
Deriving Probability Density Functions
from Probabilistic Functional Programs

Sooraj Bhat, Johannes Borgström,
Andrew D. Gordon, Claudio Russo

EAPLS award winner

Probabilistic Programs

2

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used

t f

The probability mass of a value V
is the proportion of successful program runs
that return V

with discrete return type

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used

Density Functions 1

3

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.7)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input
the probability density function (PDF) of the model. Such techniques include maximum
likelihood or maximum a posteriori estimation, L2 estimation, importance sampling,
and Markov chain Monte Carlo (MCMC) methods.

Andy: Church uses MCMC
Despite their utility, density functions have been largely absent from the literature

on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the den-
sity may not exist or may be non-trivial to calculate. Such programs are not merely
infrequent pathological curiosities but in fact arise in many ordinary scenarios. Recent

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.7)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input
the probability density function (PDF) of the model. Such techniques include maximum
likelihood or maximum a posteriori estimation, L2 estimation, importance sampling,
and Markov chain Monte Carlo (MCMC) methods.

Andy: Church uses MCMC
Despite their utility, density functions have been largely absent from the literature

on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the den-
sity may not exist or may be non-trivial to calculate. Such programs are not merely
infrequent pathological curiosities but in fact arise in many ordinary scenarios. Recent

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.7)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input
the probability density function (PDF) of the model. Such techniques include maximum
likelihood or maximum a posteriori estimation, L2 estimation, importance sampling,
and Markov chain Monte Carlo (MCMC) methods.

Andy: Church uses MCMC
Despite their utility, density functions have been largely absent from the literature

on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the den-
sity may not exist or may be non-trivial to calculate. Such programs are not merely
infrequent pathological curiosities but in fact arise in many ordinary scenarios. Recent

Integrating the density function over an interval A
yields the proportion of successful program runs
that return a value in A

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

Z

A
f

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used

Density Functions 2

4

−2 0 2 4 6

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Fig. 1. Density function for a mixture of Gaussians.

f (x) , P({x}) and enjoys the property P(A) = Âx2A f (x) for all subsets A of W . Un-
fortunately, this construction does not work in the continuous case. Consider a simple
mixture of Gaussians, here written in Fun (Borgström et al. 2011), a probabilistic func-
tional language embedded within F# (Syme et al. 2007).

let w = {mA = 0.0; mB = 4.0} in
if flip 0.7 then random(Gaussian(w.mA, 1.0)) else random(Gaussian(w.mB, 1.0))

This specifies a distribution on the real line (i.e. W =R) and corresponds to a generative
process where one draws a number from a Gaussian distribution with precision 1.0, and
with mean either 0.0 or 4.0 depending on the result of flipping a biased coin. We use
a record w with fields mA and mB to hold each mean. Repeating the construction from
the discrete case yields the function g(x) = P({x}), which is zero everywhere. Instead
we look for a function f such that P(A) =

R
A f (x) dx, known as the probability density

function (PDF) of the distribution. In other words, f is a function where the area under
its curve on an interval gives the probability of generating an outcome falling in that
interval. The PDF of this program is pictured in Figure 1 and is given by the function

f (x) = 0.7 ·pdf Gaussian(0.0, 1.0, x)+0.3 ·pdf Gaussian(4.0, 1.0, x)

where pdf Gaussian is the PDF of the Gaussian distribution, the famous “bell curve”
from statistics. The function takes higher values where the generative process described
above is more likely to generate an outcome.

Densities functions and MCMC. In the example above, the means and variances of the
Gaussians, as well as the bias between the two, were known. In this case, the PDF gives
a measure of how likely a particular output is. The more common and interesting case
in applications is where the parameters are unknown, but we have a sample from the
process in question. In that case, evaluating the PDF at the sample gives the likelihood
of the parameters: a measure of how well a given setting of the parameters matches the
sample. We are often interested in properties of the function that maps parameters to
their likelihood, e.g., its maximum.

In Bayesian modelling, we use a prior distribution representing our prior beliefs on
what the parameters are. Incidentally, this distribution also involves Gaussians, but with
a low precision (high variance). To illustrate this, we modify our example as follows:

2

−2 0 2 4 6

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Fig. 1. Density function for a mixture of Gaussians.

f (x) , P({x}) and enjoys the property P(A) = Âx2A f (x) for all subsets A of W . Un-
fortunately, this construction does not work in the continuous case. Consider a simple
mixture of Gaussians, here written in Fun (Borgström et al. 2011), a probabilistic func-
tional language embedded within F# (Syme et al. 2007).

let w = {mA = 0.0; mB = 4.0} in
if flip 0.7 then random(Gaussian(w.mA, 1.0)) else random(Gaussian(w.mB, 1.0))

This specifies a distribution on the real line (i.e. W =R) and corresponds to a generative
process where one draws a number from a Gaussian distribution with precision 1.0, and
with mean either 0.0 or 4.0 depending on the result of flipping a biased coin. We use
a record w with fields mA and mB to hold each mean. Repeating the construction from
the discrete case yields the function g(x) = P({x}), which is zero everywhere. Instead
we look for a function f such that P(A) =

R
A f (x) dx, known as the probability density

function (PDF) of the distribution. In other words, f is a function where the area under
its curve on an interval gives the probability of generating an outcome falling in that
interval. The PDF of this program is pictured in Figure 1 and is given by the function

f (x) = 0.7 ·pdf Gaussian(0.0, 1.0, x)+0.3 ·pdf Gaussian(4.0, 1.0, x)

where pdf Gaussian is the PDF of the Gaussian distribution, the famous “bell curve”
from statistics. The function takes higher values where the generative process described
above is more likely to generate an outcome.

Densities functions and MCMC. In the example above, the means and variances of the
Gaussians, as well as the bias between the two, were known. In this case, the PDF gives
a measure of how likely a particular output is. The more common and interesting case
in applications is where the parameters are unknown, but we have a sample from the
process in question. In that case, evaluating the PDF at the sample gives the likelihood
of the parameters: a measure of how well a given setting of the parameters matches the
sample. We are often interested in properties of the function that maps parameters to
their likelihood, e.g., its maximum.

In Bayesian modelling, we use a prior distribution representing our prior beliefs on
what the parameters are. Incidentally, this distribution also involves Gaussians, but with
a low precision (high variance). To illustrate this, we modify our example as follows:

2

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

f (x) = 0.7 ·f(x)+0.3 ·f(x�4)

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

f (x) = 0.7 ·f(x)+0.3 ·f(x�4)

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input

Densities by compilation
• Given: Program M with result type t

• Sought: Function F from t to double
that gives the density of the result of M

• Generalisation to programs with free variables:

• Such parameters are treated as constants

• The density F depends on a parameter valuation

5

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

f (x) = 0.7 ·f(x)+0.3 ·f(x�4)

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

f (x) = 0.7 ·f(x)+0.3 ·f(x�4.0)

f (x) = p ·f(x�m)

+ (1�p) ·f(x�n)

Outline

•Motivation

•Density compiler

•Experimental results

6

Motivation
• Bayesian ML is based on probabilistic models

• Conveniently written in a programming language

• Density functions are widely used in ML

• Here: Markov chain Monte Carlo (MCMC)

• Current practice: code up both model and density

• Do the model and the density agree?

