
StreamRec: A Real-Time Recommender System

Badrish Chandramouli1 Justin J. Levandoski2§ Ahmed Eldawy2§ Mohamed F. Mokbel2§

1Microsoft Research, Redmond, WA, badrishc@microsoft.com
2University of Minnesota, Minneapolis, MN, {justin,eldawy,mokbel}@cs.umn.edu

1. INTRODUCTION
Research and development of recommender systems has been a

vibrant field for over a decade, having produced proven methods
for “preference-aware” computing. Recommenders use commu-
nity opinion histories to help users identify interesting items from a
considerably large search space (e.g., inventory from Amazon [7],
movies from Netflix [9]). Personalization, recommendation, and
the “human side" of data-centric applications are even becoming
important topics in the data management community [3].

A popular recommendation method used heavily in practice is
collaborative filtering, consisting of two phases: (1) Anoffline
model-buildingphase that uses community opinions of items (e.g.,
movie ratings, “Diggs” [6]) to build a model storing meaningful
correlations between users and items. (2) Anon-demandrecom-
mendationphase that uses the model to produce a set of recom-
mended items when requested from a user or application.

To be effective, recommender systems must evolve with their
content. In current update-intensive systems (e.g., social networks,
online news sites), the restriction that a model be generated of-
fline is a significant drawback, as it hinders the system’s abilityto
evolve quickly. For instance, new users enter the system chang-
ing the collective opinions over items, or the system adds new
items quickly (e.g., news posts, Facebook postings), whichwidens
the recommendation pool. These updates affect the recommender
model, that in turn affect the system’s recommendation quality in
terms of providing accurate answers to recommender queries. In
such systems, a completelyreal-time recommendation process is
paramount. Unfortunately, most traditional state-of-the-art recom-
menders are “hand-built", implemented as custom softwarenotbuilt
for a real-time recommendation process [1]. Further, for some

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Human Factors

§The research of these authors is supported in part by the National
Science Foundation under Grants IIS-0811998, IIS-0811935, CNS-
0708604, IIS-0952977 and by a Microsoft Research Gift

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

scenarios, a purely request-based recommendation model does not
scale with the number of subscribers; this suggests the needfor
more “push-based” recommendation schemes.

In this demonstration, we proposeStreamRec, a recommender
system architecture that leverages a stream processing system [4,
5]. StreamRecaddresses the drawbacks of more traditional rec-
ommender systems through two salient features: (1)Real-time in-
cremental processing. Streaming systems are architected for high-
throughput processing, where query operators are tuned forincre-
mental evaluation, meaning the recommendation process (model
building and recommendation generation) can be performed in real-
time. (2)Push-based subscriptions. Users can register long-running
recommendation requests, updated only when their recommenda-
tion list changes; in some cases, this approach is more scalable
than on-demand systems that regenerate whole recommendations
from scratch for each query. Alternatively, requests can have short
lifetimes, causingStreamRecto revert to an on-demand system.

The basic idea ofStreamRecis to model a recommendation sys-
tem as a complex event processing (CEP) application. We show
that well-known collaborative filtering recommender models can
be expressed usingonly native incremental streaming operators.
StreamRecis scalable, as all the operations used in our solution
are parallelizable. Moreover, the entire recommender can be ex-
pressed using asinglestream query plan.StreamRecaccepts two
input stream types: (1)Update events: a stream of new user opin-
ions (e.g., movie ratings), used to incrementally update the rec-
ommender model and (2)Recommend events: a stream of re-
quests to produce recommendations (e.g., “recommend user Al-
ice 10 movies”). Recommendations can bepull-based(e.g., on-
demand) orpush-based, which are registered withStreamRecover
an extended period. Recommendations are produced by joining
recommend eventswith the maintained recommender model. In
addition,StreamReccan easily provide recommendationfreshness;
using event windows, older “stale” opinions (e.g., ratings) can de-
cay within the recommender model over time, meaning recommen-
dations rely on current opinion trends and remain “fresh”. We im-
plementStreamRecusing the Microsoft StreamInsight stream pro-
cessing system [2].

In the rest of this paper, we provide details of ourStreamRec
demo. Section 2 provides background information, while Section 3
provides the details ofStreamRec. Finally, Section 4 describes our
StreamRecdemonstration and application scenario.

