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Abstract

While the under-utilization of licensed spectrum based
on measurement studies conducted in a few developed
countries has spurred lots of interest in opportunistic
spectrum access, there exists no infrastructure today for
measuring real-time spectrum occupancy across vast ge-
ographical regions. In this paper, we present the design
and implementation of SpecNet, a first-of-its-kind plat-
form that allows spectrum analyzers around the world to
be networked and efficiently used in a coordinated man-
ner for spectrum measurement as well as implementa-
tion and evaluation of distributed sensing applications.
We demonstrate the value of SpecNet through three ap-
plications: 1) remote spectrum measurement, 2) pri-
mary transmitter coverage estimation and 3) Spectrum-
Cop, which quickly identifies and localizes transmitters
in a frequency range and geographic region of interest.

1 Introduction
Radio Frequency (RF) spectrum measurement studies [9,
10, 5, 7] have confirmed that vast spans of licensed spec-
trum, deemed white-spaces, are heavily under-utilized.
Such studies have helped make a case for allowing unli-
censed devices to utilize unused parts of the spectrum op-
portunistically. Opportunistic Spectrum Access (OSA) is
now increasingly seen as a necessity to meet the grow-
ing demands of wireless applications. In fact, the his-
toric FCC ruling in 2008 permitting such opportunistic
use (and in 2010 allowing use without the need to sense
primaries) is a testament to the success of these measure-
ment studies.

Nevertheless, most spectrum measurement studies to
date have been conducted in a few developed nations,
using only a handful of spectrum analyzers. Even today,
the US remains the only country to have allowed an OSA
model. Many more measurement studies, especially in
developing nations, are perhaps necessary to make the
OSA model accepted worldwide.

Further, these measurements represent static spectrum
occupancy information over small parts of a country.
While spectrum allocation is mostly static today, the
adoption of OSA will result in much more dynamic use
of spectrum. Thus, access to real-time spatio-temporal
maps is beneficial for OSA devices to sense other OSA
devices and determine which parts of the spectrum are
free/lightly loaded. However, there exists no infrastruc-
ture today for measuring real-time spectrum occupancy
across vast geographical regions.

Over the past few years, several researchers have
proposed novel schemes for efficient media access and
network design in white-spaces [3, 20]. Other re-
searchers have proposed novel collaborative spectrum
sensing techniques [11] to allow robust detection of spec-
trum occupancy. However, thorough evaluation of these
techniques using real data is hard today. Further, cross-
geographic questions such as “How do spatio-temporal
access usage patterns in India differ from those in the
US?” or “How would a certain OSA technique that works
well in the US perform in the UK?” cannot be answered
today.

The primary contribution of this paper is SpecNet—
a platform that allows researchers across the world not
only to conduct spectrum measurement studies remotely
in real time, but also implement and test novel distributed
collaborative spectrum sensing applications for OSA.
SpecNet advances OSA in several ways. First, it helps
gather spectrum data in many countries, thereby helping
the adoption of the OSA model worldwide. Second, by
providing real-time spectrum occupancy maps, OSA de-
vices may be able to quickly identify lightly loaded parts
of the spectrum. Third, it provides real trace data that
can be used to evaluate novel research ideas in OSA. Fi-
nally, in countries such as India, where there is no readily
available database of primary users, it can help create an
accurate database that can be used by OSA devices.

In SpecNet (Section 4), participant owners of spec-
trum analyzers register and connect their instruments to
the SpecNet server. Each owner volunteers to provide
time periods when SpecNet users are allowed to use the
instrument to remotely conduct experiments. SpecNet
provides its users with a rich API implemented as XML-
RPC calls. Thus, SpecNet users can develop and re-
motely execute measurements or distributed sensing ap-
plications in a programming/scripting language of their
choice. To the best of our knowledge SpecNet is the first
programmable distributed spectrum sensing platform of
its kind. SpecNet can be accessed at [15].

SpecNet provides an API that supports three classes
of users (Section 4.2). For sophisticated users, SpecNet
provides full access to the low-level APIs of the spec-
trum analyzer. For policy users and others mainly inter-
ested in measurement data, say for longituidinal analy-
sis, SpecNet provides APIs that allow access to historic
measurement data that SpecNet collects and stores in a
database. For other users such as network operators or
government personnel, SpecNet provides a set of high-
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level APIs that allow these users to write novel appli-
cations without having to worry about the intricacies of
the spectrum analyzer. For example, a government user
interested in spectrum occupancy data need only spec-
ify the part of the spectrum (e.g.,500-800 MHz), the
geographical boundary (e.g.,specified by a center and
radius of a circular region), the time interval (e.g.,be-
tween 12:00 - 16:00 hrs today) and the minimum signal
strength of the transmitter that needs to be detected (say
-95 dBm). Behind the scenes, SpecNet determines the
group of relevant spectrum analyzers and their respec-
tive settings that will help satisfy the measurement re-
quest, executes the task on these spectrum analyzers and
delivers the results to the user. Other users such as OSA
network operators may be interested in determining the
coverage of their networks at locations where spectrum
analyzers may not be available. SpecNet provides an
interpolation tool that uses measurements from nearby
spectrum analyzers to estimate power at the location(s)
of interest.

