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Abstract Over the past few years, several researchers have
. I . proposed novel schemes for efficient media access and
While the under-utilization of licensed spectrum based | ..\ 01 design in white-spaces [3, 20]. Other re-

on mte_asuLement stucijlelstcon]fjgctted ”; a few detvello?‘e earchers have proposed novel collaborative spectrum
countries has spurred 10ts ot Interest in opportunis ICsensing techniques [11] to allow robust detection of spec-
spectrum access, there exists no infrastructure today f

easuUring real-lime Spectrum oceUDANGCY ACrOSS vast um occupancy. However, thorough evaluation of these
Ing real pec pancy .g?echniques using real data is hard today. Further, cross-
ographical regions. In this paper, we present the desig

. : ; o hi ti h as “How d tio-t I
and implementation of SpecNet, a first-of-its-kind plat_aeograp 'C questions Stich as “How do spa‘io-iempora

access usage patterns in India differ from those in the
form that allows spectrum analyzers around the world 052" or “How would a certain OSA technique that works

be networked and efficiently used in a coordinated manc oilin the US perform in the UK?” cannot be answered

ner for spectrum measurement as well as implementa[—Oday

ti d luati f distributed i lications. _ I . .
lon and evaluation ot distributed sensing appiications The primary contribution of this paper is SpecNet—

We demonstrate the value of SpecNet through three ap-

plications: 1) remote spectrum measurement, 2) pri_a platform that allows researchers across the world not

mary transmitter coverage estimation and 3) Spectrum.iny to conduct spectrum measurement studies remotely

Cop, which quickly identifies and localizes transmitters " real time, but also implement and test novel distributed

- : : : collaborative spectrum sensing applications for OSA.
f d h fint t. . s
In airequency range and geographic region ot interes SpecNet advances OSA in several ways. First, it helps

1 Introduction gather spectrum data in many countries, thereby helping

Radio Frequency (RF) spectrum measurement studies [ adoption of the OSA model worldwide. Second, by
10, 5, 7] have confirmed that vast spans of licensed spedroviding real-time spectrum occupancy maps, OSA de-
trum, deemed white-spaces, are heavily under-utilizedvices may be able to quickly identify lightly loaded parts
Such studies have helped make a case for allowing unliof the spectrum. Third, it provides real trace data that
censed devices to utilize unused parts of the spectrum ofs:an be used to evaluate novel research ideas in OSA. Fi-
portunistically. Opportunistic Spectrum Access (OSA) is nally, in countries such as India, where there is no readily
now increasingly seen as a necessity to meet the gro\,\;ivailable database of primary users, it can help create an
ing demands of wireless applications. In fact, the his-accurate database that can be used by OSA devices.
toric FCC ruling in 2008 permitting such opportunistic ~ In SpecNet (Section 4), participant owners of spec-
use (and in 2010 allowing use without the need to sensgum analyzers register and connect their instruments to
primaries) is a testament to the success of these measur#e SpecNet server. Each owner volunteers to provide
ment studies. time periods when SpecNet users are allowed to use the
Nevertheless, most spectrum measurement studies tBstrument to remotely conduct experiments. SpecNet
date have been conducted in a few developed nationgrovides its users with a rich APl implemented as XML-
using only a handful of spectrum analyzers. Even todayRPC calls. Thus, SpecNet users can develop and re-
the US remains the only country to have allowed an OSAmotely execute measurements or distributed sensing ap-
model. Many more measurement studies, especially ilications in a programming/scripting language of their
developing nations, are perhaps necessary to make trghoice. To the best of our knowledge SpecNet is the first
OSA model accepted worldwide. programmable distributed spectrum sensing platform of
Further, these measurements represent static spectrutf kind. SpecNet can be accessed at [15].
occupancy information over small parts of a country. SpecNet provides an API that supports three classes
While spectrum allocation is mostly static today, the of users (Section 4.2). For sophisticated users, SpecNet
adoption of OSA will result in much more dynamic use provides full access to the low-level APIs of the spec-
of spectrum. Thus, access to real-time spatio-temporatum analyzer. For policy users and others mainly inter-
maps is beneficial for OSA devices to sense other OSAested in measurement data, say for longituidinal analy-
devices and determine which parts of the spectrum arsis, SpecNet provides APIs that allow access to historic
freellightly loaded. However, there exists no infrastruc-measurement data that SpecNet collects and stores in a
ture today for measuring real-time spectrum occupancylatabase. For other users such as network operators or
across vast geographical regions. government personnel, SpecNet provides a set of high-



level APIs that allow these users to write novel appli- application first helps localize a TV transmission tower

cations without having to worry about the intricacies of and then predict its footprint so that operators may avoid
the spectrum analyzer. For example, a government useéhe primary owner of the spectrum. This is especially

interested in spectrum occupancy data need only speaseful in developing countries where a database of pri-
ify the part of the spectrume(g.,500-800 MHz), the mary transmitters is unavailable or incorrect. The third

geographical boundare(qg., specified by a center and application is SpectrumCop, which may be of interest

radius of a circular region), the time interval.g.,be-  to government users. Today, it is hard to detect viola-

tween 12:00 - 16:00 hrs today) and the minimum signattors of spectrum policy unless a primary owner of the

strength of the transmitter that needs to be detected (sagpectrum complains of interference. The SpectrumCop
-95 dBm). Behind the scenes, SpecNet determines thapplication allows a user to quickly detect and localize a
group of relevant spectrum analyzers and their respedransmitter in a given frequency range and geographic re-
tive settings that will help satisfy the measurement re-gion, demonstrating the utility of SpecNet'’s coordinated

guest, executes the task on these spectrum analyzers asehsing platform.

delivers the results to the user. Other users such as OSA Thus, we make the following contributions:

network operators may be interested in determining the, \ye present the design and implementation of a novel
coverage of their networks at locations where spectrum platform called SpecNet that allows spectrum analyz-
analyzers may not be available. SpecNet provides an g5 around the world to be networked and used in a
interpolation tool that uses measurements from nearby .4qrdinated manner for remote measurement as well
spectrum analyzers to estimate power at the location(s) g testing and implementation of distributed sensing

of interest. applications. SpecNet is open for access at [15].

Given that spectrum analyzers are expensive ($10'. We present a scheduling algorithm for coordinating

4QKr)]t%nd th?'.r ttwgea of a\:jalulablllt%hfor Spec,Nets (;Jse measurements among neighboring spectrum analyzers
might be restricted depending on the OWners Neeas, an ., ¢ optimizes spectrum analyzer usage time.

