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Abstract Abstract State Machines (ASMs) allow modeling system behaviors at any desired

level of abstraction, including a level with rich data types, such as sets, sequences, maps,

and user-defined data types. The availability of high-level data types allow state elements

to be represented both abstractly and faithfully at the same time.

In this paper we look at symbolic analysis of ASMs. We consider ASMs over a fixed state

background T that includes linear arithmetic, sets, tuples, and maps. For symbolic analysis,

ASMs are translated into guarded update systems called model programs. We formulate the

problem of bounded path exploration of model programs, or the problem of Bounded Model

Program Checking (BMPC) as a satisfiability problem modulo T . Then we investigate the

boundaries of decidable and undecidable cases for BMPC. In a general setting, BMPC is

shown to be highly undecidable (Σ1
1-complete); and even when restricting to finite sets the

problem remains re-hard (Σ0
1-hard). On the other hand, BMPC is shown to be decidable for

a class of basic model programs that are common in practice.

We use Satisfiability Modulo Theories (SMT) for solving BMPC; an instance of the

BMPC problem is mapped to a formula, the formula is satisfiable modulo T if and only if

the corresponding BMPC problem instance has a solution. The recent SMT advances allow

us to directly analyze specifications using sets and maps with specialized decision procedures

for expressive fragments of these theories. Our approach is extensible; background theories

need in fact only be partially solved by the SMT solver; we use simulation of ASMs to

support additional theories that are beyond the scope of available decision procedures.
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1 Introduction

We look at behavioral specifications given in the form of abstract state machines[19]

(ASMs). For symbolic analysis, we transform an ASM specification into a canonical
form and represent it as a model program. Intuitively, a model program is a collection
of guarded parallel assignments, the formal definition is given below. Model programs
have mainly been used in the context of model based testing. A key feature provided
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by model based testing tools such as Spec Explorer[36] and NModel[26] is that model
programs can be represented in different languages, including AsmL[4] and C#, and a
model program can use a library of data types including sets, sequences, and maps, as
well as user defined data types to describe a state. At Microsoft, model programs are
used as an integral part of the protocol quality assurance process [18] for model-based
testing of public application-level network protocols. Correctness assumptions about
a model can be expressed through (state) invariants. A state where an invariant is
violated is unsafe. A part of the model validation process is safety analysis, which
aims at identifying unsafe states that are reachable from the initial state. Safety anal-
ysis of model programs is undecidable in general but can be approximated in various
ways. One way is to bound the number of steps from the initial state, which leads to
bounded model checking of model programs or bounded model program checking and
is the topic of this paper.

Model programs typically rely on a rich background universe including sequences,
tuples (records), sets and bags (multisets), as well as user defined data structures.
Moreover, unlike traditional sequential programs, model programs often compute on a
more abstract level, for example, they use set comprehensions to compute a collection
of elements in a single atomic step, rather than one element at a time, in a loop. Set
comprehensions can be used to specify infinite sets and may encode unbounded or
even an infinite number of updates.

The satisfiability modulo theories (SMT) based symbolic bounded model check-
ing of model programs is introduced in Ref. [35]. The use of SMT solvers for automatic
software analysis was introduced in Ref. [14] as an extension of SAT-based bounded
model checking[5]. The SMT based approach is better suited for dealing with more
complex background theories, such as linear arithmetic; instead of encoding the verifi-
cation task as a propositional formula the task is encoded as a quantifier free formula.
The decision procedure for checking the satisfiability of the formula may use combi-
nations of background theories[29]. Unlike for sequential programs, bounded model
checking of model programs is undecidable[37]. Here we sharpen the undecidability
result, by showing that it is Σ1

1-complete, and we also provide an algorithm for a
decidable fragment. The definition of model programs here extends the prior def-
initions by introducing the concept of choice variables that allow specifications of
nondeterministic ASMs. A typical model program is illustrated in Example 1.

Example 1 The below model program, named Topsort, is written in AsmL. It has
two state variables V and E and it has one unary action called Step with an integer
parameter v. The guard of the action requires that v has not been visited (v is still in
V ) and there are no edges in E that enter v. The update rule of the action removes
all edges from E that exit v and removes v from V .

var V as Set of Integer
var E as Set of (Integer,Integer)
IsSource(v as Integer) as Boolean
return not exists w in V where (w,v) in E

[Action] Step(v as Integer)
require v in V and IsSource(v)
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E := E - {(v,w) | w in V }
V := V - {v}

This model program specifies all traces of Step-actions that describe a topological
sorting of a directed acyclic graph G = (V, E). Starting from a given initial state where
G is a specific graph with n vertices, an action trace Step(v1),Step(v2), . . . ,Step(vn)
exists if and only if (v1, v2, . . . , vn) is a topological sorting of G. Note that if G is
cyclic, then no such action trace exists; for example if G = ({1, 2}, {(1, 2), (2, 1)}) in
the initial state, then neither Step(1), nor Step(2) is enabled. ¤

The rest of the paper is structured as follows. In Section 2 we define model
programs formally, we provide a translation of standard ASMs into model programs,
and we define the problem of bounded model program checking or BMPC. In Section 3
we prove two undecidability results: in the general case BMPC is Σ1

1-complete, and
in the case when sets are required to be finite, BMPC is re-complete. In Section 4 we
show decidability and describe an algorithm of BMPC for a restricted class of model
programs that are common in practice. Section 5 is about related work.

2 Model Programs and Bounded Model Program Checking

The notions that are automatically available in the context of a computation are
often referred to as the background [8]. This includes not only the elements or values
themselves, like integers, but also operations on them, like addition. In this paper we
assume a background that is multi-sorted, where each element has a fixed sort, thus
any two elements that have distinct sorts are distinct. There is a sort Z for integers,
there is a sort B for Booleans, given sorts σ0, σ1, . . . , σk−1, there is a (k-)tuple sort
σ0×σ1×· · ·×σk−1 for k > 0. A sort is basic if it is either Z, B, or a tuple sort of basic
sorts. For every basic sort σ, there is also a (σ-)set sort S(σ) that is not a basic sort,
we do not consider nested sets (sets including other sets as elements) in this paper.
An element is basic if it has a basic sort. The background is named T . Well-formed
expressions of T are shown in Figure 1. We do not add explicit sort annotations to
symbols or expressions but always assume that all expression are well-sorted.