Given that spectrum analyzers are expensive ($10-
40K) and their time of availability for SpecNet’s use
might be restricted depending on the owner’s needs, an
important design goal for SpecNet is efficient manage-
ment of spectrum analyzer time. When two or more
spectrum analyzers lie in the region of interest, it may be
possible to coordinate their measurements in a manner
so as to reduce the overall scanning time while satisfying
the user’s request. One approach could be to partition
the frequency spectrum equally among all the spectrum
analyzers in the region of interest. Another approach is
to leverage the spatial diversity in the locations of the
spectrum analyzers and partition the scanning efforts ge-
ographically. Finally, a hybrid approach that combines
these two approaches is also feasible.

Two fundamental tradeoffs underlying the very
physics of spectrum measurements make this problem of
partitioning the measurement task among spectrum ana-
lyzers a significant challenge. First, thetime-frequency
uncertainty principledictates that the finer the resolution
of the spectrum scan, the longer it takes to perform the
scan. Second, weaker signals require longer scan times
to be amenable to detection. Further, the heterogeneity
in capability as well as processing speeds across differ-
ent models of spectrum analyzers adds to the complexity.
SpecNet considers these tradeoffs and uses a novel task
partitioning scheme for scheduling individual spectrum
analyzers (Section 5).

We demonstrate the power of SpecNet through three
applications (Section 7). The first application is simply
a spectrum scan that is performed across different coun-
tries, illustrating the ability to conduct remote measure-
ments. The second application is a coverage estimation
application that may be useful to network operators. The

application first helps localize a TV transmission tower
and then predict its footprint so that operators may avoid
the primary owner of the spectrum. This is especially
useful in developing countries where a database of pri-
mary transmitters is unavailable or incorrect. The third
application is SpectrumCop, which may be of interest
to government users. Today, it is hard to detect viola-
tors of spectrum policy unless a primary owner of the
spectrum complains of interference. The SpectrumCop
application allows a user to quickly detect and localize a
transmitter in a given frequency range and geographic re-
gion, demonstrating the utility of SpecNet’s coordinated
sensing platform.

Thus, we make the following contributions:

• We present the design and implementation of a novel
platform called SpecNet that allows spectrum analyz-
ers around the world to be networked and used in a
coordinated manner for remote measurement as well
as testing and implementation of distributed sensing
applications. SpecNet is open for access at [15].

• We present a scheduling algorithm for coordinating
measurements among neighboring spectrum analyzers
that optimizes spectrum analyzer usage time.

• Finally, we present three applications that demonstrate
the value of the SpecNet platform.

2 Related Work
Measurement Studies.One of the earliest studies that
aimed at quantifying spectrum usage [9] is by the Shared
Spectrum Company. The study, conducted at six differ-
ent locations in the US, concluded that the average occu-
pancy of spectrum was about 5.2% in the 30 MHz to 3
GHz frequency range. A study by McHenryet al.[10] in
Chicago and New York revealed that the occupancy was
limited to 17% and 13% respectively. Since then, there
has been a number of measurement studies [5, 7, 19] in
different parts of the world. The common finding of all
these studies has been that spectrum is heavily under-
utilized. In [4], authors derive various statistics from
the collected data, and propose a prediction algorithm for
channel availability.

All of these studies have been performed using a hand-
ful (maximum of 4 according to [4]) of spectrum an-
alyzers scanning spectrum in a small geographical re-
gion in an uncoordinated fashion. In contrast, SpecNet
provides a platform for coordinating spectrum analyzers
across different geographical regions, thus opening doors
to more interesting measurement studies. Further, it also
enables building occupancy maps of large geographical
areas over long durations for longitudinal analysis.
Whitespace Research. Whitespace networking has
been gaining attention as an important research field in
the networking community. In [3], the authors propose
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a Wi-Fi like system built on UHF whitespaces. Yang
et al. propose a distributed spectrum access technique
using frequency agile radios transmitting in orthogonal
frequencies [20]. Most of these proposals have been
evaluated in restricted settings. We believe that SpecNet
would aid whitespace research by allowing evaluation of
proposals based on broader, more real-world data. For
instance, spectrum measurement data from different con-
tinents could be used to evaluate detection techniques.
Cooperative Sensing & Sensor Networks.Cooperative
sensing is a well explored topic [11, 16, 6]. The main
focus of these papers is detecting a primary whose fre-
quency of transmission and/or location is known. More-
over, the emphasis is on novel collaborative detection
techniques. SpecNet and research in collaborative sens-
ing are complementary to each other. For example, mea-
surements from SpecNet can be useful for evaluating
these collaborative detection algorithms while advanced
collaborative detection techniques can be incorporated
into the SpecNet platform as an API.

