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Abstract. We propose a compositional approach to the dynamics of gene regu-
latory networks based on the stochastic π-calculus, and develop a representation 
of gene network elements which can be used to build complex circuits in a 
transparent and efficient way. To demonstrate the power of the approach we apply 
it to several artificial networks, such as the repressilator and combinatorial gene 
circuits first studied in Combinatorial Synthesis of Genetic Networks [1]. For two 
examples of the latter systems, we point out how the topology of the circuits and 
the interplay of the stochastic gate interactions influence the circuit behavior. Our 
approach may be useful for the testing of biological mechanisms proposed to 
explain the experimentally observed circuit dynamics.   

1   Introduction 

Within the last years a general consensus has emerged that noise and stochasticity are 
essential building elements of gene regulatory networks. A quantitative understanding 
of their role is thus needed to understand gene regulation. Regulatory functions can 
indeed work to eliminate stochastic effects [2], or to even exploit them [3].  

In line with new experimental techniques to measure and quantify such behavior, 
efficient ways to model and simulate gene networks need to be developed, which are 
currently lacking. Simulations based on differential equations for the concentrations 
of the various biomolecules, the long-time standard of modeling in biochemical 
systems, are not well suited for this purpose, except in particular cases. Stochastic 
effects, which are typically important when molecule numbers are small, are difficult 
to build into such approaches, and the resulting stochastic equations are time-
consuming to simulate. In addition, differential equation models are inherently 
difficult to change, extend and upgrade, as changes of network topology may require 
substantial changes in most of the basic equations.   

In this paper, we follow a different route. It has recently emerged within computer 
science in the context of process calculi, and their applications to biological systems. 
Process calculi [4] are essentially programming languages designed to describe 
concurrent, interactive systems such as mobile communication networks. Among the 
various process calculi, π-calculus is one of the best studied because of its 
compactness, generality, and flexibility. Stochastic variants have appeared recently 
that address biochemical modeling [5]; they have been used to model molecular 
interactions [6][7], compartments [8][9], and metabolism [10]. A remaining challenge 
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is to model gene networks, to fully demonstrate the flexibility of process calculi, and 
to eventually support the integration of molecular, gene, and membrane networks in a 
single framework. 

Here, we introduce process calculi by example, in the context of gene networks; 
technical details of the approach can be found in the Appendix. Modeling with 
process calculi is very much like programming. It is carried out in concurrent, 
stochastic programming languages that can easily support very complex and detailed 
models in a modular (“compositional”) way, where separate program units correspond 
to separate biochemical components.      

Our purpose here is in part tutorial: we aim to show that we can do things simply to 
start with, and already get interesting insights. Models in which molecular details are 
explicitly treated can be built when needed; e.g. see [11] for a discussion of 
transcription-translation in phage lambda. In addition to our approach being on the 
level of gene gates rather than molecular components, we have chosen a style of 
presentation which we believe will be helpful to researchers from neighbouring 
disciplines (physics, mathematics and theoretical biology), for whom the existing 
literature on the application of the stochastic π-calculus may be too demanding. 

The paper is structured as follows. We first explain how to represent gene network 
elements as processes in the stochastic π-calculus and how to execute them. We then 
apply this representation to model gene networks of increasing complexity, and study 
some of their behavior. In particular, we address the repressilator circuit [12] and two 
of the (still controversial) examples of combinatorial circuits first discussed in [1]. 

2   Modeling Gene Network Elements  

2.1   Nullary Gates 

We begin by modeling genes that have constitutive transcription but no regulatory 
control. We focus on the actions that are involved in the functioning of genes and 
molecular components. The generic term process is used for any mechanism 
performing actions and thus progressing through distinct states.  

A nullary-input gate (Figure 1), given by a process written null(b), has a single 
parameter b that represents its transcription product; it takes no input from the  
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Fig. 1. A gene, null(b) with constitutive transcription, but no regulation (nullary). The product 
is a translated protein, tr(b) that attaches to a binding site b on some other gene; the definition 
of tr(b) is given later. The definition of null(b) says that this gate waits for a stochastic delay 
(‘τ’) of rate ε, and then (‘.’) evolves into two processes in parallel (‘|’); one is tr(b), and the 
other again null(b), the initial state. 
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environment. The initial action performed by such a gate is a stochastic delay, τε, 
where τ is a symbol indicating delay and ε is the stochastic reaction constant, which 
gives the probability per unit time that the delay action will occur [14]. In general, 
each action in the π-calculus is associated with a corresponding stochastic reaction 
rate, such that when an action with rate r is enabled, the probability that it will happen 
within a period of time t is F(t) = 1-e-rt [15]. This distribution exhibits the memoryless 
property, as is required for the Markov property of the stochastic dynamics. 

After such a delay action, the original process null(b) becomes (i.e., changes state 
to) two separate processes in parallel (separated by the operator “|”): tr(b) and null(b). 
The second process is a copy of the original process null(b), which was consumed 
when performing its initial action. The first process, tr(b), described shortly, 
represents a molecule of a transcription factor for a binding site b on some gene. All 
together, the null(b) process is defined as  τε. (tr(b) | null(b)). A stochastic simulation 
of a null(b) process on its own produces multiple copies of tr(b) at stochastic time 
intervals characterized by ε, with exactly one copy of null(b) being preserved. 

2.2   Gene Products 

We now describe the transcription factor tr(b) (Figure 2), introducing the process 
calculus notions of interaction and stochastic choice. Except for delays τ, which 
happen autonomously, any action that a process performs must happen in conjunction 
with a complementary action performed by another process. The simultaneous 
occurrence of complementary actions is an interaction, e.g. between two molecules, 
or between a transcription factor and a promoter site. An action can be offered at any 
time, but only complementarily offered actions can result in actual interactions. For an 
interaction site, or channel, b, such complementary actions are conventionally called 
input on b (written ‘?b’),  and output on b (written ‘!b’). (In our examples we need 
only consider such simple signaling interactions; in general an interaction can also 
exchange data in the form of a message from output to input.) Hence, ?b and !b are 
complementary actions that can exchange a signal between them and allow two 
corresponding processes to change state. 