The interpretation of the arithmetical operations, Boolean operations, tuple oper-
ations, and set operations shown in Figure 1 is standard. The expression Ite(ϕ, t1, t2)
equals t1 if ϕ is true, and it equals t2, otherwise. For each sort, there is a specific
Default value. For Booleans the value is false, for set sorts the value is ∅, for integers
the value is 0 and for tuples the value is the tuple of defaults of the respective tuple
elements.

The function TheElementOf maps every singleton set to the element in that set
and maps every other set to Default. Note that the extensionality axiom for sets:

∀v w (∀y(y ∈ v ↔ y ∈ w) → v = w),

allows us to use set comprehensions as terms: the comprehension term {t(~x) |~x ϕ(~x)}
represents a set such that

∀y(y ∈ {t(~x) |~x ϕ(~x)} ↔ ∃~x(t(~x) = y ∧ ϕ(~x)))
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T σ ::= xσ | Defaultσ | Ite(TB, T σ, T σ) | TheElementOf (T S(σ)) |
πi(T σ0×···×σi−1×σ×···×σk)

T σ0×σ1×···×σk ::= 〈T σ0 , T σ1 , . . . , Tσk〉

TZ ::= k | TZ + TZ | k ∗ TZ

TB ::= true | false | ¬TB | TB ∧ TB | TB ∨ TB | ∀xTB | ∃xTB |
T σ = T σ | T S(σ) ⊆ T S(σ) | T σ ∈ T S(σ) | TZ 6 TZ

T S(σ) ::= {T σ |~x TB} | ∅S(σ) | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) | T S(σ) \ T S(σ)

TA ::= f (σ0,...,σn−1)(T σ0 , . . . , Tσn−1)

Figure 1. Well-Formed expressions in T . Sorts are shown explicitly here. An expression of sort σ

is written T σ . The sorts Z and B are for integers and Booleans, respectively, k stands for any

integer constant, xσ is a variable of sort σ. The sorts Z and B are basic, so is the tuple sort

σ0 × · · · × σk, provided that each σi is basic. The set sort S(σ) is not basic and requires σ to be

basic. All quantified variables are required to have basic sorts. The sort A is called the action sort,

f (σ0,...,σn−1) stands for an action symbol with fixed arity n and argument sorts σ0, . . . , σn−1,

where each argument sort is a set sort or a basic sort. The sort A is not basic. The only atomic

relation that can be used for TA is equality. DefaultA is a nullary action symbol. Boolean

expressions are also called formulas in the context of T . In the paper, sort annotations are mostly

omitted but are always assumed.

2.1 Maps

The definitions provided here show how the expressions in T are used to define
map operations. These definitions are needed in later sections to provide a translation
from ASMs to model programs, and to provide the axioms that support the symbolic
analysis.

We assume a standard representation of maps as function graphs. A map m =
{ki 7→ vi}i<κ is represented as a set of key-value pairs {〈ki, vi〉}i<κ. Updating a map
m with a key-value pair 〈k, v〉 produces a new map that is the same as m except that
k maps to v.

Update(m, k, v) def= {e | e ∈ m ∧ π0(e) 6= k} ∪ Ite(v = Default, ∅, {〈k, v〉})
Given a set u of tuples, we write πi(u) for {πi(x) | x ∈ u}. The definition of
Update(m,u), where u is a set of key-value pairs (where no key occurs twice, but
where some value may be Default) is analogous:

Update(m,u) def= {e | e ∈ m ∧ π0(e) 6∈ π0(u)} ∪ {e | e ∈ u ∧ π1(u) 6= Default}
Lookup of a value based on a key is defined as follows.

Lookup(m, k) def= TheElementOf ({v | 〈k, v〉 ∈ m})
We also write m(k) as a shorthand for Lookup(m, k). Note that maps are extensional,
since keys that are mapped to Default are removed from the map, i.e. given two maps
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m1 and m2:
m1 = m2 ⇔ ∀k(m1(k) = m2(k)).

A map m is finite if m(k) = Default for all but finitely many k. In most discussions
below maps are assumed to be finite.

2.2 Actions

There is a specific action sort A, values of this sort are called actions and have
the form f(v0, . . . , vn−1), where f has arity n and each vi has some expected argument
sort σi. DefaultA is a nullary function symbol. Two actions are equal if and only if
they have the same action symbol and their corresponding arguments are equal. An
action with action symbol f is called an f-action.

If n > 0 then we assume that f is associated with a unique variable fi of sort
σi, for each i, 0 6 i < n, called the i’th parameter variable of f . In AsmL one can of
course use any formal parameter name (such as v in Example 1, following standard
conventions for method signatures).

2.3 Model programs

The following definition extends the former definition of model programs by al-
lowing nondeterminism through choice variables. An assignment is a pair x := t

where x is a variable and t is a term (both having the same sort). An update rule is
a finite set of assignments where the assigned variables are distinct.

Definition 1 A model program is a tuple P = (Σ,Γ, ϕ0, R), where

• Σ is a finite set of variables called state variables;

• Γ is a finite set of action symbols;

• ϕ0 is a formula called the initial state condition;

• R is a collection {Rf}f∈Γ of action rules Rf = (γ, U,X), where

– γ is a formula called the guard of f ;

– U is an update rule {x := tx}x∈Σf
for some Σf ⊆ Σ, U is called the update

rule of f ,

– X is a set of variables, disjoint from Σ, called choice variables of f , each
χ ∈ X is associated with a formula ∃xϕ[x], called the range condition of
χ, denoted by χ∃xϕ[x].

All unbound variables that occur in an action rule, including the range condi-
tions, must either be state variables, parameter variables, or choice variables of
the action.

Intuitively, choice variables are “hidden” parameter variables, the range condition
of a choice variable determines the valid range for its values. For parameter variables,
the range conditions are typically part of the guard. If the choice variable is nonbasic,
it is assumed to be a map (possibly infinite), and the range condition must hold for
the elements in the range of that map.
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We often say action to also mean an action rule or an action symbol, if the intent
is clear from the context.

The case when all variables of a model program are basic is an important special
case when symbolic analysis becomes feasible, which motivates the following defini-
tion.

Definition 2 An update rule is basic if all parameter variables and choice variables
that occur in it are basic. An action rule is basic if its update rule is basic. A model
program is basic if its action rules are basic and all state variables have the initial
value Default.

