StreamRec: A Real-Time

Badrish Chandramouli*

!Microsoft Research, Redmond,

Justin J. Levandoski?

Recommender System

Ahmed Eldawy? Mohamed F. Mokbel?

WA, badrishc@microsoft.com

2University of Minnesota, Minneapolis, MN, {justin,eldawy,mokbel}@cs.umn.edu

1. INTRODUCTION

Research and development of recommender systems has been
vibrant field for over a decade, having produced proven nutho
for “preference-aware” computing. Recommenders use commu
nity opinion histories to help users identify interestitens from a
considerably large search space (e.g., inventory from Am#z],
movies from Netflix [9]). Personalization, recommendatiand
the “human side" of data-centric applications are even inéogp
important topics in the data management community [3].

A popular recommendation method used heavily in practice is
collaborative filtering consisting of two phases: (1) Aoffline
model-buildingphase that uses community opinions of items (e.g.,
movie ratings, “Diggs” [6]) to build a model storing meaniag
correlations between users and items. (2)dmdemandecom-
mendationphase that uses the model to produce a set of recom-
mended items when requested from a user or application.

To be effective, recommender systems must evolve with their
content. In current update-intensive systems (e.g., boetaorks,
online news sites), the restriction that a model be gengrafte
fline is a significant drawback, as it hinders the system’s ahitity
evolve quickly. For instance, new users enter the systemgeha
ing the collective opinions over items, or the system adds ne
items quickly (e.g., news posts, Facebook postings), wividens
the recommendation pool. These updates affect the recodenen
model, that in turn affect the system’s recommendationityuid
terms of providing accurate answers to recommender quehies
such systems, a completelgal-time recommendation process is
paramount. Unfortunately, most traditional state-of-tinerecom-
menders are “hand-built", implemented as custom softwarbuilt
for a real-time recommendation process [1]. Further, foneso

Categories and Subject Descriptors
H.2.4 [Database M anagement]: Systems
General Terms

Algorithms, Design, Human Factors

8The research of these authors is supported in part by therdat
Science Foundation under Grants 11S-0811998, 11S-081,10BEs-
0708604, 11S-0952977 and by a Microsoft Research Gift

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’11,June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

scenarios, a purely request-based recommendation moeteindo
gcale with the number of subscribers; this suggests the faeed
more “push-based” recommendation schemes.

In this demonstration, we propo&treamReca recommender
system architecture that leverages a stream processitensy4,

5]. StreamRe@ddresses the drawbacks of more traditional rec-
ommender systems through two salient featuresR@al-time in-
cremental processingStreaming systems are architected for high-
throughput processing, where query operators are tunaddie-
mental evaluation, meaning the recommendation procesdelmo
building and recommendation generation) can be performsshil-
time. (2)Push-based subscriptiongsers can register long-running
recommendation requests, updated only when their recoctenen
tion list changes; in some cases, this approach is morebdeala
than on-demand systems that regenerate whole recommamslati
from scratch for each query. Alternatively, requests carelshort
lifetimes, causingstreamReto revert to an on-demand system.

The basic idea oBtreamReds to model a recommendation sys-
tem as a complex event processing (CEP) application. We show
that well-known collaborative filtering recommender madean
be expressed usingnly native incremental streaming operators.
StreamReds scalable, as all the operations used in our solution
are parallelizable. Moreover, the entire recommender @aaxs
pressed using aingle stream query planStreamRe@ccepts two
input stream types: (1)pdate eventsa stream of new user opin-
ions (e.g., movie ratings), used to incrementally updagertt-
ommender model and (ZRecommend eventsa stream of re-
quests to produce recommendations (e.g., “recommend user A
ice 10 movies”). Recommendations can padl-based(e.g., on-
demand) opush-basegwhich are registered witBtreamReover
an extended period. Recommendations are produced by goinin
recommend eventsith the maintained recommender model. In
addition,StreamRecan easily provide recommendatifrashness
using event windows, older “stale” opinions (e.g., ratjngsn de-
cay within the recommender model over time, meaning recamme
dations rely on current opinion trends and remain “fresh ivil-
plementStreamReaising the Microsoft StreamlInsight stream pro-
cessing system [2].

