
C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. IV, LNBI 3939, pp. 99 – 122, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Compositional Approach to the Stochastic Dynamics of
Gene Networks

Ralf Blossey1, Luca Cardelli2, and Andrew Phillips2

1 Interdisciplinary Research Institute, Villeneuve d'Ascq, France
2 Microsoft Research, Cambridge, United Kingdom

Abstract. We propose a compositional approach to the dynamics of gene regu-
latory networks based on the stochastic π-calculus, and develop a representation
of gene network elements which can be used to build complex circuits in a
transparent and efficient way. To demonstrate the power of the approach we apply
it to several artificial networks, such as the repressilator and combinatorial gene
circuits first studied in Combinatorial Synthesis of Genetic Networks [1]. For two
examples of the latter systems, we point out how the topology of the circuits and
the interplay of the stochastic gate interactions influence the circuit behavior. Our
approach may be useful for the testing of biological mechanisms proposed to
explain the experimentally observed circuit dynamics.

1 Introduction

Within the last years a general consensus has emerged that noise and stochasticity are
essential building elements of gene regulatory networks. A quantitative understanding
of their role is thus needed to understand gene regulation. Regulatory functions can
indeed work to eliminate stochastic effects [2], or to even exploit them [3].

In line with new experimental techniques to measure and quantify such behavior,
efficient ways to model and simulate gene networks need to be developed, which are
currently lacking. Simulations based on differential equations for the concentrations
of the various biomolecules, the long-time standard of modeling in biochemical
systems, are not well suited for this purpose, except in particular cases. Stochastic
effects, which are typically important when molecule numbers are small, are difficult
to build into such approaches, and the resulting stochastic equations are time-
consuming to simulate. In addition, differential equation models are inherently
difficult to change, extend and upgrade, as changes of network topology may require
substantial changes in most of the basic equations.

In this paper, we follow a different route. It has recently emerged within computer
science in the context of process calculi, and their applications to biological systems.
Process calculi [4] are essentially programming languages designed to describe
concurrent, interactive systems such as mobile communication networks. Among the
various process calculi, π-calculus is one of the best studied because of its
compactness, generality, and flexibility. Stochastic variants have appeared recently
that address biochemical modeling [5]; they have been used to model molecular
interactions [6][7], compartments [8][9], and metabolism [10]. A remaining challenge

100 R. Blossey, L. Cardelli, and A. Phillips

is to model gene networks, to fully demonstrate the flexibility of process calculi, and
to eventually support the integration of molecular, gene, and membrane networks in a
single framework.

Here, we introduce process calculi by example, in the context of gene networks;
technical details of the approach can be found in the Appendix. Modeling with
process calculi is very much like programming. It is carried out in concurrent,
stochastic programming languages that can easily support very complex and detailed
models in a modular (“compositional”) way, where separate program units correspond
to separate biochemical components.

Our purpose here is in part tutorial: we aim to show that we can do things simply to
start with, and already get interesting insights. Models in which molecular details are
explicitly treated can be built when needed; e.g. see [11] for a discussion of
transcription-translation in phage lambda. In addition to our approach being on the
level of gene gates rather than molecular components, we have chosen a style of
presentation which we believe will be helpful to researchers from neighbouring
disciplines (physics, mathematics and theoretical biology), for whom the existing
literature on the application of the stochastic π-calculus may be too demanding.

The paper is structured as follows. We first explain how to represent gene network
elements as processes in the stochastic π-calculus and how to execute them. We then
apply this representation to model gene networks of increasing complexity, and study
some of their behavior. In particular, we address the repressilator circuit [12] and two
of the (still controversial) examples of combinatorial circuits first discussed in [1].

2 Modeling Gene Network Elements

2.1 Nullary Gates

We begin by modeling genes that have constitutive transcription but no regulatory
control. We focus on the actions that are involved in the functioning of genes and
molecular components. The generic term process is used for any mechanism
performing actions and thus progressing through distinct states.

A nullary-input gate (Figure 1), given by a process written null(b), has a single
parameter b that represents its transcription product; it takes no input from the

b

null

Nullary Gate

ε stochastic
delay

gene product

initial state

gene with
product b null(b) =

τε. (tr(b) |
null(b))

in parallel withb

null

Nullary Gate

ε
b

null

Nullary Gate

ε stochastic
delay

gene product

initial state

gene with
product b null(b) =

τε. (tr(b) |
null(b))

in parallel with
stochastic

delay

gene product

initial state

gene with
product b null(b) =

τε. (tr(b) |
null(b))

in parallel with

Fig. 1. A gene, null(b) with constitutive transcription, but no regulation (nullary). The product
is a translated protein, tr(b) that attaches to a binding site b on some other gene; the definition
of tr(b) is given later. The definition of null(b) says that this gate waits for a stochastic delay
(‘τ’) of rate ε, and then (‘.’) evolves into two processes in parallel (‘|’); one is tr(b), and the
other again null(b), the initial state.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 101

environment. The initial action performed by such a gate is a stochastic delay, τε,
where τ is a symbol indicating delay and ε is the stochastic reaction constant, which
gives the probability per unit time that the delay action will occur [14]. In general,
each action in the π-calculus is associated with a corresponding stochastic reaction
rate, such that when an action with rate r is enabled, the probability that it will happen
within a period of time t is F(t) = 1-e-rt [15]. This distribution exhibits the memoryless
property, as is required for the Markov property of the stochastic dynamics.

After such a delay action, the original process null(b) becomes (i.e., changes state
to) two separate processes in parallel (separated by the operator “|”): tr(b) and null(b).
The second process is a copy of the original process null(b), which was consumed
when performing its initial action. The first process, tr(b), described shortly,
represents a molecule of a transcription factor for a binding site b on some gene. All
together, the null(b) process is defined as τε. (tr(b) | null(b)). A stochastic simulation
of a null(b) process on its own produces multiple copies of tr(b) at stochastic time
intervals characterized by ε, with exactly one copy of null(b) being preserved.

2.2 Gene Products

We now describe the transcription factor tr(b) (Figure 2), introducing the process
calculus notions of interaction and stochastic choice. Except for delays τ, which
happen autonomously, any action that a process performs must happen in conjunction
with a complementary action performed by another process. The simultaneous
occurrence of complementary actions is an interaction, e.g. between two molecules,
or between a transcription factor and a promoter site. An action can be offered at any
time, but only complementarily offered actions can result in actual interactions. For an
interaction site, or channel, b, such complementary actions are conventionally called
input on b (written ‘?b’), and output on b (written ‘!b’). (In our examples we need
only consider such simple signaling interactions; in general an interaction can also
exchange data in the form of a message from output to input.) Hence, ?b and !b are
complementary actions that can exchange a signal between them and allow two
corresponding processes to change state.

The transcription factor tr(b) offers a choice of two actions; one is an output action
!b, representing interaction with a binding site, and the other is a delay τ, followed by

 output

tr(b) =
!b. tr(b) +
τδ. 0 degradation

transcription
factor back to initial state

choice

delay

output
tr(b) =

!b. tr(b) +
τδ. 0 degradation

transcription
factor back to initial state

choice

delay

Fig. 2. A transcription factor tr(b) makes a stochastic choice (‘+’) between either binding to an
available promoter site b by an output action (‘!b’), or delaying (‘τ’) with rate δ. In the first
case, the output action interacts with a corresponding input action at a promoter site b, and then
(‘.’) the transcription factor returns to its initial state tr(b), ready to interact again. In the second
case, the transcription factor degrades to the inert process (‘0’).

