Deriving Probability Density Functions from Probabilistic Functional Programs

Sooraj Bhat, <u>Johannes Borgström</u>, Andrew D. Gordon, Claudio Russo

Probabilistic Programs

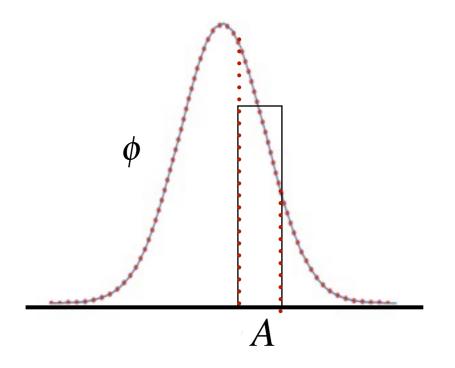
with discrete return type

```
\begin{array}{c} \text{flip}(0.8) \\ \textbf{if flip}(0.8) \\ \textbf{then flip}(0.9) \\ \textbf{else flip}(0.4) \\ \\ \textbf{random}(\text{Bernoulli}(0.8)) \\ \end{array}
```

The probability mass of a value V is the proportion of successful program runs that return V

Density Functions 1

random(Normal(0.0))

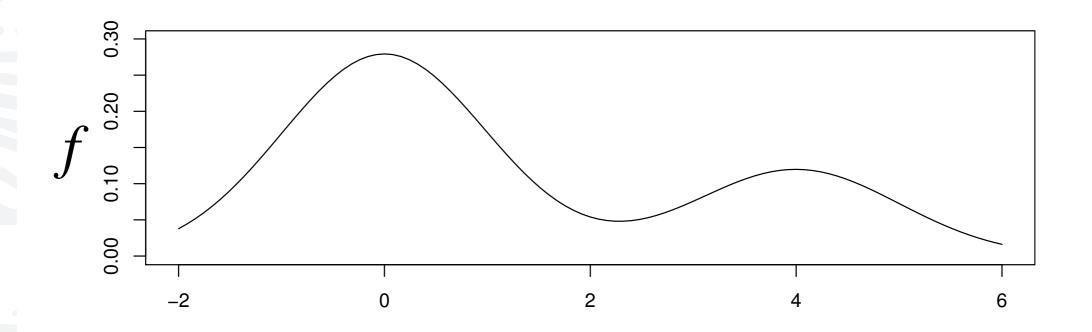


$$\int_A \phi$$

Integrating the density function over an interval A yields the proportion of successful program runs that return a value in A

Density Functions 2

if flip(0.7)
then random(Normal(0.0))
else random(Normal(4.0))



$$f(x) = 0.7 \cdot \phi(x) + 0.3 \cdot \phi(x - 4)$$

Densities by compilation

- Given: Program M with result type t
- Sought: Function F from t to double that gives the density of the result of M

- Generalisation to programs with free variables:
 - Such parameters are treated as constants
 - ullet The density F depends on a parameter valuation

if flip(p)
then random(Normal(m))
else random(Normal(n))
$$f(x) = p \cdot \phi(x - m) + (1 - p) \cdot \phi(x - n)$$

Outline

- Motivation
- Density compiler
- Experimental results

Motivation

- Bayesian ML is based on probabilistic models
 - Conveniently written in a programming language
- Density functions are widely used in ML
 - Here: Markov chain Monte Carlo (MCMC)
- Current practice: code up both model and density
 - Do the model and the density agree?
 - What if you want to change one or the other?
 - (Non)Existence of an efficient density function limits the class of models used in practice. (Mostly because of "hidden variables")