2. BACKGROUND
Collaborative Filtering. Our demo uses collaborative filtering

as its recommendation approach, a popular method used in real-
world systems [7]. Collaborative filtering (CF) assumes a set of n
usersU = {u1, ..., un} and a set ofm itemsI = {i1, ..., im}.

Each useruj expresses opinions about a set of itemsIuj
⊆ I.

Opinions can be a numeric ranking (e.g., one to five stars in Net-
flix [9]), or unary (e.g., a “Digg" [6]). Given a querying useruq,
CF produces a set ofk recommended itemsIr ⊂ I thatuq is pre-
dicted to like the most. There are many CF paradigms (see [1] for
a comprehensive survey). Each follows a similar two-phase model-
building then recommendation generation approach, described be-
low for the popular item-based CF method used this demo.

Phase I: Model Building. This phase computes a similarity score
sim(ip,iq) for each pair of objectsip andiq (represented as vectors
in the user-rating space) that have at least one co-rated dimensions.
In this demo we use Cosine similarity as our measure due to its
popularity [7], computed as:

sim(ip, iq) = k
~ip · ~iq

‖~ip‖‖~iq‖
(1)

A model is built that stores for each item itemi ∈ I, a listL of
similar items ordered by a similarity scoresim(ip,iq).

Phase II: Recommendation Generation. Given a querying user
uq , recommendations are produced by computinguq ’s predicted
ratingP(uq ,i) for each itemi not rated byuq :

P(ut,i) =

∑
l∈L

sim(i, l) ∗ ruq,l∑
l∈L

|sim(i, l)|
(2)

Before this computation, we reduce each similarity listL to con-
tain only itemsratedby useruq. The prediction is the sum ofruq,l,
the user’s rating for a related iteml ∈ L weighted bysim(i,l), the
similarity of l to candidate itemi, then normalized by the sum of
similarity scores betweeni andl. The user receives as recommen-
dations the top-k items ranked byP(ut,i).

Stream Processing Systems. A streamis a sequencee1, e2, . . . , en
of events. Aneventei = 〈p, c〉 is an outside notification (e.g., user
rating) that consists of apayloadp = 〈p1, . . . , pk〉 (e.g., rating
value), and eventmetadac. While the exact metadata varies across
systems [5, 10], two common notions are: (1) an event generation
time, and (2) a time window, which indicates the period of time
over which an event can influence output. We capture these by
definingc = 〈LE,RE〉, where the time interval[LE,RE) specifies
the period (orlifetime) over which the event contributes to output.
The left endpoint (LE) of this interval is the application time of
event generation, also called the eventtimestamp.

3. StreamRec DESCRIPTION
Figure 1 depicts part of StreamRec’s fully incremental contin-

uous query plan for end-to-end item-based collaborative filtering.
The plan covers model generation as well as similarity scoring and
recommendation. The input to our recommender consists of two
streaming events: (1)Update events, which are user ratings for
items, and (2)Recommend events, which are requests for recom-
mendations for a target user. We model the input using a com-
mon schema (Timestamp, StreamId, UserId, ItemId, Rating).An
event with StreamId=0 denotes a new rating for an item, while
StreamId=1 denotes a request for recommendation by a user (in
the latter case, ItemId and Rating are null). Recommendation re-
quests can be registered withStreamRecby using: (1)Edge events,
which sets the event lifetime end asRE = ∞. Edge eventsal-
low users to “subscribe” to their recommendation list over aperiod
of time. This approach is geared towardpush-basedapplications,
whereStreamReconly sends updates (changes) to the user recom-
mendation list. (2)Point events, which are“instantaneous” events
with no lifetime, whereRE is set toLE+ δ whereδ is the smallest
possible time-unit.Point eventsallow the user to receive a one-time

�

�

�

Select
StreamId==1

Multicast

GroupApply

Multicast

Select
StreamId==0

TemporalJoin

GroupApply

Cosine
similarity
subplan

GroupApply

Weighted
sum

subplan

apply branch

Top-k

join1

ga1

join2

ga4

input of ratings & requests

stream1

stream1 apply
branch

final output

AlterLifetime

TemporalJoin

Union

Select
StreamId==0

GroupApply

Select
StreamId==1

ga2

ga3

Figure 1: Part of StreamRec’s recommender plan

on-demand recommendation list. This approach is geared toward
pull-basedapplications

Model Building. Model building works as follows:

• We first perform an AlterLifetime operation on ratings events
to control the window of historical ratings that are used for
building the model. Applying this windows allows the sys-
tem to decay older “stale" user opinions over time, allowing
the model to rely on newer “fresh" user opinions (an infinite
window implies ratings will never decay).