important design goal for SpecNet is efficient manage- T
ment of spectrum analyzer time. When two or more® Finally, we present three applications that demonstrate
spectrum analyzers lie in the region of interest, it may be  the value of the SpecNet platform.
possible to coordinate their measurements in a manner
so as to reduce the overall scanning time while satisfying? ~Related Work
the user’s request. One approach could be to partitioMeasurement Studies.One of the earliest studies that
the frequency spectrum equally among all the spectrunaimed at quantifying spectrum usage [9] is by the Shared
analyzers in the region of interest. Another approach isspectrum Company. The study, conducted at six differ-
to leverage the spatial diversity in the locations of theent locations in the US, concluded that the average occu-
spectrum analyzers and partition the scanning efforts gepancy of spectrum was about 5.2% in the 30 MHz to 3
ographically. Finally, a hybrid approach that combinesGHz frequency range. A study by McHereyal.[10] in
these two approaches is also feasible. Chicago and New York revealed that the occupancy was
Two fundamental tradeoffs underlying the very limited to 17% and 13% respectively. Since then, there
physics of spectrum measurements make this problem dfas been a number of measurement studies [5, 7, 19] in
partitioning the measurement task among spectrum anatlifferent parts of the world. The common finding of alll
lyzers a significant challenge. First, thime-frequency these studies has been that spectrum is heavily under-
uncertainty principledictates that the finer the resolution utilized. In [4], authors derive various statistics from
of the spectrum scan, the longer it takes to perform thehe collected data, and propose a prediction algorithm for
scan. Second, weaker signals require longer scan timehannel availability.
to be amenable to detection. Further, the heterogeneity All of these studies have been performed using a hand-
in capability as well as processing speeds across diffefful (maximum of 4 according to [4]) of spectrum an-
ent models of spectrum analyzers adds to the complexityalyzers scanning spectrum in a small geographical re-
SpecNet considers these tradeoffs and uses a novel tagion in an uncoordinated fashion. In contrast, SpecNet
partitioning scheme for scheduling individual spectrumprovides a platform for coordinating spectrum analyzers
analyzers (Section 5). across different geographical regions, thus opening doors
We demonstrate the power of SpecNet through thre¢o more interesting measurement studies. Further, it also
applications (Section 7). The first application is simply enables building occupancy maps of large geographical
a spectrum scan that is performed across different courareas over long durations for longitudinal analysis.
tries, illustrating the ability to conduct remote measure-Whitespace Research. Whitespace networking has
ments. The second application is a coverage estimatioheen gaining attention as an important research field in
application that may be useful to network operators. Thehe networking community. In [3], the authors propose



a Wi-Fi like system built on UHF whitespaces. Yang Figure 1 depicts the results of the scan at four differ-
et al. propose a distributed spectrum access techniquent resolution bandwidths. When the resolution band-
using frequency agile radios transmitting in orthogonalwidth is 1 MHz, the microphone’s transmission is not
frequencies [20]. Most of these proposals have beemt all perceivable. Upon reducing the resolution band-
evaluated in restricted settings. We believe that SpecNetidth to 30 KHz, a single clear peak emerges indicat-
would aid whitespace research by allowing evaluation ofing the microphone’s transmission. Further reducing
proposals based on broader, more real-world data. Fdhe resolution bandwidth to 10 KHz reveals even finer
instance, spectrum measurement data from different cordetail—three distinct peaks, which are the signature of
tinents could be used to evaluate detection techniques. an FM-modulated transmission. At 1 KHz resolution
Cooperative Sensing & Sensor NetworksCooperative  bandwidth, the three peaks are revealed as distinct sharp
sensing is a well explored topic [11, 16, 6]. The maintones.

focus of these papers is detecting a primary whose fre-

guency of transmission and/or location is known. More- e = Lk
over, the emphasis is on novel collaborative detection N
techniques. SpecNet and research in collaborative sens-
ing are complementary to each other. For example, mea-
surements from SpecNet can be useful for evaluating
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these collaborative detection algorithms while advanced 100
_collaboranve detection techniques can be incorporated e
into the SpecNet platform as an API. Freauencyin Wiz

_ SpecNet uses Voronoi partitioning for optimi_zin_g scan Figure 1: Effect of resolution bandwidth

tr:me stpectrum ar:jal_yzers. The ufe oka0r0n0| cillla%args As seen in Figure 1, a lower resolution bandwidth has
as been proposed in sensor networks as we , 2]. '

However, tl?]e Fr)nain motivation for applying a part[ition— WO significgnt effects on th_e scan. First, greater detail

ing scheme in sensor networks has been energy savin&_p_om the _S|gnal structure is revealed and second, the

and/or interference avoidance. Thus, the problem formul©ise floor is reduced (from -52 to -102 dBm).

lations and objective functions are very different. 3.2 Occupancy Detection

Testbeds/Platforms. A number o_f distributed rese_arch Often, the goal behind scanning the spectrurodsu-

testbeds/platforms have been built by the communl_ty [12pancy detectioni.e., to determine which parts of the

1, 18]. To the best of our knowledge, SpecNet is the

i Inf q dinati | spectrum have ongoing transmissions. Fundamentally,
Irst platiorm targete. at co-or Inating spectrum analyzp, problem of occupancy detection attempts to distin-
ers across geographical regions.

guish between signal and noise. While there are sev-

. . eral varieties of occupancy detection schemes, perhaps
3 Spectrum Sensing Using Spectrum Ana- the simplest scheme is to check whether the Signal to

lyzers - A Primer Noise Ratio (SNR) is greater than a certain threshold.
In this section we attempt to answer the question,“what
are the key settings and choices available to a spectrum ey L
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analyzer user for spectrum scanning and how do they in-
fluence the spectrum sensing process?” -

3.1 Spectrum Scanning - An Example
We begin with an example spectrum scan of an active

Noise Floor in dBm

wireless microphone depicted in Figure 1. When scan- o
. . . 4
ning using a spectrum analyzer, a user typically needs ]
to specify two key parameters—tlseanning frequency Resoluton Bandwidihin Hz
range and theresolution bandwidth The frequency Figure 2:Noise floor versus resolution bandwidth

range, (min, fmaz) IN MHz, specifies that the user is Dependence of noise floor on resolution bandwidth:
interested in scanning the spectrum frgip;,, MHzto ~ As we saw in Figure 1, the noise floor depends on the
fmaz MHz. In Figure 1, the scanning frequency rangeresolution bandwidth of the scan. This decrease in noise
is (702.05 MHz , 702.35 MHz ). Resolution bandwidth floor arises from the fact that as frequency bins become
specifies the granularity in Hz at which the scan is tofiner, they accumulate less noisé lower noise floor

be performed—the lower the resolution bandwidth, thetypically results in a greater SNR and consequently more
greater the observed detail in the scan. reliable occupancy detection.



The noise floor (in watts) as a function of resolution
bandwidth is typically given by

. Master Server

Nocp 1)
In Egn 1, the proportionality constant depends on the i
spectrum analyzer model, the antenna, the cabling, ﬂo Mo m=
etc. Figure 2 depicts the dependence of noise floor on ”se“\ SIaveSenje;s T
resolution bandwidth for three different models of spec- oyt Salrpelib; \6®@
trum analyzer. While practical measurements indicate pelrncbiServerfron tin: bt i
minor deviations in linearity, as seen in Figure 2, the lin- Nonayy | iserver Getpavices(ione,
ear model (Eqn 1) holds approximately true for all spec-
trum analyzers we used. Figure 3: SpecNet Architecture

Dependence of detection range on resolution band- following two goals drive the design of SpecN&}.Ease
width:  Typically, the farther a transmitter is from a Of Use: We expect SpecNet to support the needs of three
spectrum analyzer, the lower the received power at thélifferent classes of users. First, sophisticated usets suc
spectrum analyzer. The weaker the received signal, thas Whitespace researchers will likely need real-time, low-
lower the SNR and hence the less reliable its detectiorlevel access to the full functionality of the spectrum an-
Detection rangeof a spectrum analyzer at a certain res-alyzers. Second, some users such as spectrum policy re-
olution bandwidth is the farthest distance from which ansearchers may simply need access to the data collected
ongoing transmission can be detected reliably. by the spectrum analyzers. Finally, users such as sec-

Path loss models such as the Log Distance Path Losgndary network service providers or government person-
(LDPL) model are typically used to estimate receivednel interested in spectrum monitoring may require high-
power as a function of distance. The received poier level APIs that abstract the details/complexity of Spec-
at a distance from a transmitter transmitting with power Net and provide services such as tower localization or

