey to die of natural causes:

Y1

c4
→

Z

This can be modeled in the pi-calculus by changing the definition
of the corresponding process Y1():

Y1() = !c1.(Y1()| Y1()) + ?c2 + τc4
The resulting system can be simulated in SPiM by taking c4=c3,

as shown in Fig. S5. As expected, both the predator Y2 and the
prey Y1 eventually become extinct. However, it is interesting to
note that the predator species becomes extinct significantly before
the prey, even though they have the same life expectancy
(1/c3=1/c4). More surprisingly, over 40% of the initial food source
remains after both the predator and prey have become extinct.
These results indicate how useful (and sometimes unexpected)
insight can be gained through the stochastic simulation of systems.

- �� $��)$�- �(� �
 ��" � ��� 	� ��	�#" �� �� � �9 " �:
 ���

 ��" � 	�04 � 5�� 3�) � �� 6 ��� � ��(��� � � � � () � ��
" #� �� 	� �
 �� 	�
 � � �
 � �
 � � ���" �
 �� ��

 ��" � � �1→
2�� ��
 ��
 ��" 6 	� �� � � � �� � � �" � � �� � " #�
�
 �� �
 ��

 � 	� 	5� - �(� �
 ��" � � � � � �" � ��(� � �7&'�� 6 ��� � �
 ��0
137'5'''��� �
 ��0
�37'5'1��

&71'5'��
271'5'5��� ���
 ���
 �� � 	��17��71'''���71'�5��

� ��
������	�
�� ����
From the simple examples discussed previously, the structure of

the SPiM programs should now be clear. The following is the
complete code for the repressilator simulation in Fig. 7C of the
paper, for the SPiM simulator (v0.04). In order to clarify parts of
the code, comments are added in ��������brackets.

(* Simulation time, samples, and plotting *)
directive sample 90000.0 500
directive plot !a as "a"; !b as "b"; !c as "c"

(* Parameters *)
val dk = 0.001 (* Decay rate *)
val inh = 0.001 (* Inhibition rate *)
val cst = 0.1 (* Constitutive rate *)
val bnd = 1.0 (* Protein binding rate *)

(* Transcription factor *)
let tr(p:chan()) =
 do !p; tr(p)
 or delay@dk

(* Neg gate *)
let neg(a:chan(), b:chan()) =
 do ?a; delay@inh; neg(a,b)
 or delay@cst; (tr(b) | neg(a,b))

(* The circuit *)
new a @ bnd: chan()
new b @ bnd: chan()
new c @ bnd: chan()

run (neg(c,a) | neg(a,b) | neg(b,c))

/ '0 �# / % 1 �� ����
The following is the complete code for the of the D038 and D016
simulations in Fig. 15,17, for the SPiM simulator (v0.04).

(* Simulation time, samples, and plotting *)
directive sample 20000.0 500
directive plot !GFP as "GFP"; !LacI as "LacI";
 !LambcI as "LambcI"; !TetR as "TetR"

(* Degradation rate *)
val dk = 0.001
(* val dk = 0.00001 for D016 when aTc is present *)

(* Transcription factor *)
let tr(b:chan()) =
 do !b; tr(b)
 or delay@dk

(* Repressible transcription factor *)
let rtr(b:chan(), r:chan()) =
 do !b; rtr(b,r)
 or !r
 or delay@dk

(* Repressor *)
let rep(r:chan()) =
 ?r; rep(r)

(* Negp gate *)
let negp(a:chan(), (cst:float, inh:float), p:proc()) =
 do ?a; delay@inh; negp(a,(cst,inh),p)
 or delay@cst; (p() | negp(a,(cst,inh),p))

(* Wiring *)
new TetR @1.0: chan() (* TetR protein *)
new LacI @1.0: chan() (* LacI protein *)
new LambcI @1.0: chan() (* LambcI protein *)
new GFP @1.0: chan() (* GFP protein *)
new aTc @100.0: chan() (* aTc inducer *)
new IPTG @100.0: chan() (* IPTG inducer *)

(* Auxiliary definitions: negp products *)
let rtr_TetR_aTc() = rtr(TetR,aTc)
let rtr_LacI_IPTG() = rtr(LacI,IPTG)
let tr_LambcI() = tr(LambcI)
let tr_GFP() = tr(GFP)