The transcription factor tr(b) offers a choice of two actions; one is an output action 
!b, representing interaction with a binding site, and the other is a delay τ, followed by  
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Fig. 2. A transcription factor tr(b) makes a stochastic choice (‘+’) between either binding to an 
available promoter site b by an output action (‘!b’), or delaying (‘τ’) with rate δ. In the first 
case, the output action interacts with a corresponding input action at a promoter site b, and then 
(‘.’) the transcription factor returns to its initial state tr(b), ready to interact again. In the second 
case, the transcription factor degrades to the inert process (‘0’). 
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degradation. These two actions are in a stochastic race, indicated by ‘+’: b has 
(implicitly defined with it) a fixed associated rate r, and τ has a specific rate δ. If !b 
wins the race, it means that an interaction has occurred with an input action ?b offered 
elsewhere, and the process returns to the initial state, tr(b). If τ wins the race, 
however, the following state is 0: the inert process that never performs any actions. 

All together, tr(b) is defined as (!b. tr(b)) + (τδ.0), which means that tr(b) has the 
potential to interact multiple times with promoter sites, but each time (and particularly 
if no promoter site is available) it has a chance to degrade. Without interactions with 
binding sites, a fixed population of transcription factors will simply exponentially 
degrade. If the population is being replenished, then a stable level may be found 
between production and degradation.  

2.3   Unary Gates  

We now consider gates with simple regulation. A neg(a,b) gate has a promoter site a 
with negative regulation (inhibition), and a product b.  

The neg(a,b) gate (Figure 3) has a subprocess that is essentially identical to the 
null(b) gate, i.e., it provides constitutive transcription. However this subprocess is 
now in a stochastic race with a subprocess ?a. τη. neg(a,b). That is, it is in a race with 
a promoter binding, ?a. If the promoter component wins the race (by interacting with 
a transcription factor tr(a)), the + choice is taken on the promoter side, and the whole 
process becomes τη. neg(a,b). In this state, the gate is stuck performing a stochastic 
delay τη, i.e., it is inhibited, after which it goes back to be neg(a,b).  
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Fig. 3. A gene gate with inhibitory control, neg(a,b) makes a stochastic choice (‘+’) between 
constitutive transcription and inhibitory stimulation. The constitutive transcription case (bottom 
line) is exactly as in Figure 1, but this time it is in a race with a stimulus. If an interaction 
happens with the input action ‘?a’, then the gate enters a stochastic delay (‘τη’), during which 
the gate is inhibited, and then returns to the initial state. 
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Fig. 4. A gene gate with excitatory control, pos(a,b). This is almost identical to neg(a,b), but 
the input stimulus ‘?a’ is followed by the production of tr(b) instead of an inhibitory delay. 
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The pos(a,b) gate (Figure 4) has a promoter site a with positive regulation 
(stimulation), and a product b. It is similar to the neg gate, but instead of an inhibition 
delay, we have a transcription delay followed by stimulated production of tr(b). 

3   The Stochastic π-Calculus Execution Model 

3.1   Simulation Language 

We have seen how a biological system can be modeled in the stochastic π-calculus, 
by representing each component of the system as a process P that precisely describes 
what the component can do. To summarize, the most basic process form is a choice Σ 
= P1 + … + Pn between zero or more outputs !x(n), inputs ?x(m), and delays τ that the 
component can perform (in the general form of input/output, n is the output message 
and m is the input variable). Two components P and Q can be combined together 
using parallel composition P|Q. Channels can be established to allow the components 
to interact by complementary inputs and outputs. Once a biological system has been 
modeled using these basic components, the model can be stochastically simulated in 
order to predict the evolution of the system over time. In this paper, the simulations 
were obtained using the Stochastic Pi Machine (SPiM), which is described in [13]. 

Another basic operator of stochastic π-calculus, which we do not need to discuss in 
detail in this paper, allows the creation of fresh channels. The operator new xε. P 
creates a fresh channel x of rate ε to be used in the process P. The rules of stochastic 
π-calculus ensure that a “fresh” channel so obtained does not conflict with any other 
channel. We mention the channel creation operator here just because it allows us to 
obtain the stochastic delay τε as a derived operator. In fact, we can define: 

 

    τε.P + Q   =   new xε. (!x.0 | (?x.P + Q))         for x not occurring in P or Q 
 

That is, a delay is equivalent to a single communication on a fresh channel of the 
same rate. Hence, stochastic delays can be reduced to ordinary channel 
communication, and can be handled uniformly like any other communication, e.g., for 
simulation purposes. 

3.2   Simulator 

The Stochastic Pi Machine simulates a given process P by first converting the process 
to a corresponding simulator data structure, consisting of a list of components A= Σ1, 
..., ΣM. The resulting list is then processed by the simulator, by first using a function 
Gillespie(A) to stochastically determine the next interaction channel x and the 
corresponding reaction time τ. Once an interaction channel x has been chosen, the 
simulator uses a selection operator to randomly select from the list A a component of 
the form Σ+?x(m).P containing an input on channel x, and different component of the 
form Σ' +!x(n).Q containing an output on x. The selected components can then interact 
by synchronizing on channel x, and the processes P (with the input variable m 
replaced by n) and Q are added to the remainder of the list. The simulator continues 
processing the list in this way until no more interactions are possible.  
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The function Gillespie(A) is based on [14], which uses a notion of channel activity 
to stochastically choose a reaction channel from a set of possible channels. The 
activity of a reaction channel corresponds to the number of possible combinations of 
reactants on the channel; channels with a high activity and a fast reaction rate have a 
higher probability of being selected. A similar notion of activity is defined for the 
Stochastic Pi Machine, where Actx(A) denotes the number of possible combinations of 
inputs and outputs on interaction channel x in a list of components A: 

Actx(A)=(Inx(A)*Outx(A))-Mixx(A) 

Inx(A) and Outx(A) are defined as the number of available inputs and outputs on 
interaction channel x in A, respectively, and Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for 
each component Σi in A. The formula takes into account the fact that an input and an 
output in the same component cannot interact, by subtracting Mixx(A) from the 
product of the number of inputs and outputs on x.  