P, based on the LPDL model is given by spectrum occupancy detectid®).Efficiency: Given that
spectrum analyzers are expensive ($10-40K) and may be
P, =Py —10vylog(d) + L (2)  available to SpectNet for limited duration, it is important

that the usage of spectrum analyzers be optimized where

IrgnErggnf:i(sutshu:”ya&ei\(l)vsesegxz sggn? ;(;r do; t(ios(;;ﬁm/" possible. Since the spectrum analyzers cannot be arbi-
) patt > EXP ) (. y trarily “time-sliced” for fine-grained sharing, optimiza-
modeled as a Gaussian with standard deviation betweetn

: . . ion requires completing each task as efficiently as pos-
5-10 dB for outdoor environments) is a random variablegy o \ye oy present an overview of the SpecNet archi-
that captures variations in the signal due to fading effectstecture

If A'is the minimum SNR required for reliable occu- '

pancy detection using a certain detection scheme, then iﬂ.l Overview
order to detect a transmission from a distasiche noise
floor must beA dB less tharP,, i.e., Py — 10ylog (d) —
A. Since noise floor is dictated by the resolution band
width (Egn 1), this in turn implies thaine must choose
a lower resolution bandwidth to reliably detect a trans-
mitter that is farther away from the spectrum analyzer.
The dependence of detection ranben resolution band-
width can be derived from (Eqn 1) (after converting from
dB) as

The SpecNet architecture is shown in Figure 3. It
contains three key components: users or clients, slave
servers that comprise laptops/PCs connected to spec-
trum analyzers, and master servers that manage the slave
servers. The typical work-flow is as follows: clients sub-
mit jobs to the master servers; the master servers trans-
late these jobs into spectrum analyzer commands based
on Standard Commands for Programmable Instruments
Po—AN (SCPI) [14]. The master server also schedules these at
px (10 " ) d=? (3) the appropriate slave server nodes for execution at the de-
Eqn 3 indicates an important aspect of detecting transsired/ava“able t|me The Output Of the Commands iS then
missions from a distance' namety,e maximum usabie either forWarded |mmed|ate|y to the Client or the Client iS
resolution bandWidth decreases Super-lineariy @3 notiﬁed Of When/Whel‘e the Output data from the Submit'

] XML-RPC: In order to support a wide range of client
4 SpecNet Architecture platforms, the SpecNet service is exposed by the master

SpecNet is a shared infrastructure consisting of geoservers as XML-RPC calls,e., remote procedure calls
distributed, networked, programmable spectrum analyzthat are encoded in XML and transported over HTTP
ers that are contributed and used by the community. Thesing the XML-RPC standard. This allows clients to



post jobs using the SpecNet APIs from any Internet-other submitted jobs.

connected node, written in any language of their choice. The interesting challenges in SpecNet's design arise
Push-vs-Pull: The jobs posted to the master servermainly in supporting the third class of useesd., net-

can either be pushed to or pulled by the slave serverswvork operators). These users may require support for

While a pull-based publish-subscribe model is less comhigh-level APIs that abstract out many of the details of

plex in terms of state maintenance at the server, it is notising spectrum analyzers. While we have designed a

suitable for SpecNet users who may want to execute jobfew of these APIs (6-9 in Table 4.2), we expect the set

with inter-dependent API calls that require reaction atof high-level APIs to expand over time based on interest

sub-second intervals (see the Spectrum Cop applicatioand through community contributions.

in Section 7.3). We thus adopt a push-based model where [ ocalization and Interpolation: Estimating the ge-

a persistent TCP connection is maintained between thggraphical coverage of a primary transmitter is essential
slave servers and the master servers and jobs are pushgtreating a spectrum usage map. However, this requires
to the slave servers. knowledge of specifics of the transmitter such as its loca-
Registration: Users contributing slave servers needtion and transmit power. Such information is usually not
to first register with the SpecNet master server. Theyavailable or may be incorrect, especially in developing
may specify times during which the nodes are availablecountries (Section 7.2).
to SpecNet. Upon completion of registration, a simple | order to localize transmitters, SpecNet provides
daemon is downloaded and executes on the slave servereLocal i zeTransmitt er () API that uses signal
This software establishes an outbound persistent TCBtrength observed at spectrum analyzers from various lo-
connection to the master server and another connectiogations but does not require input of parameters such as
to the spectrum analyzer, thereby serving as a bridge bgocation and transmit power of the transmitter. Instead,
tween the master server and the spectrum analyzer.  SpecNet estimates these parameters that best explain the
Benchmarking: The master server first runs a suite signal observations (in least mean square error terms) us-
of experiments to benchmark the fundamental characteiing well known path loss models such as Longley-Rice
istics such as noise floor and scan times of each spegr Log Distance Path Loss (LDPL). The number of un-
trum analyzer (details in [8]). This benchmarking helpsknowns that can be estimated, however, fundamentally
the master server efficiently schedule jobs at the slavglepends on the number of different locations from which
server nodes. Further, this is also necessary for abstracfignal strength was observed. In case of the LDPL model
ing some of the low-level details of the spectrum ana-(Eqn 2), for example, if signal strengths from only three
lyzer through higher-level APIs, necessary for maskinglocations are available, SpecNet sets= 3, takes the
some of the heterogeneity among spectrum analyzergransmit power P,) as input from the user and estimates

We discuss this next. the location through triangulation. If signal strengthnfro
four different locations are available, SpecNet can esti-
4.2 APIs mate P, and the transmitter location simultaneously by

As mentioned earlier, SpecNet is designed to supporthoosingy = 3. When observations from five or more
three classes of users. Table 4.2 lists a subset of the APlscations are available, SpecNet can estimate the trans-
supported by SpecNet. mitter location, transmit powef, and~y simultaneously

For sophisticated users who require low-level accessghat best fit the observations. Once the location of the
to the spectrum analyzer, SpecNet has a reservation ARfansmitter and other parameters are determined, con-
that users can use to reserve a block of time on the destructing a spectrum map is straightforward. SpecNet
sired slave servers. The users can then issue their dgrovides theFi ndPower At Locati on() API that
sired low-level commands, which are simply forwardedtakes these parameters and predicts the likely received
through the master server to the slave servers for execypower at desired new locations.g.,locations with no
tion. spectrum analyzer).