(* D038 Circuit *)
val PT = (0.1, 0.25) (* PT constitutive and inhibition rates *)
val PL2 = (0.1, 1.0) (* PL2 constitutive and inhibition rates *)
val Plm = (0.1, 1.0) (* Plm constitutive and inhibition rates *)

let tet() = negp(TetR, PT, rtr_TetR_aTc)
let lac() = negp(TetR, PT, rtr_LacI_IPTG)
let cI() = negp(LacI, PL2, tr_LambcI)
let gfp() = negp(LambcI, Plm, tr_GFP)

run
(tet() | lac() | cI() | gfp()
(* | rep(aTc) uncomment to test with aTc *)
(* | rep(IPTG) uncomment to test with IPTG *)
)

6 2005-04-20 19:53:23 6

(* D016 Circuit *)
val PT = (0.1, 0.01) (* PT constitutive and inhibition rates *)
val PL1 = (0.1, 0.01) (* PL1 constitutive and inhibition rates *)
val PL2 = (0.1, 0.01) (* PL2 constitutive and inhibition rates *)
val Plm = (0.1, 0.01) (* Plm constitutive and inhibition rates *)

let tet() = negp(TetR, PT, rtr_TetR_aTc)
let lac() = negp(LacI, PL1, rtr_LacI_IPTG)
let cI() = negp(LacI, PL2, tr_LambcI)
let gfp() = negp(LambcI, Plm, tr_GFP)

run
(tet() | lac() | cI() | gfp()
(* | rep(aTc) uncomment to test with aTc *)
(* | rep(IPTG) uncomment to test with IPTG *))

� �����2 �	��
�
Complexation can be modeled in stochastic process calculi by
using a technique originally developed by Aviv Regev and Ehud
Shapiro, (6,7). This technique provides a simple illustration of a
major feature of process calculi that we have not emphasized in
the main text: the dynamic creation of fresh communication
channels. A fresh (unique) channel can be dynamically created,
operationally, by incrementing a global counter, or by picking a
random number. Process calculi abstract from these operational
details by a formalized notion of what it means for a channel to be
fresh. The operator new cr; P creates a fresh channel named c with
rate r for use in P (distinct from any other channel that might also
be named c).

We want to model two proteins P and Q that combine into a
complex P:Q at some rate r, and break apart again at some rate s.
Let cx denote the complexation interaction of the two proteins:
this is modeled as a single “public” channel cx of rate r, where
multiple copies of P and Q can interact to come together and form
complexes. Let dx denote the decomplexation interaction of two
bound proteins: this is modeled as a separate channel dx of rate s
for each complex. Such a fresh channel is established separately
for each complex at the time of complexation, for the purpose of
subsequently breaking up.

P = new dxs; !cx(dx); !dx; P
Q = ?cx(x); ?x; Q where x is an input variable

If we consider just one copy of P and one of Q, for simplicity, the
initial system P|Q consisting of two separate proteins can evolve
by P creating a fresh channel dx and outputting this dx over the
public channel cx, where it can be input by Q and bound to its
input variable x. At this point the system has evolved into the
configuration (!dx; P) | (?dx; Q), where dx is unknown to any other
actual or potential process in the system. This state represents the
complex of the original P and Q. Next, an interaction can happen
over this particular dx channel among the only two processes that
share it: this is the decomplexation event resulting in the initial
state P|Q.

P|Q �r (!dx; P) | (?dx; Q) �s P|Q where dx is fresh

Many variations on this theme are possible, including modeling
the binding, unbinding, and cooperative binding of transcription
factors.

. �� �* �	��# �
������ ����
���!
������
We test the dynamic response profile of the neg gate of Fig. 3 of
the main paper. To observe some of its behavior under operating
conditions, we provide an input consisting of a signal raising
linearly from 0 to 100, and then falling linearly from 100 to 0.
That means 100 copies of input molecules, where each molecule is
injected at a certain time and can interact or decay a certain
number of times (thus shaping the input curve).

Initially, in absence of any input, the output of the neg gate
quickly raises to about 100. As the input signal ramps up, the
output signal decays, and as the signal ramps down the output
rises again, but with an asymmetric profile. (Fig. S6 A1,B1: the
ramping down of the input signal in B1 appears abbreviated
because the signal is consumed at a higher rate by the gate.)
Plotting input vs output for the same data (Fig. S6 A2,B2) we can
see a roughly hyperbolic response with two distinct curves
corresponding to raising and falling inputs. We show the plots for
a highly sensitive (“Boolean”) gate with η=0.001 (A1,A2) and a
less sensitive gate with η=1.0 (B1,B2); these parameters cover the
range used in simulations in the main text. As in the main text,
what is actually plotted is the number of (output) communication
offers on the channels.

