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Abstract: Audio signal enhancement often involves the application of a time-varying filter, or 
suppression rule, to the frequency-domain transform of a corrupted signal. Known approaches 
use rules derived under Gaussian models and interpret them as spectral estimators in a Bayesian 
statistical framework. While this mathematical approach provides rules that satisfy certain op-
timization criteria these rules are not optimal when the enhanced signal is for a speech recogni-
tion engine. In this paper we present the approach and the results for creation of a speech recog-
nition friendly suppression rule. The described approach increases the average speech recogni-
tion rate in Aurora 2 tests from 52.47% to 77.69% while maintaining performance for low noise 
utterances. 
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Introduction 
In this paper we address an important issue in audio signal processing, that of creation of noise ro-

bust speech recognition engines. Due to its ubiquity in applications of this nature, we concentrate on 
short-time spectral attenuation, a popular method of broadband noise reduction in which a time-varying 
filter, or suppression rule, is applied to the frequency-domain transform of a corrupted signal. We first 
address existing suppression rules derived under a Gaussian statistical model and interpreted in a Bayes-
ian framework. We then derive a new speech recognition friendly suppression rule using multidimen-
sional optimization methods.  

To date, the most popular methods of broadband noise reduction involve the application of a time-
varying filter to the frequency-domain transform of a noisy signal. Let ( )nx x nT=  in general represent 
values from a finite-duration analog signal sampled at a regular interval T, in which case a corrupted se-
quence may be represented by the additive observation model n n ny x d= + , where yn represents the ob-
served signal at time index n, xn is the original signal, and dn is additive random noise, uncorrelated with 
the original signal. The goal of signal enhancement is then to form an estimate ˆnx of the underlying signal 
xn based on the observed signal yn. In many implementations where efficient on-line performance is re-
quired, the set of observations {yn} is filtered using the overlap-add method of short-time Fourier analysis 
and synthesis, in a manner known as short-time spectral attenuation. Taking the discrete Fourier trans-
form on windowed intervals of length N yields K frequency bins per interval: Yk = Xk + Dk, where these 
quantities are complex. Noise reduction in this manner may be viewed as the application of a suppression 
rule, or nonnegative real-valued gain Hk, to each bin k of the observed signal spectrum Yk, in order to 
form an estimate ˆ

kX of the original signal spectrum: ˆ
k k kX H Y= ⋅ . This spectral estimate is then inverse-

transformed to obtain the time-domain signal reconstruction. 
Within such a framework, a simple Gaussian model often proves effective [1]. In this case the ele-

ments of {Xk} and {Dk} are modeled as independent, zero-mean, complex Gaussian random variables 
with variances ( )x kλ and ( )d kλ , respectively: 2 (0, ( ) )k xX kλΝ Ι∼ , 2 (0, ( ) )k dD kλΝ Ι∼ .  

A frequent goal in signal enhancement is to minimize the mean-square error of an estimator; within 
the framework of Bayesian risk theory, this MMSE criterion may be viewed as a squared-error cost func-
tion. Considering the corrupted signal model, the Bayes' rule, and the prior distributions defined above, 

the optimal suppression rule in an MMSE sense is x
k

x d

H λ
λ λ

=
+

, which is recognizable as the well-

known Wiener filter [2]. Later McAulay and Malpass [3] derive a maximum-likelihood (ML) spectral 
amplitude estimator under the assumption of Gaussian noise and an original signal characterized by a 
deterministic waveform of unknown amplitude and phase. As an extension of the underlying model, Eph-
raim and Malah [4] derive a minimum mean-square error (MMSE) short-time spectral amplitude estima-



tor based on the assumption that the Fourier expansion coefficients of the original signal and the noise 
may be modeled as statistically independent, zero-mean, Gaussian random variables. They introduce the 

a priori and a posteriori signal-to-noise ratios (SNR) as 
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suppression rule is a function of these two SNRs: ( , )k k kH f ξ λ= . The success of the Ephraim and 
Malah suppression rule is largely due to the authors' decision-directed approach for estimating the a pri-
ori SNR kξ . For a given audio frame n, the decision-directed a priori SNR estimate k̂ξ  is given by a 
geometric weighting of the SNR in the previous and current frames:  

[ ]
ˆ ( 1)ˆ (1 ) max 0, ( ) 1 , [0,1)
( 1, )
k

k k
d

X n
n

n k
ξ α α γ α

λ
−

= + − − ∈
−

.  