For policy users and others who are interested Spectrum Occupancy Detection: The next two
mainly in spectrum usage data, possibly for longitu-high-level APIs help users obtain spectrum occupancy
dinal studies, SpecNet schedules up to 10% of theat desired locations. Th&et Power Spect rum() is
available time at each slave server for itself. Dur-simply a spectrum scan over a given frequency range on a
ing this time, the server performs a high resolutiongiven device, except that users do not even need to spec-
scan of the entire spectrum, stores this data in afy the resolution bandwidth. Instead users can specify
SQL database and exposes this data to users throughregion and desired minimum power level of transmit-
APIs such asGet Power SpectrunHi story() or terto be detected. SpecNet then automatically chooses
Get CccupancyHi story(). This stored data can the bestresolution bandwidth (based on the fundamental
also serve as a cache and may help respond (partly) toroperties of occupancy detection discussed in Section 3)



# ] API [ Description
Low-level APIs €.g.,for sophisticated users)
1 Get Devi ces([ Boundary], [Tinespan]) Returns a list of spectrum analyzer IDs. Fewer/no argunpsgsible.
2 ReserveDevi ce(1 D, Tinespan) Reserves and returns success, if available.
3 RunConmmandOnDevi ce( | D, Conmand) Issues SCPI command to device and returns result.
Commands to access stored daay(for policy users)
4 Cet Power Spectrunti story(I D, Fs, Fe, Tinmespan) Returns (avg) power values from device for given time/fiesty range (Fs-Fe)]
5 CGet CccupancyHi story( | D/ Boundary, Fs, Fe, Returns 0-1 list indicating occupancy in Fs-Fe at devicenaegion, based on
Ti nespan, Threshol d) threshold.
High-level APIs €.g.,for operators or government users)
6 Local i zeTransni tter (Boundary, Locations, Powers, Localizes transmitter inside area, given observed poweasl(®) at location(s)
Mbdel , Paraneters) using Model (LDPL, HATA, Longley-Rice, etc.) .
7 Fi ndPower At Locati on(Location, [Transmtter Interpolates power at new location given transmitter loc#parameters and
Paraneters], Model, [Mdel Paraneters]) model; useful for estimating coverage of transmitter.
8 Cet Power Spectrum(I D, Fs, Fe, [Boundary, P]) Schedules a scan for given frequency range (SpecNet detsroptimal reso-
lution bandwidth) in order to detect minimum power level Rjiven area.
9 Get Cccupancy(| D/ Boundary, Fs, Fe, P) Provides a 0-1 list corresponding to frequencies occupieddgvice or region.
P is the minimum transmitter power (SpecNet minimizes saaei

Table 1: Core APIs supported by SpecNet

and returns the resultsGet Cccupancy() APl goes Theory versus Reality : Figure 4 depicts the scan times
further by allowing the user to specify a region of interestmeasured from different spectrum analyzers at different
for detecting occupancy of signals above a given threshresolution bandwidths as a function of span. As seen
old, without even identifying the desired slave serverfrom Figure 4, the dependence of scanning time on span
IDs. This API is useful for applications like Spectrum @ is strictly linear as dictated by Eqn 4. Consequently, it
Cop (Section 7.3), which monitor unauthorized spectrums convenient to characterize scan times of spectrum an-
usage. To support this API, SpecNet computes the optialyzers in terms ofcan time per MHzr. The scanning
mal set of spectrum analzyers and their correspondingjme for a scan frony,,,;,, t0 f,.q. IS then determined by
resolution bandwidth values that minimize scan time andhe produc{ f,.ax — fmin)7-

returns the results. Optimizing scan time across multiple Figure 5 depicts the measured scan times per Miiz (
spectrum analyzers is a challenging problem which weas a function of resolution bandwidth for three different

discuss next. models of spectrum analyzers in a log-log plot. Based on
. Eqn 4, the variation of scan times with resolution band-
5 Task Scheduling in SpecNet width should be linear. However, Figure 5 indicaseg

SpecNet allows users to deploy and execute spectrurfificant departure from linearityRather the variation is
sensing applicationsin real time. Users expecttheirsenspiece_wise linear For example, for FieldFox N9912A,
ing tasks to be dispatched and completed as soon as pogre variation is linear in sections A-B and C-D sepa-
sible. Consequently, SpecNet schedules participant spegately. The piece-wise linearity arises because spectrum
trum analyzers in a manner so as to minimize task comanalyzers likely use different sets of circuits and modes
pletion time. In this section we describe the challengegor different ranges of resolution bandwidths and these
posed in the design of a task scheduler for SpecNet.  cjrcuits/modes presumably have different performance

5.1 Scanning Time of a Spectrum Analyzer charact_ens_ﬂcs. To allow for these n_or_1-I|near|t|es, Spec

| he t ; ; Net maintains lookup tableg p) describing the scanning
For a spectrum analyzer, the time to perform a scan fron o, per MHz for a given resolution bandwidth setting
fmin MHZ tO f,,.. MHz depends on two parameters for each spectrum analyzer.

namelyspan@ = f.az — fmin @and the resolution band-

width p used for the scan. Increasing the span require$.1.1 Minimizing Scan Time by Automatic Resolu-

a spectrum analyzer to scan a larger part of the spectrum tion Bandwidth Selection

and consequently requires a longer scan time. Scanning/hen scanning a part of the spectrum, users often care
at a smaller resolution bandwidth requires a larger numppout having a low noise floor. The noise floor, how-
ber of samples to be collected in order to reliably esti-ever, as discussed in Section 3, depends on the resolu-
mate the power in each of the finer frequency bins andion bandwidth chosen. SpecNet allows users to request
hence, more time. For modern spectrum analyzers, thg scan by a remote spectrum analyzer by specifying the

scan time may be modeled as maximum tolerable noise floor. Behind the scenes, Spec-
0 Net determines the resolution bandwidth that provides
T o (4)  for the fastest scan time that satisfies the required noise

floor. In order to enable such an API, the SpecNet server
In Eqn 4,7 is thescanning time The proportionality maintains lookup tables that provide scanning times per
constant in Equation 4 can vary significantly across dif-MHz at various resolution bandwidths, for each Spec-
ferent models of spectrum analyzers as discussed next.trum Analyzer connected to SpecNet.
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Dependence of Scanning Time on Detection Rangé&:  trees and this provided an excellent opportunity to eval-
greater detection range requires using a narrower resolurate SpecNet in various scenarios such as Line of Sight
tion bandwidth (Section 3). This in turn implies that  (LOS), Non-Line of Sight (N-LOS) and Indoors. In Fig-
increase the detection range of a spectrum analyzer onare 7, two different models of spectrum analyzer are lo-
must accept a longer scanning timklore specifically, cated at O, while a wireless microphone was placed at
from Equations 3 and 4, scanning time depends on desix different locations, two each in the LOS, NLOS and

tection range as indoor categories. In each of the six detection experi-
pea ments, the detection range was set to the exact distance
T o (10 0 ) QdY (5)  Dbetween the microphone and the spectrum analyzer.

was set to -35 dBm which was determined by measur-
ing the power of microphone at a distance of 1m. For all
our experiments we fixedh = 10 dB. In other words,

Eqn 5 reveals a crucial aspect of sensing—nansebn-
ning time increases super-linearly with increase in de-
tection distance and linearly with spaAs described in iven a detection range, SpecNet must choose the res-
Section 5.2, SpecNet uses this dependence to efﬁcientlg ’

. lution bandwidth that provides the minimum scanning
share load among spectrum analyzers given a scanifthe while ensuring that the SNR is a minimum of 10
task.