2.4 Representing standard ASMs as model programs

We show here how ASM update rules can be represented as update rules of
model programs. We consider an ASM with dynamic functions Σ with positive arities
(nullary dynamic functions are handled similarly) and construct a model program
where the dynamic functions are map valued state variables. The model program
has an additional Boolean state variable Inconsistent, the purpose of this variable is
to represent states resulting from an inconsistent state update. The kinds of ASM
update rules we are covering here are skip, dynamic function update, if-then-else, do-
in-parallel, choose and forall. The ASM update rules are shown below in the definition
of u; u is defined by induction over the structure of ASM update rules. Given g ∈ Σ
and an ASM update rule U , we define a translation u(U, g) to an expression that
represents the state updates produced by U to update g. The different kinds of
update rules are shown below in the definition of u.

We assume that g is unary, generalization to arbitrary arities is trivial by using
tuples. Each occurrence of a choose statement in U has a unique position identifier p,
we write choosep below to indicate that id. For each choosep in U there is a distinct
choice variable named χp, also called an oracle. If a choice is made in the context
of a forall statement, the corresponding oracle is a set, and is queried for a Boolean
answer that determines which of the two branches of the choose statement is to be
selected. If a choice is not context dependent, i.e., the choose statement is not in
the scope of any forall statements, then the corresponding oracle is a Boolean valued
choice variable. The list of context variables ~y is propagated down in the translation,
as the third argument of u. When ~y is empty then the expression ~y ∈ χp below stands
for the expression χp = true.

u(U, g) def= u(U, g, ())

u(U, g, ~y) def= ∅, if U does not contain g

u(g(t) := u, g, ~y) def= {〈t, u〉}
u(if ϕ then U1 else U2, g, ~y) def= Ite(ϕ,u(U1, g, ~y),u(U2, g, ~y))

u(do-in-parallel U1 U2, g, ~y) def= u(U1, g, ~y) ∪ u(U2, g, ~y)

u(forall x where ϕ[x] do U [x], g, ~y) def= {u |u ∃x(ϕ[x] ∧ u ∈ u(U [x], g, (x, ~y)))}
u(choosep U1 U2, g, ~y) def= Ite(~y ∈ χp,u(U1, g, ~y),u(U2, g, ~y))

A conditional choose statement needs a more powerful oracle. In the follow-
ing translation we assume that χ∃xϕ is a choice function that satisfies the condition
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IsOracle(χ∃xϕ):

IsOracle(χ∃xϕ) def= ∀ ~y((∃xϕ[x]) ⇒ ϕ[χ∃xϕ(~y)]), (1.1)

where ~y is the list of context variables of the choose statement. If ~y is empty then
χ∃xϕ is a witness for x in ∃xϕ. The translation is:

u(choosep x where ϕ[x] do U [x], g, ~y) def= Ite(∃xϕ[x],u(U [χ∃xϕ
p (~y)], g, ~y), ∅).

An update set U for a dynamic function g is inconsistent if it includes two pairs
with the same key but a different value:

IsInconsistent(U, g) def= ∃x y z(〈x, y〉 ∈ u(U, g) ∧ 〈x, z〉 ∈ u(U, g) ∧ y 6= z)

IsInconsistent(U) def=
∨

g∈Σ

IsInconsistent(U, g)

Definition 3 The canonical model program with action Step for an ASM has the
following components. Let U and Σ be as above. The set of state variables of P is
Σ ∪ {Inconsistent}. The initial state condition of P is

∧
g∈Σ g = ∅ ∧ Inconsistent =

false. The guard of Step is true. The update rule of Step has an assignment to detect
inconsistent updates, as well as an assignment for each dynamic function g ∈ Σ:

Inconsistent := IsInconsistent(U)

g := Ite(IsInconsistent(U), g,Update(g,u(U, g)))

Each choice variable χϕ
p is a choice variable of the Step action.

The following examples illustrate the translation from standard ASMs to model
programs. Example 2 illustrates a case when the resulting update rule is not basic.
This case arises when choose statements are nested inside forall statements. Exam-
ple 3 illustrates that forall statements can be nested within choose statements, but the
resulting update rule is still basic. Example 4 illustrates an ASM that has a potential
update inconsistency within one step.

Example 2 This is an example of a an ASM update rule U that removes some el-
ements from the domain of a dynamic function g. We use AsmL. The AsmL ex-
pression x in g stands for the condition g(x) 6= Default. The syntax for an update
g(x) := Default is in AsmL remove x from g.∗

forall x in g

choose y in {true,false}
if y then remove x from g else skip

The expression u(U, g) is as follows, where the oracle χ (we omit the corresponding
choose statement identifier) is consulted regarding which elements are to be removed.

u(U, g) = {u |u ∃x (g(x) 6= Default ∧ u ∈ Ite(x ∈ χ, {〈x,Default〉}, ∅))}
Note that the condition ∃y(y ∈ {true, false}) is trivially true, moreover, the oracle
χ = χ∃y(y=true∨y=false) is in this case a set (as if we used the unconditional choose
statement of a standard ASM). ¤

AsmL does not allow direct access to Default.
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Example 3 Consider the update rule of the Step action in Example 1. Let us hide
the parameter of the action by turning it into an internal choice and let us write the
update rule using standard ASM style. Note that the body of the conditional choose
statement below is a parallel block, i.e., choose refers to x rather than the statements
in the body. Let U be:

choose x in V where IsSource(x)
remove x from V

forall y in V

remove (x,y) from E

Let ϕ be the formula
∃x(V (x) = true ∧ IsSource(x)).

We get the following expressions for u(U,E) and u(U, V ):

u(U,E) = Ite(ϕ, ∅ ∪ {u |u ∃ y (V (y) = true ∧ u ∈ {〈〈χϕ, y〉,Default〉})}, ∅)
= Ite(ϕ, {〈〈χϕ, y〉,Default〉 |y V (y) = true}, ∅)

u(U, V ) = Ite(ϕ, {〈χϕ,Default〉}, ∅)

Note that the choice variable χϕ is the same variable in both u(U,E) and u(U, V ). ¤

Example 4 Consider the following AsmL update rule U that is a parallel block of
two choose statements, where g is a dynamic function from integers to integers.

choose x in {1,2} g(x) := 1
choose x in {1,2} g(x) := 2

The choose statements give rise to two distinct choice variables χϕ1
1 and χϕ2

2 (of sort
Z), where both range conditions are ∃x(x ∈ {1, 2}). The translation u(U, g) is

Ite(ϕ1, {〈χϕ1
1 , 1〉}, ∅) ∪ Ite(ϕ2, {〈χϕ2

2 , 2〉}, ∅)

which can be simplified to {〈χϕ1
1 , 1〉, 〈χϕ2

2 , 2〉}, because ϕ1 and ϕ2 are trivially true. If
we wish to analyze U to see if there are potential inconsistent updates, we can see that
the condition IsInconsistent(u(U, g)) is indeed satisfiable for example for χ1 = χ2 = 1.
Note however, that this does not mean that U is invalid as an update rule, because
the canonical model program for U includes the inconsistency checking.