These response profiles illustrate the fact that, e.g., in the
repressilator, each signal dynamically shapes the next signal and is
shaped by the intake of the next gate.

- �� $��1 $��< � * �=
 �� �� � 	� " � 	� �/ �" #��� �

The following is the complete code used to obtain the graphs,

for the SPiM simulator (v0.04).

(* Simulation time, samples, and plotting *)
directive sample 30000.0 1000
directive plot !a as "a"; !b as "b"

(* Parameters *)
val dk = 0.001 (* Output protein decay rate *)
val inh = 0.001 (* Inhibition rate, or 1.0 *)
val cst = 0.1 (* Constitutive rate *)
val bnd = 1.0 (* Protein binding rate *)

(* Transcription factor *)
let tr(p: chan()) = do !p;tr(p) or delay@dk

(* Neg gate *)
let neg(a:chan(), b:chan()) =
 do ?a; delay@inh; neg(a,b)
 or delay@cst; (tr(b) | neg(a,b))

(* Probe signal: linearly raising and falling *)
val pbdk = 0.1 (* Probe signal decay rate *)
let probe1(p:chan(),n:int) =
 if n=0 then ()
 else (do !p;probe1(p,n-1) or delay@pbdk; probe1(p,n-1))
let dprobe1(p:chan(),d:int,n:int) =
 if d=0 then probe1(p,2*10*n)
 else delay@pbdk;dprobe1(p,d-1,n)
let probe(p:chan(),m:int) =
 if m=0 then ()
 else (dprobe1(p,500+(10*m),100-m) | probe(p,m-1))

(* Probing *)
new a@bnd:chan() new b@bnd:chan()
run (neg(a,b) | probe(a,100))

η = 0.001
r = 1.0
ε = 0.1
δ = 0.001

A1

'

�'

2'

� '

> '

1''

1�'

12'

' �''' 1'''' 1�''' �'''' ��''' &''''

'

�'

2'

� '

> '

1''

1�'

12'

' �' 2' � ' > ' 1''

'

�'

2'

� '

> '

1''

1�'

12'

' �''' 1'''' 1�''' �'''' ��''' &''''

'

�'

2'

� '

> '

1''

1�'

12'

' �' 2' � ' > ' 1''

η = 1.0
r = 1.0
ε = 0.1
δ = 0.001

a offers

b offers

time →→→→

time →→→→

of
fe

rs
 →→ →→

of
fe

rs
 →→ →→

a offers →→→→

a offers →→→→

b
of

fe
rs

 →→ →→
b

of
fe

rs
 →→ →→

raising

falling

raising

falling

B1

A2

B2

η = 0.001
r = 1.0
ε = 0.1
δ = 0.001

A1

'

�'

2'

� '

> '

1''

1�'

12'

' �''' 1'''' 1�''' �'''' ��''' &''''

'

�'

2'

� '

> '

1''

1�'

12'

' �''' 1'''' 1�''' �'''' ��''' &''''

'

�'

2'

� '

> '

1''

1�'

12'

' �' 2' � ' > ' 1''

'

�'

2'

� '

> '

1''

1�'

12'

' �' 2' � ' > ' 1''

'

�'

2'

� '

> '

1''

1�'

12'

' �''' 1'''' 1�''' �'''' ��''' &''''

'

�'

2'

� '

> '

1''

1�'

12'

' �''' 1'''' 1�''' �'''' ��''' &''''

'

�'

2'

� '

> '

1''

1�'

12'

' �' 2' � ' > ' 1''

'

�'

2'

� '

> '

1''

1�'

12'

' �' 2' � ' > ' 1''

η = 1.0
r = 1.0
ε = 0.1
δ = 0.001

a offers

b offers

time →→→→

time →→→→

of
fe

rs
 →→ →→

of
fe

rs
 →→ →→

a offers →→→→

a offers →→→→

b
of

fe
rs

 →→ →→
b

of
fe

rs
 →→ →→

raising

falling

raising

falling

B1

A2

B2