• For each rating event for itemItem1by userUser1, we per-
form a temporal self-equi-join on UserId using the Tempo-
ralJoin operator (join1) to produce events (UserId, Item1,
Rating1, Item2, Rating2) for every pair of items rated by
User1. The TemporalJoin operator allows correlation be-
tween two streams. It outputs the relational join between
its left and right input events. Streaming systems typically
implement TemporalJoin as a symmetric hash join, where
events along each input are stored in a separate internaljoin
synopsis. Further, each join output has a lifetime consisting
of the intersection of the joining event lifetimes.

• Events fromjoin1 are fed into the GroupApply operator (ga1)
with grouping keyItem1, followed by a second GroupApply
(ga2) with grouping keyItem2. The GroupApply operator
allows us to specify a grouping key, and a query sub-plan
(calledapply branch) to be “applied” to each group (depicted
as a dotted box in Figure 1). Within each group inga1,
we produce an aggregate cosine similarity across all users
for each item thatItem1pairs with, producing a stream of
(Item2, SimScore) events. A streaming aggregation operator
(e.g., Average, Top-k) reports a result each time the active
event set changes. The similarity metric is computed in an
incremental manner, by using one built-in sum operator for
each term in Equation 1, followed by Project to compute the
similarity score. For unary ratings (e.g., Diggs [6]), we sub-
stitute the vector similarity for cosine similarity, which, inter-
estingly, can still be expressed using compositions of native
streaming operators (details omitted for brevity).

• These events serve as input to a TemporalJoinjoin2—still
within ga1—that effectively holds the model in memory (in
the right join synopsis) for scoring in the future.

Recommendation Generation. Recommendation generation works
as follows:

• When a new recommendation request event arrives for user
User1, we first send the event tojoin1, in order “look up” the
previously rated items (Item1) for User1.

• The join results are grouped byItem1, by re-using GroupAp-
ply ga1. Within the group, for each itemItem1, we “look up”
similarity scores of related items usingjoin2, and produce a
stream (as output ofga1) that contains, for every itemItem1
rated byUser1, an event for every other item (sayItem2) that
Item1is similar to.

• These events are re-grouped by UserId using GroupApply
ga3. For each user, we group by the second item (Item2)

(a) MSRNews (b) MSRFlix
Figure 2: Demonstration Applications

using another GroupApplyga4, and an aggregate (weighted
sum) is used to compute the predicted recommendation score
of Item2for User1(i.e., Equation 2).

• We eliminate items that have been previously rated by the
user, using aLeftAntiSemiJoinoperator (details omitted). Fi-
nally, we use a Top-k aggregation operator to report the final
recommendation forUser1.

In case a request arrives as an edge event, the corresponding
events gets lodged in the right synopsis of join1 and the leftsyn-
opsis of join2. As a consequence, any change to either items rated
by the user or to the model itself causes the query to produce an
update to the top-k result that is then pushed to the user.

We implement the entire recommendation process usingonlyna-
tive stream operators, ensuring high performance. Every operator
is either stateless, within a GroupApply, or is an equijoin,which
implies that the computation can easilyscale outon a cluster.