SpecNet uses Voronoi partitioning for optimizing scan
time of spectrum analyzers. The use of Voronoi diagrams
has been proposed in sensor networks as well [17, 2].
However, the main motivation for applying a partition-
ing scheme in sensor networks has been energy savings
and/or interference avoidance. Thus, the problem formu-
lations and objective functions are very different.
Testbeds/Platforms. A number of distributed research
testbeds/platforms have been built by the community [12,
1, 18]. To the best of our knowledge, SpecNet is the
first platform targeted at co-ordinating spectrum analyz-
ers across geographical regions.

3 Spectrum Sensing Using Spectrum Ana-
lyzers - A Primer

In this section we attempt to answer the question,“what
are the key settings and choices available to a spectrum
analyzer user for spectrum scanning and how do they in-
fluence the spectrum sensing process?”

3.1 Spectrum Scanning - An Example
We begin with an example spectrum scan of an active
wireless microphone depicted in Figure 1. When scan-
ning using a spectrum analyzer, a user typically needs
to specify two key parameters—thescanning frequency
range and the resolution bandwidth. The frequency
range, (fmin, fmax) in MHz, specifies that the user is
interested in scanning the spectrum fromfmin MHz to
fmax MHz. In Figure 1, the scanning frequency range
is (702.05 MHz , 702.35 MHz ). Resolution bandwidth
specifies the granularity in Hz at which the scan is to
be performed—the lower the resolution bandwidth, the
greater the observed detail in the scan.

Figure 1 depicts the results of the scan at four differ-
ent resolution bandwidths. When the resolution band-
width is 1 MHz, the microphone’s transmission is not
at all perceivable. Upon reducing the resolution band-
width to 30 KHz, a single clear peak emerges indicat-
ing the microphone’s transmission. Further reducing
the resolution bandwidth to 10 KHz reveals even finer
detail—three distinct peaks, which are the signature of
an FM-modulated transmission. At 1 KHz resolution
bandwidth, the three peaks are revealed as distinct sharp
tones.
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Figure 1: Effect of resolution bandwidth

As seen in Figure 1, a lower resolution bandwidth has
two significant effects on the scan. First, greater detail
about the signal structure is revealed and second, the
noise floor is reduced (from -52 to -102 dBm).

3.2 Occupancy Detection
Often, the goal behind scanning the spectrum isoccu-
pancy detection, i.e., to determine which parts of the
spectrum have ongoing transmissions. Fundamentally,
the problem of occupancy detection attempts to distin-
guish between signal and noise. While there are sev-
eral varieties of occupancy detection schemes, perhaps
the simplest scheme is to check whether the Signal to
Noise Ratio (SNR) is greater than a certain threshold.
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Figure 2:Noise floor versus resolution bandwidth

Dependence of noise floor on resolution bandwidth:
As we saw in Figure 1, the noise floor depends on the
resolution bandwidth of the scan. This decrease in noise
floor arises from the fact that as frequency bins become
finer, they accumulate less noise.A lower noise floor
typically results in a greater SNR and consequently more
reliable occupancy detection.
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The noise floor (in watts) as a function of resolution
bandwidth is typically given by

N ∝ ρ (1)

In Eqn 1, the proportionality constant depends on the
spectrum analyzer model, the antenna, the cabling,
etc. Figure 2 depicts the dependence of noise floor on
resolution bandwidth for three different models of spec-
trum analyzer. While practical measurements indicate
minor deviations in linearity, as seen in Figure 2, the lin-
ear model (Eqn 1) holds approximately true for all spec-
trum analyzers we used.

Dependence of detection range on resolution band-
width: Typically, the farther a transmitter is from a
spectrum analyzer, the lower the received power at the
spectrum analyzer. The weaker the received signal, the
lower the SNR and hence the less reliable its detection.
Detection rangeof a spectrum analyzer at a certain res-
olution bandwidth is the farthest distance from which an
ongoing transmission can be detected reliably.