• What if you want to change one or the other?

• (Non)Existence of an efficient density function
limits the class of models used in practice.
(Mostly because of “hidden variables”)

7

Source and Target

8

• Base: language of finite computations
(no recursion or while-loops)

• Source (Fun): base +

Based on “Stochastic lambda-calculus”,
by Ramsey & Pfeffer, POPL’02.

• Target: base +

3.1 Target Language for Density Computations

For our target language, we choose a standard deterministic functional language, aug-
mented with stock integration.

(JB: spelling out the base types,
and not using t in (TARGET
INT))Expressions of the Target Language: E,F

T,U ::= int | double | unit | T !U | T +U | T ⇤U target types

E,F ::= target expression
x | c | inlU E | inrT E | (E,F) value constructors
fst E | snd E | f (E) deterministic operations
let x = E in F let (scope of x is F)
match E with inl x1 ! F1 | inr x2 ! F2 matching (scope of xi is Fi)
l (x1, ...,xn). E lambda abstraction
E F applicationR

E stock integration
?T failure

(JB: Cannot should spell out
what A is in the rules (TUPLE
PROJ L), (MATCH RND),
(RANDOM RND) without
types.)

The typing rules for integration and failure are as follows (the other typing rules are
standard):

Selected Typing Rules: G ` E : T

(TARGET INT)
G ` E : T ! double T is a first-order type

G `
R

E : double

(TARGET FAIL)

G ` ?T : T

Small-step CBV-evaluation ! of well-typed expressions is standard, except for short-
circuiting multiplication: 0.0 ·E ! 0.0, avoiding failures in E. Evaluation can fail either

(JB: used for match det)
explicitly (?) or by evaluating an undefined integral, e.g.

R
lx.sinx !?double.

3.2 Relational Specification of the Compiler

The translation is based on the let-structure of the expression. Variables that are let-
bound in outer lets are referred to as parameters, and a context gathers random and
deterministic inner lets.

Probability Context:

° ::= probability context
e empty context
° ,x random variable
° ,x = E deterministic variable

A probabilistic context ° is often used together with a density expression (E below),
which is an open term that expresses the joint probability density of the random vari-
ables in the context and the constraints that have been collected when choosing branches

7

Expressions of Fun:

V ::= x | c | (V,V) | inluV | inrtV value
M,N ::= expression

x | c | inlu M | inrt M | (M,N) value constructors
fst M | snd M left/right projection from pair
f (M) primitive operation (deterministic)
let x = M in N let (scope of x is N)
match M with inl x1 ! N1 | inr x2 ! N2 matching (scope of xi is Ni)
random(Dist(M)) primitive distribution
failt failure

To ensure that a program has at most one type in a given typing environment, inl and
inr are annotated with a type (see (FUN INL) below). The expression fail is annotated
with the type it is used at. We omit these types where they are not used. When X is a
term (possibly with binders), we write x1, . . . ,xn] X if none of the xi appear free in X .
We let op(M) range over f (M), fst M, snd M, inl M and inr M; () is the unit constant.

We write observe M for if M then () else fail and Uniform for Beta(1.0,1.0). When M
has sum type, we write if M then N1 else N2 for match M with inl ! N1 | inr ! N2.

Andy: somewhere describe
relation to previous Fun with
zero-probability observations

We write G ` M : t to mean that in type environment G = x1 : t1, . . . ,xn : tn (xi dis-
tinct) expression M has type t. Apart from the following, the typing rules are standard.
In (FUN INL), (FUN INR) (not shown) and (FUN FAIL), type annotations are used in
order to obtain a unique type. In (FUN RANDOM), a random variable drawn from a
distribution of type (x1 : t1 ⇤ · · ·⇤ xn : tn)! PDisthti has type t.

Selected Typing Rules: G ` M : t

(FUN INL)
G ` M : t

G ` inlu M : t +u

(FUN FAIL)

G ` failt : t

(FUN RANDOM)
Dist : (x1 : t1 ⇤ · · ·⇤ xn : tn)! PDisthti

G ` M : (t1 ⇤ · · ·⇤ tn)

G ` random(Dist(M)) : t

Semantics As usual, for precision concerning probabilities over uncountable sets, we
turn to measure theory. The interpretation of a type t is the set Vt of closed values of
type t (real numbers, integers etc.). Below we consider only Lebesgue-measurable sets
of values, defined using the standard (Euclidian) metric, and ranged over by A,B.

A measure µ over t is a function, from (measurable) subsets of Vt to the non-
negative real numbers extended with •, that is s -additive, that is, µ(?) = 0.0 and
µ([iAi) = Siµ(Ai) if A1,A2, . . . are pair-wise disjoint. The measure µ is called a prob-
ability measure if µ(Vt) = 1.0, and a sub-probability measure if µ(Vt) 1.0.

We associate a default or stock measure to each type, inductively defined as the
counting measure on Z and {()}, the Lebesgue measure on R, and the Lebesgue-
completion of the product and disjoint sum, respectively, of the two measures for t ⇤ u
and t + u. If f is a non-negative (measurable) function t ! double, we let

R
f be the

Lebesgue integral of f with respect to the stock measure on t, if the integral is de-
fined. This integral coincides with Sx2Vt f (x) for discrete types t, and with the standard

5

9

TrueSkill

10

assume

Player ranking model, used in XBox Live.
Computes a skill distribution for each player.

AliceBob

To compute the marginal
probability density of Alice,

we need to integrate
over all values of Bob.

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

if flip(p)
then random(Normal(m))
else random(Normal(n))

f (x) = 0.7 ·f(x)+0.3 ·f(x�4.0)

f (x) = p ·f(x�m)

+ (1�p) ·f(x�n)

observe x := if x then () else fail

Density compiler
Environment, compilation rules and correctness

11

Compilation

• Given a list of random variables
 (and deterministic variables and their definitions)

and an expression E for
the joint density of the random variables
and of being in the current branch in the program

• Returns the density function F

12

3.1 Target Language for Density Computations

For our target language, we choose a standard deterministic functional language, aug-
mented with stock integration.

(JB: spelling out the base types,
and not using t in (TARGET
INT))Expressions of the Target Language: E,F

T,U ::= int | double | unit | T !U | T +U | T ⇤U target types

E,F ::= target expression
x | c | inlU E | inrT E | (E,F) value constructors
fst E | snd E | f (E) deterministic operations
let x = E in F let (scope of x is F)
match E with inl x1 ! F1 | inr x2 ! F2 matching (scope of xi is Fi)
l (x1, ...,xn). E lambda abstraction
E F applicationR

E stock integration
?T failure

(JB: Cannot should spell out
what A is in the rules (TUPLE
PROJ L), (MATCH RND),
(RANDOM RND) without
types.)