The Stochastic Pi Machine has been formally specified in [13], and the 
specification has been proved to correctly simulate π-calculus processes. The 
simulator has also been used to simulate a wide variety of chemical and biological 
systems. In particular, many of the benchmark examples that were used to validate the 
Gillespie algorithm [14] have been modeled as π-calculus processes and correctly 
simulated in SPiM. 

3.3   Interaction-Oriented Simulation vs. Reaction-Oriented Simulation 

The Gillespie algorithm was originally used to simulate a set of chemical reaction 
equations expressed in terms of reactants and products, and the results of a simulation 
were plotted as the quantity of each chemical species versus time. In contrast, the  
π-calculus does not describe an equation for each type of chemical reaction, but 
instead describes the behavior of each component in terms of the inputs and outputs it 
can perform on a set of interaction channels. This gives rise to an interaction-oriented 
model, as opposed to a chemical-reaction-oriented model, in which a reactant is 
defined as an input or output on a given interaction channel. Once the notion of a 
reactant has been defined in this way, the Gillespie algorithm can be directly applied 
to a given π-calculus model of the biological system. The corresponding simulation 
results can be plotted as the quantity of each reactant versus time. 

4   Gene Networks 

4.1   Simple Circuits 

In Section 2 we have described gene gates with one input; gates with n inputs can be 
defined similarly, to form a larger library of components. Once the components are 
defined, gene circuits can be assembled by providing interaction channels, with 
associated interaction rates, connecting the various gates. If we write, e.g., pos(a,b) | 
neg(b,c), the pos process will offer output actions !b, through tr(b), and the neg 
process will offer input actions ?b. Hence the shared channel b, given to both pos and 
neg as a parameter, can result in repeated interactions between the two processes over 
b, and hence in network connectivity. 
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Fig. 5. Compositions of gates represent circuits (left) that exhibit behaviors (right). The 
channels a,b,c are declared separately (not shown) along with their associated stochastic 
interaction rates. In all simulations, the common rate r for a,b,c is set to a baseline value of 1.0. 
The other chosen rates are as indicated in the individual simulations; the fact that they are 
chosen at simple order-of-magnitude intervals suggests that they are not critical for the intended 
behavior. The vertical axis is the number of outstanding offers of communication: for a channel 
a we may plot output offers !a or input offers ?a. In all cases above, the networks get started by 
constitutive transcription only. All the plots are of individual simulator runs. 

The simplest circuits we can build are single gates interacting with themselves in a 
feedback loop, like pos(a,a) (Figure 5). In absence of any stimulus on a, pos(a,a), 
must choose the constitutive transcription route and evolve into tr(a) | pos(a,a), where 
now tr(a) can stimulate pos(a,a) at a faster rate than the constitutive rate, and possibly 
multiple times. Depending on the production and degradation rates, a stable high level 
of tr(a) may be reached. Similarly neg(a,a) can stabilize at a low quantity of tr(a) 
where degradation of tr(a) balances inhibition. A convenient high-signal level of 
about 100 is maintained in our examples by appropriate rates (see parameters in 
Figure 5). 
The combination pos(b,a) | neg(a,b) (Figure 6) is a self-inhibition circuit, like 
neg(a,a), and it similarly has a stable output. But now there are two separate products, 
tr(a) and tr(b), so the system (again in absence of any stimulus) can stochastically 
start with a prevalence of tr(a) or a prevalence of tr(b): this can be seen at the 
beginning of the two plots, before stabilization. 
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Fig. 6. Feedback loops that are monostable (resulting in a single stable state with a high after a 
transient) and bistable (resulting in two distinct stable states with a high or b high) 

The combination neg(b,a) | neg(a,b) (Figure 6) is a bistable circuit, which can start 
up in one state or another, and (usually) stay there. 

4.2   Repressilator 

The well-known repressilator circuit [12], consisting of three neg gates in a loop, is an 
oscillator. We compare here three different degradation models, aiming to justify 
somewhat our initial definition for tr(-). In the first model (Figure 7(A)), each 
transcription factor interacts exactly once, and only then it disappears. The 
repressilator circuit oscillates nicely but, without stochastic degradation, the plots 
appear very “mechanical”; moreover, the quantities of products grow at each cycle 
because products do not disappear unless they interact. In the second model (Figure 
7(B)), each transcription factor interacts exactly once, or can degrade. Again the plots 
look mechanical, but the stochastic degradation defines a stable level of product. The 
third model (Figure 7(C)), with multiple interactions and stochastic degradation, is 
more realistic and gives more convincing plots. See the Appendix for the simulator 
script. 

The progressive refinement of the definition of tr(-), provides an illustration of how 
one can play with process descriptions to find models that show a balance between 
simplicity and realism. A further step could be to model both attachment and 
detachment of transcription factors, and then to model both transcription and 
translation.  
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Fig. 7. The Repressilator circuit and its dynamics for different degradation models (A – C). The 
detailed explanation is found in the text. 
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Fig. 8. Repressilator frequency and amplitude, regulated by η and ε. Cf. Figure 7(C). 