Let us also consider the following modification U ′ of U where the second choose
statement is in the body of the first choose statement.

choose x in {1,2}
g(x) := 1
choose y in {1,2} difference {x}

g(y) := 2

In this case ϕ1 is the same as before and ϕ2 is ∃x(x ∈ {1, 2} \ {χ1}) The transla-
tion u(U ′, g) is (in simplified form) {〈χϕ1

1 , 1〉, 〈χϕ2
2 , 2〉} but IsInconsistent(u(U ′, g)) is

unsatisfiable in this case. ¤
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In most cases IsInconsistent(U) can never true, in which case the inconsistency
checking can be eliminated. One way to show this is to over approximate by showing
that IsInconsistent(U) is unsatisfiable, for example, this is the case for the update
rule in Example 3. Note however, that IsInconsistent(U) may be satisfiable but the
corresponding state is never-the-less not reachable from the initial state, we revisit
this point later.

In the general case, we assume that update rules of actions in a model program
correspond to ASM update rules where some choice variables occur as parameters of
the action, in which case their range conditions are typically part of the guard. For
the most part of the paper we are concerned with basic model programs.†

With AsmL one can either use the style of standard ASMs, or write more in the
style of Definition 1, as in Example 1, where state variables are assigned with total
updates and update inconsistency checking is not needed. We often use the latter
style in modeling. This allows us to omit the update inconsistency checking and we
can think of such AsmL models as direct representations of model programs.

AsmL allows also a mixture of both modeling styles. This is supported by the
theory of partial updates [21], which is outside the scope of this paper.

Typically, in a model program written in AsmL the initial state is given by the
initializers of the state variables. In the model program in Example 1, however, the
initializers have been omitted and the initial state condition is therefore unconstrained
or true. Notice also that Definition 1 allows unbounded set comprehensions, that are
not allowed in AsmL.

2.5 States

A state is a mapping of variables to values. Given a state S and an expression
E, ES is the evaluation of E in S. Given a state S and a formula ϕ, S |= ϕ means
that ϕ is true in S.

Since T is assumed to be the background theory we usually omit it, and assume
that each state also has an implicit part that satisfies T , e.g. that + means addition
and ∪ means set union.

In the following definitions we assume a fixed model program P .

Definition 4 Let a be an action f(v0, . . . , vn−1). A choice expansion of a state S

for a is an expansion S′ of S ∪ {fi 7→ vi}i<n with choice variables of f , such that S′

satisfies (1) for each choice variable χ∃xϕ[x] of f .

Note that if an action is parameterless and has no choice variables then S = S′

above. Note also that in the case of a nonbasic update rule, there is at least one
choice function that is infinite, unless the corresponding range condition is false.

Definition 5 An f-action a is enabled in a state S if there exists a choice expansion
of S for a that satisfies the guard of f .

Definition 6 An f-action a causes a transition from a state S1 to a state S2, if a

is enabled in S1, S′1 is a choice expansion of S1 that satisfies the guard of a, for each
assignment x := t of f , xS2 = tS

′
1 , and for any other state variable x, xS2 = xS1 .

The standard notion of basic ASMs is more restrictive, in particular we allow unbounded exploration,

quantifiers may be unbounded.
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Example 5 Let P be the model program in Example 1. The set of initial states of
[[P ]] is the set of all states of [[P ]], in particular the state

S0 = {V 7→ {1, 2, 3}, E 7→ {〈1, 2〉, 〈2, 3〉}}

is a possible initial state. The action Step(1) is enabled in S0 because

S0 ∪ {v 7→ 1} |= v ∈ V ∧ ¬∃w(w ∈ V ∧ 〈w, v〉 ∈ E).

The action Step(1) causes a transition from S0 to

S1 = {V 7→ {2, 3}, E 7→ {〈2, 3〉}}.
¤

2.6 Runs and traces

A labeled transition system or LTS is a tuple (S,S0, L, T ), where S is a set of
states, S0 ⊆ S is a set of initial states, L is a set of labels and T ⊆ S × L × S is a
transition relation.

Definition 7 Let P = (Σ,Γ, ϕ0, R) be a model program. The LTS of P , denoted by
[[P ]] is the LTS (S,S0, L, T ), where S0 = {S | S |= ϕ0}; L is the set of all actions over
Γ; T and S are the least sets such that, S0 ⊆ S, and if S ∈ S and there is an action
a that causes a transition from S to S′ then S′ ∈ S and (S, a, S′) ∈ T .

Definition 8 A model program P is deterministic if forall transitions (S, a, S1) and
(S, a, S2) in [[P ]], S1 = S2.

Clearly, any model program without choice variables is deterministic.

Example 6 The model program in Example 1 is deterministic. The following action
on the other hand, has an internal choice. The update rule is essentially the same as
illustrated in Example 3. The action Step is parameterless and v is a choice variable.
The range condition associated with v is also the guard of the action. Note that if the
guard is omitted then the action is enabled in all states but produces no updates when
the range condition of v is false.

[Action] Step()
require exists v in V where IsSource(v)
choose v in V where IsSource(v)

E := E - {(v,w) | w in V }
V := V - {v}

¤

Definition 9 A run of P is a sequence of transitions (Si, ai, Si+1)i<κ in [[P ]], for
some κ 6 ω, where S0 is an initial state of [[P ]]. The sequence (ai)i<κ is called an
( action) trace of P . The run or the trace is finite if κ < ω.

Example 7 Let P and S1 be as in Example 5. (Step(1),Step(2)) is an action trace
of P from S0, whereas (Step(1),Step(3)) is not, because Step(2) is enabled in S1 but
Step(3) is not enabled in S1. ¤
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2.7 Bounded model program checking

We are now ready to formulate the central problem of this paper in Definition 11.
We first need the following additional definition.