102 R. Blossey, L. Cardelli, and A. Phillips

degradation. These two actions are in a stochastic race, indicated by ‘+’: b has
(implicitly defined with it) a fixed associated rate r, and τ has a specific rate δ. If !b
wins the race, it means that an interaction has occurred with an input action ?b offered
elsewhere, and the process returns to the initial state, tr(b). If τ wins the race,
however, the following state is 0: the inert process that never performs any actions.

All together, tr(b) is defined as (!b. tr(b)) + (τδ.0), which means that tr(b) has the
potential to interact multiple times with promoter sites, but each time (and particularly
if no promoter site is available) it has a chance to degrade. Without interactions with
binding sites, a fixed population of transcription factors will simply exponentially
degrade. If the population is being replenished, then a stable level may be found
between production and degradation.

2.3 Unary Gates

We now consider gates with simple regulation. A neg(a,b) gate has a promoter site a
with negative regulation (inhibition), and a product b.

The neg(a,b) gate (Figure 3) has a subprocess that is essentially identical to the
null(b) gate, i.e., it provides constitutive transcription. However this subprocess is
now in a stochastic race with a subprocess ?a. τη. neg(a,b). That is, it is in a race with
a promoter binding, ?a. If the promoter component wins the race (by interacting with
a transcription factor tr(a)), the + choice is taken on the promoter side, and the whole
process becomes τη. neg(a,b). In this state, the gate is stuck performing a stochastic
delay τη, i.e., it is inhibited, after which it goes back to be neg(a,b).

a b
neg

Neg Gate neg(a,b) =
?a. τη. neg(a,b) +
τε. (tr(b) | neg(a,b))

inhibition delayinhibitory
input

constitutive
transcription

back to
initial state

a b
neg

Neg Gate

a b
neg

Neg Gate neg(a,b) =
?a. τη. neg(a,b) +
τε. (tr(b) | neg(a,b))

inhibition delayinhibitory
input

constitutive
transcription

back to
initial state

neg(a,b) =
?a. τη. neg(a,b) +
τε. (tr(b) | neg(a,b))

inhibition delayinhibitory
input

constitutive
transcription

back to
initial state

Fig. 3. A gene gate with inhibitory control, neg(a,b) makes a stochastic choice (‘+’) between
constitutive transcription and inhibitory stimulation. The constitutive transcription case (bottom
line) is exactly as in Figure 1, but this time it is in a race with a stimulus. If an interaction
happens with the input action ‘?a’, then the gate enters a stochastic delay (‘τη’), during which
the gate is inhibited, and then returns to the initial state.

 pos

a b

Pos Gate
pos(a,b) =

?a. τη. (tr(b) | pos(a,b)) +
τε. (tr(b) | pos(a,b))

stimulated transcriptionexcitatory
input

constitutive
transcription

back to
initial state

transcription delay

pos
a b

Pos Gate

pos
a b

Pos Gate
pos(a,b) =

?a. τη. (tr(b) | pos(a,b)) +
τε. (tr(b) | pos(a,b))

stimulated transcriptionexcitatory
input

constitutive
transcription

back to
initial state

transcription delay

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) +
τε. (tr(b) | pos(a,b))

stimulated transcriptionexcitatory
input

constitutive
transcription

back to
initial state

transcription delay

Fig. 4. A gene gate with excitatory control, pos(a,b). This is almost identical to neg(a,b), but
the input stimulus ‘?a’ is followed by the production of tr(b) instead of an inhibitory delay.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 103

The pos(a,b) gate (Figure 4) has a promoter site a with positive regulation
(stimulation), and a product b. It is similar to the neg gate, but instead of an inhibition
delay, we have a transcription delay followed by stimulated production of tr(b).

3 The Stochastic π-Calculus Execution Model

3.1 Simulation Language

We have seen how a biological system can be modeled in the stochastic π-calculus,
by representing each component of the system as a process P that precisely describes
what the component can do. To summarize, the most basic process form is a choice Σ
= P1 + … + Pn between zero or more outputs !x(n), inputs ?x(m), and delays τ that the
component can perform (in the general form of input/output, n is the output message
and m is the input variable). Two components P and Q can be combined together
using parallel composition P|Q. Channels can be established to allow the components
to interact by complementary inputs and outputs. Once a biological system has been
modeled using these basic components, the model can be stochastically simulated in
order to predict the evolution of the system over time. In this paper, the simulations
were obtained using the Stochastic Pi Machine (SPiM), which is described in [13].

Another basic operator of stochastic π-calculus, which we do not need to discuss in
detail in this paper, allows the creation of fresh channels. The operator new xε. P
creates a fresh channel x of rate ε to be used in the process P. The rules of stochastic
π-calculus ensure that a “fresh” channel so obtained does not conflict with any other
channel. We mention the channel creation operator here just because it allows us to
obtain the stochastic delay τε as a derived operator. In fact, we can define:

 τε.P + Q = new xε. (!x.0 | (?x.P + Q)) for x not occurring in P or Q

That is, a delay is equivalent to a single communication on a fresh channel of the
same rate. Hence, stochastic delays can be reduced to ordinary channel
communication, and can be handled uniformly like any other communication, e.g., for
simulation purposes.

3.2 Simulator

The Stochastic Pi Machine simulates a given process P by first converting the process
to a corresponding simulator data structure, consisting of a list of components A= Σ1,
..., ΣM. The resulting list is then processed by the simulator, by first using a function
Gillespie(A) to stochastically determine the next interaction channel x and the
corresponding reaction time τ. Once an interaction channel x has been chosen, the
simulator uses a selection operator to randomly select from the list A a component of
the form Σ+?x(m).P containing an input on channel x, and different component of the
form Σ' +!x(n).Q containing an output on x. The selected components can then interact
by synchronizing on channel x, and the processes P (with the input variable m
replaced by n) and Q are added to the remainder of the list. The simulator continues
processing the list in this way until no more interactions are possible.

104 R. Blossey, L. Cardelli, and A. Phillips

The function Gillespie(A) is based on [14], which uses a notion of channel activity
to stochastically choose a reaction channel from a set of possible channels. The
activity of a reaction channel corresponds to the number of possible combinations of
reactants on the channel; channels with a high activity and a fast reaction rate have a
higher probability of being selected. A similar notion of activity is defined for the
Stochastic Pi Machine, where Actx(A) denotes the number of possible combinations of
inputs and outputs on interaction channel x in a list of components A:

Actx(A)=(Inx(A)*Outx(A))-Mixx(A)

Inx(A) and Outx(A) are defined as the number of available inputs and outputs on
interaction channel x in A, respectively, and Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for
each component Σi in A. The formula takes into account the fact that an input and an
output in the same component cannot interact, by subtracting Mixx(A) from the
product of the number of inputs and outputs on x.

The Stochastic Pi Machine has been formally specified in [13], and the
specification has been proved to correctly simulate π-calculus processes. The
simulator has also been used to simulate a wide variety of chemical and biological
systems. In particular, many of the benchmark examples that were used to validate the
Gillespie algorithm [14] have been modeled as π-calculus processes and correctly
simulated in SPiM.