The typing rules for integration and failure are as follows (the other typing rules are
standard):

Selected Typing Rules: G ` E : T

(TARGET INT)
G ` E : T ! double T is a first-order type

G `
R

E : double

(TARGET FAIL)

G ` ?T : T

Small-step CBV-evaluation ! of well-typed expressions is standard, except for short-
circuiting multiplication: 0.0 ·E ! 0.0, avoiding failures in E. Evaluation can fail either

(JB: used for match det)
explicitly (?) or by evaluating an undefined integral, e.g.

R
lx.sinx !?double.

3.2 Relational Specification of the Compiler

The translation is based on the let-structure of the expression. Variables that are let-
bound in outer lets are referred to as parameters, and a context gathers random and
deterministic inner lets.

Probability Context:

° ::= probability context
e empty context
° ,x random variable
° ,x = E deterministic variable

A probabilistic context ° is often used together with a density expression (E below),
which is an open term that expresses the joint probability density of the random vari-
ables in the context and the constraints that have been collected when choosing branches

7

in match statements. The main judgment is ° ;E ` dens(M)) F , which computes a
function F from return values of M to densities, where parameters may occur free in
F . The marginal judgment ° ;E ` marg(x1, . . . ,xk)) F yields the joint PDF of its argu-
ment, marginalizing out all other random variables in ° .

Inductively Defined Judgments of the Compiler:

° ;E ` dens(M)) F in ° ;E expression F gives the PDF of M
° ;E ` marg(x1, . . . ,xk)) F in ° ;E expression F gives the PDF of (x1, . . . ,xk)

8

Example rules, 1

13

For a probability context to be well-formed, it has to be well-scoped and well-typed.

Well-formed probability context: G `° wf

(ENV EMPTY)

G ` e wf

(ENV VAR)
G `° wf G ` x : t x]°

G `° ,x wf

(ENV CONST)
G `° wf G ` x : t

x]° G ` E : t

G `° ,x = E wf

Andy: somewhere need
conventions on substitutions,
and explain ”idempotent”; map
from variables to expressions
whose free variables are not in
the domain of the map?

Given a well-formed context ° , we can extract the random variables rands(°), and an
idempotent substitution s° that describes the deterministic variables.

Random variables rands(°) and values of deterministic variables s°

rands(e) , e se , []

rands(° ,x) , rands(°),x s° ,x , s°

rands(° ,x = E) , rands(°) s° ,x=E , [x 7! Es°]s°

We define “M det” to hold iff M does not contain any occurrence of random or fail. If
M det holds, then M is also an expression in the target language syntax, and we silently
treat it as such (in rules (LET DET) and (MATCH DET), for example). If M det and
rands(°)] (Ms°), then M is constant under ° .

The marg judgment yields the joint marginal PDF of the random variables in its ar-
gument. To compute the PDF, we first substitute in the deterministic let-bound variables,
and then integrate out the remaining random variables. Except for rule (DISCRETE) be-
low, marg(x1, ...,xk) is used with k 2 {0,1,2}; the case k = 0 is used to compute the
probability of being in the current branch of the program.

Marginal Density: ° ;E ` marg(x1, ...,xk)) F

(MARGINAL)
{x1, ...,xk}[{y1, ...,yn}= rands(°) x1, ...,xk,y1, ...,yn distinct

° ;E ` marg(x1, ...,xk)) l (x1, ...,xk).
R

l (y1, ...,yn). Es°

(JB: Now we do not use the =
symbol as syntax for a
judgment, but some sort of
arrow.)

The dens judgment gives the density F of M in the current context ° , where E is the
accumulated body of the density function so far. We introduce fresh lambda-bound
variables in the result F ; below we assume that z,w]° ,E,M.

(JB: restored the symmetric
rules at least for the tech report)

(JB: broke up the rules into
groups to make them easier to
grok and explain)

Density Compiler, base cases: ° ;E ` dens(M)) F

(VAR DET)
(x = E 0) 2° ° ;E ` dens(E 0)) F

° ;E ` dens(x)) F

(VAR RND)
x 2 rands(°) ° ;E ` marg(x)) F

° ;E ` dens(x)) F

(CONSTANT)
ty(c) countable ° ;E ` marg(e)) F

° ;E ` dens(c)) l z. [z = c] · (F ())

(FAIL)

° ;E ` dens(fail)) l z. 0.0

9

For a probability context to be well-formed, it has to be well-scoped and well-typed.

Well-formed probability context: G `° wf

(ENV EMPTY)

G ` e wf

(ENV VAR)
G `° wf G ` x : t x]°

G `° ,x wf

(ENV CONST)
G `° wf G ` x : t

x]° G ` E : t

G `° ,x = E wf

Andy: somewhere need
conventions on substitutions,
and explain ”idempotent”; map
from variables to expressions
whose free variables are not in
the domain of the map?

Given a well-formed context ° , we can extract the random variables rands(°), and an
idempotent substitution s° that describes the deterministic variables.

Random variables rands(°) and values of deterministic variables s°

rands(e) , e se , []

rands(° ,x) , rands(°),x s° ,x , s°

rands(° ,x = E) , rands(°) s° ,x=E , [x 7! Es°]s°

We define “M det” to hold iff M does not contain any occurrence of random or fail. If
M det holds, then M is also an expression in the target language syntax, and we silently
treat it as such (in rules (LET DET) and (MATCH DET), for example). If M det and
rands(°)] (Ms°), then M is constant under ° .

The marg judgment yields the joint marginal PDF of the random variables in its ar-
gument. To compute the PDF, we first substitute in the deterministic let-bound variables,
and then integrate out the remaining random variables. Except for rule (DISCRETE) be-
low, marg(x1, ...,xk) is used with k 2 {0,1,2}; the case k = 0 is used to compute the
probability of being in the current branch of the program.

Marginal Density: ° ;E ` marg(x1, ...,xk)) F

(MARGINAL)
{x1, ...,xk}[{y1, ...,yn}= rands(°) x1, ...,xk,y1, ...,yn distinct

° ;E ` marg(x1, ...,xk)) l (x1, ...,xk).
R

l (y1, ...,yn). Es°

(JB: Now we do not use the =
symbol as syntax for a
judgment, but some sort of
arrow.)

The dens judgment gives the density F of M in the current context ° , where E is the
accumulated body of the density function so far. We introduce fresh lambda-bound
variables in the result F ; below we assume that z,w]° ,E,M.