Definition 10 Given a condition ϕ, a bound k > 0 and a state S0, ϕ is reachable in
P from S0 within k steps if the following holds:

• S0 is an initial state of P ,

• there is an l 6 k and a run (Si, ai, Si+1)i<l of P , such that Sl |= ϕ.

The trace α = (ai)i<l, when it exists, is called a trace for ϕ from S0.

Example 8 Let P and S0 be as in Example 5. Then V = ∅ is reachable in P from
S0 within 3 steps, (Step(1),Step(2),Step(3)) is a trace for V = ∅ from S0. ¤

Definition 11 (BMPC) Bounded Model Program Checking or BMPC is the prob-
lem of deciding, given inputs P , k, and ϕ as above, if ϕ is reachable in P from some
initial state of P within k steps.

In order to reduce BMPC into a theorem proving problem, we construct a special
formula from given P , k, and ϕ, as defined in Definition 12. Given an expression E

and a step number i > 0, we write E[i] below for a copy of E where each variable x

in E has been uniquely renamed to a variable x[i].‡ We assume also that E[0] is E.
For each step number i, there is an additional variable action[i] of sort A that records
the selected action for step i. Recall the definition of IsOracle(χ) (see Equation (1)).

Definition 12 (Bounded reachability formula) Let P be a model program (Σ,Γ,

ϕ0, (γf , Uf , Xf )f∈Γ). The bounded reachability formula for P , step bound k and
reachability condition ϕ is:

BRF (P, ϕ, k) def= ϕ0 ∧ (
∧

06i<k

STEP(P, i)) ∧ (
∨

06i6k

ϕ[i])

STEP(P, i) def=
∨

f∈Γ

(action[i] = f(f0[i], . . . , farity(f)−1[i])

∧γf [i]
∧

χ∈Xf

IsOracle(χ)[i]

∧

x:=t∈Uf

x[i + 1] = t[i]
∧

x∈Σ, x:= /∈Uf

x[i + 1] = x[i])

Notice that all parameter variables, and choice variables have distinct names in
each formula STEP(P, i). This implies that all oracles and parameters are local to a
single step, and do not carry over from one step to the next.

Bound variables need not be renamed.
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Example 9 Let P be the Topsort model program, let ϕ be V = ∅ and let k be 2.
Then

BRF (P, ϕ, k) = true ∧ P0 ∧ P1 ∧ (V [0] = ∅ ∨ V [1] = ∅ ∨ V [2] = ∅),
where Pi = action[i] = Step(v[i]) ∧

v[i] ∈ V [i] ∧ ¬(∃w (w ∈ V ∧ 〈w, v[i]〉 ∈ E[i])) ∧
V [i + 1] = V [i] \ {v[i]} ∧
E[i + 1] = E[i] \ {〈v[i], w〉 | w ∈ V [i]}. ¤

Some model programs may reach states where no action is enabled. For example
the Topsort model program in Example 1 is such, because the Step action is not
enabled in a state where V = ∅. The construction in Definition 12 will not directly
work for such model programs, we want the model program to be total in the following
sense.

Definition 13 A model program P is total if for all states S of [[P ]], there is a
transition (S, a, S′) in [[P ]] for some S′.

There is a trivial transformation that one can use to transform every model
program into a total model program: add a new action to it whose enabling condition
is true and whose update rule is empty. The following theorem enables us to turn the
BMPC problem into a satisfiability problem. We write S ¹ Σ below for {x 7→ xS}x∈Σ.

Theorem 1 Given P , k and ϕ as above, where P is total,

1. BRF (P, ϕ, k) is satisfiable if and only if ϕ is reachable in P within k steps.

2. If S |= BRF (P, ϕ, k) then there is l 6 k such that (action[i]S)i<l is a trace for
ϕ from S ¹ Σ.

Proof. (2): Assume S |= BRF (P, ϕ, k). From the definition of BRF (P, ϕ, k) follows
that S |= ϕ0, S |= STEP(P, i) for 0 6 i 6 k, and S |= ϕ[l] for some l 6 k, fix the value
of l. Let S0 = S ¹ Σ. So S0 is an initial state of [[P ]]. If l = 0 the statement follows
trivially. If l > 0, let S′i, for i 6 l, be the reduction of S to all the variables with
step number i, and construct Si from S′i by erasing the step numbers on variables. In
particular Sl |= ϕ. By induction on i, i < l, and by using the definition of STEP(P, i),
it follows that (Si, ai, Si+1) is a transition in [[P ]] where ai = action[i]S . So there is
an action trace (ai)i<l for ϕ from S0.
(1(⇒)): Follows from (2) and Definition 10.
(1(⇐)): Assume ϕ is reachable in P within k steps. So there is a run (Si, ai, Si+1)i<l

of P , for some l 6 k, where S0 |= ϕ0 and Sl |= ϕ. Since P is total, we can extend
the run with additional transitions (Si, ai, Si+1) for l < i < k. Moreover, for each
transition τi = (Si, ai, Si+1), for i < k, there is a choice expansion S′i of Si for ai that
provides values for the choice variables and parameter variables of ai that are needed
to show that τi is a transition in [[P ]]. Let S′k be Sk. Construct a state S′′i from S′i,
for i 6 k, by annotating all variables with the step number i. Let

S =
⋃

i<k

(S′′i ∪ {action[i] 7→ ai}) ∪ S′′k .
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It is straightforward to show that S |= BRF (P, ϕ, k). ¤

2.8 Inconsistency checking of ASMs

We illustrate how BMPC can be used for inconsistency checking of ASMs. Con-
sider the canonical model program P for an ASM (see Definition 3). Let k be a step
bound. If the formula BRF (P, Inconsistent , k) is satisfiable then there exists a run of
the ASM of length at most k from the initial state such that the final step produces
an inconsistent update set.

If there are some choice variables in P , those can be made into parameters of
the Step action. The resulting action trace is then a witness for the inconsistency. In
particular, this problem is decidable for basic model programs as shown in Section 4.

3 Undecidability of BMPC

The BMPC problem is highly undecidable in general. In this section we show
undecidability of some minimal cases of the problem. First we show that the problem
is recursively equivalent to the halting problem of Turing machines (Σ0

1-complete, or
re-complete) for a small class of nonbasic model programs when sets in the background
are restricted to be finite.