In the rest of this paper, we provide details of &treamRec
demo. Section 2 provides background information, whileise®
provides the details ddtreamRecFinally, Section 4 describes our
StreamRedemonstration and application scenario.

2. BACKGROUND

Collaborative Filtering. Our demo uses collaborative filtering
as its recommendation approach, a popular method used lin rea
world systems [7]. Collaborative filtering (CF) assumesto$e
usersid = {u,...,un} and a set ofn itemsZ = {i1,...,im}.

streaml
GroupAppl!
TemporalJoin

final output

gal apply branch | GroupApply |ga3

apply
branch

Each usen; expresses opinions about a set of itefps C 7.
Opinions can be a numeric ranking (e.g., one to five stars in Ne
flix [9]), or unary (e.g., a “Digg" [6]). Given a querying usey,
CF produces a set éf recommended itenis, C 7 thatu, is pre-

TemporalJoin Jjginz | Sream?

GroupApply |ga2

joinl

AlterLifetime

dicted to like the most. There are many CF paradigms (seef1] f yisaect] Select| Cesne GroupApply [oa4
a comprehensive survey). Each follows a similar two-phaséeh ‘ :), subplan Weighted

. 0 q sum
building then recommendation generation approach, destie- Multicast subpan

input of ratings & requests

low for the popular item-based CF method used this demo. "
Figure 1. Part of StreamRec'srecommender plan

Phase I: Model BuildingThis phase computes a similarity score
sim(ip,iq) for each pair of objects, andi, (represented as vectors
in the user-rating space) that have at least one co-rateghdions.
In this demo we use Cosine similarity as our measure due to its

on-demand recommendation list. This approach is gearedrtbw
pull-basedapplications
M odel Building. Model building works as follows:

popularity [7], computed as:
ip - g
ll2nlllzqll

A model is built that stores for each item iteime Z, a list £ of
similar items ordered by a similarity scosen(iy,iq).

Phase II: Recommendation GeneratioGiven a querying user
uq, recommendations are produced by computiyé predicted
rating P, ;) for each item not rated byu,:

sim(ip,iq) =k

@)

Y ier SIm(i, 1) * Ty
Zlec |8’im(i, l)|

Before this computation, we reduce each similarity fisto con-
tain only itemgatedby useru,. The prediction is the sum of,, ;,
the user’s rating for a related itelne £ weighted bysim(i,l), the
similarity of [to candidate item, then normalized by the sum of
similarity scores betweehand!. The user receives as recommen-
dations the toge items ranked by°(.,, ;).

Stream Processing Systems. A streamis a sequencey, ez, . . ., e,
of events. Arevente; = (p, ¢) is an outside notification (e.g., user
rating) that consists of payloadp = (p1,..., px) (e.g., rating
value), and evennetadac. While the exact metadata varies across
systems [5, 10], two common notions are: (1) an event gdoarat
time, and (2) a time window, which indicates the period ofeim
over which an event can influence output. We capture these by
definingc = (LE, RE), where the time intervdLE, RE) specifies
the period (otifetime) over which the event contributes to output.
The left endpoint I(E) of this interval is the application time of
event generation, also called the evemtestamp

Py = 2

3. StreamRec DESCRIPTION

Figure 1 depicts part of StreamRec’s fully incremental oent
uous query plan for end-to-end item-based collaborativerifilg.
The plan covers model generation as well as similarity sgoaind
recommendation. The input to our recommender consists of tw
streaming events: (1)Ypdate eventswhich are user ratings for
items, and (2Recommend eventhich are requests for recom-
mendations for a target user. We model the input using a com-
mon schema (Timestamp, Streamld, Userld, Itemld, RatiAg).
event with Streamld=0 denotes a new rating for an item, while
Streamld=1 denotes a request for recommendation by a user (i
the latter case, Itemld and Rating are null). Recommendate
quests can be registered wifreamReby using: (1)Edge events
which sets the event lifetime end BE = oo. Edge eventsl-
low users to “subscribe” to their recommendation list ovpedod
of time. This approach is geared towgrdsh-basedpplications,
whereStreamReonly sends updates (changes) to the user recom-
mendation list. (2)Point eventswhich are“instantaneous” events
with no lifetime, whereRE is set toLE + § where/ is the smallest
possible time-unitPoint eventsllow the user to receive a one-time

e We first perform an AlterLifetime operation on ratings eent
to control the window of historical ratings that are used for
building the model. Applying this windows allows the sys-
tem to decay older “stale" user opinions over time, allowing
the model to rely on newer “fresh” user opinions (an infinite
window implies ratings will never decay).