(JB: restored the symmetric
rules at least for the tech report)

(JB: broke up the rules into
groups to make them easier to
grok and explain)

Density Compiler, base cases: ° ;E ` dens(M)) F

(VAR DET)
(x = E 0) 2° ° ;E ` dens(E 0)) F

° ;E ` dens(x)) F

(VAR RND)
x 2 rands(°) ° ;E ` marg(x)) F

° ;E ` dens(x)) F

(CONSTANT)
ty(c) countable ° ;E ` marg(e)) F

° ;E ` dens(c)) l z. [z = c] · (F ())

(FAIL)

° ;E ` dens(fail)) l z. 0.0

9

For a deterministic variable, (VAR DET) recurses into its definition. The rule (VAR
RND) computes the marginal density of a random variable using the marg judgment.
The (CONSTANT) rule states that the probability density of a discrete constant c (built
from sums and products of integers and units) is the probability of being in the current
branch at c, and 0 elsewhere. The (FAIL) rule gives that the density of fail is zero.

Density Compiler, sums and tuples: ° ;E ` dens(M)) F

(SUM CON L)
° ;E ` dens(M)) F

° ;E ` dens(inl M)) either F (l .0)

(FROML)
° ;E ` dens(M)) F

° ;E ` dens(fromL(M))) l z.(F (inl z))

(TUPLE VAR)
° ;E ` marg(x,y)) F

° ;E ` dens((x,y))) F

(TUPLE PROJ L)
° ;E ` dens(M)) F

° ;E ` dens(fst M)) l z.
R

lw. F (z,w)

Symmetric versions of (SUM CON L), (TUPLE PROJ L) and (FROML) are omitted
above. (SUM CON L) states that the density of inl(M) is the density of M in the left
branch of a sum, and 0 in the right. Its dual is (FROML). The rule (TUPLE VAR) com-
putes the joint marginal density of two random variables. (This syntactic restriction can
be lifted by considering dependency information for the expressions in the tuple (Bhat
et al. 2012).) (TUPLE PROJ L) marginalizes out the left dimension of a pair.

Andy: please elaborate. Does it
work to let-bind expressions?

(JB: no, the necessary
dependency information is not
present in the context. We could
add it back, with entries like
x⇠̇E.)

Density Compiler, let and match: ° ;E ` dens(let x = M in N)) F

(LET DET)
M det

° ,x = M;E ` dens(N)) F

° ;E ` dens(let x = M in N)) F

(LET RND)
¬(M det) e;1 ` dens(M)) F1

° ,x;E · (F1 x) ` dens(N)) F2

° ;E ` dens(let x = M in N)) F2

The rule (LET DET) simply adds a deterministic let-binding to the context. In (LET
RND), we compute the density of the let-bound variable in an empty context, and mul-
tiply it into the current accumulated density when computing the density of the body.

Below, we let isL := lx.if x then 1.0 else 0.0 be the indicator function for the left
branch, and dually for isR. We also use a deterministic operation fromL : t +u ! t such
that fromL(M)! match M with inl x ! x | inr y ! ?t , and its dual fromR.

(JB: note changes to match det,
if det) Density Compiler, rules for match: ° ;E ` dens(match M with . . .)) F

(MATCH DET)
M det ° ,y1 = fromL(M);E · (isL Ms°) ` dens(N1)) F1

° ,y2 = fromR(M);E · (isR Ms°) ` dens(N2)) F2

° ;E ` dens(match M with inl y1 ! N1 | inr y2 ! N2)) l z. (F1 z)+(F2 z)

(MATCH RND)
¬(M det) ° ,y1;E · (F (inl y1)) ` dens(N1)) F1

e;1 ` dens(M)) F ° ,y2;E · (F (inr y2)) ` dens(N2)) F2

° ;E ` dens(match M with inl y1 ! N1 | inr y2 ! N2)) l z. (F1 z)+(F2 z)

10

Example rules, 2

For a deterministic variable, (VAR DET) recurses into its definition. The rule (VAR
RND) computes the marginal density of a random variable using the marg judgment.
The (CONSTANT) rule states that the probability density of a discrete constant c (built
from sums and products of integers and units) is the probability of being in the current
branch at c, and 0 elsewhere. The (FAIL) rule gives that the density of fail is zero.

Density Compiler, sums and tuples: ° ;E ` dens(M)) F

(SUM CON L)
° ;E ` dens(M)) F

° ;E ` dens(inl M)) either F (l .0)

(FROML)
° ;E ` dens(M)) F

° ;E ` dens(fromL(M))) l z.(F (inl z))

(TUPLE VAR)
° ;E ` marg(x,y)) F

° ;E ` dens((x,y))) F

(TUPLE PROJ L)
° ;E ` dens(M)) F

° ;E ` dens(fst M)) l z.
R

lw. F (z,w)

Symmetric versions of (SUM CON L), (TUPLE PROJ L) and (FROML) are omitted
above. (SUM CON L) states that the density of inl(M) is the density of M in the left
branch of a sum, and 0 in the right. Its dual is (FROML). The rule (TUPLE VAR) com-
putes the joint marginal density of two random variables. (This syntactic restriction can
be lifted by considering dependency information for the expressions in the tuple (Bhat
et al. 2012).) (TUPLE PROJ L) marginalizes out the left dimension of a pair.

Andy: please elaborate. Does it
work to let-bind expressions?

(JB: no, the necessary
dependency information is not
present in the context. We could
add it back, with entries like
x⇠̇E.)

Density Compiler, let and match: ° ;E ` dens(let x = M in N)) F

(LET DET)
M det

° ,x = M;E ` dens(N)) F

° ;E ` dens(let x = M in N)) F

(LET RND)
¬(M det) e;1 ` dens(M)) F1

° ,x;E · (F1 x) ` dens(N)) F2

° ;E ` dens(let x = M in N)) F2

The rule (LET DET) simply adds a deterministic let-binding to the context. In (LET
RND), we compute the density of the let-bound variable in an empty context, and mul-
tiply it into the current accumulated density when computing the density of the body.

Below, we let isL := lx.if x then 1.0 else 0.0 be the indicator function for the left
branch, and dually for isR. We also use a deterministic operation fromL : t +u ! t such
that fromL(M)! match M with inl x ! x | inr y ! ?t , and its dual fromR.

(JB: note changes to match det,
if det) Density Compiler, rules for match: ° ;E ` dens(match M with . . .)) F

(MATCH DET)
M det ° ,y1 = fromL(M);E · (isL Ms°) ` dens(N1)) F1

° ,y2 = fromR(M);E · (isR Ms°) ` dens(N2)) F2

° ;E ` dens(match M with inl y1 ! N1 | inr y2 ! N2)) l z. (F1 z)+(F2 z)

(MATCH RND)
¬(M det) ° ,y1;E · (F (inl y1)) ` dens(N1)) F1

e;1 ` dens(M)) F ° ,y2;E · (F (inr y2)) ` dens(N2)) F2

° ;E ` dens(match M with inl y1 ! N1 | inr y2 ! N2)) l z. (F1 z)+(F2 z)

10

(MATCH DET) is based on (LET DET), and we multiply the constraint that we are in the
correct branch (isL Ms° or isR Ms°) with the joint density expression. We also employ
deterministic functions fromL and fromR to avoid recursive calls to (MATCH DET) when
computing the density of the match-bound variable. The (MATCH RND) rule is based
on (LET RND), and we again multiply in the constraint that we are in the left (or right)
branch of the match.