4.3   Network Properties: Oscillation 

It is instructive to take a “systems” approach and see what the rate parameters 
described earlier mean in the context of networks of gates. In the case of the  
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repressilator we can see that the constitutive rate (together with the degradation rate) 
determines oscillation amplitude, while the inhibition rate determines oscillation 
frequency. Figure 8 shows the variation of ε and η from their values in Figure 7(C)); 
note the differences in scale. 

Moreover, we can view the interaction rate r as a measure of the volume (or 
temperature) of the solution; that is, of how often transcription factors bump into 
gates. Figure 9 shows that the oscillation frequency and amplitude remain unaffected 
in a large range of variation of r from its value in Figure 7(C)). Note that r is in a 
stochastic race against δ in tr, and δ is always much slower. 
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Fig. 9. Repressilator stability to changes in r (volume/temperature). Cf. Figure 7(C). 

4.4   Network Properties: Fixpoint  

We now discuss a network property that becomes important in later analysis. Figure 10 
plots signals flowing through a sequence of neg gates with parameters as in Figure 7(C), 
except for η, the inhibition delay. On the left, the signals are alternating between high 
(b,d) and low (a,c,e). As η is increased, shown from left to right, the gates behave less 
and less like boolean operators, but the signals remain separate.  

Figure 11 shows the same circuit, except for a self feedback on the head gate. With 
low inhibition delay η (i.e. ineffective feedback) the system is unstable (left). But 
soon after, as we increase η, the self feedback flattens all signals downstream to a 
common low level (middle). The signals remain at a common level over a wide range 
of η, although this level is raised by increasing η (right).  
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Fig. 10. A sequence of neg gates with three settings of their η parameter 
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Fig. 11. The effect of head feedback on a sequence of neg gates 

This behavior is self-regulating, and can be explained as follows. The head 
feedback naturally finds a fixpoint where gate input equals gate output (unless it 
oscillates). If the next gate has the same parameters, its output will then also equal its 
input, and so on down the line: all the gates will be at the same fixpoint. Different 
values of η and different gate response profiles may change the fixpoint level, but not 
its fundamental stability. 

4.5   Combinatorial Circuits  

As examples of non-trivial combinatorial networks and their stochastic simulation, we 
now examine the artificial gene circuits described by Guet et al. [1]. Most of those 
circuits are simple combinations of inhibitory gates exhibiting expected behavior. 
However, it was found that in some of the circuits subtle (and partially still not 
understood) behavior arises; we focus particularly on two of these cases.  

In order to build up the different combinatorial networks easily, we begin with a 
version of the neg gate that is more flexibly parameterizable. We call it negp, and it 
has the property that, if s represents the rates used in the neg gate, then negp(a,s,tr(b)) 
= neg(a,b), hence neg is a special case of negp. The rates for inhibition and 
constitutive translation are passed as a pair s=(ε,η), in the second parameter. The third 
parameter fully encapsulates the gate product, so the gate logic is independent of it1.   
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Fig. 12. A neg gate with parametric product p 

                                                           
1 More technically, if we set pb() = tr(b) (pb is the process that when invoked with no 

arguments, invokes tr with argument b), then we have negp(a,s,pb) = neg(a,b); we write 
negp(a,s,tr(b)) as an abbreviation, skipping the intermediate definition of pb. 
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Fig. 13. Repressible transcription factors 
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Fig. 14. D038 

In addition to the old transcription factors tr(b), binding to a site b, we now need 
also transcription factors that can be repressed: rtr(b,r). These have three possible 
behaviors: binding to a site b, being neutralized via a site r, and degrading. The 
repression is performed by a process rep(r) that, if present, “inexhaustibly” offers ?r.  

In the artificial gene circuits by Guet et al, the circuits are probed by varying two 
inputs: two so-called “inducer” proteins in the environment, aTc and IPTG, which 
bind specifically to the gene in question. The output of the gene circuit is detected by 
a reporter gene which produces a green-fluorescent protein (GFP) which can be 
optically detected. 
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We can now describe the circuits from [1] by simple combinations of negp, tr, rtr, 
and rep components. All the other names appearing here, such as TetR, aTc, etc., 
which glue the network together, are just channel names used in complementary input 
and output actions.  

Intuitive Boolean analysis of one of the still controversial circuits, D038, in Figure 14 
would suggest either oscillation (GFP=0.5 on average), or GFP=1, contrary to 
experiment2. Thus, for the given construction, a different explanation is needed. The 
fixpoint effect, however, which we have described in Section 4.4, does suggest an 
explanation for the output in the absence of repressors, whereby all signals including the 
output signal GFP are driven to a fixpoint with a low value. The addition of GFP 
renders that state unstable and drives TetR to 0, and hence GFP to 1. In all cases, the 
addition of IPTG drives LacI to 0 and hence GFP to 0. Figure 15 shows the simulation 
results of this system for the different values of aTc and IPTG. In circuit D038 we have 
thus found an example in which the modelling of the stochastic gate behaviour can 
indeed help to find an explanation of the observed dynamics. 