3.3 Interaction-Oriented Simulation vs. Reaction-Oriented Simulation

The Gillespie algorithm was originally used to simulate a set of chemical reaction
equations expressed in terms of reactants and products, and the results of a simulation
were plotted as the quantity of each chemical species versus time. In contrast, the
π-calculus does not describe an equation for each type of chemical reaction, but
instead describes the behavior of each component in terms of the inputs and outputs it
can perform on a set of interaction channels. This gives rise to an interaction-oriented
model, as opposed to a chemical-reaction-oriented model, in which a reactant is
defined as an input or output on a given interaction channel. Once the notion of a
reactant has been defined in this way, the Gillespie algorithm can be directly applied
to a given π-calculus model of the biological system. The corresponding simulation
results can be plotted as the quantity of each reactant versus time.

4 Gene Networks

4.1 Simple Circuits

In Section 2 we have described gene gates with one input; gates with n inputs can be
defined similarly, to form a larger library of components. Once the components are
defined, gene circuits can be assembled by providing interaction channels, with
associated interaction rates, connecting the various gates. If we write, e.g., pos(a,b) |
neg(b,c), the pos process will offer output actions !b, through tr(b), and the neg
process will offer input actions ?b. Hence the shared channel b, given to both pos and
neg as a parameter, can result in repeated interactions between the two processes over
b, and hence in network connectivity.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 105

Fig. 5. Compositions of gates represent circuits (left) that exhibit behaviors (right). The
channels a,b,c are declared separately (not shown) along with their associated stochastic
interaction rates. In all simulations, the common rate r for a,b,c is set to a baseline value of 1.0.
The other chosen rates are as indicated in the individual simulations; the fact that they are
chosen at simple order-of-magnitude intervals suggests that they are not critical for the intended
behavior. The vertical axis is the number of outstanding offers of communication: for a channel
a we may plot output offers !a or input offers ?a. In all cases above, the networks get started by
constitutive transcription only. All the plots are of individual simulator runs.

The simplest circuits we can build are single gates interacting with themselves in a
feedback loop, like pos(a,a) (Figure 5). In absence of any stimulus on a, pos(a,a),
must choose the constitutive transcription route and evolve into tr(a) | pos(a,a), where
now tr(a) can stimulate pos(a,a) at a faster rate than the constitutive rate, and possibly
multiple times. Depending on the production and degradation rates, a stable high level
of tr(a) may be reached. Similarly neg(a,a) can stabilize at a low quantity of tr(a)
where degradation of tr(a) balances inhibition. A convenient high-signal level of
about 100 is maintained in our examples by appropriate rates (see parameters in
Figure 5).
The combination pos(b,a) | neg(a,b) (Figure 6) is a self-inhibition circuit, like
neg(a,a), and it similarly has a stable output. But now there are two separate products,
tr(a) and tr(b), so the system (again in absence of any stimulus) can stochastically
start with a prevalence of tr(a) or a prevalence of tr(b): this can be seen at the
beginning of the two plots, before stabilization.

106 R. Blossey, L. Cardelli, and A. Phillips

0

50

100
150

0 5000 10000 15000
0

50
100
150

0 5000 10000 15000

0

50
100
150

0 5000 10000 15000
0

50
100
150

0 5000 10000 15000
negpos

b

a

pos(b,a) | neg(a,b)

neg(b,a) | neg(a,b)

negneg

b

a

r = 1.0, δ = 0.001; pos: ε = 0.01, η = 0.1; neg: ε = 0.1, η = 0.01

Bistable

a b

Monostable

aa

0

50

100
150

0 5000 10000 15000
0

50
100
150

0 5000 10000 15000

0

50
100
150

0 5000 10000 15000
0

50
100
150

0 5000 10000 15000
negpos

b

a
negpos

b

a

pos(b,a) | neg(a,b)

neg(b,a) | neg(a,b)

negneg

b

a
negneg

b

a

r = 1.0, δ = 0.001; pos: ε = 0.01, η = 0.1; neg: ε = 0.1, η = 0.01

Bistable

a b

Monostable

aa

Fig. 6. Feedback loops that are monostable (resulting in a single stable state with a high after a
transient) and bistable (resulting in two distinct stable states with a high or b high)

The combination neg(b,a) | neg(a,b) (Figure 6) is a bistable circuit, which can start
up in one state or another, and (usually) stay there.

4.2 Repressilator

The well-known repressilator circuit [12], consisting of three neg gates in a loop, is an
oscillator. We compare here three different degradation models, aiming to justify
somewhat our initial definition for tr(-). In the first model (Figure 7(A)), each
transcription factor interacts exactly once, and only then it disappears. The
repressilator circuit oscillates nicely but, without stochastic degradation, the plots
appear very “mechanical”; moreover, the quantities of products grow at each cycle
because products do not disappear unless they interact. In the second model (Figure
7(B)), each transcription factor interacts exactly once, or can degrade. Again the plots
look mechanical, but the stochastic degradation defines a stable level of product. The
third model (Figure 7(C)), with multiple interactions and stochastic degradation, is
more realistic and gives more convincing plots. See the Appendix for the simulator
script.

The progressive refinement of the definition of tr(-), provides an illustration of how
one can play with process descriptions to find models that show a balance between
simplicity and realism. A further step could be to model both attachment and
detachment of transcription factors, and then to model both transcription and
translation.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 107

tr(p) = !p.0
r = 1.0, ε = 0.1, η = 0.04

neg neg

negc b
a

neg(a,b) |
neg(b,c) |
neg(c,a)

tr(p) = (!p.0) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.04, δ = 0.0001

tr(p) = (!p.tr(p)) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.001, δ = 0.001

C)

A) B)

0

1000

2000

0 20000 40000 60000 80000
0

100
200
300

0 20000 40000 60000 80000

a b c a b c

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

a b c

tr(p) = !p.0
r = 1.0, ε = 0.1, η = 0.04

neg neg

negc b
a

neg neg

negc b
a

neg(a,b) |
neg(b,c) |
neg(c,a)

tr(p) = (!p.0) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.04, δ = 0.0001

tr(p) = (!p.tr(p)) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.001, δ = 0.001

C)

A) B)

0

1000

2000

0 20000 40000 60000 80000
0

1000

2000

0 20000 40000 60000 80000
0

100
200
300

0 20000 40000 60000 80000
0

100
200
300

0 20000 40000 60000 80000

a b ca b c a b ca b c

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

a b ca b c

Fig. 7. The Repressilator circuit and its dynamics for different degradation models (A – C). The
detailed explanation is found in the text.

ε = 0.5, η = 0.0001

ε = 0.05, η = 0.0001 ε = 0.05, η = 0.01

ε = 0.5, η = 0.01

η
ε

0
200

400
600

0 10000 20000 30000 40000 50000 60000
0

200

400
600

0 10000 20000 30000 40000 50000 60000

0
20
40
60
80

0 10000 20000 30000 40000 50000 60000
0

20
40
60
80

0 10000 20000 30000 40000 50000 60000

ε = 0.5, η = 0.0001

ε = 0.05, η = 0.0001 ε = 0.05, η = 0.01

ε = 0.5, η = 0.01

η
ε

0
200

400
600

0 10000 20000 30000 40000 50000 60000
0

200

400
600

0 10000 20000 30000 40000 50000 60000

0
20
40
60
80

0 10000 20000 30000 40000 50000 60000
0

20
40
60
80

0 10000 20000 30000 40000 50000 60000

Fig. 8. Repressilator frequency and amplitude, regulated by η and ε. Cf. Figure 7(C).