Density Compiler, random variables : ° ;E ` dens(M)) F

(RANDOM CONST)
M det rands(°)] (Ms°) ° ;E ` marg(e)) F

° ;E ` dens(random(Dist(M)))) l z. (pdfDist(Ms°) z) · (F ())

(RANDOM RND)
¬(M det^ rands(°)] (Ms°)) ° ;E ` dens(M)) F

° ;E ` dens(random(Dist(M)))) l z.
R

lw.(pdfDist(w) z) · (F w)

Andy: We could make these
Random rules more complete
by making the distributions
polyadic.

In (RANDOM CONST), a random variable drawn from a primitive distribution with a
constant argument has the expected PDF (multiplied with the probability that we are in
the current branch). (RANDOM RND) treats calls to random with a random argument
by marginalizing over the argument to the distribution.

In if statements, the branching expression is of type bool = unit+unit, so we can
make a straightforward case distinction.

(JB: added a corresponding IF
RND)Derived rule for if statements

(IF DET)
M det

° ;E · [Ms° = true] ` dens(N1)) F1
° ;E · [Ms° = false] ` dens(N2)) F2

° ;E ` dens(if M then N1 else N2)) l z. (F1 z)+(F2 z)

For numeric operations on real numbers we mimic the change of variable rule of in-
tegration (often summarized as “dx = dx

dy dy”), multiplying the density of the argument
with the derivative of the inverse operation. This is exemplified by the following rules.

Andy: what is the rationale for
this set of rules?
(JB: Common operations in
examples, I think.)

Density compiler, numeric operations on reals : ° ;E ` dens(f (M))) F

(NEG)
° ;E ` dens(M)) F

° ;E ` dens(�M)) l z. F (�z)

(INVERSE)
° ;E ` dens(M)) F

° ;E ` dens(1/M)) l z. (F 1/z) · (1/z2)

(EXP)
° ;E ` dens(M)) F

° ;E ` dens(exp(M))) l z. if z > 0.0 then(F log(z)) · (1/z) else 0.0

(TRANSLATE)
N det rands(°)] (Ns°) ° ;E ` dens(M)) F

° ;E ` dens(M+N)) l z. F (z�Ns°)

11

projection from a pair(MATCH DET) is based on (LET DET), and we multiply the constraint that we are in the
correct branch (isL Ms° or isR Ms°) with the joint density expression. We also employ
deterministic functions fromL and fromR to avoid recursive calls to (MATCH DET) when
computing the density of the match-bound variable. The (MATCH RND) rule is based
on (LET RND), and we again multiply in the constraint that we are in the left (or right)
branch of the match.

Density Compiler, random variables : ° ;E ` dens(M)) F

(RANDOM CONST)
M det rands(°)] (Ms°) ° ;E ` marg(e)) F

° ;E ` dens(random(Dist(M)))) l z. (pdfDist(Ms°) z) · (F ())

(RANDOM RND)
¬(M det^ rands(°)] (Ms°)) ° ;E ` dens(M)) F

° ;E ` dens(random(Dist(M)))) l z.
R

lw.(pdfDist(w) z) · (F w)

Andy: We could make these
Random rules more complete
by making the distributions
polyadic.

In (RANDOM CONST), a random variable drawn from a primitive distribution with a
constant argument has the expected PDF (multiplied with the probability that we are in
the current branch). (RANDOM RND) treats calls to random with a random argument
by marginalizing over the argument to the distribution.

In if statements, the branching expression is of type bool = unit+unit, so we can
make a straightforward case distinction.

(JB: added a corresponding IF
RND)

Derived rule for if statements

(IF DET)
M det ° ;E · [Ms° = true] ` dens(N1)) F1 ° ;E · [Ms° = false] ` dens(N2)) F2

° ;E ` dens(if M then N1 else N2)) l z. (F1 z)+(F2 z)

For numeric operations on real numbers we mimic the change of variable rule of in-
tegration (often summarized as “dx = dx

dy dy”), multiplying the density of the argument
with the derivative of the inverse operation. This is exemplified by the following rules.

Andy: what is the rationale for
this set of rules?
(JB: Common operations in
examples, I think.)

Density compiler, numeric operations on reals : ° ;E ` dens(f (M))) F

(NEG)
° ;E ` dens(M)) F

° ;E ` dens(�M)) l z. F (�z)

(INVERSE)
° ;E ` dens(M)) F

° ;E ` dens(1/M)) l z. (F 1/z) · (1/z2)

(EXP)
° ;E ` dens(M)) F

° ;E ` dens(exp(M))) l z. if z > 0.0 then(F log(z)) · (1/z) else 0.0

(TRANSLATE)
N det rands(°)] (Ns°) ° ;E ` dens(M)) F

° ;E ` dens(M+N)) l z. F (z�Ns°)

11

Standard distribution and its probability density function

arguments M are a deterministic
function of the parameters

prob. of being in the current
branch

Correctness

15

(PLUS)
° ;E ` dens((M,N))) F

° ;E ` dens(M+N)) l z.
R

lw. F (w,z�w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
probability of the random variables occurring in the expression.

Density compiler, discrete operations : ° ;E ` dens(f (M))) F

(DISCRETE)
f : t ! u u discrete M det y = rands(°)\ fv(Ms°) ° ;E ` marg(y)) F

° ;E ` dens(f (M))) l z.
R

ly. [z = f (Ms°)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If G ,G° `° wf and dom(G°) = rands(°)[dom(s°) and G ,G° ` E : double then

(1) If ° ;E ` marg(x1, . . . ,xn)) F and G° ` (x1, . . . ,xn) : (t1 ⇤ · · ·⇤ tn)
then G ` F : (t1 ⇤ · · ·⇤ tn)! double.

(2) If ° ;E ` dens(M)) F and G ,G° ` M : t then G ` F : t ! double.

Andy: we should also state that
the dens and marg relations are
in fact partial functions, ie, its a
deterministic compiler.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Andy: can the compiled code
fail at run-time?

Theorem 1 (Soundness). If e;1 ` dens(M)) F and e ` M : t then

(P[[M]] e) A =
Z

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if G ,G° `° wf and ° ;E ` dens(M)) F and G ,G° ` M : t
and G ,G° ` E : double and G ` r and dom(G°) = rands(°)[dom(s°) and |µ|  1
and µ(B) =

R
B l (rands(°)).Er , and (8x 2 dom(s°)8r 0. G° ` r 0 and s° (x)rr 0 !⇤ ?

implies that Err 0·!⇤ 0.0) then

(µ >>= (l (rands(°)).(P[[M]] (s° r)))) A =
Z

A
Fr

where G ` r is defined as e ` e , and G ,x : t ` r[x 7!V] when e `V : t and G ` r .
Claudio: added missing
inductive premise G ` r
JB: P1 Add distributivity
lemma and Det lemma?