 
 
 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

r1..6 = 1.0,  δ = 0.001
ε1,2,3 = 0.1,  η1 = 0.25 (PT),  η2,3 = 1.0 (PL2, Pλ-)

GFP 
LacI
lcI
TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

r1..6 = 1.0,  δ = 0.001
ε1,2,3 = 0.1,  η1 = 0.25 (PT),  η2,3 = 1.0 (PL2, Pλ-)

GFP 
LacI
lcI
TetR

GFP 
LacI
lcI
TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

 
Fig. 15. D038 simulations 

 

                                                           
2 In absence of repressors, the experimentally observed GFP is 0 (meaning no detectable 

signal), hence, by tracing boolean gates backwards, lcI=1, and LacI=0, and TetR=1. But by 
self-loop TetR=1 implies TerR=0, so the whole circuit, including GFP should be oscillating 
and averaging GFP=0.5. As an alternative analysis, consider the level of TetR (which is 
difficult to predict because it is the result of a negative self-feedback loop). Whatever that 
level is, and whether or not aTc is present, it must equally influence the tet and lac genes, 
since the promoters are the same (PT). The option, TetR=LacI=1 gives GFP=1. Suppose 
instead TetR=LacI=0, then lcI=1, and GFP=0 as observed. But in that situation, with TetR=0, 
aTc should have no influence, since it can only reduce the level of TetR. Instead, aTc 
somehow pushes GFP to 1. 
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Fig. 16. D016 

In a very similar fashion we can code another peculiar circuit, D016, shown in 
Figure 16. This circuit is perplexing because addition of aTc, affecting an apparently 
disconnected part of the circuit, changes the GFP output. In [18] it is suggested that 
this may be caused by an overloading of the degradation machinery, due to an 
overproduction of TetR when aTc is present, which might decrease the degradation 
rate of the other proteins. But even in absence of aTc and IPTG, it is surprising that 
GFP is high (about 50% of max [16]): this seems to contradict both simple boolean 
analysis and our fixpoint explanation which worked well for D038. 

One way to rationalize the behaviour displayed by this circuit is to assume that the 
PL

1-lac gate is operating in a region in parameter space in which the circuit dynamics 
is unstable. A closer examination of the instability region of our basic fixpoint circuit 
(Figure 10 bottom left) shows that, while the first signals in the sequence (a,b) are 
kept low, the subsequent signals (c, corresponding to GFP in D016, and d,e) all spike 
frequently. This may give the appearance, on the average, of high levels of GFP, 
matching the first column of the D016 experiment. Moreover, in the instability region 
the system responds very sensitively to changes in degradation levels: GFP levels can 
be brought down both by increasing degradation by a factor of 5 (because this brings 
the circuit back into the fixpoint regime) or by decreasing degradation by a factor of 
1000 (so that there are enough transcription factors to inhibit all gates). In Figure 17 
we begin by placing D016 in the instability regime, with GFP spiking (A). Then, 
adding aTc while reducing degradation suppresses all signals (B). Adding IPTG 
results in no GFP (C,D); moreover, reduced degradation causes overproduction (D). 
Even increased degradation (E) can result in no GFP. 
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Fig. 17. D016 simulations 

While a proper biological explanation of the behavior of D016 has not been 
obtained yet, the type of analysis we have performed here already shows the potential 
of the information gain from a proper study of the stochastic dynamics of the gene 
circuits, in particular in the case where head feedbacks are present; other authors have 
noted the possibility of surprises in such cases [19]. 

5   Conclusions 

In this paper we have demonstrated how stochastic simulations of gene circuits can be 
built in a compositional way by employing the stochastic π-calculus. For this, we 
chose as a descriptive level not the molecular constituents, but rather considered each 
gene as a gate with corresponding inputs and outputs. On this level, compositionality 
is illustrated, for example, by our treatment of the repressilator circuit: the definition 
of the neg gate could be left unchanged when the definition of the transcription factor 
tr was refined. Our approach is mechanistic in the sense that we (re-)construct a 
biological system from discrete elements and then deduce the system behaviour as 
arising from the interactions of the components.  This differs from modelling attempts 
of the same systems in the bioinformatics literature which only looked at gene 
expression levels without considering their origin [18]. Our approach, while being 
abstract, is advantageous as it allows a considerable flexibility in the level of detail  
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with which components and their interactions are described (see the Appendix for 
further illustration). While the adopted level of the description may be considered 
coarse and qualitative, the π-calculus approach easily allows for refinements (i.e., 
inclusion of additional detail down to molecular levels of description) to match 
available knowledge. 

Apart from these analytical and conceptual advantages in building up the different 
circuits, we stress that the ease of use of the compositional approach in combination 
with stochastic simulations is particularly useful for hypothesis testing. It can build on 
available knowledge, but the outcome of the stochastic simulations of the interacting 
components yields a highly non-trivial check of expectations. By comparison, 
Boolean analysis or intuitive ideas are obviously too naïve and thus can easily be 
misleading.  

The sensitivity of the gene network dynamics to parameter choice has to be 
contrasted with the lack of quantitative knowledge of promoter strengths, or even 
qualitative relationships between the different promoters [19]. In the absence of “true” 
(i.e., experimentally validated) parameter values, a detailed analysis of the stochastic 
behaviour of the gene networks resulting from a systematic parameter variation can  
be a very useful - but clearly not sufficient - step to avoid misinterpretations of 
experiments.  

To conclude, we believe that the compositional approach we propose for the 
formulation of stochastic models of gene networks will allow a useful path for more 
detailed, quantitative studies of regulatory mechanisms, and in particular for the testing 
of hypotheses of complex system behavior. It may be considered as one step towards 
the development of flexible languages and simulation tools for computational biology, 
for which a need has recently been expressed by several biologists ([20]-[22]).   
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Appendix 

A Simulator for the Stochastic π-Calculus 

The following is a detailed description of the Stochastic π-calculus and the Stochastic 
Pi Machine, as presented in [13]. 