. . Lo dB. Table 8 provides a summary of the results.
To account for the deviations in scanning time from } )
ranged , instead of using Eqn 5, SpecNet uses the lookugEXPeriments and for both spectrum analyzers, SpecNet

tabler(p) to determine the resolution bandwidth that hasCh0oSe a very conservative noise floor—while the target
the fastest scanning time per MHz while ensuring a min-SNR is 10 dB, the observed SNR is about 25 dB. Figure 6

imum noise floor ofPy — 107 log (d) — A. Py = —50 depicts the decay of signal strength with distance for the
andA = 10 are chosen as default unless specified by thdnicrophone in line of sight. The path loss decay expo-
user andy = 3 is chosen as a conservative estimate. nenty was estimated to be around 2.5, however, SpecNet

Evaluation: Given a detection range, SpecNet conservatively chooseg = 3.0 in estimating the target
chooses a resolution bandwidth so as to minimize scan?oise floor. This results in the conservative choice of the
ning time. How well does the resolution bandwidth se-resolution bandwidth.

lection scheme work in practical deployments? A resolu-Non Line of Sight: For NLOS experimentshe reso-
tion bandwidth chosen too low will take too long to scan lution bandwidth choice of SpecNet allows for an SNR

while a resolution bandwidth chosen too high will not close to the target 10dB for both spectrum analyzers in-
provide the necessary SNR to allow detection. There aréicating thaty was closer to 3 for these experiments.
several practical considerations. First, the path loss extndoors: When the microphone was keiptioors how-
ponent is not a fixed quantity and depends on the natur@Ver; SpecNet flnds. itself underestlmgtmg the signal de-
of the environment. Line of sight and non line of sight €&y For example, in both the experiments, the chosen
paths offer different path loss characteristics. Further'€solution bandwidths allow only SNR of about 6 dB
significant signal attenuation often occurs due to walls infather than 10 dB.
indoor environments. While choosing a conservative resolution bandwidth
To answer this question, we tested SpecNet in a reatnsures detection, it results in longer scanning times.
deployment at the Indian Institute of Science (IISC) cam-What is the loss in scanning time due to the conserva-
pus as depicted in Figure 7 on two different models oftive choices of resolution bandwidth? To answer this
spectrum analyzer. The campus is lush with very densguestion, we attempted to detect the microphone at sev-



Distance SNR Loss in Sec

in mts in dB Scanning Time

Line Of 31 24128 0.005] 0.018

Sight 71 25 28 | 0.0Ic | 0.046
Non-Line 124 151231 0123 2.23
Of Sight 131 17 24 1 0.1Z23 2.24
Indoor 35 16 6 | 0.005 0.0
Locations 50 0Z] 8 0.0 0.0

8 Figure 8: Performance of Resolution Bandwi
§ Selection in SpecNet; the two columns for S
and Scanning time represent two different speo-

Figure 7: Occupancy detectigim analyzers
using a single spectrum analyzer

Figure 9: Occupancy detection
using two spectrum analyzers

eral different resolution bandwidths without the use of The Scheduling Metric: If n different spectrum analyz-
SpecNet’s resolution bandwidth selection. We then deers are scheduled to share a certain task load, they scan
termined the optimal resolution bandwidth for each ex-in parallel and accomplish their respective sub-tasks in
periment that allowed an SNR of 10 dB. Table in figure 8 parallel. Suppose that th&* spectrum analyzer takes
depicts the loss in scanning time in seconds due to théme T; to complete its assigned sub-task. The task is
sometimes conservative choice of SpecNet for each exdeemed complete when all spectrum analyzers have ac-
periment. As seen from table, the loss in scanning timeomplished their respective sub-tasks. Since all spectrum
is in the range of a few milliseconds most of the time analyzers are tasked in parallel, the time to task comple-
and up to a few seconds in some cases. Thus, we cottion is given by’ = max (T4, T»,---,T,). The goal of
clude that the automatic resolution bandwidth estimatiorthe SpecNet task scheduler is to minimize the task com-
in SpecNet works as intended. pletion time. Hence, SpecNet attempts to schedule var-
ious spectrum analyzers in such a manner that the max-
5.2 Occupancy Detection imum over all sub-task completion tasks is minimized

In many practical applications of occupancy detection/-€:; In @min-maxmanner. _ .

users are interested in spectrum occupancy in a specific SPectral Load Sharing: Figure 9 depicts a circular
geographic region. For example, “are there any ongol®€gion of interest and two spectrum analyzers S1 and
ing transmissions in the spectrum range 700 MHz to 80¢>2 located at X1 and X2 that can potentially be used to
MHz within a 5 km radius of my location?” SpecNet Scan the circular region of interest. Suppose that the user
allows users to specify a circular region specified by aneeds to scan fronf,.;, MHZ t0 f,a. MHz. S1 and S2
center and a radius for spectrum measurement. Behingou!d then share the task such that S1 scans ffom

the scenes, SpecNet determines the set of relevant spddHZ 10 fmin +@1 MHz, while S2 scans fromf,,,, + Q1
trum analyzers that can be used to accomplish this tas®HZ 10 fima.. Such spectral load sharing results in a re-
Any spectrum analyzer whose maximum detection rang&luction in span for the participant spectrum analyzers,
(determined by the lowest resolution bandwidth) over-thus reducing the overall scanning time. .

laps with the user-specified region of interest is deemed !N the above exampl€; must be chosen in a man-
relevant. When there are multiple relevant spectrum ana?€r So that the maximum of the scanning times of S1 and

lyzers, SpecNet schedules the scanning task load amorgy aré minimized. In order to detect any transmission
them so as to minimize the overall scanning time. in the entire region of interest, S1 must have a detection

range equal toX; O, | = d; where O1 corresponds to the
5.2.1 Load sharing across multiple spectrum ana- farthest possible transmitter location within the regién o
lyzers interest from S1 (as depicted in Figure 9). Similarly, the

There are two distinct dimensions along which a scandetection range of S2 should p¥2O»| = d; in order to

ning task can be shared among multiple spectrum andgi€teCt any transmitter in the region of interest. £.ebe
lyzers, namely, spectrum and geograpbpectral load  the Minimum scanning time per MHz for spectrum ana-
sharinginvolves different spectrum analyzers scanning!YZer i required to achieve a detection rang@pfThen
complementary parts of the spectrum wijegraphical the overall scanning time is given layax (7,1, 72 Q).
load sharinginvolves different spectrum analyzers scan-"WN€ré®@z = fiaz — fmin — Q1. The optimal choice
ning different spatial sections of the overall geographi-t€n corresponds to when

cal area of interest. SpecNet uses a combination of both 1 1

these techniques to minimize overall scanning time. Qr:Q2=—: (6)




Eqgn 6 can be easily generalized to spectral partitioninglom location is then assigned to its nearest spectrum ana-
for several spectrum analyzers. In case of several spedyzer in terms of the scan-time required to detect a trans-
trum analyzersthe span of spectrum allocated to each mitter at that grid point. Note that if a point is located
spectrum analyzer is inversely proportional to the mini- beyond the detection range of a spectrum analyzer, the
mum scanning time per MHz required to scan the circu-corresponding scanning time is set to infinity. Finally,
lar region of interest. each spectrum analyzer is assigned a resolution band-
Geographical Load Sharing: Another way to share width by setting its detection range to the farthest ran-
the load between S1 and S2 (Figure 9) is to partitiondom location assigned to it. The run-time complexity of
the region of interest geographically by requiring themthis numerical scheme depends on the number of random
to scan only parts of the region of interest rather thanpoints chosen. In our implementation we generated ran-
the entire region. In Figure 9, the region is divided into dom locations with a density of 1 location per sq meter.
two sections by the ling;0}|. S1 and S2 are deemed For an area of 1 Sq Km x 10° random locations) we
responsible to scan each of the two sections. The advarfieund that geographic partitioning took under a few hun-
tage of partitioning in this manner is that individual spec- dred milliseconds on the SpecNet server.
trum analyzers can now use a smaller detection range. As _ .
seen in Figure 9, S1 and S2 use detection ranges equal 22 G€ographical versus Spectral Load Sharing
1X,01| =d} < dy and|X,0}| = d}, < dy respectively. Which of the above two load-sharing schemes should
As described in Equation 5, reduced detection range imwe use and under what circumstances? To answer this
plies reduced scanning time. Thus, each of the specduestion we describe the results of two experiments con-
trum analyzers takes a shorter time to scan its respectivéucted in the Indian Institute of Science (IISC) campus,
region—thus reducing overall task completion time.  depicted in Figures 10a and 10b, scanning from 700-800
Since every spectrum analyzer scans a different ged¥!Hz. In each of the experiments we compared three
graphical region, each must scan the entire spectrum diifferent scheduling methods. Best Selectthe spec-
interest fnin t0 fmas. If the scanning times per MHz trum analyzer that can accomplish the task in the shortest

of n geographically task sharing spectrum analyzers arg’r_ne is selected and u.sed to accomplish the scanning t.ask

given by ri,72, - -7, then the over all task completion without any load sharm.g. We compqred Best Select with

time will be max (Qr1, Q72, - -, Q). Consequently, spectral and geographical load sharing.