Source and Target

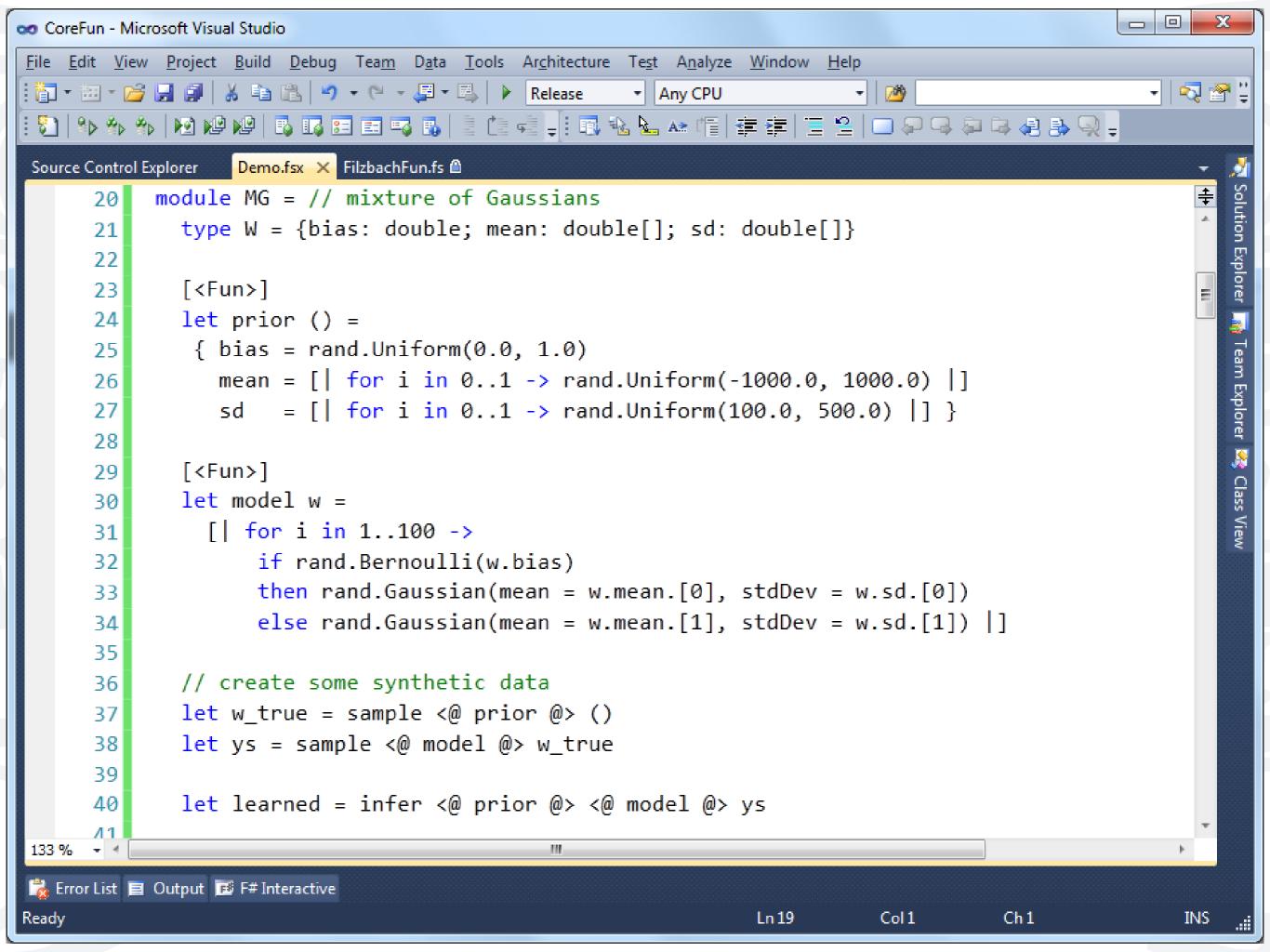
- Base: language of finite computations (no recursion or while-loops)
- Source (Fun): base + random(Dist(M))
 fail

Based on "Stochastic lambda-calculus", by Ramsey & Pfeffer, POPL'02.

• Target: base +
$$\lambda(x_1,...,x_n)$$
. E

$$E F$$

$$\int E$$



TrueSkill

Player ranking model, used in XBox Live. Computes a skill distribution for each player.

```
let skillprior() = random (Gaussian(10.0,20.0))
let Alice,Bob = skillprior(),skillprior()
let performance player = random (Gaussian(player,1.0))
observe (performance Alice > performance Bob)
Alice
```

assume

To compute the marginal probability density of Alice, we need to integrate over all values of Bob.