 
P,Q::= new x  P Restriction  Σ::= 0 Null 

| P | Q Parallel | π.P + Σ Action 
| Σ Choice  π::= !x(n) Output 
| *π.P Replication | ?x(m) Input 

 
Def. 1.   Syntax of the Stochastic π-calculus 

 

!x(n).P + Σ  |  ?x(m).Q + Σ'
rate(x)

⎯→
    

P | Q{n/m}     [1] 

P 
r 

⎯→
   

P'  ⇒   P | Q
r 

⎯→
    

P' | Q      [2] 
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P 
r 

⎯→
   

P'  ⇒  new x  P
r 

⎯→
    

new x  P'     [3] 

Q ≡ P 
r 

⎯→
   

P' ≡ Q'  ⇒   Q
r 

⎯→
    

Q'      [4] 

 
Def. 2.  Reduction in the Stochastic π-calculus 

 
Stochastic π-calculus. A biological system can be modeled in the stochastic π-
calculus by representing each component of the system as a calculus process P that 
precisely describes what the component can do. According to Def. 1, the most basic 
component is a choice Σ between zero or more output !x(n) or input ?x(m) actions that 
the component can perform. Two components P and Q can be combined together 
using parallel composition P|Q, and a component P can be given a private interaction 
channel x using restriction new x P. In addition, multiple copies of a given component 
π.P can be cloned using replication *π.P. Standard syntax abbreviations are used, 
such as writing π for π.0 and π.P for π.P + 0.  

Two components in a biological system can interact by performing complementary 
input and output actions on a common channel. During such an interaction, the two 
components can also exchange information by communicating values over the 
channel. Each channel x is associated with a corresponding interaction rate given by 
rate(x) and the interaction between components is defined using reduction rules of the 
form P⎯→rP’. Each rule of this form describes how a process P can evolve to P’ by 
performing an interaction with rate r. According to Def. 2, a choice containing an 
output !x(n).P can interact with a parallel choice containing an input ?x(m).Q. The 
interaction occurs with rate(x), after which the value n is assigned to m in process Q 
(written Q{n/m}) and processes P and Q{n/m} are executed in parallel (Eq. 1). 
Components can also interact in parallel with other components (Eq. 2) or inside the 
scope of a private channel (Eq. 3), and interactions can occur up to re-ordering of 
components (Eq. 4), where P ≡ Q  means that the component P can be re-ordered to 
match the component Q. In particular, the re-ordering *π.P ≡ π.(P | *π.P) allows a 
replicated input *?x(m).Q to clone a new copy of Q by reacting with an output !x(n).P.  

 
V,U::= new x  V Restriction A,B::= [] Empty 

  A List  Σ:: A Choice 

Def. 3. Syntax of the Stochastic Pi Machine  
 

x,τ = Gillespie(A) 
∧ A>(?x(m).P + Σ):: A'
∧ A'>(!x(n).Q + Σ'):: A'' 

   ⇒ A
 rate(x)

⎯→
    

P{n/m}: Q: A''     [5] 

V
r 

⎯→
  

V'  ⇒  new x  V
r 

⎯→
   

new x  V'      [6] 

 
Def. 4. Reduction in the Stochastic Pi Machine  
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Stochastic Pi Machine. The Stochastic Pi Machine is a formal description of how a 
process of the stochastic π-calculus can be simulated. A given process P is simulated 
by first encoding the process to a corresponding simulator term V, consisting of a list 
of choices with a number of private channels: 

 
new x1 ... new xN  (Σ1::Σ2::...::ΣM::[]) 

 
This term is then simulated in steps, according to the reduction rules in Def. 4. A list 
of choices A is simulated by first using a function Gillespie(A) to stochastically 
determine the next interaction channel x and the corresponding interaction time τ. 
Once an interaction channel x has been chosen, the simulator uses a selection operator 
(>) to randomly select a choice ?x(m).P + Σ  containing an input on channel x and a 
second choice !x(n).Q + Σ'   containing an output on x. The selected components can 
then interact by synchronizing on channel x, where the value n is sent over channel x 
and assigned to m in process P (written P{n/m}). After the interaction, the unused 
choices Σ and Σ' are discarded and the processes P{n/m} and Q are added to the 
remainder of the list to be simulated, using a construction operator (:) (Eq. 5). An 
interaction can also occur inside the scope of a private channel (Eq. 6). The simulator 
continues performing interactions in this way until no more interactions are possible.  

The function Gillespie(A) is based on the Gillespie Algorithm [14], which uses a 
notion of channel activity to stochastically choose a reaction channel from a set of 
available channels. The activity of a channel corresponds to the number of possible 
combinations of reactants on the channel. Channels with a high activity and a fast 
reaction rate have a higher probability of being selected. A similar notion of activity is 
defined for the Stochastic Pi Machine, where Actx(A) denotes the number of possible 
combinations of inputs and outputs on channel x in A: 

 
Actx(A) = Inx(A) × Outx(A)  -  Mixx(A) 

 
Inx(A) and Outx(A) are defined as the number of available inputs and outputs on 
channel x in A, respectively, and Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for each 
choice Σi in A. The formula takes into account the fact that an input and an output 
in the same choice cannot interact, by subtracting Mixx(A) from the product of the 
number of inputs and outputs on x. Once the values x and τ have been calculated, 
the simulator increments the simulation time by delay τ and uses the selection 
operator to randomly choose one of the available interactions on x according to 
(Eq. 5). This is achieved by randomly choosing a number n∈[1..Inx(A)] and 
selecting the nth input in A, followed by randomly selecting an output from the 
remaining list in a similar fashion. The application of the Gillespie algorithm to the 
Stochastic Pi Machine is summarized in Def. 3, where fn(A) denotes the set of all 
channels in A. 

 

1. For all x∈fn(A) calculate ax = Actx(A) × rate(x)  
2. Store non-zero values of ax in a list (xµ,aµ), where µ∈1...M.  
3. Calculate a0=∑ν=0

M aν  
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4. Generate two random numbers n1,n2∈[0,1] and calculate τ,µ such that:  

τ = (1/a0)ln(1/n1) 
 

µ-1
∑ 

ν=1 

 aν<n2a0≤ 
µ 
∑

ν=1 

 aν 

5. Gillespie(A) = (xµ,τ).  

Def. 5. Calculating Gillespie(A) according to (13)  

 
For improved efficiency, the simulator can be modified to store a list of values for 
each channel x in A, of the form: 

 
x,Inx(A),Outx(A),Mixx(A),ax 

 
After each reduction has been performed, it is only necessary to update the values for 
those channels that were affected by the reduction, and then use Def. 5 on the updated 
values to choose the next reaction channel and calculate the delay. 