The spectral amplitude estimator given by Ephraim and Malah, while being optimal in an MMSE 
sense, requires the computation of exponential and Bessel functions. Wolfe and Godsil [1] derive the ana-
lytic form of three alternative suppression rules under the same model, each of which admits a more 
straightforward implementation. Otherwise, they are more or less close to the Ephraim and Malah sup-
pression rule. Each one of these suppression rules is optimal in some sense, but none of them is opti-
mized for best speech recognition results. Each of the suppression rules introduce distortions that damage 
speech features important for speech recognition.  

Speech recognition friendly suppression rule 

A generalized noise suppressor can be represented as ˆ arg( ). ( , )k k k k k kX Y H Yξ γ= ⎡ ⋅ ⎤⎣ ⎦ , where Hk is 

the suppression rule. It can be parameterized as a square LxL matrix, where the working range of values 
for kξ  and kλ  are presented as L discrete values. Intermediate values can be obtained by using interpola-
tion methods. 

In this case the derivation of the suppression rule is converted to optimization problem with L2 opti-
mization parameters – the values of Hk in the matrix. To optimize the parameters of the noise suppression 
rule, we maximize an objective function that is closely related to speech recognition accuracy. The objec-
tive function used in this paper is maximum mutual information (MMI), which is well known to be corre-
lated with speech recognition accuracy [6]. 

To optimize the suppression rule parameters Hk with respect to the MMI objective function F, we 
use the Rprop algorithm [5]. At each iteration, this algorithm requires the value of the objective function 
at the current parameter values, and the gradient of the objective function with respect to each parameter 
at the current parameter values. It can be shown [7] that the desired gradients are equal to: 

i

i i

dxdF dF
d dx dθ θ

=∑ , where xi are the speech recognition features for the current frame and θ  is a parame-

ter from Hk. The gradient idx
dθ

 of the features with respect to the noise suppression parameters was com-

puted by using a discrete approximation to the derivative function. The gradient 
idx

dF
 and the sum can be 

computed as demonstrated previously [7]. The optimization starting point was initialized with the Mini-
mum Mean Square Error Spectral Power Estimator rule [1], chosen based on superior recognition results 
compared to other rules. 

All of the experiments reported in this paper were performed under the Aurora 2 noise robust speech 
recognition framework [8]. The acoustic model is trained with 8,440 noise-free utterances, using the 
“complex” backend training scripts. The test set consists of the 20,020 utterances in Set A, which were 
constructed by artificially mixing 4,004 clean utterances with four recorded noise types at 0, 5, 10, 15 and 
20 dB SNR. All audio files have an 8,000 Hz sampling rate. 



Results 
Here we discuss the average recognition rate, obtained using all test data and clean recognition rate, 

obtained by using only clean speech data. Without noise suppression, the average recognition rate was 
52.47%, and the recognition rate on the clean signals was 99.53%. Table 1 presents the speech recogni-
tion results when noise suppression is employed. For noisy 
speech, the baseline (with the MMSE noise suppression rule) 
performs much better (74.90%) than the reference system 
(52.47%). But, for clean speech it has a much lower accu-
racy (96.88%) than the reference (99.53%). Further optimi-
zation of the noise suppression parameters reduces the aver-
age number of errors by 11% relative, and the number of 
clean condition errors has dropped by 69% relative. Figure 1 
shows the initial suppression rule, the final suppression rule 
and the difference between the two.  

Conclusions 
The presented approach for finding a suppression rule that is optimal from a speech recognition rate 

perspective substantially improves the speech recognition results for noisy speech, without serious deg-
radation of the clean speech results. The suppression rule is computationally efficient and suitable for 
real-time applications. The speech recognition rate for Aurora 2 tests is increased from 52.47% to 
77.69% while keeping the clean speech results degradation minimal (from 99.53% to 99.02 %).  
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Table 1. Speech recognition results 
Iteration Average Clean

0 74.90 96.88
5 76.20 97.55

10 77.26 98.45
15 77.49 99.04
20 77.69 99.02
25 77.82 98.66
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Figure 1. Initial and final suppression rules and the difference between them. 