Path loss models such as the Log Distance Path Loss
(LDPL) model are typically used to estimate received
power as a function of distance. The received powerPr

at a distanced from a transmitter transmitting with power
P0 based on the LPDL model is given by

Pr = P0 − 10γ log (d) + L (2)

In Eqn 2,γ (usually between 2 and 3 for outdoor envi-
ronments) is the path loss exponent andL dB (usually
modeled as a Gaussian with standard deviation between
5-10 dB for outdoor environments) is a random variable
that captures variations in the signal due to fading effects.

If ∆ is the minimum SNR required for reliable occu-
pancy detection using a certain detection scheme, then in
order to detect a transmission from a distanced, the noise
floor must be∆ dB less thanPr, i.e.,P0 − 10γ log (d)−
∆. Since noise floor is dictated by the resolution band-
width (Eqn 1), this in turn implies thatone must choose
a lower resolution bandwidth to reliably detect a trans-
mitter that is farther away from the spectrum analyzer.
The dependence of detection ranged on resolution band-
width can be derived from (Eqn 1) (after converting from
dB) as

ρ ∝
(

10
P0−∆

10

)

d−γ (3)

Eqn 3 indicates an important aspect of detecting trans-
missions from a distance, namely,the maximum usable
resolution bandwidth decreases super-linearly (asdγ)
with detection range.

4 SpecNet Architecture
SpecNet is a shared infrastructure consisting of geo-
distributed, networked, programmable spectrum analyz-
ers that are contributed and used by the community. The

Figure 3: SpecNet Architecture
following two goals drive the design of SpecNet.1) Ease
of Use: We expect SpecNet to support the needs of three
different classes of users. First, sophisticated users such
as whitespace researchers will likely need real-time, low-
level access to the full functionality of the spectrum an-
alyzers. Second, some users such as spectrum policy re-
searchers may simply need access to the data collected
by the spectrum analyzers. Finally, users such as sec-
ondary network service providers or government person-
nel interested in spectrum monitoring may require high-
level APIs that abstract the details/complexity of Spec-
Net and provide services such as tower localization or
spectrum occupancy detection.2) Efficiency: Given that
spectrum analyzers are expensive ($10-40K) and may be
available to SpectNet for limited duration, it is important
that the usage of spectrum analyzers be optimized where
possible. Since the spectrum analyzers cannot be arbi-
trarily “time-sliced” for fine-grained sharing, optimiza-
tion requires completing each task as efficiently as pos-
sible. We now present an overview of the SpecNet archi-
tecture.

4.1 Overview
The SpecNet architecture is shown in Figure 3. It
contains three key components: users or clients, slave
servers that comprise laptops/PCs connected to spec-
trum analyzers, and master servers that manage the slave
servers. The typical work-flow is as follows: clients sub-
mit jobs to the master servers; the master servers trans-
late these jobs into spectrum analyzer commands based
on Standard Commands for Programmable Instruments
(SCPI) [14]. The master server also schedules these at
the appropriate slave server nodes for execution at the de-
sired/available time. The output of the commands is then
either forwarded immediately to the client or the client is
notified of when/where the output data from the submit-
ted job would be available.

XML-RPC: In order to support a wide range of client
platforms, the SpecNet service is exposed by the master
servers as XML-RPC calls,i.e., remote procedure calls
that are encoded in XML and transported over HTTP
using the XML-RPC standard. This allows clients to
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post jobs using the SpecNet APIs from any Internet-
connected node, written in any language of their choice.

Push-vs-Pull: The jobs posted to the master server
can either be pushed to or pulled by the slave servers.
While a pull-based publish-subscribe model is less com-
plex in terms of state maintenance at the server, it is not
suitable for SpecNet users who may want to execute jobs
with inter-dependent API calls that require reaction at
sub-second intervals (see the Spectrum Cop application
in Section 7.3). We thus adopt a push-based model where
a persistent TCP connection is maintained between the
slave servers and the master servers and jobs are pushed
to the slave servers.

Registration: Users contributing slave servers need
to first register with the SpecNet master server. They
may specify times during which the nodes are available
to SpecNet. Upon completion of registration, a simple
daemon is downloaded and executes on the slave server.
This software establishes an outbound persistent TCP
connection to the master server and another connection
to the spectrum analyzer, thereby serving as a bridge be-
tween the master server and the spectrum analyzer.

Benchmarking: The master server first runs a suite
of experiments to benchmark the fundamental character-
istics such as noise floor and scan times of each spec-
trum analyzer (details in [8]). This benchmarking helps
the master server efficiently schedule jobs at the slave
server nodes. Further, this is also necessary for abstract-
ing some of the low-level details of the spectrum ana-
lyzer through higher-level APIs, necessary for masking
some of the heterogeneity among spectrum analyzers.
We discuss this next.

4.2 APIs
As mentioned earlier, SpecNet is designed to support
three classes of users. Table 4.2 lists a subset of the APIs
supported by SpecNet.