4.3 Network Properties: Oscillation

It is instructive to take a “systems” approach and see what the rate parameters
described earlier mean in the context of networks of gates. In the case of the

108 R. Blossey, L. Cardelli, and A. Phillips

repressilator we can see that the constitutive rate (together with the degradation rate)
determines oscillation amplitude, while the inhibition rate determines oscillation
frequency. Figure 8 shows the variation of ε and η from their values in Figure 7(C));
note the differences in scale.

Moreover, we can view the interaction rate r as a measure of the volume (or
temperature) of the solution; that is, of how often transcription factors bump into
gates. Figure 9 shows that the oscillation frequency and amplitude remain unaffected
in a large range of variation of r from its value in Figure 7(C)). Note that r is in a
stochastic race against δ in tr, and δ is always much slower.

r = 0.1 r = 10.0

0
50

100
150

0 10000 20000 30000 40000 50000 60000
0

50
100
150

0 10000 20000 30000 40000 50000 60000

r = 0.1 r = 10.0

0
50

100
150

0 10000 20000 30000 40000 50000 60000
0

50
100
150

0 10000 20000 30000 40000 50000 60000
Fig. 9. Repressilator stability to changes in r (volume/temperature). Cf. Figure 7(C).

4.4 Network Properties: Fixpoint

We now discuss a network property that becomes important in later analysis. Figure 10
plots signals flowing through a sequence of neg gates with parameters as in Figure 7(C),
except for η, the inhibition delay. On the left, the signals are alternating between high
(b,d) and low (a,c,e). As η is increased, shown from left to right, the gates behave less
and less like boolean operators, but the signals remain separate.

Figure 11 shows the same circuit, except for a self feedback on the head gate. With
low inhibition delay η (i.e. ineffective feedback) the system is unstable (left). But
soon after, as we increase η, the self feedback flattens all signals downstream to a
common low level (middle). The signals remain at a common level over a wide range
of η, although this level is raised by increasing η (right).

0

50

100

150

0 5000 10000

b c d ea

neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000

b c d ea b c d ea

neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

a
b
c
d
e

Fig. 10. A sequence of neg gates with three settings of their η parameter

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 109

 0

50

100

150

0 5000 10000

b c d ea

neg(a,a) | neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000

b c d ea b c d ea

neg(a,a) | neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000
0

50

100

150

0 5000 10000

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

a
b
c
d
e

Fig. 11. The effect of head feedback on a sequence of neg gates

This behavior is self-regulating, and can be explained as follows. The head
feedback naturally finds a fixpoint where gate input equals gate output (unless it
oscillates). If the next gate has the same parameters, its output will then also equal its
input, and so on down the line: all the gates will be at the same fixpoint. Different
values of η and different gate response profiles may change the fixpoint level, but not
its fundamental stability.

4.5 Combinatorial Circuits

As examples of non-trivial combinatorial networks and their stochastic simulation, we
now examine the artificial gene circuits described by Guet et al. [1]. Most of those
circuits are simple combinations of inhibitory gates exhibiting expected behavior.
However, it was found that in some of the circuits subtle (and partially still not
understood) behavior arises; we focus particularly on two of these cases.

In order to build up the different combinatorial networks easily, we begin with a
version of the neg gate that is more flexibly parameterizable. We call it negp, and it
has the property that, if s represents the rates used in the neg gate, then negp(a,s,tr(b))
= neg(a,b), hence neg is a special case of negp. The rates for inhibition and
constitutive translation are passed as a pair s=(ε,η), in the second parameter. The third
parameter fully encapsulates the gate product, so the gate logic is independent of it1.

a p()

negp

Negp Gate

(ε,η)
negp(a,(ε,η),p) =

?a. τη. negp(a,(ε,η),p) +
τε. (p() | negp(a,(ε,η),p))

regulatory
input product

rates

product generation

a p()

negp

Negp Gate

(ε,η)
a p()

negp

Negp Gate

(ε,η)
negp(a,(ε,η),p) =

?a. τη. negp(a,(ε,η),p) +
τε. (p() | negp(a,(ε,η),p))

regulatory
input product

rates

product generation

negp(a,(ε,η),p) =
?a. τη. negp(a,(ε,η),p) +
τε. (p() | negp(a,(ε,η),p))

regulatory
input product

rates

product generation

Fig. 12. A neg gate with parametric product p

1 More technically, if we set pb() = tr(b) (pb is the process that when invoked with no

arguments, invokes tr with argument b), then we have negp(a,s,pb) = neg(a,b); we write
negp(a,s,tr(b)) as an abbreviation, skipping the intermediate definition of pb.

110 R. Blossey, L. Cardelli, and A. Phillips

interaction
rtr(b,r) =

!b. rtr(b,r) +
!r. 0 +
τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

rep(r) = ?r. rep(r) repressor

arbitray amounts of..

b
r

rtr(b,r)

interaction
rtr(b,r) =

!b. rtr(b,r) +
!r. 0 +
τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

interaction
rtr(b,r) =

!b. rtr(b,r) +
!r. 0 +
τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

rep(r) = ?r. rep(r) repressor

arbitray amounts of..
rep(r) = ?r. rep(r) repressor

arbitray amounts of..

b
r

rtr(b,r)

b
r

rtr(b,r)

Fig. 13. Repressible transcription factors

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2PT Pλ-

D038/lac- Experiment:
aTc 0101
IPTG 0011
GFP 0100

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6
PT = (εεεε1, ηηηη1) PL2 = (εεεε2, ηηηη2) Pλ- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))
lac = negp(TetR, PT, rtr(LacI,IPTG))
cI = negp(LacI, PL2, tr(lcI))
gfp = negp(lcI, Pλ-, tr(GFP))

D038lac- = tet | lac | cI | gfp | rep(aTc) | rep(IPTG)

repressors
(when present)

promoters

genes

molecules

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2PT Pλ-

D038/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2PT Pλ-

D038/lac- Experiment:
aTc 0101
IPTG 0011
GFP 0100

Experiment:
aTc 0101
IPTG 0011
GFP 0100

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6
PT = (εεεε1, ηηηη1) PL2 = (εεεε2, ηηηη2) Pλ- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))
lac = negp(TetR, PT, rtr(LacI,IPTG))
cI = negp(LacI, PL2, tr(lcI))
gfp = negp(lcI, Pλ-, tr(GFP))

D038lac- = tet | lac | cI | gfp | rep(aTc) | rep(IPTG)

repressors
(when present)

promoters

genes

molecules

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6
PT = (εεεε1, ηηηη1) PL2 = (εεεε2, ηηηη2) Pλ- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))
lac = negp(TetR, PT, rtr(LacI,IPTG))
cI = negp(LacI, PL2, tr(lcI))
gfp = negp(lcI, Pλ-, tr(GFP))

D038lac- = tet | lac | cI | gfp | rep(aTc) | rep(IPTG)

repressors
(when present)

promoters

genes

molecules

Fig. 14. D038

In addition to the old transcription factors tr(b), binding to a site b, we now need
also transcription factors that can be repressed: rtr(b,r). These have three possible
behaviors: binding to a site b, being neutralized via a site r, and degrading. The
repression is performed by a process rep(r) that, if present, “inexhaustibly” offers ?r.