e For each rating event for itettem1by userUserl, we per-
form a temporal self-equi-join on Userld using the Tempo-
ralJoin operatorjéinl) to produce events (Userld, Item1,
Ratingl, Item2, Rating2) for every pair of items rated by
Userl The TemporalJoin operator allows correlation be-
tween two streams. It outputs the relational join between
its left and right input events. Streaming systems typjcall
implement TemporalJoin as a symmetric hash join, where
events along each input are stored in a separate int@inal
synopsis Further, each join output has a lifetime consisting
of the intersection of the joining event lifetimes.

e Eventsfromoinlare fed into the GroupApply operataydl)
with grouping keylteml, followed by a second GroupApply
(ga?2 with grouping keyltem2 The GroupApply operator
allows us to specify a grouping key, and a query sub-plan
(calledapply branch to be “applied” to each group (depicted
as a dotted box in Figure 1). Within each groupgal,
we produce an aggregate cosine similarity across all users
for each item thattem1 pairs with, producing a stream of
(Item2, SimScore) events. A streaming aggregation operato
(e.g., Average, Top-k) reports a result each time the active
event set changes. The similarity metric is computed in an
incremental mannerby using one built-in sum operator for
each term in Equation 1, followed by Project to compute the
similarity score. For unary ratings (e.g., Diggs [6]), wésu
stitute the vector similarity for cosine similarity, whidhter-
estingly, can still be expressed using compositions olvaati
streaming operators (details omitted for brevity).

e These events serve as input to a Temporaljaim?—still
within gal—that effectively holds the model in memory (in
the right join synopsis) for scoring in the future.

Recommendation Generation. Recommendation generation works
as follows:

e When a new recommendation request event arrives for user
Userl we first send the event joinl, in order “look up” the
previously rated itemdtem1) for Userl

e The join results are grouped litgm1, by re-using GroupAp-
ply gal Within the group, for each itettem1, we “look up”
similarity scores of related items usijmn2, and produce a
stream (as output afal) that contains, for every itetem1
rated byUserl, an event for every other item (ségm2 that
Item1is similar to.

e These events are re-grouped by Userld using GroupApply
ga3 For each user, we group by the second itéten2

MSRNews =

MSRFLLX 5

News Feed

(@) MSRNews (b) MSRFIix
Figure2: Demonstration Applications

using another GroupApplga4, and an aggregate (weighted

“Push-Based” Mobile App “Pull-Based” Web App

StreamRec Recommender Engine

New items/reviews
SMIINDL/SWY MAN

v

<

Recommend events
--------- Update events

Figure 3: Demonstration scenario overview

sum) is used to compute the predicted recommendation score Push and Pull Applications. We use two application types

of Item2for Userl(i.e., Equation 2).

to showcasesubscription and on-demandrecommendations in

e We eliminate items that have been previously rated by the StreamReddepicted in Figure 3). (1Push-based The mobile

user, using &eftAntiSemiJoimperator (details omitted). Fi-
nally, we use a Top-k aggregation operator to report the final
recommendation fodserl

In case a request arrives as an edge event, the correspondin

events gets lodged in the right synopsis of joinl and theshafit
opsis of join2. As a consequence, any change to either itated r
by the user or to the model itself causes the query to prodoce a
update to the top-k result that is then pushed to the user.

We implement the entire recommendation process usihgna-
tive stream operators, ensuring high performance. Eveeyabpr
is either stateless, within a GroupApply, or is an equijeimich
implies that the computation can easilyale outon a cluster.