in order to minimize over all task completion time, we Experiment|: Two identical spectrum analyzers (both

needr; = 7, Vi such thatr is minimized while ensuring N9320B Agilent models) were placed 103 m apart at A

that the entire area of interest is covered. and B as depicted in Figure 10a. The region of interest
First consider the case of homogeneous spectrum a¥as specified as a circle of radius 50 m.

alyzers. Ensuring equal translates to ensuring equal EXperimentll: Two identical spectrum analyzers (bqth

maximum detection ranges to all the spectrum analyzerdY9320B Agilent models) were both placed at location

This problem can be optimally solved using Voronoi par-A a_nd the region of mt_ere_st was specified as a circle of

titioning with each spectrum analyzer being treated as 42dius 50 m as shown in Figure 10b.

Voronoi site. Each Voronoi cell, then, would correspond

. . . Experiment | Best Select] Spectral| Geographical
to the geographical region assigned to the spectrum an- P in sec iﬁ sec ir?sé)c
alyzer. The resolution bandwidth of each spectrum an- EExperlmenttlll iggj ggi 1102594
alyzer would correspond to the detection range required —==P1MeT
to accommodate the farthest point in its Voronoi cell. Table 2: Comparison of load sharing schemes

Now consider the case of heterogeneous spectrum an-
alyzers. Since the scanning times of different analzyers
are different, standard Voronoi partitioning is no longer Results of Experiment | : As depicted in Table 2, since
optimal. Instead, the SpecNet scheduler performs a modhe spectrum analyzers are identical, the optimal spec-
ified version of Voronoi partitioning — equal detection tral load sharing resulted in both the spectrum analyz-
time partitioning — where proximity is measured in termsers taking an almost equal amount of time (in practice
of detection time rather than Euclidean distance. a slight difference in their noise floors resulted in one

Given the non-linear and discontinuous nature of de-sspectrum analyzer scanning a bit more spectrum than
pendence of detection time on detection range (Equathe other). Consequently, spectral partitioning complete
tion 5), to the best of our knowledge there exists noabout twice as fast as Best Select. Curiougdographi-
known exact solution to this partitioning problem. Con- cal load sharing completed almost five times faster than
sequently we resort to solving the problem numerically.spectral load sharing In this particular experiment,
The entire area of interest is sampled at several locationgoronoi partitioning resulted in two halves of the circle
generated randomly over the area of interest. Each rarindicated by regions R1 and R2 in Figure 10a. Conse-



(a) Experiment | (b) Experiment Il (c) Experiment Il

Figure 10: Comparison of scheduling schemes

guently, the detection range required for each of the spe@nd geographical area to minimize overall task comple-
trum analyzers in geographical load sharing was smalletion time while ensuring that the entire area and spec-
than that required in spectral load sharing. Eqn 5 revealtrum of interest are covered, falls under a class of non-
that scanning time decreases super-linearly as detectiaonvex optimization problems for which, to the best of
range, explaining the 5x gains. our knowledge, there exists no known exact solution.
Results from Experiment Il : As depicted in Table 2, However, Experiments | and Il (Section 5.2.2) reveal
since the spectrum analyzers are co-located and identiwo key observations that allow us to develop a heuristic
cal, optimal spectral load sharing assigns two halves ofo enable geo-spectral task sharing. First, geographical
the span to each spectrum analyzer. Consequently, spegartitioning typically out-performs spectral partitiogi

tral load sharing performs approximately twice as wellowing to the super-linear relationship between detection
as scheduling without load sharing. Here, however, georange and scanning time. Second, when spectrum ana-
graphical load sharing performs exactly the same as hauyzers are located near each other, spectral partitioning
ing no load sharing and takes twice as long as spectrdends to outperform geographical partitioning.

partitioning! The Voronoi partition for the experiment |y order to facilitate explanation of our heuristic for

is indicated by the dashed line separating R1 and R2 iyeo-spectral task sharing, we introduce the notion of a
Figure 10b. The maximum detection range required byspectrally sharing cluster (SSC) of spectrum analyzers —
each of the two spectrum analyzers to cover their respecg set of spectrum analyzers that share their scanning tasks
tiVe partitions iS aCtually a|mOSt the same as that require@pectra”y over the same geographica' region (poss|b|y
to cover the entire circular region of interest. Since bothover 0n|y asmall part of the entire region of interest)_ An
the spectrum analyzers scan the entire spectrum, one &sc can be replaced by a single representative Virtual
the spectrum analyzers is actually redundafiis ex-  Spectrum Analyzer (VSA). The distance of a location
periment shows that when spectrum analyzers are verjom this VSA is then the maximum over the distances
closely located, spectral partitioning can be more advan-g|| spectrum analyzers in the corresponding SSC, since

tageous than geographical partitioning. even the farthest constituent spectrum analyzer must de-
tect occupancy at this location. The occupancy detection
5.2.3 Geo-Spectral Load Sharing time for any location using the VSA is determined by op-

Spectral and geographical task sharing, as described #mally partitioning the spectrum among the constituent
Section 5.2.1, each optimize along a single dimensiorsPectrum analyzers in the corresponding SSC (as de-
only, namely either frequency (spectral) or area (geoScribed in Section 5.2.1). The union of two SSCs yields
graphical). As seen from Experiments | and Il (Sec-2 VSA comprising the union of all constituent spectrum
tion 5.2.2), while geographical task sharing may be su&nalyzers in both SSCs.
perior to spectral in some scenarios, the opposite may be Our geo-spectral task sharing heuristic fospectrum
true in others. A more general task partitioning schemeanalyzers is initialized by creating SSCs, each com-
then isgeo-spectrapartitioning—where optimization is  prising a single distinct spectrum analyzer and perform-
performed simultaneously along both the spectral andng geographical task sharing on them. The algorithm
geographic dimensions. is a greedy iterative scheme, where at each step, pair-
Optimal geo-spectral task sharing, where spectrum anwise SSC unions are considered in order to determine if
alyzers are assigned a combination of frequency rangeverall task completion time can be reduced. In order
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g";?:r:t R Freduency Range | = (I_‘:Leg\liivzs—telpl\S/IHz) platforms. Themaster serveimplements a push-based

Agilent Fieldfox N9912A |  5KHz-6GHz | 36 (10 Hz - 1 MHz) model and thus, TCP connections to the slave servers are
ﬁg::zzt SN RN B A il 8 ne-s m:g kept persistent using heartbeats. The current implemen-
Hewlett-Packard E4403B| 9 KHz-3GHz | 15 (10 Hz - 5 MHz) tation of the master server is centralized and consists of

approximately 5000 lines of C# code. However, parti-
Table 3: Spectrum analyzer models used in SpecNet tioning of the slave servers along geographic boundaries

. L . fis possible, thus allowing distributed execution across
to determine overall task completion time given a set 0

SSCs, each SSC is replaced by its corresponding VS’@ultlpIe master servers if scalgblhty concerns arise.