The induction hypothesis on evaluation of s° (x)rr 0 above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

12

(PLUS)
° ;E ` dens((M,N))) F

° ;E ` dens(M+N)) l z.
R

lw. F (w,z�w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
probability of the random variables occurring in the expression.

Density compiler, discrete operations : ° ;E ` dens(f (M))) F

(DISCRETE)
f : t ! u u discrete M det y = rands(°)\ fv(Ms°) ° ;E ` marg(y)) F

° ;E ` dens(f (M))) l z.
R

ly. [z = f (Ms°)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If G ,G° `° wf and dom(G°) = rands(°)[dom(s°) and G ,G° ` E : double then

(1) If ° ;E ` marg(x1, . . . ,xn)) F and G° ` (x1, . . . ,xn) : (t1 ⇤ · · ·⇤ tn)
then G ` F : (t1 ⇤ · · ·⇤ tn)! double.

(2) If ° ;E ` dens(M)) F and G ,G° ` M : t then G ` F : t ! double.

Andy: we should also state that
the dens and marg relations are
in fact partial functions, ie, its a
deterministic compiler.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Andy: can the compiled code
fail at run-time?

Theorem 1 (Soundness). If e;1 ` dens(M)) F and e ` M : t then

(P[[M]] e) A =
Z

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if G ,G° `° wf and ° ;E ` dens(M)) F and G ,G° ` M : t
and G ,G° ` E : double and G ` r and dom(G°) = rands(°)[dom(s°) and |µ|  1
and µ(B) =

R
B l (rands(°)).Er , and (8x 2 dom(s°)8r 0. G° ` r 0 and s° (x)rr 0 !⇤ ?

implies that Err 0·!⇤ 0.0) then

(µ >>= (l (rands(°)).(P[[M]] (s° r)))) A =
Z

A
Fr

where G ` r is defined as e ` e , and G ,x : t ` r[x 7!V] when e `V : t and G ` r .
Claudio: added missing
inductive premise G ` r
JB: P1 Add distributivity
lemma and Det lemma?

The induction hypothesis on evaluation of s° (x)rr 0 above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

12

Types of variables in

(PLUS)
° ;E ` dens((M,N))) F

° ;E ` dens(M+N)) l z.
R

lw. F (w,z�w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
probability of the random variables occurring in the expression.

Density compiler, discrete operations : ° ;E ` dens(f (M))) F

(DISCRETE)
f : t ! u u discrete M det y = rands(°)\ fv(Ms°) ° ;E ` marg(y)) F

° ;E ` dens(f (M))) l z.
R

ly. [z = f (Ms°)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If G ,G° `° wf and dom(G°) = rands(°)[dom(s°) and G ,G° ` E : double then

(1) If ° ;E ` marg(x1, . . . ,xn)) F and G° ` (x1, . . . ,xn) : (t1 ⇤ · · ·⇤ tn)
then G ` F : (t1 ⇤ · · ·⇤ tn)! double.

(2) If ° ;E ` dens(M)) F and G ,G° ` M : t then G ` F : t ! double.

Andy: we should also state that
the dens and marg relations are
in fact partial functions, ie, its a
deterministic compiler.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Andy: can the compiled code
fail at run-time?

Theorem 1 (Soundness). If e;1 ` dens(M)) F and e ` M : t then

(P[[M]] e) A =
Z

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if G ,G° `° wf and ° ;E ` dens(M)) F and G ,G° ` M : t
and G ,G° ` E : double and G ` r and dom(G°) = rands(°)[dom(s°) and |µ|  1
and µ(B) =

R
B l (rands(°)).Er , and (8x 2 dom(s°)8r 0. G° ` r 0 and s° (x)rr 0 !⇤ ?

implies that Err 0·!⇤ 0.0) then

(µ >>= (l (rands(°)).(P[[M]] (s° r)))) A =
Z

A
Fr

where G ` r is defined as e ` e , and G ,x : t ` r[x 7!V] when e `V : t and G ` r .
Claudio: added missing
inductive premise G ` r
JB: P1 Add distributivity
lemma and Det lemma?

The induction hypothesis on evaluation of s° (x)rr 0 above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

12

(PLUS)
° ;E ` dens((M,N))) F

° ;E ` dens(M+N)) l z.
R

lw. F (w,z�w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
probability of the random variables occurring in the expression.

Density compiler, discrete operations : ° ;E ` dens(f (M))) F

(DISCRETE)
f : t ! u u discrete M det y = rands(°)\ fv(Ms°) ° ;E ` marg(y)) F

° ;E ` dens(f (M))) l z.
R

ly. [z = f (Ms°)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If G ,G° `° wf and dom(G°) = rands(°)[dom(s°) and G ,G° ` E : double then

(1) If ° ;E ` marg(x1, . . . ,xn)) F and G° ` (x1, . . . ,xn) : (t1 ⇤ · · ·⇤ tn)
then G ` F : (t1 ⇤ · · ·⇤ tn)! double.

(2) If ° ;E ` dens(M)) F and G ,G° ` M : t then G ` F : t ! double.

Andy: we should also state that
the dens and marg relations are
in fact partial functions, ie, its a
deterministic compiler.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Andy: can the compiled code
fail at run-time?

Theorem 1 (Soundness). If e;1 ` dens(M)) F and e ` M : t then

(P[[M]] e) A =
Z

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if G ,G° `° wf and ° ;E ` dens(M)) F and G ,G° ` M : t
and G ,G° ` E : double and G ` r and dom(G°) = rands(°)[dom(s°) and |µ|  1
and µ(B) =

R
B l (rands(°)).Er , and (8x 2 dom(s°)8r 0. G° ` r 0 and s° (x)rr 0 !⇤ ?

implies that Err 0·!⇤ 0.0) then

(µ >>= (l (rands(°)).(P[[M]] (s° r)))) A =
Z

A
Fr

where G ` r is defined as e ` e , and G ,x : t ` r[x 7!V] when e `V : t and G ` r .
Claudio: added missing
inductive premise G ` r
JB: P1 Add distributivity
lemma and Det lemma?

The induction hypothesis on evaluation of s° (x)rr 0 above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

12

The probabilistic semantics of M
(Ramsey & Pfeffer ’02, Gordon et al. ’13)

in match statements. The main judgment is ° ;E ` dens(M)) F , which computes a
function F from return values of M to densities, where parameters may occur free in
F . The marginal judgment ° ;E ` marg(x1, . . . ,xk)) F yields the joint PDF of its argu-
ment, marginalizing out all other random variables in ° .