4. DEMONSTRATION SCENARIO
4.1 Application

We provide two applications built specifically for this demo
(1) MSRNews a social news application (similar to Digg).
MSRNewsisesStreamRec¢o provide personalized news feeds us-
ing collective user feedback (e.g., “likes") for populamsepost-
ings. (2)MSRFIlix a movie recommendation applicatiddSRFlix
usesStreamRedo provide movie recommendations using collec-
tive user ratings for movies. Both applications come in tvweo-v
sions: (a)Mobile-based implemented as a Microsoft Windows
Phone 7 application, depicted in Figure 2, and\{igb-baseddis-
played in a standard web browser (screenshot omitted faejpa
In both applications users perform three basic tasksG@f)rec-
ommendationfrom the system (e.g., news feeds, movies) GRje
opinions(e.g., “like" news posts, rate movies), @dnew items to
the system (e.g., news posts, movies). Each action triggeesent
in the underlyingStreamRececommender system, implemented in
Microsoft StreamlInsight, as depicted in Figure 3. Spedilficthe
get recommendatiortask triggers aecommend evelitiepicted as
a solid line in Figure 3), while thgive opinionandadd tasks trig-
gerupdate eventéepicted as dashed lines in Figure 3).

4.2 Data, Applications, and Queries

Data. To build the initial recommendation model MSRFlix
we use the popular MovielLens open-source movie ratings[8hta
The rating domain is a user-specified value in the range & [1-
ForMSRNewswe use publicly available data from the Digg [6] so-
cial news website with a unary rating domain where users on o
“like” a news item. For both applications, attendees wilhgeate
new data as they use the system. This new data will instamtty i
grate intoStreamRegproducing fresh relevant recommendations.

version of our applications receive push-based recomntiomda

meaning updates to user recommendation lists are pushde to t

device wherStreamRedletects a change in a user’s togecom-
endations. (2pPull-based The web version of our applications

eceive recommendations for a user only after explicitlyrsitting

a recommend request to the underlyBtgeamReengine.

4.3 Walkthrough

Our walkthrough showcases the featuresStbamRedn three
phases : (1)nitial recommendations The attendee will register
with MSRNew®r MSRFIlix and give opinions on a number of ex-
isting news items or movies in the system. This action willsea
StreamRedo provide the attendee with an initial set of tapec-
ommendations. (Q)Vitness instant updatet/sing the mobile ver-
sion of MSRNewor MSRFIlix the attendee will open their rec-
ommendation list, and witness it changing even though tleeye h
not rated any new items. This behavior is the resuBwéamRec
pushing updates to the recommendation lisbter usersadd or
rate new items in the system (thereby changing the recomenend
model). (3)Witness freshnesVithout any other user activity, at-
tendees will see their recommendation list changeStasamRec
decays older ratings in the system in favor of newer ratimgs (
scribed in Section 3), thereby keeping recommendaticsh

As StreamReds a fully developed systems, the attendee will also
be free to use our demo applications in an ad-hoc manner.sat¢ae
StreamRec’s backend (implemented using Streaminsigheast
derlying engine) will also be available through Visual Seu2010,
where attendees can visualize query plans, analyze thé feen
graphically to see how/why particular ratings were gereetaand
examine performance statistics on a per-operator basis.

5[i REFERENCES

] G. Adomavicius and A. Tuzhilin. Toward the Next Genesatof Recommender
Systems: A Survey of the State-of-the-Art and Possible iSiens TKDE,
17(6), 2005.

M. Ali et al. Microsoft CEP Server and Online Behaviorargeting. InVLDB,
2009 (demonstration).

S. Amer-Yahia et al. Crowds, Clouds, and Algorithms: Exjmg the Human
Side of Big Data Applications. I8IGMOD, 2010.

B. Babcock et al. Models and issues in data stream systerf®ODS 2002.

R. Barga et al. Consistent streaming through time: Aoridor event stream
processing. IICIDR, 2007.

Digg: http://digg.com.

G. Linden et al. Amazon.com Recommendations: Itemt¢oal Collaborative
Filtering. IEEE Internet Computing7(1), 2003.

MovieLens: http://www.movielens.org.

Netflix: http://www.netflix.com.

U. Srivastava and J. Widom. Flexible time managemedgita stream systems.
In PODS 2004.

(2]
K]

4]
(5]

(6]
(7]

(8]
E]
[10]