For sophisticated users who require low-level access
to the spectrum analyzer, SpecNet has a reservation API
that users can use to reserve a block of time on the de-
sired slave servers. The users can then issue their de-
sired low-level commands, which are simply forwarded
through the master server to the slave servers for execu-
tion.

For policy users and others who are interested
mainly in spectrum usage data, possibly for longitu-
dinal studies, SpecNet schedules up to 10% of the
available time at each slave server for itself. Dur-
ing this time, the server performs a high resolution
scan of the entire spectrum, stores this data in a
SQL database and exposes this data to users through
APIs such asGetPowerSpectrumHistory() or
GetOccupancyHistory(). This stored data can
also serve as a cache and may help respond (partly) to

other submitted jobs.
The interesting challenges in SpecNet’s design arise

mainly in supporting the third class of users (e.g.,net-
work operators). These users may require support for
high-level APIs that abstract out many of the details of
using spectrum analyzers. While we have designed a
few of these APIs (6-9 in Table 4.2), we expect the set
of high-level APIs to expand over time based on interest
and through community contributions.

Localization and Interpolation: Estimating the ge-
ographical coverage of a primary transmitter is essential
to creating a spectrum usage map. However, this requires
knowledge of specifics of the transmitter such as its loca-
tion and transmit power. Such information is usually not
available or may be incorrect, especially in developing
countries (Section 7.2).

In order to localize transmitters, SpecNet provides
theLocalizeTransmitter() API that uses signal
strength observed at spectrum analyzers from various lo-
cations but does not require input of parameters such as
location and transmit power of the transmitter. Instead,
SpecNet estimates these parameters that best explain the
signal observations (in least mean square error terms) us-
ing well known path loss models such as Longley-Rice
or Log Distance Path Loss (LDPL). The number of un-
knowns that can be estimated, however, fundamentally
depends on the number of different locations from which
signal strength was observed. In case of the LDPL model
(Eqn 2), for example, if signal strengths from only three
locations are available, SpecNet setsγ = 3, takes the
transmit power (P0) as input from the user and estimates
the location through triangulation. If signal strength from
four different locations are available, SpecNet can esti-
mateP0 and the transmitter location simultaneously by
choosingγ = 3. When observations from five or more
locations are available, SpecNet can estimate the trans-
mitter location, transmit powerP0 andγ simultaneously
that best fit the observations. Once the location of the
transmitter and other parameters are determined, con-
structing a spectrum map is straightforward. SpecNet
provides theFindPowerAtLocation() API that
takes these parameters and predicts the likely received
power at desired new locations (e.g., locations with no
spectrum analyzer).

Spectrum Occupancy Detection: The next two
high-level APIs help users obtain spectrum occupancy
at desired locations. TheGetPowerSpectrum() is
simply a spectrum scan over a given frequency range on a
given device, except that users do not even need to spec-
ify the resolution bandwidth. Instead users can specify
a region and desired minimum power level of transmit-
ter to be detected. SpecNet then automatically chooses
the best resolution bandwidth (based on the fundamental
properties of occupancy detection discussed in Section 3)
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# API Description
Low-level APIs (e.g.,for sophisticated users)

1 GetDevices([Boundary], [Timespan]) Returns a list of spectrum analyzer IDs. Fewer/no argumentspossible.
2 ReserveDevice(ID, Timespan) Reserves and returns success, if available.
3 RunCommandOnDevice(ID,Command) Issues SCPI command to device and returns result.

Commands to access stored data (e.g.,for policy users)
4 GetPowerSpectrumHistory(ID, Fs, Fe, Timespan) Returns (avg) power values from device for given time/frequency range (Fs-Fe).
5 GetOccupancyHistory(ID/Boundary, Fs, Fe,

Timespan, Threshold)
Returns 0-1 list indicating occupancy in Fs-Fe at device or in region, based on
threshold.

High-level APIs (e.g.,for operators or government users)
6 LocalizeTransmitter(Boundary, Locations, Powers,

Model, Parameters)
Localizes transmitter inside area, given observed power level(s) at location(s)
using Model (LDPL, HATA, Longley-Rice, etc.) .

7 FindPowerAtLocation(Location, [Transmitter
Parameters], Model, [Model Parameters])

Interpolates power at new location given transmitter location/parameters and
model; useful for estimating coverage of transmitter.

8 GetPowerSpectrum(ID, Fs, Fe, [Boundary, P]) Schedules a scan for given frequency range (SpecNet determines optimal reso-
lution bandwidth) in order to detect minimum power level P ingiven area.