. T . One of the key challenges in managing slave servers
and geographical partitioning is performed on this set of . . .

oo . . is dealing with the heterogeneity of spectrum analyz-

VSAs. The SSC pair union that results in the maximum : .
L o ers. As shown in Table 3, spectrum analyzers differ
reduction in overall task completion time is accepted for. . . .
. ) . . in their supported resolution bandwidth steps and fre-
the next iterative step. The procedure continues until no Lency ranae of operation. Further. as discussed earlier
further opportunities to unite SSCs exist that can reduce’ y rang P ‘ ' '

the overall task completion time. In the worst case, the>@" times (Figure 5) and noise floor (Figure 2) also vary

algorithm terminates im steps, as at each step the num- 2ross spectrum analyzers. SpecNet accounts for each of

ber of SSCs decreases by 1. As, at each step al pai}Qe above variations through a novel, automatic remote

of SSCs must be explored, the worst-case running tim benchmarking process, described in detail in [8], that al-

of this algorithm isO(n?). Since spectral sharing typi- ?OWS the master server to quickly build up a lookup table
. . of scan times and noise floor values at different resolu-
cally yields benefits only when two spectrum analyzer

S. . X
# o ) N Gnon bandwidth steps for each of its slave servers.
are “close”, in practice the running time can be reduce

to O(n?) by considering a fixed number of closest SSCsg.2  Slave Servers

rather than all possible SSC pairs at each step. The slave serveiis a small piece of software that runs
Figure 10c depicts an example of Geo-Spectral loagy, 5 desktop or laptop that are directly connected to the
sharing. The scanning frequency range was chosen agectrum analyzer. The main task of tave servers to
700 MHz to 800 MHz. Spectrum analyzers S1, S2 andyct 55 a bridge between the spectrum analyzer connected
S3 are located at A, B and C respectively. S3 (Fieldfox) it and themaster server To avoid issues with NAT/-
is a much faster spectrum analyzer compared to S1 aneyalis, theslave serveinitiates an outbound TCP con-
S2 (both N9320B Agilent). The circular region of in- npection on port 22 to thmaster serverlt also connects
terest is geographically partitioned into two regions Rl the |ocal spectrum analyzer through VISA. Once con-
and R2. S1 and S2 scan region R1 using spectral 10afecteq, it translates commands from the master server
sharing while S3 scans the entire spectrum in geographig, ihe spectrum-analyzer-specific-commands, runs spec-
region R2. To compare the performance of geo-spectraf,m scans. and returns the results.
partitioning we also tried scheduling using the purely 9€- |n order to support multiple platforms, we have im-
ographic and spectral schemes. Geogr.aphlc load Shar"’tgemented the slave server in Python in approximately
took 1205 seconds; spectral load sharing 1118 second$poo Jines of code. We use the Pylnstaller [13] package

and geo-spectral load sharing only 526 seconds. to generate platform specific (Windows & Linux as of
In summary, load sharing across multiple spectrumtoday) executables.

analyzers is a challenging problem. SpecNet's Geo-
Spectral load sharing algorithm is able to achieve 2-5X7  Applications
speedup compared to using a single spectrum analyzer im this section, we present three example user applica-
our experiments. tions on the SpecNet platform that highlight the simplic-
. ity of building a networked, geo-distributed system of
6 Implementation spectrum analyzers.
The SpecNet platform is accessible at [15] via a web ser-
vice API. It consists of anaster servethat managessev- /-1 Remote Spectrum Measurement
eralslave servers In this section we demonstrate how SpecNet can be used
to make spectrum measurements anywhere in the world.
6.1 Master Server The user code fragment written in Python is shown in
The master serverperforms two major functions— Listing 1. One simply needs to connect to the SpecNet
first, it exposes an API (Section 4) which the Spec-server, identify available devices in the region of interes
Net clients/users utilize to write programs and secondand then use th€et Power Spect run() API to ob-
it manages all thelave serversonnected to it. tain power values in the desired parts of the spectrum.
As mentioned in Section 4, the API is exposed asThis data can be used, for example, to compare avail-
XML-RPC calls to allow access from a wide-range of able free spectrum in different parts of the world or as
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Figure 11: Spectrum occupancy in various geographic region

traces for evaluation of new white-space protocols sucHive cities (ground truth based on Wikimapia), we found
as WhiteFI [3]. localization errors to range between 2-83 km (average
22 km, median 5 km). We now highlight how SpecNet
Listing 1: Code snippet for remote measurement.  could be used as a low-cost solution to improve the cov-

# connect to SpecNet server erage and accuracy of the existing TV tower database.
api Server = xmirpclib. ServerProxy(
"http://bit.ly/ SpecNet API",

I =Tr ue) ; - . .
al fownone=True) Listing 2: Code snippet for primary coverage.

# CGet Spectrum Anal yzers in region
area_of _interest = [13.02236, 77. 56558, 100000. 0] ;
devi ces = API Server. Cet Devi ces(area_of _i nterest, None);

# Find devices fromregion of interest
devi ces = APl Server. Get Devi ces(
[ 55. 944350, -3.187745, 500.0], None);
for device in devices:
pg:sira\é?! |SD,_] AP::ger\'é:r ’ 4{)_(13?3)Pgmr Spect runt # Cet Power Spectrum Val ues
’ ’ ’ ’ for device in devices:

power _val s = API Server. Get Power Spect r un(

At the time of writing, in addition to a few spectrum device['ID], Fs, Fe, 1e3);
| inB | Indi had t power _val s. append(aver age( power _val s));
analyzers in bangalore ( n |a): WE had one spectrum an-  gpservat i on_l ocati ons. append([device[’latitude ],

alyzer in Stony Brook (USA) and one in Edinburgh (UK) _ device[’ l ongi tude’ ]1);
hat ted to SpecNet. Figure 11 shows thg, 252 1 ®
that were connected to SpecNet. Figure 11 shows the: “nunber of I ocations < 5
spectrum measurements at these three sites located in !ocali Z?t! O{U est= AEI Servter- Lolcal i theTr ansmi tter(
three different continents, demonstrating the quld-wid ¢ Sgﬁgr—ivgi Eezfeibpﬁv ?e[f/gg,f 8?‘3,08?) ' ons
reach of the SpecNet platform. As seen from Figure 11¢l se S , '
I ocal i zation_res = APl Server. LocalizeTransmitter(

spectrum measurements at each of these locations acrpSs = a7ea of interest, observation |ocations,

the world clearly identify the well-known transmitters power _val ues, 'LDPL’, None);
such as FM, TVetc, and the available spectrum Whites-| 4 | ner poi at e
paces. pow = API Server. Fi ndPower At Locati on(new_| ocati on,
[l ocalization_res], 'LDPL’, None);
7.2 Primary Coverage The code snippet for this application is shown in List-

The next example application determines the spatial footing 2. The region of interest is identified and power
print of a TV transmitter located within a large city. This spectrum values from devices in that region are ob-
may be useful for whitespace network operators in plantained. Then the TV transmitter is localized using the
ning their deployments. Determining the footprint of a Local i zeTransmi tt er () API. Finally, a path loss

TV transmitter invariably requires knowledge of its lo- model is used to build the spatial footprint of the TV
cation. While accurate databases of these locations ateansmitter. The APFi ndPower At Locati on() is
available in countries such as the US, such a databadben used to determine the received power at desired new
is not readily available in many developing countries, in-locations.