In the artificial gene circuits by Guet et al, the circuits are probed by varying two
inputs: two so-called “inducer” proteins in the environment, aTc and IPTG, which
bind specifically to the gene in question. The output of the gene circuit is detected by
a reporter gene which produces a green-fluorescent protein (GFP) which can be
optically detected.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 111

We can now describe the circuits from [1] by simple combinations of negp, tr, rtr,
and rep components. All the other names appearing here, such as TetR, aTc, etc.,
which glue the network together, are just channel names used in complementary input
and output actions.

Intuitive Boolean analysis of one of the still controversial circuits, D038, in Figure 14
would suggest either oscillation (GFP=0.5 on average), or GFP=1, contrary to
experiment2. Thus, for the given construction, a different explanation is needed. The
fixpoint effect, however, which we have described in Section 4.4, does suggest an
explanation for the output in the absence of repressors, whereby all signals including the
output signal GFP are driven to a fixpoint with a low value. The addition of GFP
renders that state unstable and drives TetR to 0, and hence GFP to 1. In all cases, the
addition of IPTG drives LacI to 0 and hence GFP to 0. Figure 15 shows the simulation
results of this system for the different values of aTc and IPTG. In circuit D038 we have
thus found an example in which the modelling of the stochastic gate behaviour can
indeed help to find an explanation of the observed dynamics.

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

r1..6 = 1.0, δ = 0.001
ε1,2,3 = 0.1, η1 = 0.25 (PT), η2,3 = 1.0 (PL2, Pλ-)

GFP
LacI
lcI
TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

r1..6 = 1.0, δ = 0.001
ε1,2,3 = 0.1, η1 = 0.25 (PT), η2,3 = 1.0 (PL2, Pλ-)

GFP
LacI
lcI
TetR

GFP
LacI
lcI
TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

Fig. 15. D038 simulations

2 In absence of repressors, the experimentally observed GFP is 0 (meaning no detectable

signal), hence, by tracing boolean gates backwards, lcI=1, and LacI=0, and TetR=1. But by
self-loop TetR=1 implies TerR=0, so the whole circuit, including GFP should be oscillating
and averaging GFP=0.5. As an alternative analysis, consider the level of TetR (which is
difficult to predict because it is the result of a negative self-feedback loop). Whatever that
level is, and whether or not aTc is present, it must equally influence the tet and lac genes,
since the promoters are the same (PT). The option, TetR=LacI=1 gives GFP=1. Suppose
instead TetR=LacI=0, then lcI=1, and GFP=0 as observed. But in that situation, with TetR=0,
aTc should have no influence, since it can only reduce the level of TetR. Instead, aTc
somehow pushes GFP to 1.

112 R. Blossey, L. Cardelli, and A. Phillips

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6
PT = [εεεε1, ηηηη1] PL2 = [εεεε2, ηηηη2] Pλ- = [εεεε3, ηηηη3] PL1 = [εεεε4, ηηηη4]

tet = negp[TetR, PT, rtr[TetR,aTc]]
lac = negp[LacI, PL1, rtr[LacI,IPTG]]
cI = negp[LacI, PL2, tr[lcI]]
gfp = negp[lcI, Pλ-, tr[GFP]]

D016lac- = tet | lac | cI | gfp | rep[aTc] | rep[IPTG]

repressors

promoters

genes

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6
PT = [εεεε1, ηηηη1] PL2 = [εεεε2, ηηηη2] Pλ- = [εεεε3, ηηηη3] PL1 = [εεεε4, ηηηη4]

tet = negp[TetR, PT, rtr[TetR,aTc]]
lac = negp[LacI, PL1, rtr[LacI,IPTG]]
cI = negp[LacI, PL2, tr[lcI]]
gfp = negp[lcI, Pλ-, tr[GFP]]

D016lac- = tet | lac | cI | gfp | rep[aTc] | rep[IPTG]

repressors

promoters

genes

D016/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2 Pλ-PL1

Experiment:
aTc 0101
IPTG 0011
GFP 1000

D016/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2 Pλ-PL1

Experiment:
aTc 0101
IPTG 0011
GFP 1000

Experiment:
aTc 0101
IPTG 0011
GFP 1000

Fig. 16. D016

In a very similar fashion we can code another peculiar circuit, D016, shown in
Figure 16. This circuit is perplexing because addition of aTc, affecting an apparently
disconnected part of the circuit, changes the GFP output. In [18] it is suggested that
this may be caused by an overloading of the degradation machinery, due to an
overproduction of TetR when aTc is present, which might decrease the degradation
rate of the other proteins. But even in absence of aTc and IPTG, it is surprising that
GFP is high (about 50% of max [16]): this seems to contradict both simple boolean
analysis and our fixpoint explanation which worked well for D038.

One way to rationalize the behaviour displayed by this circuit is to assume that the
PL

1-lac gate is operating in a region in parameter space in which the circuit dynamics
is unstable. A closer examination of the instability region of our basic fixpoint circuit
(Figure 10 bottom left) shows that, while the first signals in the sequence (a,b) are
kept low, the subsequent signals (c, corresponding to GFP in D016, and d,e) all spike
frequently. This may give the appearance, on the average, of high levels of GFP,
matching the first column of the D016 experiment. Moreover, in the instability region
the system responds very sensitively to changes in degradation levels: GFP levels can
be brought down both by increasing degradation by a factor of 5 (because this brings
the circuit back into the fixpoint regime) or by decreasing degradation by a factor of
1000 (so that there are enough transcription factors to inhibit all gates). In Figure 17
we begin by placing D016 in the instability regime, with GFP spiking (A). Then,
adding aTc while reducing degradation suppresses all signals (B). Adding IPTG
results in no GFP (C,D); moreover, reduced degradation causes overproduction (D).
Even increased degradation (E) can result in no GFP.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 113

0

50

100

150

0 50000 100000
0

50

100

150

0 50000 100000

0

50

100

150

0 50000 100000

aTc = 0 (δ = 0.001), IPTG = 0

0

50

100

150

0 50000 100000

aTc = 0 (δ = 0.001), IPTG = 0

0

50

100

150

0 50000 100000
0

50

100

150

0 50000 100000

0
1000
2000
3000
4000
5000
6000

0 50000 100000
0

1000
2000
3000
4000
5000
6000

0 50000 100000

0

50

100

150

0 50000 100000
0

50

100

150

0 50000 100000

aTc = 0 (δ = 0.001), IPTG = 1 aTc = 1 (δ = 0.00001), IPTG =1

r1..6 = 1.0
ε1..4 = 0.1
η1..4 = 0.01

A B

C D

E GFP
LacI
lcI
TetR

GFP
LacI
lcI
TetR

aTc = 1 (δ = 0.00001), IPTG = 0

δ = 0.005 aTc = 0, IPTG = 0

GFP

Fig. 17. D016 simulations

While a proper biological explanation of the behavior of D016 has not been
obtained yet, the type of analysis we have performed here already shows the potential
of the information gain from a proper study of the stochastic dynamics of the gene
circuits, in particular in the case where head feedbacks are present; other authors have
noted the possibility of surprises in such cases [19].