4. DEMONSTRATION SCENARIO

4.1 Application
We provide two applications built specifically for this demo.

(1) MSRNews, a social news application (similar to Digg).
MSRNewsusesStreamRecto provide personalized news feeds us-
ing collective user feedback (e.g., “likes") for popular news post-
ings. (2)MSRFlix, a movie recommendation application.MSRFlix
usesStreamRecto provide movie recommendations using collec-
tive user ratings for movies. Both applications come in two ver-
sions: (a)Mobile-based, implemented as a Microsoft Windows
Phone 7 application, depicted in Figure 2, and (b)Web-based, dis-
played in a standard web browser (screenshot omitted for space).
In both applications users perform three basic tasks: (1)Get rec-
ommendationsfrom the system (e.g., news feeds, movies), (2)Give
opinions(e.g., “like" news posts, rate movies), (3)Addnew items to
the system (e.g., news posts, movies). Each action triggersan event
in the underlyingStreamRecrecommender system, implemented in
Microsoft StreamInsight, as depicted in Figure 3. Specifically, the
get recommendationstask triggers arecommend event(depicted as
a solid line in Figure 3), while thegive opinionandadd tasks trig-
gerupdate events(depicted as dashed lines in Figure 3).

4.2 Data, Applications, and Queries
Data. To build the initial recommendation model inMSRFlix,

we use the popular MovieLens open-source movie ratings data[8].
The rating domain is a user-specified value in the range of [1-5].
ForMSRNews, we use publicly available data from the Digg [6] so-
cial news website with a unary rating domain where users can only
“like” a news item. For both applications, attendees will generate
new data as they use the system. This new data will instantly inte-
grate intoStreamRec, producing fresh relevant recommendations.

StreamRec Recommender Engine

“Push-Based” Mobile App “Pull-Based” Web App

N
e

w
 i

te
m

s/
re

v
ie

w
s

N
e

w
 ite

m
s/re

v
ie

w
s

Recommend events

Update events

Figure 3: Demonstration scenario overview

Push and Pull Applications. We use two application types
to showcasesubscription and on-demandrecommendations in
StreamRec(depicted in Figure 3). (1)Push-based. The mobile
version of our applications receive push-based recommendations,
meaning updates to user recommendation lists are pushed to the
device whenStreamRecdetects a change in a user’s top-n recom-
mendations. (2)Pull-based. The web version of our applications
receive recommendations for a user only after explicitly submitting
a recommend request to the underlyingStreamRecengine.

4.3 Walkthrough
Our walkthrough showcases the features ofStreamRecin three

phases : (1)Initial recommendations. The attendee will register
with MSRNewsor MSRFlix, and give opinions on a number of ex-
isting news items or movies in the system. This action will cause
StreamRecto provide the attendee with an initial set of top-n rec-
ommendations. (2)Witness instant updates. Using the mobile ver-
sion of MSRNewsor MSRFlix, the attendee will open their rec-
ommendation list, and witness it changing even though they have
not rated any new items. This behavior is the result ofStreamRec
pushing updates to the recommendation list asother usersadd or
rate new items in the system (thereby changing the recommender
model). (3)Witness freshness. Without anyother user activity, at-
tendees will see their recommendation list change, asStreamRec
decays older ratings in the system in favor of newer ratings (de-
scribed in Section 3), thereby keeping recommendationsfresh.

As StreamRecis a fully developed systems, the attendee will also
be free to use our demo applications in an ad-hoc manner. Access to
StreamRec’s backend (implemented using StreamInsight as the un-
derlying engine) will also be available through Visual Studio 2010,
where attendees can visualize query plans, analyze the event flow
graphically to see how/why particular ratings were generated, and
examine performance statistics on a per-operator basis.

5. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions.TKDE,
17(6), 2005.

[2] M. Ali et al. Microsoft CEP Server and Online Behavioral Targeting. InVLDB,
2009 (demonstration).

[3] S. Amer-Yahia et al. Crowds, Clouds, and Algorithms: Exploring the Human
Side of Big Data Applications. InSIGMOD, 2010.

[4] B. Babcock et al. Models and issues in data stream systems. In PODS, 2002.
[5] R. Barga et al. Consistent streaming through time: A vision for event stream

processing. InCIDR, 2007.
[6] Digg: http://digg.com.
[7] G. Linden et al. Amazon.com Recommendations: Item-to-Item Collaborative

Filtering. IEEE Internet Computing, 7(1), 2003.
[8] MovieLens: http://www.movielens.org.
[9] Netflix: http://www.netflix.com.

[10] U. Srivastava and J. Widom. Flexible time management indata stream systems.
In PODS, 2004.