cluding India. We tried to obtain this information by con-  Bangalore city has one terrestrial TV transmitter. For
tacting the Indian government agencies via postal maithe purpose of evaluation in a large-scale setting, we
(under the Right-to-Information Act). While we received needed data from multiple spectrum analyzers at differ-
information on about 150 TV tower locations (out of an ent locations in the city. Also, the accuracy of the lo-
estimated 700 towers), we found many inaccuracies ircalization API depends on the number of measurement
the data. For example, one tower’s location was mappetbcations. However, at the time of evaluation we only
well into a bay! Upon analyzing this TV tower data for had access to four slave servers inside Bangalore. To get
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around this problem, we modified the master server tone or more spectrum analyzers in the vicinity to per-
allow mobile slave servers to connect to it. This enabledorm scans at an appropriate resolution bandwidth and
us to gather data from multiple locations in the city us-frequency range. The result of this API call is an occu-
ing just one mobile slave server by driving on the majorpancy list, which indicates frequencies that have ongoing
roads and highways of the city. Figure 12 depicts the lotransmissions. A more detailed spectrum measurement
cations in the city where measurements were collecteds then performed only in the region around the detected
frequency. The results of the scan are then fed to the
Figure 13 shows the TV tower localization error mean,Local i zeTransni t t er () API to determine the lo-
25th and 75th percentile (y-axis) as the number of meaeation of the transmitter.
surement locations are varied (x-axis). To generate each
point in Figure 13, twenty subsets of locations were ran- Listing 3: Code snippet for SpectrumCop.
domly picked from the set of all measurement locations# Find occupancy in desired region
We see that even when the number of measurement 10683, Tons & 11 ' "hg '+ adius. i n_pover to._detect]:
tions is between 5-10, the mean localization error varig®ccupancy_list = API Server. Get Cccupancy(bound,
between 2.5-3.8 km. This demonstrates that even by ys=>' 2"~ "eauency. end_frequency, mn_power_detect);

ing measurements from a small number of spectrum an# Get power spectrumfor transnitter frequency
for occupancy in occupancy_list:

alyzers in each city, the gaps and inac_cur_e}cies inthe gov-" 'f " (occupancy[’ Cecupi ed' | == 1):
ernment database can be corrected significants the new_;_stgrt = occurJancy[F' Frequency’] -25(2)5ge3;
number of measurement locations is increased to 100, new fend Srscupancyl D;sf‘ggg(cﬁotn; None)
we see that the localization error goes below 0.5 km. for Idevi cein gevidce_s: Latitud
e . - . ‘Latit ’
While itis unrealistic to assume that SpecNet would have ocs. appen (Les:"cgf[ Longi t ude } )
over 100 spectrum analyzers in each city, an alternatiye resul ts[device['ID]] = APIServer.
i h t I that bil t bof Get Power Spect r un{ devi ce[" I D],
is to have spectrum analzyers that are mobile as part o new f_start, newf end,
SpecNet—we plan to look into this in the future. X k0ptions); # Actual call in new thread.
reak;

Figure 14 shows the mean, 25th and 75th percentile er-
rors in signal strength predictions obtained by using thg# Localize transnitter based on power measurenents
. ! . . for r inresults:
|nterpolat|on_A|_3I. 1_'he mean signal error varies betyveen power s. append(max(r)):

6 to 8 dB, similar in magnitude to the expected signglprint APl Server. Local i zeTransnitter(bounds, |ocs,

variations due to the environmehthus, using SpecNet povers, "LOPL, [P, 3.01):
to calculate coverage of a primary transmitter can pro- - gyajuation: We used this application to detect and lo-

vide a good estimate to an operator. calize a microphone in a region of 75 meters radius in
73 S C IISc. The setup consisted of 3 spectrum analyzers that
: pectrumCop were placed near 3 corners of the region of interest. The

Our final application demonstrates the two key featuresnicrophone transmits in a 250 KHz narrow band and the
of SpecNet: 1) simplicity of writing a complex real-time frequency range of the search space is set to 3 MHz. The
application through the use of high-level APIs and 2) ef-SpectrumCop application detected the microphone per-
ficiency of SpecNet in scanning a wide frequency rangeectly and localized it to within 20 meters of the actual
when more than one spectrum analyzer is available, iocation. The entire process of detecting and locating the
order to detect violators quickly. microphone took 165 seconds.
The goal of this application is to quickly detect a static
narrow-band transmitter within a certain geographicalre8 Limitations
gion of interest and then localize the transmitter. TheFirst, spectrum analyzers are expensive equipment that
transmitter can be operating anywhere within a wide fretesearchers have procured for specific needs. It may not
quency range. This application is especially useful for,ne easy to convince owners to volunteer this resource to
say, government officials to monitor unauthorized transthe community, especially during the bootstrapping stage
mitters in a certain band. where the benefit of the platform is not clear to the owner.
The code snippet for this application is shown in List- To date, we have approached a few of our acquaintances
ing 3. The application uses ti#@t Occupancy() APl and have observed mixed results. In the long run, per-

for the transmitter detection part, which basically taskshaps governments may be willing to sponsor a set of
Noto thal S hasic i ation to locate the T toit spectrum analyzers dedicated for SpecNet use.
ote that we use: asiIC triangulation to locate the 1. ower H H H
may be possible to achieve a higher accuracy through motgstop Second, spectrym analyzers are typlqally used. |n_S|de
cated localization schemes proposed in literature. labs that may be in basements or deep inside buildings.
2In our implementation we used a simple log distance path Iossour measurements indicate that buildings can add 5-20

model. The use of more sophisticated path loss models suttioss . .
that use terrain information may provide more accurateiptieds dB of attenuation (20dB in the basement for FM/TV
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transmissions) which restricts the detection range of théthalye for helping us conduct remote spectrum mea-
analyzer. If the owner can be convinced to mount the ansurements.

tenna near a window, the utility of the spectrum analyze
can be significantly increased. To minimize variability [
due to antenna placements, SpecNet can choose to onlj]
include spectrum analyzers with unobstructed antennas.
Finally, we have not considered the privacy/security

implications of allowing remote scanning of the spec-
trum. For now, SpecNet only exposes the power values
measured from the spectrum scan. Thus, it prevents dit
rect security and privacy threats such as fine-grained traf-
fic monitoring or user tracking. Advanced spectrum ana-
lyzers can provide time domain (1/Q) samples of the scan
and support for these features in SpecNet would require
sophisticated controls for privacy and security.

(6]
[7]

9 Conclusion

After the FCC ruling in the U.S. allowing opportunistic
access to portions of licensed frequency bands, there haf]
been tremendous interest in both academia and indusﬁo
try in developing novel wireless techniques and products
that take advantage of the new rules. A key requirement
for enabling this new ecosystem is a measurement infragii]
tructure that can provide real data. SpecNet fulfills this
critical need by enabling geographically distributed spec[12]

(8]

trum analyzers to be networked, thereby allowing bothﬁzl
real-time remote measurements as well as collection offL5]
historic spectrum usage data. Furthermore, SpecNet ext
poses an API that allows users to build interesting dis-
tributed sensing applications like SpectrumCop with rel-It
ative ease. There is still a lot of work left to achieve our
goal of building a planet-scale networked spectrum anit®
alyzer testbed, but we believe SpecNet provides a goofi9]
base to build upon.

[20]
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