9 GetOccupancy(ID/Boundary, Fs, Fe, P) Provides a 0-1 list corresponding to frequencies occupied at a device or region.
P is the minimum transmitter power (SpecNet minimizes scan time).

Table 1: Core APIs supported by SpecNet

and returns the results.GetOccupancy() API goes
further by allowing the user to specify a region of interest
for detecting occupancy of signals above a given thresh-
old, without even identifying the desired slave server
IDs. This API is useful for applications like Spectrum
Cop (Section 7.3), which monitor unauthorized spectrum
usage. To support this API, SpecNet computes the opti-
mal set of spectrum analzyers and their corresponding
resolution bandwidth values that minimize scan time and
returns the results. Optimizing scan time across multiple
spectrum analyzers is a challenging problem which we
discuss next.

5 Task Scheduling in SpecNet
SpecNet allows users to deploy and execute spectrum
sensing applications in real time. Users expect their sens-
ing tasks to be dispatched and completed as soon as pos-
sible. Consequently, SpecNet schedules participant spec-
trum analyzers in a manner so as to minimize task com-
pletion time. In this section we describe the challenges
posed in the design of a task scheduler for SpecNet.

5.1 Scanning Time of a Spectrum Analyzer
For a spectrum analyzer, the time to perform a scan from
fmin MHz to fmax MHz depends on two parameters
namely,spanQ = fmax−fmin and the resolution band-
width ρ used for the scan. Increasing the span requires
a spectrum analyzer to scan a larger part of the spectrum
and consequently requires a longer scan time. Scanning
at a smaller resolution bandwidth requires a larger num-
ber of samples to be collected in order to reliably esti-
mate the power in each of the finer frequency bins and
hence, more time. For modern spectrum analyzers, the
scan time may be modeled as

T ∝
Q

ρ
(4)

In Eqn 4,T is the scanning time. The proportionality
constant in Equation 4 can vary significantly across dif-
ferent models of spectrum analyzers as discussed next.

Theory versus Reality : Figure 4 depicts the scan times
measured from different spectrum analyzers at different
resolution bandwidths as a function of span. As seen
from Figure 4, the dependence of scanning time on span
Q is strictly linear as dictated by Eqn 4. Consequently, it
is convenient to characterize scan times of spectrum an-
alyzers in terms ofscan time per MHz, τ . The scanning
time for a scan fromfmin to fmax is then determined by
the product(fmax − fmin)τ .

Figure 5 depicts the measured scan times per MHz (τ )
as a function of resolution bandwidth for three different
models of spectrum analyzers in a log-log plot. Based on
Eqn 4, the variation of scan times with resolution band-
width should be linear. However, Figure 5 indicatessig-
nificant departure from linearity.Rather the variation is
piece-wise linear. For example, for FieldFox N9912A,
the variation is linear in sections A-B and C-D sepa-
rately. The piece-wise linearity arises because spectrum
analyzers likely use different sets of circuits and modes
for different ranges of resolution bandwidths and these
circuits/modes presumably have different performance
characteristics. To allow for these non-linearities, Spec-
Net maintains lookup tablesτ(ρ) describing the scanning
time per MHz for a given resolution bandwidth setting
for each spectrum analyzer.

5.1.1 Minimizing Scan Time by Automatic Resolu-
tion Bandwidth Selection

When scanning a part of the spectrum, users often care
about having a low noise floor. The noise floor, how-
ever, as discussed in Section 3, depends on the resolu-
tion bandwidth chosen. SpecNet allows users to request
a scan by a remote spectrum analyzer by specifying the
maximum tolerable noise floor. Behind the scenes, Spec-
Net determines the resolution bandwidth that provides
for the fastest scan time that satisfies the required noise
floor. In order to enable such an API, the SpecNet server
maintains lookup tables that provide scanning times per
MHz at various resolution bandwidths, for each Spec-
trum Analyzer connected to SpecNet.
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Figure 4: Scanning time versus span
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Figure 6: Decay in received signal
strength for microphone

Dependence of Scanning Time on Detection Range:A
greater detection range requires using a narrower resolu-
tion bandwidth (Section 3). This in turn implies thatto
increase the detection range of a spectrum analyzer one
must accept a longer scanning time.More specifically,
from Equations 3 and 4, scanning time depends on de-
tection range as

T ∝
(

10−
P0−∆

10

)

Qdγ (5)

Eqn 5 reveals a crucial aspect of sensing—namely,scan-
ning time increases super-linearly with increase in de-
tection distance and linearly with span. As described in
Section 5.2, SpecNet uses this dependence to efficiently
share load among spectrum analyzers given a scanning
task.