Density compiler

Environment, compilation rules and correctness

Compilation

ullet Given a list Υ of random variables

(and deterministic variables and their definitions) and an expression E for the joint density of the random variables and of being in the current branch in the program

ullet Returns the density function F

Inductively Defined Judgments of the Compiler:

```
\Upsilon; E \vdash \operatorname{dens}(M) \Rightarrow F in \Upsilon; E expression F gives the PDF of M \Upsilon; E \vdash \operatorname{marg}(x_1, \dots, x_k) \Rightarrow F in \Upsilon; E expression F gives the PDF of (x_1, \dots, x_k)
```

Example rules, l

$$(VAR RND)$$

$$x \in rands(\Upsilon) \quad \Upsilon; E \vdash marg(x) \Rightarrow F$$

$$\Upsilon; E \vdash dens(x) \Rightarrow F$$

Marginal Density:
$$\Upsilon$$
; $E \vdash \text{marg}(x_1, ..., x_k) \Rightarrow F$

(MARGINAL)

$$\frac{\{x_1,...,x_k\} \cup \{y_1,...,y_n\} = \operatorname{rands}(\Upsilon) \qquad x_1,...,x_k,y_1,...,y_n \text{ distinct}}{\Upsilon; E \vdash \operatorname{marg}(x_1,...,x_k) \Rightarrow \lambda(x_1,...,x_k). \int \lambda(y_1,...,y_n). E\sigma_{\Upsilon}$$

(LET RND)
$$\neg (M \text{ det}) \qquad \varepsilon; 1 \vdash \text{dens}(M) \Rightarrow F_1$$

$$\Upsilon, x; E \cdot (F_1 x) \vdash \text{dens}(N) \Rightarrow F_2$$

$$\Upsilon; E \vdash \text{dens}(\text{let } x = M \text{ in } N) \Rightarrow F_2$$

Example rules, 2

(TUPLE PROJ L)
$$\Upsilon; E \vdash \operatorname{dens}(M) \Rightarrow F$$

$$\Upsilon; E \vdash \operatorname{dens}(\operatorname{fst} M) \Rightarrow \lambda z. \quad \int \lambda w. \quad F(z, w)$$
(IF DET)
$$M \quad \operatorname{det}$$

$$\Upsilon; E \cdot [M\sigma_{\Upsilon} = \operatorname{true}] \vdash \operatorname{dens}(N_{1}) \Rightarrow F_{1}$$

$$\Upsilon; E \cdot [M\sigma_{\Upsilon} = \operatorname{false}] \vdash \operatorname{dens}(N_{2}) \Rightarrow F_{2}$$

$$\Upsilon; E \vdash \operatorname{dens}(\operatorname{if} M \operatorname{then} N_{1} \operatorname{else} N_{2}) \Rightarrow \lambda z. \quad (F_{1} z) + (F_{2} z)$$

arguments M are a deterministic function of the parameters

prob. of being in the current branch

$$M \det \operatorname{rands}(\Upsilon) \sharp (M\sigma_{\Upsilon}) \quad \Upsilon; E \vdash \operatorname{marg}(\varepsilon) \Rightarrow F$$

$$M \det \operatorname{rands}(\Upsilon) \sharp (M\sigma_{\Upsilon}) \quad \Upsilon; E \vdash \operatorname{marg}(\varepsilon) \Rightarrow F$$

$$\Upsilon; E \vdash \operatorname{dens}(\operatorname{random}(\operatorname{Dist}(M))) \Rightarrow \lambda z. \left(\operatorname{pdf}_{\operatorname{Dist}(M\sigma_{\Upsilon})} z\right) \cdot (F())$$

Standard distribution and its probability density function

Correctness

Types of variables in Υ

Lemma 1 (Derived Judgments).

If $\Gamma, \Gamma_{\Gamma} \vdash \Gamma$ wf and dom $(\Gamma_{\Gamma}) = \text{rands}(\Gamma) \cup \text{dom}(\sigma_{\Gamma})$ and $\Gamma, \Gamma_{\Gamma} \vdash E : \text{double}$ then *If* Υ ; $E \vdash \text{dens}(M) \Rightarrow F$ and Γ , $\Gamma_{\Upsilon} \vdash M : t$ then $\Gamma \vdash F : t \rightarrow \text{double}$.