Next we show that the problem is recursively equivalent to the satisfiability prob-
lem of formulas in second-order Peano arithmetic with sets (Σ1

1-complete) and remains
Σ1

1-hard for a very restricted fragment, even when the background sets are restricted to
be recursive. This result has important implications for program analysis techniques
that use the SMT approach, where it is very often the case that the background is
assumed to include T or an equivalent variation of it, and a model is sought that
requires infinite sets or maps. It shows that there exists no refutationally complete
procedure for T , i.e., there exists no semi-decision procedure that allows one to check
for unsatisfiability of formulas in T . Moreover, this holds for a very restricted frag-
ment of T .

3.1 Σ0
1-completeness of BMPC over finite sets

We assume here that the sets in the background are finite. Under this assumption,
it is easy to see that BMPC is in Σ0

1, because models are finite (including all the
oracles) and can therefore be systematically enumerated and checked for satisfiability
of the given formula. Next we prove Σ0

1-hardness for a restricted fragment.
In the proof we use a reduction from the halting problem of 2-register machines. A

2-register machine has two registers that contain positive integers or 0. It has a finite
set of instructions, and can check if a register contains 0. In one step it can increment
by one or decrement by one, any of the register values. A 2-register machines halts if
it reaches a certain final instruction. The halting problem of 2-register machines is,
given a 2-register machine M and initial values (m,n) for its two register, to decide
if M halts. This problem is Σ0

1-complete, i.e., it is (recursively) equivalent the the
halting problem of Turing machines. It is very easy to define a quantifier free formula
in T that describes one step x `M y where x and y are configurations of M , of the
form

〈instruction, value in register 1, value in register 2〉.
For example we can use the definition from [9, Theorem 2.1.15]. Let STEPM (x, y) be
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a formula such that STEPM (x, y) holds if and only if M makes the step x `M y.
We can assume, without loss of generality, that M is such that the initial instruc-

tion is 1 and the final instruction is k and when the final instruction is reached then
both registers are zero. Let haltsM be the following formula (where X is a variable
with the sort S(Z × (Z × Z × Z) × (Z × Z × Z)) and l is a variable of sort Z). The
construction of haltsM is based on the idea of shifted pairing [22], see Fig. 2.

Figure 2. Shifted pairing; used in the definition of haltsM

haltsM (m,n) def=

X = {〈j, x, y〉 | 〈j, x, y〉 ∈ X ∧ STEPM (x, y) ∧ 0 6 j < l} ∧
{〈π0(z), π1(z)〉 | z ∈ X} ∪ {〈l, 〈k, 0, 0〉〉} =

{〈0, 〈1,m, n〉〉} ∪ {〈π0(z) + 1, π2(z)〉 | z ∈ X}.

Theorem 2 Given M , m and n as above, the formula haltsM (m,n) is satisfiable if
and only if M halts with initial register values (m,n).

Proof. (⇐): Assume that M halts on (m,n). So there is a finite sequence of config-
urations (xj)j6l where x0 = 〈1,m, n〉, xl = 〈k, 0, 0〉 and xj `M xj+1 for j < l. Let
X = {〈j, xj , xj+1〉|0 6 j < l}. It is easy to check that haltsM (m,n) is true for the
given X and l.
(⇒): Assume that haltsM (m,n) is true for some X and l. From the first equality it
follows that all elements of X are of the form 〈j, x, y〉 where j < l and x `M y. From
the second equality it follows that X must be a sequence in j, i.e., for all j < l, there
is a unique element 〈j, xj , yj〉 in X. Moreover, it follows that x0 = 〈1,m, n〉, and for
all j, 0 < j < l, xj = yj−1, and yl = 〈k, 0, 0〉. Hence, there exists a computation
〈1,m, n〉 `∗M 〈k, 0, 0〉 and therefore M halts on (m,n). ¤

Theorem 2 implies the Σ0
1-hardness result because the halting problem of 2-

register machines is Σ0
1-hard, and shows also that three comprehensions of tuples and

one nonbasic oracle are enough. One can further sharpen the result.
Let M be a 2-register machine that is universal in the following sense: given

a Turing machine T and an input v, let pT, vq be an effective encoding of T and v

as an input for M , so that M accepts pT, vq if and only if T accepts v. Let P be
a model program with a state variable x of sort Z × Z with initial value 〈0, 0〉, one
action Halts() whose guard is haltsM where l, X, m and n are all choice variables,
and whose update rule is x := 〈m,n〉. In this case P is also universal in the following
sense: BRF (P, x = pT, vq, 1) is satisfiable iff T accepts v, showing that both the
model program as well as the bound can be fixed and the formula must be a single
equality, but BMPC remains Σ0

1-hard under these restrictions.
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3.2 Σ1
1-completeness of BMPC

Here we consider the general case of BMPC. Intuitively, Σ1
1 corresponds to second-

order Peano arithmetic with unary relations or sets. See Ref. [32] for a precise def-
inition of the analytical hierarchy, including Σ1

1. For Σ1
1-hardness we can use the

following theorem.∗

Halpern[23]. The satisfiability problem of formulas in Presburger arith-
metic with one unary relation is Σ1

1-complete.

This result for Presburger arithmetic with more than one set variable is also
shown in Ref. [1]. The following is an immediate consequence of Halpern’s Theorem,
for example by using a Presburger formula with one set valued choice variable as an
action guard.

Corollary 1 BMPC is Σ1
1-hard for a single step and with a single set-valued choice

variable.

We give a more direct proof of Corollary 1 by using the recurrence problem of
Turing machines. A Turing machine T recurs if, starting from the empty tape, T

visits its initial state infinitely often. The recurrence problem of Turing machines is
the problem of deciding if a Turing machine recurs. The following result is also used
in Ref. [23].

Harel-Pnueli-Stavi[24]. The recurrence problem of Turing machines is
Σ1

1-complete.

Harel-Pnueli-Stavi Theorem holds also for 2-register machines, since one can
effectively transform a Turing machine T into a 2-register machine M such that the
latter “mimics” the computations of T .

Theorem 3 BMPC is Σ1
1-complete. Moreover the problem remains Σ1

1-hard with a
single choice variable and when sets are recursive.