To account for the deviations in scanning time from
Equation 4 as depicted in Figure 5, given a detection
ranged , instead of using Eqn 5, SpecNet uses the lookup
tableτ(ρ) to determine the resolution bandwidth that has
the fastest scanning time per MHz while ensuring a min-
imum noise floor ofP0 − 10γ log (d) − ∆. P0 = −50
and∆ = 10 are chosen as default unless specified by the
user andγ = 3 is chosen as a conservative estimate.

Evaluation: Given a detection range, SpecNet
chooses a resolution bandwidth so as to minimize scan-
ning time. How well does the resolution bandwidth se-
lection scheme work in practical deployments? A resolu-
tion bandwidth chosen too low will take too long to scan
while a resolution bandwidth chosen too high will not
provide the necessary SNR to allow detection. There are
several practical considerations. First, the path loss ex-
ponent is not a fixed quantity and depends on the nature
of the environment. Line of sight and non line of sight
paths offer different path loss characteristics. Further,
significant signal attenuation often occurs due to walls in
indoor environments.

To answer this question, we tested SpecNet in a real
deployment at the Indian Institute of Science (IISC) cam-
pus as depicted in Figure 7 on two different models of
spectrum analyzer. The campus is lush with very dense

trees and this provided an excellent opportunity to eval-
uate SpecNet in various scenarios such as Line of Sight
(LOS), Non-Line of Sight (N-LOS) and Indoors. In Fig-
ure 7, two different models of spectrum analyzer are lo-
cated at O, while a wireless microphone was placed at
six different locations, two each in the LOS, NLOS and
indoor categories. In each of the six detection experi-
ments, the detection range was set to the exact distance
between the microphone and the spectrum analyzer.P0

was set to -35 dBm which was determined by measur-
ing the power of microphone at a distance of 1m. For all
our experiments we fixed∆ = 10 dB. In other words,
given a detection range, SpecNet must choose the res-
olution bandwidth that provides the minimum scanning
time while ensuring that the SNR is a minimum of 10
dB. Table 8 provides a summary of the results.

Line of Sight:As seen from Table 8, for both the LOS
experiments and for both spectrum analyzers, SpecNet
chose a very conservative noise floor—while the target
SNR is 10 dB, the observed SNR is about 25 dB. Figure 6
depicts the decay of signal strength with distance for the
microphone in line of sight. The path loss decay expo-
nentγ was estimated to be around 2.5, however, SpecNet
conservatively choosesγ = 3.0 in estimating the target
noise floor. This results in the conservative choice of the
resolution bandwidth.
Non Line of Sight: For NLOS experiments, the reso-
lution bandwidth choice of SpecNet allows for an SNR
close to the target 10dB for both spectrum analyzers in-
dicating thatγ was closer to 3 for these experiments.
Indoors: When the microphone was keptindoors, how-
ever, SpecNet finds itself underestimating the signal de-
cay. For example, in both the experiments, the chosen
resolution bandwidths allow only SNR of about 6 dB
rather than 10 dB.

While choosing a conservative resolution bandwidth
ensures detection, it results in longer scanning times.
What is the loss in scanning time due to the conserva-
tive choices of resolution bandwidth? To answer this
question, we attempted to detect the microphone at sev-
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Figure 7: Occupancy detection
using a single spectrum analyzer

Distance SNR Loss in Sec
in mts in dB Scanning Time

Line Of 31 24 28 0.005 0.018
Sight 71 25 28 0.016 0.046

Non-Line 124 15 23 0.123 2.23
Of Sight 131 17 24 0.123 2.24
Indoor 35 16 6 0.005 0.0

Locations 50 0.2 8 0.0 0.0

Figure 8: Performance of Resolution Bandwidth
Selection in SpecNet; the two columns for SNR
and Scanning time represent two different spec-
trum analyzers

Figure 9: Occupancy detection
using two spectrum analyzers

eral different resolution bandwidths without the use of
SpecNet’s resolution bandwidth selection. We then de-
termined the optimal resolution bandwidth for each ex-
periment that allowed an SNR of 10 dB. Table in figure 8
depicts the loss in scanning time in seconds due to the
sometimes conservative choice of SpecNet for each ex-
periment. As seen from table, the loss in scanning time
is in the range of a few milliseconds most of the time
and up to a few seconds in some cases. Thus, we con-
clude that the automatic resolution bandwidth estimation
in SpecNet works as intended.

5.2 Occupancy Detection
In many practical applications of occupancy detection,
users are interested in spectrum occupancy in a specific
geographic region. For example, “are there any ongo-
ing transmissions in the spectrum range 700 MHz to 800
MHz within a 5 km radius of my location?” SpecNet
allows users to specify a circular region specified by a
center and a radius for spectrum measurement. Behind
the scenes, SpecNet determines the set of relevant spec-
trum analyzers that can be used to accomplish this task.
Any spectrum analyzer whose maximum detection range
(determined by the lowest resolution bandwidth) over-
laps with the user-specified region of interest is deemed
relevant. When there are multiple relevant spectrum ana-
lyzers, SpecNet schedules the scanning task load among
them so as to minimize the overall scanning time.