To gain confidence in our simulation technique, we have conducted detailed 
simulations of the model chemical systems which were simulated in [14] using the 
Gillespie algorithm. Comparable results were obtained by modeling each system as a 
π-calculus process and simulating the resulting processes in the Stochastic Pi 
Machine. 

Repressilator Code 

From the simple examples discussed previously, the structure of the SPiM programs 
should now be clear. The following is the complete code for the repressilator 
simulation in Figure 7(C) of the paper, for the SPiM simulator (v0.04). In order to 
clarify parts of the code, comments are added in (* … *) brackets.    

 
(* Simulation time, samples, and plotting  *) 
directive sample 90000.0 500    
directive plot !a as "a"; !b as "b"; !c as "c"  

 
(* Parameters *) 
val dk = 0.001  (* Decay rate *) 
val inh = 0.001  (* Inhibition rate *) 
val cst = 0.1  (* Constitutive rate *) 
val bnd = 1.0  (* Protein binding rate *) 

 
(* Transcription factor  *) 
let tr(p:chan()) =     
  do !p; tr(p) 
  or delay@dk 
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(* Neg gate *) 
let neg(a:chan(), b:chan()) = 
  do ?a; delay@inh; neg(a,b) 
  or delay@cst; (tr(b) | neg(a,b)) 

 
(* The circuit *) 
new a @ bnd: chan() 
new b @ bnd: chan()  
new c @ bnd: chan()  

 
run (neg(c,a) | neg(a,b) | neg(b,c)) 

D038,D016 Code 

The following is the complete code for the of the D038 and D016 simulations in 
Figure 15 and Figure 17, for the SPiM simulator (v0.04). 

 
(* Simulation time, samples, and plotting  *) 
directive sample 20000.0 500 
directive plot !GFP as "GFP"; !LacI as "LacI";  
          !LambcI as "LambcI"; !TetR as "TetR" 

 
(* Degradation rate *) 
val dk = 0.001             
(* val dk = 0.00001    for D016 when aTc is present *) 
 
(* Transcription factor *) 
let tr(b:chan()) =        
  do !b; tr(b) 
  or delay@dk 

 
(* Repressible transcription factor *) 
let rtr(b:chan(), r:chan()) =      
  do !b; rtr(b,r)  
  or !r  
  or delay@dk 

 
(* Repressor *) 
let rep(r:chan()) =          
  ?r; rep(r) 

 
(* Negp gate *) 
let negp(a:chan(), (cst:float, inh:float), p:proc()) =      
  do ?a; delay@inh; negp(a,(cst,inh),p) 
  or delay@cst; (p() | negp(a,(cst,inh),p)) 

 
(* Wiring *) 
new TetR @1.0: chan()  (* TetR protein *)  
new LacI @1.0: chan()  (* LacI protein *)  
new LambcI @1.0: chan() (* LambcI protein *)  
new GFP @1.0: chan()  (* GFP protein *) 
new aTc @100.0: chan()  (* aTc inducer *) 
new IPTG @100.0: chan() (* IPTG inducer *) 

 
(* Auxiliary definitions: negp products *) 
let rtr_TetR_aTc() = rtr(TetR,aTc)         
let rtr_LacI_IPTG() = rtr(LacI,IPTG) 
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let tr_LambcI() = tr(LambcI) 
let tr_GFP() = tr(GFP) 

 
(* D038 Circuit *) 
val PT = (0.1, 0.25)   (* PT constitutive and inhibition rates *) 
val PL2 = (0.1, 1.0)   (* PL2 constitutive and inhibition rates *) 
val Plm = (0.1, 1.0)   (* Plm constitutive and inhibition rates *) 

 
let tet() = negp(TetR, PT, rtr_TetR_aTc) 
let lac() = negp(TetR, PT, rtr_LacI_IPTG) 
let cI()  = negp(LacI, PL2, tr_LambcI)  
let gfp() = negp(LambcI, Plm, tr_GFP) 

 
run  
( tet() | lac() | cI() | gfp() 
(* | rep(aTc) uncomment to test with aTc *) 
(* | rep(IPTG) uncomment to test with IPTG *) 
) 
(* D016 Circuit *) 
val PT = (0.1, 0.01)   (* PT constitutive and inhibition rates *) 
val PL1 = (0.1, 0.01)   (* PL1 constitutive and inhibition rates *) 
val PL2 = (0.1, 0.01)   (* PL2 constitutive and inhibition rates *) 
val Plm = (0.1, 0.01)   (* Plm constitutive and inhibition rates *) 

 
let tet() = negp(TetR, PT, rtr_TetR_aTc) 
let lac() = negp(LacI, PL1, rtr_LacI_IPTG) 
let cI()  = negp(LacI, PL2, tr_LambcI)  
let gfp() = negp(LambcI, Plm, tr_GFP) 

 
run  
( tet() | lac() | cI() | gfp() 
(* | rep(aTc) uncomment to test with aTc *) 
(* | rep(IPTG) uncomment to test with IPTG *)) 

Complexation 

Complexation can be modeled in stochastic process calculi by using a technique 
originally developed by Aviv Regev and Ehud Shapiro [6][7]. This technique 
provides a simple illustration of a major feature of process calculi that we have not 
emphasized in the main text: the dynamic creation of fresh communication channels. 
A fresh (unique) channel can be dynamically created, operationally, by incrementing 
a global counter, or by picking a random number. Process calculi abstract from these 
operational details by a formalized notion of what it means for a channel to be fresh. 
The operator new cr; P creates a fresh channel named c with rate r for use in P 
(distinct from any other channel that might also be named c). 