Inductively Defined Judgments of the Compiler:

° ;E ` dens(M)) F in ° ;E expression F gives the PDF of M
° ;E ` marg(x1, . . . ,xk)) F in ° ;E expression F gives the PDF of (x1, . . . ,xk)

8

Example

16

(PLUS)
° ;E ` dens((M,N))) F

° ;E ` dens(M+N)) l z.
R

lw. F (w,z�w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
probability of the random variables occurring in the expression.

Density compiler, discrete operations : ° ;E ` dens(f (M))) F

(DISCRETE)
f : t ! u u discrete M det y = rands(°)\ fv(Ms°) ° ;E ` marg(y)) F

° ;E ` dens(f (M))) l z.
R

ly. [z = f (Ms°)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If G ,G° `° wf and dom(G°) = rands(°)[dom(s°) and G ,G° ` E : double then

(1) If ° ;E ` marg(x1, . . . ,xn)) F and G° ` (x1, . . . ,xn) : (t1 ⇤ · · ·⇤ tn)
then G ` F : (t1 ⇤ · · ·⇤ tn)! double.

(2) If ° ;E ` dens(M)) F and G ,G° ` M : t then G ` F : t ! double.

Andy: we should also state that
the dens and marg relations are
in fact partial functions, ie, its a
deterministic compiler.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Andy: can the compiled code
fail at run-time?

Theorem 1 (Soundness). If e;1 ` dens(M)) F and e ` M : t then

(P[[M]] e) A =
Z

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if G ,G° `° wf and ° ;E ` dens(M)) F and G ,G° ` M : t
and G ,G° ` E : double and G ` r and dom(G°) = rands(°)[dom(s°) and |µ|  1
and µ(B) =

R
B l (rands(°)).Er , and (8x 2 dom(s°)8r 0. G° ` r 0 and s° (x)rr 0 !⇤ ?

implies that Err 0·!⇤ 0.0) then

(µ >>= (l (rands(°)).(P[[M]] (s° r)))) A =
Z

A
Fr

where G ` r is defined as e ` e , and G ,x : t ` r[x 7!V] when e `V : t and G ` r .
Claudio: added missing
inductive premise G ` r
JB: P1 Add distributivity
lemma and Det lemma?

The induction hypothesis on evaluation of s° (x)rr 0 above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

12

(PLUS)
° ;E ` dens((M,N))) F

° ;E ` dens(M+N)) l z.
R

lw. F (w,z�w)

The (DISCRETE) rule for discrete operations such as logical and comparison operations
and integer arithmetic computes the expectation of an indicator function over the joint
probability of the random variables occurring in the expression.

Density compiler, discrete operations : ° ;E ` dens(f (M))) F

(DISCRETE)
f : t ! u u discrete M det y = rands(°)\ fv(Ms°) ° ;E ` marg(y)) F

° ;E ` dens(f (M))) l z.
R

ly. [z = f (Ms°)] · (F y)

These derived judgments relate the types of the various terms occurring in the marg and
dens judgments.

Lemma 1 (Derived Judgments).
If G ,G° `° wf and dom(G°) = rands(°)[dom(s°) and G ,G° ` E : double then

(1) If ° ;E ` marg(x1, . . . ,xn)) F and G° ` (x1, . . . ,xn) : (t1 ⇤ · · ·⇤ tn)
then G ` F : (t1 ⇤ · · ·⇤ tn)! double.

(2) If ° ;E ` dens(M)) F and G ,G° ` M : t then G ` F : t ! double.

Andy: we should also state that
the dens and marg relations are
in fact partial functions, ie, its a
deterministic compiler.

The soundness theorem asserts that, for all closed expressions M, the density func-
tion given by the density compiler indeed characterizes (via stock integration) the dis-
tribution of M given by the monadic semantics:

Andy: can the compiled code
fail at run-time?

Theorem 1 (Soundness). If e;1 ` dens(M)) F and e ` M : t then

(P[[M]] e) A =
Z

A
F

Proof: By joint induction on the derivations of dens(M) and M : t, using the follow-
ing induction hypothesis: if G ,G° `° wf and ° ;E ` dens(M)) F and G ,G° ` M : t
and G ,G° ` E : double and G ` r and dom(G°) = rands(°)[dom(s°) and |µ|  1
and µ(B) =

R
B l (rands(°)).Er , and (8x 2 dom(s°)8r 0. G° ` r 0 and s° (x)rr 0 !⇤ ?

implies that Err 0·!⇤ 0.0) then

(µ >>= (l (rands(°)).(P[[M]] (s° r)))) A =
Z

A
Fr

where G ` r is defined as e ` e , and G ,x : t ` r[x 7!V] when e `V : t and G ` r .
Claudio: added missing
inductive premise G ` r
JB: P1 Add distributivity
lemma and Det lemma?

The induction hypothesis on evaluation of s° (x)rr 0 above is used when attempting
to evaluate match-bound variables for valuations that give the other branch. For such
valuations the density becomes zero, because of the short-circuiting property of multi-
plication by 0.0.

12

(modulo
beta-eq)

Deriving Probability Density Functions

from Probabilistic Functional Programs

Sooraj Bhat and others

No Institute Given

Abstract. The probability density function of a probability distribution is a fun-
damental concept in probability theory and a key ingredient in various widely
used machine learning methods. However, the necessary framework for com-
piling probabilistic functional programs to density functions has only recently
been developed. In this work, we present the first implementation of the density
compiler of Bhat et al. (2012) and provide the first proof of its soundness. The
compiler greatly reduces the development effort of domain experts, which we
demonstrate by solving inference problems from various scientific applications,
such as modelling the global carbon cycle.

flip(0.8)

random(Bernoulli(0.8))

if flip(0.8)
then flip(0.9)
else flip(0.4)

random(Normal(0.0))

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))

let b = random(Bernoulli(p)) in

if b

then random(Normal(m))
else random(Normal(n))

f (x) = 0.7 ·f(x;0.0)+0.3 ·f(x;4.0)

f (x) = p ·f(x;m)
+ (1�p) ·f(x;n)

observe x := if x then () else fail

lx.Sb2{t,f}P

Bernoulli(p)(b) · [b = t] ·f(x�m)+

Sb2{t,f}P

Bernoulli(p)(b) · [b = f] ·f(x�n)

lx.P
Bernoulli(p)(t) ·f(x�m)+

P

Bernoulli(p)(f) ·f(x�n)

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input
the probability density function (PDF) of the model. Such techniques include maximum
likelihood or maximum a posteriori estimation, L2 estimation, importance sampling,
and Markov chain Monte Carlo (MCMC) methods.

Andy: Church uses MCMC
Despite their utility, density functions have been largely absent from the literature

on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the den-
sity may not exist or may be non-trivial to calculate. Such programs are not merely
infrequent pathological curiosities but in fact arise in many ordinary scenarios. Recent
work by Bhat et al. (2012) develops the necessary theoretical framework for tackling
this issue, but until now it had not seen an implementation.