5 Conclusions

In this paper we have demonstrated how stochastic simulations of gene circuits can be
built in a compositional way by employing the stochastic π-calculus. For this, we
chose as a descriptive level not the molecular constituents, but rather considered each
gene as a gate with corresponding inputs and outputs. On this level, compositionality
is illustrated, for example, by our treatment of the repressilator circuit: the definition
of the neg gate could be left unchanged when the definition of the transcription factor
tr was refined. Our approach is mechanistic in the sense that we (re-)construct a
biological system from discrete elements and then deduce the system behaviour as
arising from the interactions of the components. This differs from modelling attempts
of the same systems in the bioinformatics literature which only looked at gene
expression levels without considering their origin [18]. Our approach, while being
abstract, is advantageous as it allows a considerable flexibility in the level of detail

114 R. Blossey, L. Cardelli, and A. Phillips

with which components and their interactions are described (see the Appendix for
further illustration). While the adopted level of the description may be considered
coarse and qualitative, the π-calculus approach easily allows for refinements (i.e.,
inclusion of additional detail down to molecular levels of description) to match
available knowledge.

Apart from these analytical and conceptual advantages in building up the different
circuits, we stress that the ease of use of the compositional approach in combination
with stochastic simulations is particularly useful for hypothesis testing. It can build on
available knowledge, but the outcome of the stochastic simulations of the interacting
components yields a highly non-trivial check of expectations. By comparison,
Boolean analysis or intuitive ideas are obviously too naïve and thus can easily be
misleading.

The sensitivity of the gene network dynamics to parameter choice has to be
contrasted with the lack of quantitative knowledge of promoter strengths, or even
qualitative relationships between the different promoters [19]. In the absence of “true”
(i.e., experimentally validated) parameter values, a detailed analysis of the stochastic
behaviour of the gene networks resulting from a systematic parameter variation can
be a very useful - but clearly not sufficient - step to avoid misinterpretations of
experiments.

To conclude, we believe that the compositional approach we propose for the
formulation of stochastic models of gene networks will allow a useful path for more
detailed, quantitative studies of regulatory mechanisms, and in particular for the testing
of hypotheses of complex system behavior. It may be considered as one step towards
the development of flexible languages and simulation tools for computational biology,
for which a need has recently been expressed by several biologists ([20]-[22]).

References

[1] Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. (2002) Combinatorial synthesis of
genetic networks. Science 296 1466-1470.

[2] Thattai, M. & van Oudenaarden, A. (2001) Intrinsic noise in gene regulatory networks.
Proc. Nat. Acad. Sci. 98, 8614- 8619.

[3] Paulsson, J., Berg, O.G. & Ehrenberg M. (2000) Stochastic Focusing: fluctuation-
enhanced sensitivity of intracellular regulation. Proc. Nat. Acad. Sci. 97, 7148-7153.

[4] Milner, R. (1999) Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press.

[5] Priami, C., Regev, A., Shapiro, E. & Silverman, W. (2001) Application of stochastic
process algebras to bioinformatics of molecular processes. Information Processing
Letters 80 25-31.

[6] Regev, A. (2002) Computational Systems Biology: A Calculus for Biomolecular
knowledge. Ph.D. Thesis, Tel Aviv University.

[7] Regev, A. & Shapiro, E. (2002) Cellular abstractions: Cells as computation. Nature 419
343.

[8] Regev, A., Panina, E.M., Silverman, W., Cardelli, L. & Shapiro, E. (2004) BioAmbients:
An abstraction for biological compartments. Theoretical Computer Science, 325(1)
141-167.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 115

[9] Cardelli, L. (2004) Brane Calculi - Interactions of Biological Membranes. Computational
Methods in Systems Biology. Springer. 257-278.

[10] Chiarugi, D., Curti, M., Degano, P. & Marangoni, R.: VICE: A VIrtual CEll. CMSB
2004: 207-220.

[11] Kuttler, C.& Niehren, J. (2005) Gene Regulation in the Pi Calculus: Simulating
Cooperativity at the Lambda Switch. Transactions on Computational Systems Biology, to
appear.

[12] Elowitz, M.B., Leibler. S. (2000) A synthetic oscillatory network of transcriptional
regulators. Nature 403 335-338.

[13] Philips, A. & Cardelli, L., (2005). A Correct Abstract Machine for the Stochastic Pi-
calculus. Proc. BioConcur 2004.

[14] Gillespie, D. (1977) Exact stochastic simulation of coupled chemical reactions. J. Chem.
Phys. 81 2340-2361.

[15] Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[16] Guet, C.C., personal communication.
[17] Wigler, M. & Mishra, B. (2002) Wild by nature. Science 296 1407-1408.
[18] Mao, L. & Resat, H. (2004) Probabilistic representation of gene regulatory networks.

Bioinformatics 20 2258-2269.
[19] Ronen, M., Rosenberg, R., Shraiman, B.I. & Alon, U. (2002) Assigning numbers to the

arrows: Parameterizing a gene regulation network by using accurate expression kinetics.
Proc. Nat. Acad. Sci. 99 10555-10560.

[20] Brenner, S. (1995) Loose Ends. Curr. Biology 5 332.
[21] Bray, D. (2001) Reasoning for Results. Nature 412 863.
[22] Lazebnik, Y. (2002) Can a biologist fix a radio? Or, what I learned while studying

apoptosis. Cancer Cell 2 179-182.

Appendix

A Simulator for the Stochastic π-Calculus

The following is a detailed description of the Stochastic π-calculus and the Stochastic
Pi Machine, as presented in [13].

P,Q::= new x P Restriction Σ::= 0 Null

| P | Q Parallel | π.P + Σ Action
| Σ Choice π::= !x(n) Output
| *π.P Replication | ?x(m) Input

Def. 1. Syntax of the Stochastic π-calculus

!x(n).P + Σ | ?x(m).Q + Σ'
rate(x)

⎯→

P | Q{n/m} [1]

P
r

⎯→

P' ⇒ P | Q
r

⎯→

P' | Q [2]

116 R. Blossey, L. Cardelli, and A. Phillips

P
r

⎯→

P' ⇒ new x P
r

⎯→

new x P' [3]

Q ≡ P
r

⎯→

P' ≡ Q' ⇒ Q
r

⎯→

Q' [4]

Def. 2. Reduction in the Stochastic π-calculus

Stochastic π-calculus. A biological system can be modeled in the stochastic π-
calculus by representing each component of the system as a calculus process P that
precisely describes what the component can do. According to Def. 1, the most basic
component is a choice Σ between zero or more output !x(n) or input ?x(m) actions that
the component can perform. Two components P and Q can be combined together
using parallel composition P|Q, and a component P can be given a private interaction
channel x using restriction new x P. In addition, multiple copies of a given component
π.P can be cloned using replication *π.P. Standard syntax abbreviations are used,
such as writing π for π.0 and π.P for π.P + 0.

Two components in a biological system can interact by performing complementary
input and output actions on a common channel. During such an interaction, the two
components can also exchange information by communicating values over the
channel. Each channel x is associated with a corresponding interaction rate given by
rate(x) and the interaction between components is defined using reduction rules of the
form P⎯→rP’. Each rule of this form describes how a process P can evolve to P’ by
performing an interaction with rate r. According to Def. 2, a choice containing an
output !x(n).P can interact with a parallel choice containing an input ?x(m).Q. The
interaction occurs with rate(x), after which the value n is assigned to m in process Q
(written Q{n/m}) and processes P and Q{n/m} are executed in parallel (Eq. 1).
Components can also interact in parallel with other components (Eq. 2) or inside the
scope of a private channel (Eq. 3), and interactions can occur up to re-ordering of
components (Eq. 4), where P ≡ Q means that the component P can be re-ordered to
match the component Q. In particular, the re-ordering *π.P ≡ π.(P | *π.P) allows a
replicated input *?x(m).Q to clone a new copy of Q by reacting with an output !x(n).P.