Theorem 1 (Soundness). *If* ε ; $1 \vdash \text{dens}(M) \Rightarrow F \text{ and } \varepsilon \vdash M : t \text{ then }$

$$(\mathscr{P}[\![M]\!] \varepsilon) A = \int_A F$$

The probabilistic semantics of M (Ramsey & Pfeffer '02, Gordon et al. '13)

Inductively Defined Judgments of the Compiler:

$$\Upsilon; E \vdash \operatorname{dens}(M) \Rightarrow F$$
 in $\Upsilon; E$ expression F gives the PDF of M $\Upsilon; E \vdash \operatorname{marg}(x_1, \dots, x_k) \Rightarrow F$ in $\Upsilon; E$ expression F gives the PDF of (x_1, \dots, x_k)

in
$$\Upsilon$$
; E expression F gives the PDF of M

in
$$\Upsilon$$
; E expression F gives the PDF of (x_1, \ldots, x_k)

Example

```
\epsilon; 1 \vdash dens( \begin{array}{c} \textbf{let b} = \textbf{random}(Bernoulli(p)) \textbf{ in} \\ \textbf{then random}(Normal(m)) \\ \textbf{else random}(Normal(n)) \end{array}) \Rightarrow \begin{array}{c} \text{(modulo beta-eq)} \\ \textbf{beta-eq)} \end{array}
```

$$\begin{split} \lambda x. & \Sigma_{b \in \{\mathbf{t}, \mathbf{f}\}} \mathbf{P}_{\mathsf{Bernoulli}(\mathsf{p})}(b) \cdot [b = \mathbf{t}] \cdot \phi(x - \mathsf{m}) + \\ & \Sigma_{b \in \{\mathbf{t}, \mathbf{f}\}} \mathbf{P}_{\mathsf{Bernoulli}(\mathsf{p})}(b) \cdot [b = \mathbf{f}] \cdot \phi(x - \mathsf{n}) \end{split}$$

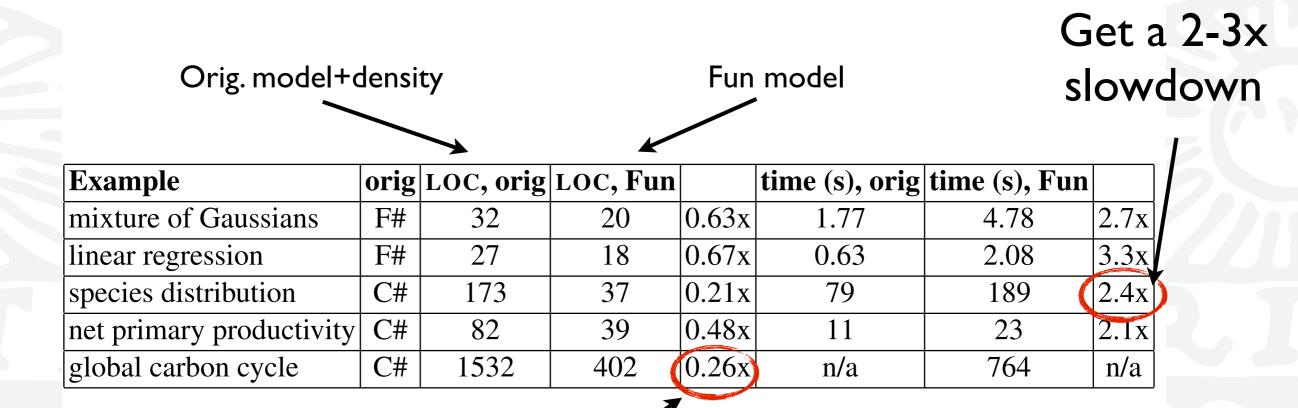
$$\lambda x. \mathbf{P}_{\mathsf{Bernoulli(p)}}(\mathbf{t}) \cdot \phi(x - \mathsf{m}) + \mathbf{P}_{\mathsf{Bernoulli(p)}}(\mathbf{f}) \cdot \phi(x - \mathsf{n})$$