Proof : We reduce the recurrence problem of 2-register machines to BMPC using an
infinite version of the shifted pairing idea that is illustrated in Figure 3, to describe
infinite computations. Let M be a 2-register machine and define (note that the final
configuration and the length restrictions are omitted in this case):

Figure 3. Infinite shifted pairing; used in the definition of recursM

∗The problem in Ref. [23] is stated in terms of validity which is Π1
1-complete.
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recursM
def= X = {〈j, x, y〉 | 〈j, x, y〉 ∈ X ∧ STEPM (x, y)} ∧

{〈π0(z), π1(z)〉 | z ∈ X} =

{〈0, 〈1, 0, 0〉〉} ∪ {〈π0(z) + 1, π2(z)〉 | z ∈ X} ∧
∀x(x ∈ X ⇒ ∃y(y ∈ X ∧ π0(x) < π0(y) ∧

π0(π1(x)) = π0(π1(y)) = 1)).

The last conjunct of recursM states that the instruction 1 occurs infinitely often in
X. It is easy to show that M recurs if and only if recursM is satisfiable. (Note that
in the case of finite sets, recursM is not satisfiable.) The construction also shows
that the values for X can be restricted to be recursive sets, because for any 2-register
(or Turing) machine M the set {〈i,M (i),M (i+1)〉}i>0 is recursive, where M (0) is the
initial configuration with registers being 0 (tape being empty) and M (i) `M M (i+1).

Finally, to show that BMPC is in Σ1
1, we reduce the satisfiability of a formula

ψ = BRF (P, ϕ, k) effectively to satisfiability in second-order arithmetic with sets.
First, ψ is rewritten into an equivalent standard form in T where Ite-terms and
comprehension terms do not occur.

Let the translation function be τ . We assume that each sort σ is encoded as a
unique number τ(σ), where nested sorts are encoded using a standard pairing function
in Peano arithmetic. Each Defaultσ is encoded as a pair of τ(σ) and 0. The translation
is lifted to arbitrary terms and formulas in the usual way. The translation preserves
the structure of the formula and is such that ψ is satisfiable in T if and only if τ(ψ)
is satisfiable in second-order arithmetic with sets. ¤

4 A Decision Procedure for BMPC of Basic Model Programs

Here we look at a fragment of model programs that are common in practice.
Recall the definition of a basic model program (Definition 2). In most common situ-
ations, actions only use parameters that have basic sorts, see for example the Credits
model sample in Ref. [39]. Moreover, the initial state is usually required to have fixed
initial values for all state variables. We may assume, without loss of generality, that
there is a special additional “initialization” action that can be used to initialize the
state variables as desired.

Note also that in T set sorts are not allowed to be nested, i.e., one can only
construct sets of basic values. For example, it is not possible to construct a powerset
in T . This limitation is not present in model programs in general but is an artifact
of the background T . Here this limitation is important however for the decidability
result.

Example 10 The model program Topsort in Example 1 is not basic because the state
variables E and V are uninitialized. If we were to initialize E and V to be empty,
and add the following action, that updates E to be a set of edges satisfying a linear
arithmetic condition ϕ[x, y], then the resulting model program would be basic.

var initialized = false
[Action] Init(n as Integer)
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require not initialized
initialized := true
V := {1..n}
E := {(x,y) | x in {1..n}, y in {1..n}, ϕ[x, y]}

¤

We first provide a decision procedure for a stratified fragment T ≺ of formulas in
T . The decision procedure is by reduction to linear or Presburger arithmetic. Let
X(ϕ) denote the collection of all set variables that occur in a formula ϕ.

Definition 14 (T ≺) A formula ϕ is stratified or is in T ≺ if

• ϕ has the form ψ ∧∧
x∈X(ϕ) x = tx, and

• the relation ≺ def= {(y, x) | x ∈ X(ϕ), y ∈ X(tx)} is well-founded.

The equation x = tx is called the definition of x in ϕ.

Decision procedure for T ≺

Let ϕ ∈ T ≺. We provide a series of transformations of ϕ, each of which preserves
equivalence to ϕ, such that the final formula is a linear arithmetic formula. Apply
the following transformations to ϕ in the given order.

Eliminate set variables. Let (vi)i<k be a fixed sequence of X(ϕ) such that vj 6≺ vi

if j > i, i.e. the definition of vi does not mention vj for any j > i. This sequence
exists because ≺ is well-founded.

Let ϕ0 be ϕ. Given ϕj , and the definition vj = Sj in ϕj , construct ϕj+1 from ϕj

by replacing each occurrence of vj (other than in its definition) by Sj . Clearly
ϕj+1 is logically equivalent to ϕj . So ϕk is logically equivalent to ϕ and has the
form ψ ∧∧

i<k vi = Si where ψ and all the Si are set-variable free. Since all set
variables are existentially quantified, the formula ψ ∧∧

i<k vi = Si is true if an
only if ψ is true.

Eliminate TheElementOf . Apply the following transformation repeatedly to atomic
formulas α that contain TheElementOf :

α[TheElementOf (s)] Ã ∃xα[Ite({x} = s, x,Default)].

Eliminate Ite. Apply the following transformation repeatedly to atomic formulas α

that contain Ite:

α[Ite(ϕ, s1, s2)] Ã (ϕ ∧ α[s1]) ∨ (¬ϕ ∧ α[s2]).

Normalize set comprehensions. The variables yi below are assumed to be fresh.
After this step all element terms of comprehensions are tuples of variables.

{〈t1(~x), . . . , tn(~x)〉 | ϕ(~x)} Ã
{〈y1, . . . , yn〉 | ∃~x(y1 = t1(~x) ∧ · · · ∧ yn = tn(~x)) ∧ ϕ(~x)}.
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Translate set operations. Since all set variables v have been eliminated the only
atomic set terms are comprehensions. Because of the previous step, all element
terms only include tuples of variables. It suffices to show the translation of
the set operations on comprehensions. Recall also that terms are well-sorted so
both sides have the same sort.

{〈~y〉 | ψ1(~y)} ∪ {〈~y〉 | ψ2(~y)} Ã {〈~y〉 | ψ1(~y) ∨ ψ2(~y)},
{〈~y〉 | ψ1(~y)} ∩ {〈~y〉 | ψ2(~y)} Ã {〈~y〉 | ψ1(~y) ∧ ψ2(~y)},
{〈~y〉 | ψ1(~y)} \ {〈~y〉 | ψ2(~y)} Ã {〈~y〉 | ψ1(~y) ∧ ¬ψ2(~y)}.