Contributions of this paper. This work applies the aforementioned theory to real
problems from various scientific domains. The primary technical contribution is a den-
sity compiler that is correct, useful, and efficient. Specifically:

– We provide the first implementation of the density compiler by Bhat et al. (2012),
compiling programs in the probabilistic language Infer.NET Fun to their corre-
sponding density functions (Section X).

– We give the first proof of the compiler’s soundness (Theorem X).
– We show that the compiler greatly reduces the development effort of domain ex-

perts by freeing them from writing densities and from the error-prone task of man-
ually keeping their sampling code and their density code in synch, as both are now
derived from the same declarative specification.

– We show that our compiler produces code that is on par with functions hand-coded
by experts, in terms of computational efficiency.

In particular, we solve inference problems from ecology and biochemistry using Filzbach,
an MCMC-based Bayesian inference engine which requires the log-density function of
the posterior distribution as an input. Normally, users manually provide this function;
our compiler automatically generates it.

2

lx.Sb2{t,f}P

Bernoulli(p)(b) · [b = t] ·f(x�m)+

Sb2{t,f}P

Bernoulli(p)(b) · [b = f] ·f(x�n)

lx.P
Bernoulli(p)(t) ·f(x�m)+

P

Bernoulli(p)(f) ·f(x�n)

1 Introduction

Probabilistic programming aims to arm data scientists with a declarative language for
specifying their probabilistic models, while leaving the details of how to translate those
models to efficient sampling or inference algorithms to the compiler. Many widely used
machine learning techniques that might be employed by such a compiler use as input
the probability density function (PDF) of the model. Such techniques include maximum
likelihood or maximum a posteriori estimation, L2 estimation, importance sampling,
and Markov chain Monte Carlo (MCMC) methods.

Andy: Church uses MCMC
Despite their utility, density functions have been largely absent from the literature

on probabilistic functional programming. This is because the relationship between pro-
grams and their density functions is not straightforward: for a given program, the den-
sity may not exist or may be non-trivial to calculate. Such programs are not merely
infrequent pathological curiosities but in fact arise in many ordinary scenarios. Recent
work by Bhat et al. (2012) develops the necessary theoretical framework for tackling
this issue, but until now it had not seen an implementation.

Contributions of this paper. This work applies the aforementioned theory to real
problems from various scientific domains. The primary technical contribution is a den-
sity compiler that is correct, useful, and efficient. Specifically:

– We provide the first implementation of the density compiler by Bhat et al. (2012),
compiling programs in the probabilistic language Infer.NET Fun to their corre-
sponding density functions (Section X).

– We give the first proof of the compiler’s soundness (Theorem X).
– We show that the compiler greatly reduces the development effort of domain ex-

perts by freeing them from writing densities and from the error-prone task of man-
ually keeping their sampling code and their density code in synch, as both are now
derived from the same declarative specification.

– We show that our compiler produces code that is on par with functions hand-coded
by experts, in terms of computational efficiency.

In particular, we solve inference problems from ecology and biochemistry using Filzbach,
an MCMC-based Bayesian inference engine which requires the log-density function of
the posterior distribution as an input. Normally, users manually provide this function;
our compiler automatically generates it.

2

Implementation

17

• Direct implementation of the compilation rules

• In F#, operating on a subset of (quoted) F#

• Operates on log-probabilities

• Uses let-expansion in the Marginal rule

• Parametric in integration function
(currently a simple Riemann sum)

Evaluation

18

• Synthetic models, and ecological systems models
from Computational Sciences, MSR Cambridge

Example orig LOC, orig LOC, Fun time (s), orig time (s), Fun
mixture of Gaussians F# 32 20 0.63x 1.77 4.78 2.7x
linear regression F# 27 18 0.67x 0.63 2.08 3.3x
species distribution C# 173 37 0.21x 79 189 2.4x
net primary productivity C# 82 39 0.48x 11 23 2.1x
global carbon cycle C# 1532 402 0.26x n/a 764 n/a

Table 1. Lines-of-code and running time comparisons of synthetic and scientific models.

with Filzbach itself. We also compare the running times of the original implementations
versus the Fun versions for MCMC-based inference using Filzbach, not including data
manipulation before and after running inference.

4.1 Examples

Synthetic examples. Our synthetic examples are models for two classic problems in
statistics and machine learning: the supervised learning task linear regression, and
the unsupervised learning task mixture of Gaussians. The latter can be thought of as
a probabilistic version of k-means clustering. In linear regression, inference is trying
to determine the coefficients of the line. In mixture of Gaussians, inference is trying
to determine the unknown mixing bias and the means and variances of the Gaussian
components.

Species distribution. The species distribution problem is to give the probability that
certain species will be present at a given site, based on climate factors. It is a problem of
long-standing interest in ecology and has taken on new relevance in light of the issue of
climate change. The particular model that we consider is designed to mitigate regression
dilution arising from uncertainty in the predictor variables, for example, measurement
error in temperature data (McInerny and Purves 2011). Inference tries to determine
various features of the species and the environment, such as the optimal temperature
preferred by a species, or the true temperature at a site.

Global carbon cycle. The dynamics of the Earth’s climate are intertwined with the
terrestrial carbon cycle, and better carbon models (modelling how carbon in the air
gets converted to biomass) enable better constrained projections about these systems.
We consider a fully data-constrained terrestrial carbon model by Smith et al. (2012).
It is a composition of various submodels for smaller processes such as net primary
productivity, the fine root mortality rate or the fraction of trees that are evergreen versus
deciduous. Inference tries to determine the different parameters of these submodels.

(Sooraj: show an example of
the kind of likelihood we are
saving the user from having to
write?) Discussion. Table 1 reports the metrics for each example. The LOC numbers show sig-

nificant reduction in code size, with more significant savings as the size of the model
grows. The larger models (where the Fun versions are ⇡ 25% of the size of the original)
are more indicative of the savings in developer and maintenance effort, since smaller

14

Write a quarter as much code

Get a 2-3x
slowdownOrig. model+density Fun model

NPP Model

19

Related Work
• Naive prototype (interpreter) reported at POPL’13.

• Builds on work by Bhat et al., POPL’12.

• We have a soundness proof

• We have a simpler algorithm (and fewer judgments)

• We implement our algorithm, and study real models

• We use a more expressive language:
integer operations, fail, general if and match,
deterministic let

• We are less complete (admit fewer joint densities)

20

Conclusion
• We compile probabilistic programs

 to their density functions

• The algorithm is sound.

• We validate the approach
by compiling existing ecology models

• The implementation is reasonably efficient

• Future work:

• optimisation, improve completeness, clean up match

• more complex real-life models or variations

• different ways of treating hidden variables

21