Implementation

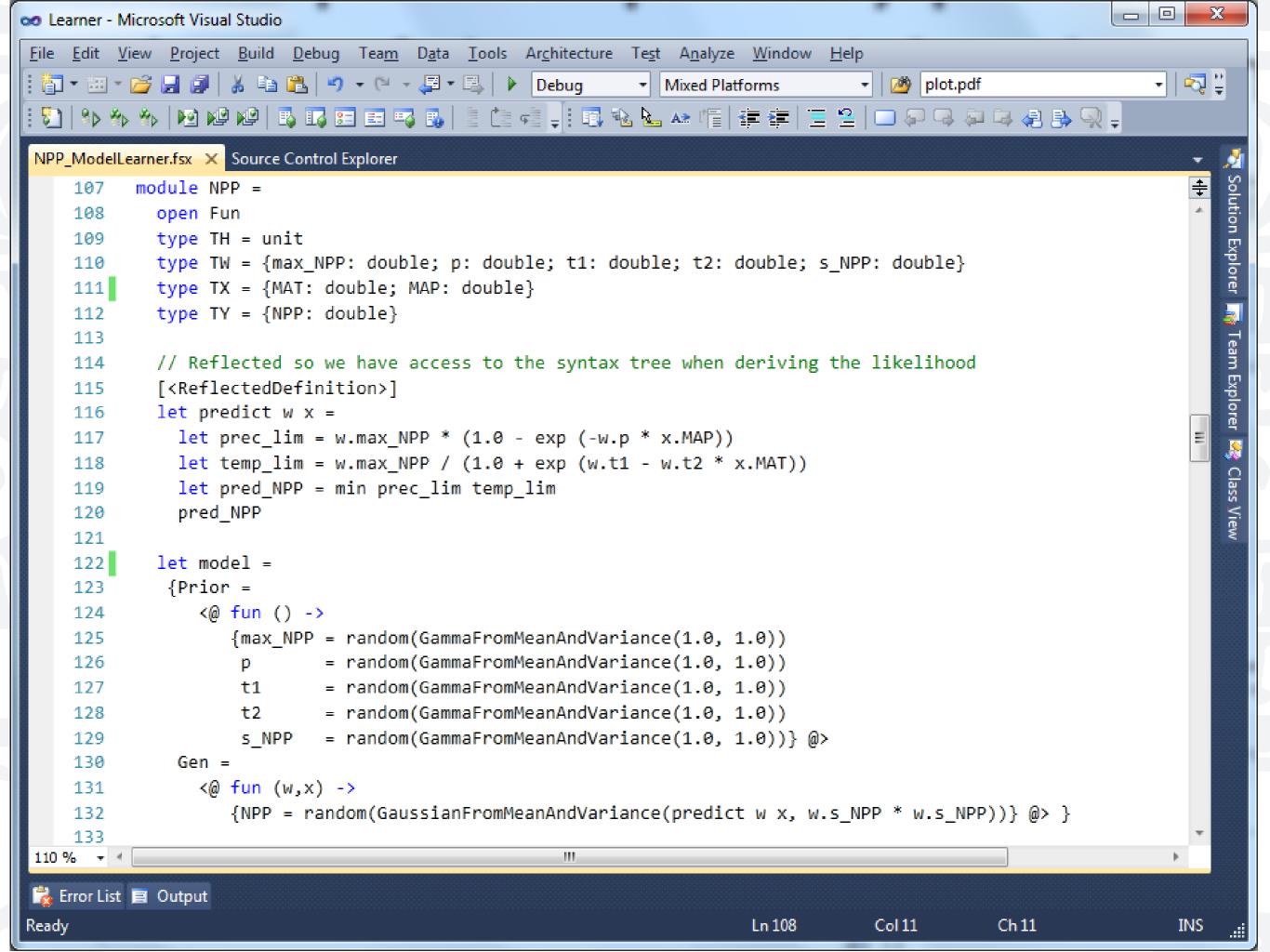
- Direct implementation of the compilation rules
 - In F#, operating on a subset of (quoted) F#
 - Operates on log-probabilities
 - Uses let-expansion in the MARGINAL rule
 - Parametric in integration function (currently a simple Riemann sum)

Evaluation

 Synthetic models, and ecological systems models from Computational Sciences, MSR Cambridge



Write a quarter as much code



Related Work

- Naive prototype (interpreter) reported at POPL'13.
- Builds on work by Bhat et al., POPL'12.
- We have a soundness proof
- We have a simpler algorithm (and fewer judgments)
- We implement our algorithm, and study real models
- We use a more expressive language: integer operations, fail, general if and match, deterministic let
- We are less complete (admit fewer joint densities)

Conclusion

- We compile probabilistic programs to their density functions
 - The algorithm is sound.
- We validate the approach by compiling existing ecology models
 - The implementation is reasonably efficient
- Future work:
 - optimisation, improve completeness, clean up match
 - more complex real-life models or variations
 - different ways of treating hidden variables