We want to model two proteins P and Q that combine into a complex P:Q at some 
rate r, and break apart again at some rate s. Let cx denote the complexation interaction 
of the two proteins: this is modeled as a single “public” channel cx of rate r, where 
multiple copies of P and Q can interact to come together and form complexes. Let dx 
denote the decomplexation interaction of two bound proteins: this is modeled as a 
separate channel dx of rate s for each complex. Such a fresh channel is established 
separately for each complex at the time of complexation, for the purpose of 
subsequently breaking up.  
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P = new dxs !cx(dx); !dx; P 
Q = ?cx(x); ?x; Q               where x is an input variable 

If we consider just one copy of P and one of Q, for simplicity, the initial system P|Q 
consisting of two separate proteins can evolve by P creating a fresh channel dx and 
outputting this dx over the public channel cx, where it can be input by Q and bound to 
its input variable x. At this point the system has evolved into the configuration new 
dxs (!dx; P) | (?dx; Q), where dx is unknown to any other actual or potential process in 
the system. This state represents the complex of the original P and Q. Next, an 
interaction can happen over this particular dx channel among the only two processes 
that share it: this is the decomplexation event resulting in the initial state P|Q. 

 
P|Q   r   new dxs (!dx; P) | (?dx; Q)   s   P|Q      where dx is fresh 
 
Many variations on this theme are possible, including modeling the binding, 

unbinding, and cooperative binding of transcription factors. 

Neg Gate Dynamic Response Profile 

We test the dynamic response profile of the neg gate of Figure 3. To observe some of 
its behavior under operating conditions, we provide an input consisting of a signal 
raising linearly from 0 to 100, and then falling linearly from 100 to 0. That means 100 
copies of input molecules, where each molecule is injected at a certain time and can 
interact or decay a certain number of times (thus shaping the input curve).  

    
 
 
 
 
 
 

η = 0.001
r = 1.0
ε = 0.1
δ = 0.001

A1

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100

η = 1.0
r = 1.0
ε = 0.1
δ = 0.001

a offers

b offers

time →→→→

time →→→→

of
fe

rs
 →→ →→

of
fe

rs
 →→ →→

a offers →→→→

a offers →→→→

b
of

fe
rs

 →→ →→
b

of
fe

rs
 →→ →→

raising

falling

raising

falling

B1

A2

B2

η = 0.001
r = 1.0
ε = 0.1
δ = 0.001

A1

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100
0

20
40
60
80

100
120
140

0 20 40 60 80 100

0
20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 5000 10000 15000 20000 25000 30000
0

20
40
60
80

100
120
140

0 20 40 60 80 100
0

20
40
60
80

100
120
140

0 20 40 60 80 100

η = 1.0
r = 1.0
ε = 0.1
δ = 0.001

a offers

b offers

time →→→→

time →→→→

of
fe

rs
 →→ →→

of
fe

rs
 →→ →→

a offers →→→→

a offers →→→→

b
of

fe
rs

 →→ →→
b

of
fe

rs
 →→ →→

raising

falling

raising

falling

B1

A2

B2

 

Fig. 18. Neg Gate Response Profile 

Initially, in absence of any input, the output of the neg gate quickly raises to about 
100. As the input signal ramps up, the output signal decays, and as the signal ramps 
down the output rises again, but with an asymmetric profile. (Figure 18 (A1,B1): the 
ramping down of the input signal in B1 appears abbreviated because the signal is 
consumed at a higher rate by the gate.) Plotting input vs output for the same data 
(Figure 18 (A2,B2)) we can see a roughly hyperbolic response with two distinct 
curves corresponding to raising and falling inputs. We show the plots for a highly 
sensitive (“Boolean”) gate with η=0.001 (Figure 18 (A1,A2)) and a less sensitive gate 
with η=1.0 (Figure 18 (B1,B2)); these parameters cover the range used in simulations 
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in the main text. As in the main text, what is actually plotted is the number of (output) 
communication offers on the channels.  

These response profiles illustrate the fact that, e.g., in the repressilator, each signal 
dynamically shapes the next signal and is shaped by the intake of the next gate. 

The following is the complete code used to obtain the graphs, for the SPiM 
simulator (v0.04). 

 
(* Simulation time, samples, and plotting  *) 
directive sample 30000.0 1000 
directive plot !a as "a"; !b as "b" 

 
(* Parameters *) 
val dk  = 0.001 (* Output protein decay rate *) 
val inh = 0.001 (* Inhibition rate, or 1.0 *) 
val cst = 0.1 (* Constitutive rate *) 
val bnd = 1.0 (* Protein binding rate *) 

 
(* Transcription factor *) 
let tr(p: chan()) = do !p;tr(p) or delay@dk 
 
(* Neg gate *) 
let neg(a:chan(), b:chan()) = 
  do ?a; delay@inh; neg(a,b) 
  or delay@cst; (tr(b) | neg(a,b)) 

 
(* Probe signal: linearly raising and falling *) 
val pbdk = 0.1    (* Probe signal decay rate *) 
let probe1(p:chan(),n:int) =  
  if n=0 then ()  
  else (do !p;probe1(p,n-1) or delay@pbdk; probe1(p,n-1)) 
let dprobe1(p:chan(),d:int,n:int) =  
  if d=0 then probe1(p,2*10*n)  
  else delay@pbdk;dprobe1(p,d-1,n) 
let probe(p:chan(),m:int) =  
  if m=0 then ()  
  else (dprobe1(p,500+(10*m),100-m) | probe(p,m-1)) 

 
(* Probing *) 
new a@bnd:chan()  new b@bnd:chan() 
run (neg(a,b) | probe(a,100)) 
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