V,U::= new x V Restriction A,B::= [] Empty

 A List Σ:: A Choice

Def. 3. Syntax of the Stochastic Pi Machine

x,τ = Gillespie(A)
∧ A>(?x(m).P + Σ):: A'
∧ A'>(!x(n).Q + Σ'):: A''

 ⇒ A
 rate(x)

⎯→

P{n/m}: Q: A'' [5]

V
r

⎯→

V' ⇒ new x V
r

⎯→

new x V' [6]

Def. 4. Reduction in the Stochastic Pi Machine

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 117

Stochastic Pi Machine. The Stochastic Pi Machine is a formal description of how a
process of the stochastic π-calculus can be simulated. A given process P is simulated
by first encoding the process to a corresponding simulator term V, consisting of a list
of choices with a number of private channels:

new x1 ... new xN (Σ1::Σ2::...::ΣM::[])

This term is then simulated in steps, according to the reduction rules in Def. 4. A list
of choices A is simulated by first using a function Gillespie(A) to stochastically
determine the next interaction channel x and the corresponding interaction time τ.
Once an interaction channel x has been chosen, the simulator uses a selection operator
(>) to randomly select a choice ?x(m).P + Σ containing an input on channel x and a
second choice !x(n).Q + Σ' containing an output on x. The selected components can
then interact by synchronizing on channel x, where the value n is sent over channel x
and assigned to m in process P (written P{n/m}). After the interaction, the unused
choices Σ and Σ' are discarded and the processes P{n/m} and Q are added to the
remainder of the list to be simulated, using a construction operator (:) (Eq. 5). An
interaction can also occur inside the scope of a private channel (Eq. 6). The simulator
continues performing interactions in this way until no more interactions are possible.

The function Gillespie(A) is based on the Gillespie Algorithm [14], which uses a
notion of channel activity to stochastically choose a reaction channel from a set of
available channels. The activity of a channel corresponds to the number of possible
combinations of reactants on the channel. Channels with a high activity and a fast
reaction rate have a higher probability of being selected. A similar notion of activity is
defined for the Stochastic Pi Machine, where Actx(A) denotes the number of possible
combinations of inputs and outputs on channel x in A:

Actx(A) = Inx(A) × Outx(A) - Mixx(A)

Inx(A) and Outx(A) are defined as the number of available inputs and outputs on
channel x in A, respectively, and Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for each
choice Σi in A. The formula takes into account the fact that an input and an output
in the same choice cannot interact, by subtracting Mixx(A) from the product of the
number of inputs and outputs on x. Once the values x and τ have been calculated,
the simulator increments the simulation time by delay τ and uses the selection
operator to randomly choose one of the available interactions on x according to
(Eq. 5). This is achieved by randomly choosing a number n∈[1..Inx(A)] and
selecting the nth input in A, followed by randomly selecting an output from the
remaining list in a similar fashion. The application of the Gillespie algorithm to the
Stochastic Pi Machine is summarized in Def. 3, where fn(A) denotes the set of all
channels in A.

1. For all x∈fn(A) calculate ax = Actx(A) × rate(x)
2. Store non-zero values of ax in a list (xµ,aµ), where µ∈1...M.
3. Calculate a0=∑ν=0

M aν

118 R. Blossey, L. Cardelli, and A. Phillips

4. Generate two random numbers n1,n2∈[0,1] and calculate τ,µ such that:

τ = (1/a0)ln(1/n1)

µ-1
∑

ν=1

 aν<n2a0≤
µ
∑

ν=1

 aν

5. Gillespie(A) = (xµ,τ).

Def. 5. Calculating Gillespie(A) according to (13)

For improved efficiency, the simulator can be modified to store a list of values for
each channel x in A, of the form:

x,Inx(A),Outx(A),Mixx(A),ax

After each reduction has been performed, it is only necessary to update the values for
those channels that were affected by the reduction, and then use Def. 5 on the updated
values to choose the next reaction channel and calculate the delay.

To gain confidence in our simulation technique, we have conducted detailed
simulations of the model chemical systems which were simulated in [14] using the
Gillespie algorithm. Comparable results were obtained by modeling each system as a
π-calculus process and simulating the resulting processes in the Stochastic Pi
Machine.

Repressilator Code

From the simple examples discussed previously, the structure of the SPiM programs
should now be clear. The following is the complete code for the repressilator
simulation in Figure 7(C) of the paper, for the SPiM simulator (v0.04). In order to
clarify parts of the code, comments are added in (* … *) brackets.

(* Simulation time, samples, and plotting *)
directive sample 90000.0 500
directive plot !a as "a"; !b as "b"; !c as "c"

(* Parameters *)
val dk = 0.001 (* Decay rate *)
val inh = 0.001 (* Inhibition rate *)
val cst = 0.1 (* Constitutive rate *)
val bnd = 1.0 (* Protein binding rate *)

(* Transcription factor *)
let tr(p:chan()) =
 do !p; tr(p)
 or delay@dk

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 119

(* Neg gate *)
let neg(a:chan(), b:chan()) =
 do ?a; delay@inh; neg(a,b)
 or delay@cst; (tr(b) | neg(a,b))

(* The circuit *)
new a @ bnd: chan()
new b @ bnd: chan()
new c @ bnd: chan()

run (neg(c,a) | neg(a,b) | neg(b,c))

D038,D016 Code

The following is the complete code for the of the D038 and D016 simulations in
Figure 15 and Figure 17, for the SPiM simulator (v0.04).

(* Simulation time, samples, and plotting *)
directive sample 20000.0 500
directive plot !GFP as "GFP"; !LacI as "LacI";
 !LambcI as "LambcI"; !TetR as "TetR"

(* Degradation rate *)
val dk = 0.001
(* val dk = 0.00001 for D016 when aTc is present *)

(* Transcription factor *)
let tr(b:chan()) =
 do !b; tr(b)
 or delay@dk

(* Repressible transcription factor *)
let rtr(b:chan(), r:chan()) =
 do !b; rtr(b,r)
 or !r
 or delay@dk

(* Repressor *)
let rep(r:chan()) =
 ?r; rep(r)

(* Negp gate *)
let negp(a:chan(), (cst:float, inh:float), p:proc()) =
 do ?a; delay@inh; negp(a,(cst,inh),p)
 or delay@cst; (p() | negp(a,(cst,inh),p))

(* Wiring *)
new TetR @1.0: chan() (* TetR protein *)
new LacI @1.0: chan() (* LacI protein *)
new LambcI @1.0: chan() (* LambcI protein *)
new GFP @1.0: chan() (* GFP protein *)
new aTc @100.0: chan() (* aTc inducer *)
new IPTG @100.0: chan() (* IPTG inducer *)

(* Auxiliary definitions: negp products *)
let rtr_TetR_aTc() = rtr(TetR,aTc)
let rtr_LacI_IPTG() = rtr(LacI,IPTG)

120 R. Blossey, L. Cardelli, and A. Phillips

let tr_LambcI() = tr(LambcI)
let tr_GFP() = tr(GFP)

