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Introduction

Purpose: To predict destinations of travel based on public data.

A demo: Visitor drives from the Forbidden Palace in Beijing to

the International Airport.
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Introduction

Applications:

Recommend sightseeing places

Send targeted advertisements

Automatically set destinations and route in navigation

systems
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Introduction

An example of a baseline solution adapted from existing work:

Settings

A user travels from l1 to l4: Predicted destinations l7 and l8

Query trajectory {l1, l2, l3}: no predicted destination due to

lack of training data.

Baye’s rule

P(d ∈ lj |T
p
) =

P(T p |d ∈ lj ) · P(d ∈ lj )

g2
∑

k=1

P(T p |d ∈ lk ) · P(d ∈ lk )

Data Sparsity Problem
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Destination Prediction

Sub-Trajectory Synthesis (SubSyn):

Solves the data sparsity problem by expanding the

historical dataset.

Two phases: Decomposition and Synthesis
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Destination Prediction

Sub-Trajectory Synthesis (SubSyn): Decomposition

Partition and group POIs into grid cells.
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Destination Prediction

Sub-Trajectory Synthesis (SubSyn): Decomposition

Partition and group POIs into grid cells.

Decompose historical trajectories into sub-trajectories.
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Destination Prediction

Sub-Trajectory Synthesis (SubSyn): Decomposition

Use Markov model

Transition matrix M: p12, p14, p78, etc.

n1

n4
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n5

n3

n6

n7 n8 n9

1

2

n1 n2 n3

n4 n5 n6

n7 n8 n9

p14 ≈ 0.67

p12 ≈ 0.33

Figure: 3 × 3 Markov model
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Destination Prediction

Sub-Trajectory Synthesis (SubSyn): Synthesis

Starting from n1, what is the probability of travelling to n9?

Shortest Path is 4: p1→9 = M4
1,9

M4: transition between cells with distance 4.

n1

n4

n2

n5

n3

n6

n7 n8 n9

Consider detour (within 1.2 times shortest path. α = 0.2)

Users may travel either distance 4 or 5 (⌈4 × 1.2⌉) to reach

n9: p1→9 = M4
1,9 + M5

1,9



Introduction Destination Prediction Privacy Protection Experimental Study Conclusion

Destination Prediction

Sub-Trajectory Synthesis (SubSyn): Synthesis

Given a user’s route: T p = {n1,n4,n5},

The probability of n9:

P(n9|T
p) = P(n9|n1,n4,n5)

∝
p5→9

p1→9
· P(n9|n1) (derivation in paper using Bayes’ rule)
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Algorithms

P(nk |T
p) ∝

pc→k

ps→k
· P(nk |ns)

Two stages: Training and Prediction

SubSyn-Training constructs Markov model and computes

various probabilities needed for prediction. (RHS of the

equation)

Efficiently perform huge matrix multiplications. E.g.,

compute M100 where M is a 2500 × 2500 matrix.

SubSyn-Prediction retrieves these probabilities to compute

the destination probabilities P(nk )|T
p)
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Privacy Protection
Demo

A demo: check-ins on your way home.
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Privacy Protection
Methods

Exhaustive Generation Method

Iteratively delete each node in query trajectory

Inefficient

End-Points Generation Method

Theorem: Only the starting and current nodes affect the

probabilities of predicted destinations

Is a property of first-order Markov model

Dramatically reduced search space, efficient for online

queries



Introduction Destination Prediction Privacy Protection Experimental Study Conclusion

Experimental Study
Dataset

Real-world taxi trajectory dataset in the city of Beijing.

Contains:

580,000 taxi trajectories

5 million kilometres of

distance travelled
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Experimental Study
Grid Granularity

Figure: Map of Beijing with 30 × 30 grid overlay: Each cell ≈ 1.78km2
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Experimental Study
Effectiveness

Randomly pick 1000 test/query trajectories

Algorithms: Existing vs SubSyn

Measurements: Coverage and Prediction Error
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Experimental Study
Runtime Efficiency

SubSyn-Training

Grid Granularity 20 30 40 50

Running Time (hours) 0.03 0.5 3 17

Commodity computer: Intel i7-860 CPU 4GB RAM

SubSyn-prediction
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Conclusion

Identified Data Sparsity Problem, and proposed a

Sub-Trajectory Synthesis (SubSyn) algorithm which

successfully addressed the problem.

SubSyn decomposes historical trajectories into

sub-trajectories to exponentially increase practicality.

SubSyn can predict destinations for up to ten times more

query trajectories than the existing algorithm.

Runs over two orders of magnitude faster constantly.

Also proposed an efficient method (two orders of

magnitude faster) to avoid privacy leak.
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Questions

Questions?

Demo:

http://spatialanalytics.cis.unimelb.edu.au/subsyndemo/

Contacts:

Andy Yuan Xue andy.xue@unimelb.edu.au

http://people.eng.unimelb.edu.au/yuanx/

Rui Zhang rui.zhang@unimelb.edu.au

http://people.eng.unimelb.edu.au/zr/
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