Translate ∈ and ⊆. When set operations have been eliminated, all sets are in the
form of comprehensions. So element-of and subset atoms can thus be eliminated
in the following way.

t ∈ {u(~x) | ψ(~x)} Ã ∃~x (ψ(~x) ∧ t = u(~x)),

{〈~x〉 | ψ1(~x)} ⊆ {〈~x〉 | ψ2(~x)} Ã ∀~x (ψ1(~x) → ψ2(~x)).

Expand tuple variables. For each variable x of the sort σ1 × · · · × σk for k > 1.
Apply the following transformation repeatedly until all variables have the base
sort β. This process clearly terminates.

Qxϕ(x) Ã Qx1 . . . Qxn ϕ(〈x1, . . . , xn〉).

Unwind tuples. Apply the following transformations until there are no more tuple
operations. Note that at this point a tuple term can only appear in an equality
or as an argument of a projection. This process clearly terminates.

〈t1, . . . , tk〉 = 〈u1, . . . , uk〉 Ã t1 = u1 ∧ · · · ∧ tk = uk

πi(〈t0, . . . , ti, . . . , tk〉) Ã ti.

After the above transformations we get a linear arithmetic formula that is logi-
cally equivalent to the original formula. ¤

We now show that BMPC over basic model programs reduces to T ≺.

Theorem 4 BMPC of basic model programs is decidable.

Proof : Let P be a basic model program (Σ,Γ, ϕ0, (γf , Uf , Xf )f∈Γ). Let ϕ be a
reachability condition, and let k be a step bound. We can assume, without loss of
generality, that P has one action Step. Let ψ = BRF (P, ϕ, k). Let X be the set of
nonbasic state variables of P .

Since P is basic, the initial value of each set variable is ∅, i.e., ϕ0 =
∧

x∈X x = ∅.
Each step formula STEP(P, i) provides a definition x[i + 1] = tx[i] for x[i + 1] as a
conjunct of ψ. It follows by induction on i that x[i] ≺ y[i + 1], for i < k and all
x, y ∈ X, is a valid well-founded order of all the set variables. Thus ψ is in T ≺.
Decidability follows from the reduction of T ≺ to linear or Presburger arithmetic and
decidability of Presburger arithmetic[16]. ¤
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The following result follows from the proof of Theorem 4 and the construction of
the canonical representation of an ASM as a model program (Definition 3). Bounded
inconsistency checking of ASMs is the problem of deciding if an ASM produces an
inconsistent update set within a given number of steps (see Section 2.8).

Corollary 2 Bounded inconsistency checking of standard ASMs that do not allow
nesting of choose statements within forall statements reduces to satisfiability in T ≺.

5 Related Work

Preliminary versions of some of the results in this paper have appeared in Refs. [35,
37, 39]. We use the state of the art SMT solver Z3[13] for our experiments. Our cur-
rent experiments use a lazy quantifier instantiation scheme that is on one hand not
limited to basic model programs, but is on the other hand also not complete for basic
model programs, some of the implementation aspects are discussed in Ref. [39]. In
particular, the scheme discussed in Ref. [39] is inspired by Ref. [11], and extends it
by using model checking to implement an efficient incremental saturation procedure
on top of Z3. The saturation procedure is similar to CEGAR[12], the main difference
is that we do not refine the level of abstraction, but instead lazily instantiate axioms
in case their use has not been triggered during proof search. Implementation of the
reduction of BMPC of basic model programs to linear arithmetic is ongoing work. In
that context the reduction to Z3 does not need to complete all the reductions in the
decision procedure of T ≺, but can take advantage of built-in support for Ite terms,
sets, and tuples.

Model programs are used as high-level specifications in model-based testing tools
such as Spec Explorer[36] and NModel[30]. In Spec Explorer, one of the supported
input languages is the abstract state machine language AsmL[4,20]. In that context,
sanity checking or validation of model programs is usually achieved through simu-
lation and explicit state exploration and search techniques[26,36]. Model checking of
ASMs is studied in Refs. [40, 41] using explicit state model checking with the SMV
model checker; different temporal logics are considered for expressing properties. Be-
sides safety properties, we have not considered general temporal properties, also, their
semantics is unclear in the case of bounded-depth exploration. The unbounded reach-
ability problem for model programs without comprehensions and with parameterless
actions is shown to be undecidable in Ref. [17], where it is called the hyperstate reach-
ability problem. General reachability problems for transition systems are discussed
in Ref. [33] where the main results are related to guarded assignment systems.

The decidable fragment BAPA[28] is an extension of Boolean algebra with Pres-
burger arithmetic. The sets in BAPA are finite and bounded by a maximum size
and the cardinality operator is allowed. Comprehensions are not possible and the
element-of relation is not allowed, i.e. integers and sets can only be related through
the cardinality operator. A decidable fragment of bag (multiset) constraints combined
with summation constraints are considered in Ref. [31] where summation constraints
can be used to express set cardinality.

Sets and maps are used as foundational data structures in many modeling and
analysis methods such as RAISE, Z, TLA+, B, see Ref. [6]. The ASM method is also
described in Ref. [6]. In some cases, like in RAISE, the underlying logic is three-valued
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in order to deal with undefined values in specifications. In many of those formalisms,
frame conditions need to be specified explicitly, and are not implicit as in the case of
model programs or ASMs. In Alloy[25], the analysis is reduced to SAT, by finitizing
the data types. In our case the analysis is reduced to SMT, and rather than bounding
the size of the data, the search depth is bounded. Traditional untyped ASMs often
assume a rich background[7] that includes hereditarily finite sets and maps, and there
is a specific Undef element in the universe to deal with partial functions (for Booleans
the Undef value is false).

The data structures that are allowed in the Jahob verification system[10] also
allow sets and set operations. The algorithm described in Section 4 is similar, in some
parts, to the translation scheme described in Ref. [10, Appendix B]. Their translation
leads to a first-order formula targeted to a resolution theorem prover. As shown in
Section 3, such a translation cannot, in general, provide a semi-decision procedure for
T , because of Σ1

1-hardness of the satisfiability problem for T .
The reduction of the theories of arrays, sets and multisets to the theory of equality

with uninterpreted function symbols and linear arithmetic is used in Ref. [27] for
constructing interpolants for these theories.

The technique of bounded model checking by using SAT solving was pioniered
in Ref. [5] and the extension to SMT was introduced in Ref. [14], a related approach
was proposed in Ref. [2]. Besides Z3[13], other SMT solvers that support arrays and
sets are described in Refs. [3, 15, 34].
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