(* D038 Circuit *)
val PT = (0.1, 0.25) (* PT constitutive and inhibition rates *)
val PL2 = (0.1, 1.0) (* PL2 constitutive and inhibition rates *)
val Plm = (0.1, 1.0) (* Plm constitutive and inhibition rates *)

let tet() = negp(TetR, PT, rtr_TetR_aTc)
let lac() = negp(TetR, PT, rtr_LacI_IPTG)
let cI() = negp(LacI, PL2, tr_LambcI)
let gfp() = negp(LambcI, Plm, tr_GFP)

run
(tet() | lac() | cI() | gfp()
(* | rep(aTc) uncomment to test with aTc *)
(* | rep(IPTG) uncomment to test with IPTG *)
)
(* D016 Circuit *)
val PT = (0.1, 0.01) (* PT constitutive and inhibition rates *)
val PL1 = (0.1, 0.01) (* PL1 constitutive and inhibition rates *)
val PL2 = (0.1, 0.01) (* PL2 constitutive and inhibition rates *)
val Plm = (0.1, 0.01) (* Plm constitutive and inhibition rates *)

let tet() = negp(TetR, PT, rtr_TetR_aTc)
let lac() = negp(LacI, PL1, rtr_LacI_IPTG)
let cI() = negp(LacI, PL2, tr_LambcI)
let gfp() = negp(LambcI, Plm, tr_GFP)

run
(tet() | lac() | cI() | gfp()
(* | rep(aTc) uncomment to test with aTc *)
(* | rep(IPTG) uncomment to test with IPTG *))

Complexation

Complexation can be modeled in stochastic process calculi by using a technique
originally developed by Aviv Regev and Ehud Shapiro [6][7]. This technique
provides a simple illustration of a major feature of process calculi that we have not
emphasized in the main text: the dynamic creation of fresh communication channels.
A fresh (unique) channel can be dynamically created, operationally, by incrementing
a global counter, or by picking a random number. Process calculi abstract from these
operational details by a formalized notion of what it means for a channel to be fresh.
The operator new cr; P creates a fresh channel named c with rate r for use in P
(distinct from any other channel that might also be named c).

We want to model two proteins P and Q that combine into a complex P:Q at some
rate r, and break apart again at some rate s. Let cx denote the complexation interaction
of the two proteins: this is modeled as a single “public” channel cx of rate r, where
multiple copies of P and Q can interact to come together and form complexes. Let dx
denote the decomplexation interaction of two bound proteins: this is modeled as a
separate channel dx of rate s for each complex. Such a fresh channel is established
separately for each complex at the time of complexation, for the purpose of
subsequently breaking up.

 A Compositional Approach to the Stochastic Dynamics of Gene Networks 121

P = new dxs !cx(dx); !dx; P
Q = ?cx(x); ?x; Q where x is an input variable

If we consider just one copy of P and one of Q, for simplicity, the initial system P|Q
consisting of two separate proteins can evolve by P creating a fresh channel dx and
outputting this dx over the public channel cx, where it can be input by Q and bound to
its input variable x. At this point the system has evolved into the configuration new
dxs (!dx; P) | (?dx; Q), where dx is unknown to any other actual or potential process in
the system. This state represents the complex of the original P and Q. Next, an
interaction can happen over this particular dx channel among the only two processes
that share it: this is the decomplexation event resulting in the initial state P|Q.

P|Q r new dxs (!dx; P) | (?dx; Q) s P|Q where dx is fresh

Many variations on this theme are possible, including modeling the binding,

unbinding, and cooperative binding of transcription factors.

Neg Gate Dynamic Response Profile

We test the dynamic response profile of the neg gate of Figure 3. To observe some of
its behavior under operating conditions, we provide an input consisting of a signal
raising linearly from 0 to 100, and then falling linearly from 100 to 0. That means 100
copies of input molecules, where each molecule is injected at a certain time and can
interact or decay a certain number of times (thus shaping the input curve).

η = 0.001
r = 1.0
ε = 0.1
δ = 0.001

A1

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100

η = 1.0
r = 1.0
ε = 0.1
δ = 0.001

a offers

b offers

time →→→→

time →→→→

of
fe

rs
 →→ →→

of
fe

rs
 →→ →→

a offers →→→→

a offers →→→→

b
of

fe
rs

 →→ →→
b

of
fe

rs
 →→ →→

raising

falling

raising

falling

B1

A2

B2

η = 0.001
r = 1.0
ε = 0.1
δ = 0.001

A1

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100
0

20
40
60
80

100
120
140

0 20 40 60 80 100

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100
0

20
40
60
80

100
120
140

0 20 40 60 80 100

η = 1.0
r = 1.0
ε = 0.1
δ = 0.001

a offers

b offers

time →→→→

time →→→→

of
fe

rs
 →→ →→

of
fe

rs
 →→ →→

a offers →→→→

a offers →→→→

b
of

fe
rs

 →→ →→
b

of
fe

rs
 →→ →→

raising

falling

raising

falling

B1

A2

B2

Fig. 18. Neg Gate Response Profile

Initially, in absence of any input, the output of the neg gate quickly raises to about
100. As the input signal ramps up, the output signal decays, and as the signal ramps
down the output rises again, but with an asymmetric profile. (Figure 18 (A1,B1): the
ramping down of the input signal in B1 appears abbreviated because the signal is
consumed at a higher rate by the gate.) Plotting input vs output for the same data
(Figure 18 (A2,B2)) we can see a roughly hyperbolic response with two distinct
curves corresponding to raising and falling inputs. We show the plots for a highly
sensitive (“Boolean”) gate with η=0.001 (Figure 18 (A1,A2)) and a less sensitive gate
with η=1.0 (Figure 18 (B1,B2)); these parameters cover the range used in simulations

122 R. Blossey, L. Cardelli, and A. Phillips

in the main text. As in the main text, what is actually plotted is the number of (output)
communication offers on the channels.

These response profiles illustrate the fact that, e.g., in the repressilator, each signal
dynamically shapes the next signal and is shaped by the intake of the next gate.

The following is the complete code used to obtain the graphs, for the SPiM
simulator (v0.04).

(* Simulation time, samples, and plotting *)
directive sample 30000.0 1000
directive plot !a as "a"; !b as "b"

(* Parameters *)
val dk = 0.001 (* Output protein decay rate *)
val inh = 0.001 (* Inhibition rate, or 1.0 *)
val cst = 0.1 (* Constitutive rate *)
val bnd = 1.0 (* Protein binding rate *)

(* Transcription factor *)
let tr(p: chan()) = do !p;tr(p) or delay@dk

(* Neg gate *)
let neg(a:chan(), b:chan()) =
 do ?a; delay@inh; neg(a,b)
 or delay@cst; (tr(b) | neg(a,b))

(* Probe signal: linearly raising and falling *)
val pbdk = 0.1 (* Probe signal decay rate *)
let probe1(p:chan(),n:int) =
 if n=0 then ()
 else (do !p;probe1(p,n-1) or delay@pbdk; probe1(p,n-1))
let dprobe1(p:chan(),d:int,n:int) =
 if d=0 then probe1(p,2*10*n)
 else delay@pbdk;dprobe1(p,d-1,n)
let probe(p:chan(),m:int) =
 if m=0 then ()
 else (dprobe1(p,500+(10*m),100-m) | probe(p,m-1))

(* Probing *)
new a@bnd:chan() new b@bnd:chan()
run (neg(a,b) | probe(a,100))

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