5.2.1 Load sharing across multiple spectrum ana-
lyzers

There are two distinct dimensions along which a scan-
ning task can be shared among multiple spectrum ana-
lyzers, namely, spectrum and geography.Spectral load
sharing involves different spectrum analyzers scanning
complementary parts of the spectrum whilegeographical
load sharinginvolves different spectrum analyzers scan-
ning different spatial sections of the overall geographi-
cal area of interest. SpecNet uses a combination of both
these techniques to minimize overall scanning time.

The Scheduling Metric: If n different spectrum analyz-
ers are scheduled to share a certain task load, they scan
in parallel and accomplish their respective sub-tasks in
parallel. Suppose that theith spectrum analyzer takes
time Ti to complete its assigned sub-task. The task is
deemed complete when all spectrum analyzers have ac-
complished their respective sub-tasks. Since all spectrum
analyzers are tasked in parallel, the time to task comple-
tion is given byT = max (T1, T2, · · · , Tn). The goal of
the SpecNet task scheduler is to minimize the task com-
pletion time. Hence, SpecNet attempts to schedule var-
ious spectrum analyzers in such a manner that the max-
imum over all sub-task completion tasks is minimized
i.e., in amin-maxmanner.

Spectral Load Sharing: Figure 9 depicts a circular
region of interest and two spectrum analyzers S1 and
S2 located at X1 and X2 that can potentially be used to
scan the circular region of interest. Suppose that the user
needs to scan fromfmin MHz to fmax MHz. S1 and S2
could then share the task such that S1 scans fromfmin

MHz to fmin+Q1 MHz, while S2 scans fromfmin+Q1

MHz to fmax. Such spectral load sharing results in a re-
duction in span for the participant spectrum analyzers,
thus reducing the overall scanning time.

In the above exampleQ1 must be chosen in a man-
ner so that the maximum of the scanning times of S1 and
S2 are minimized. In order to detect any transmission
in the entire region of interest, S1 must have a detection
range equal to|X1O1| = d1 where O1 corresponds to the
farthest possible transmitter location within the region of
interest from S1 (as depicted in Figure 9). Similarly, the
detection range of S2 should be|X2O2| = d2 in order to
detect any transmitter in the region of interest. Letτi be
the minimum scanning time per MHz for spectrum ana-
lyzerSi required to achieve a detection range ofdi. Then
the overall scanning time is given bymax (τ1Q1, τ2Q2),
whereQ2 = fmax − fmin − Q1. The optimal choice
then corresponds to when

Q1 : Q2 =
1

τ1
:
1

τ2
(6)
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Eqn 6 can be easily generalized to spectral partitioning
for several spectrum analyzers. In case of several spec-
trum analyzers,the span of spectrum allocated to each
spectrum analyzer is inversely proportional to the mini-
mum scanning time per MHz required to scan the circu-
lar region of interest.

Geographical Load Sharing: Another way to share
the load between S1 and S2 (Figure 9) is to partition
the region of interest geographically by requiring them
to scan only parts of the region of interest rather than
the entire region. In Figure 9, the region is divided into
two sections by the line|O′

1
O′

2
|. S1 and S2 are deemed

responsible to scan each of the two sections. The advan-
tage of partitioning in this manner is that individual spec-
trum analyzers can now use a smaller detection range. As
seen in Figure 9, S1 and S2 use detection ranges equal to
|X1O

′

1
| = d′

1
< d1 and|X2O

′

2
| = d′

2
< d2 respectively.

As described in Equation 5, reduced detection range im-
plies reduced scanning time. Thus, each of the spec-
trum analyzers takes a shorter time to scan its respective
region—thus reducing overall task completion time.

Since every spectrum analyzer scans a different geo-
graphical region, each must scan the entire spectrum of
interestfmin to fmax. If the scanning times per MHz
of n geographically task sharing spectrum analyzers are
given byτ1,τ2,· · ·,τn, then the over all task completion
time will be max (Qτ1, Qτ2, · · · , Qτn). Consequently,
in order to minimize over all task completion time, we
needτi = τ , ∀i such thatτ is minimized while ensuring
that the entire area of interest is covered.

First consider the case of homogeneous spectrum an-
alyzers. Ensuring equalτi translates to ensuring equal
maximum detection ranges to all the spectrum analyzers.
This problem can be optimally solved using Voronoi par-
titioning with each spectrum analyzer being treated as a
Voronoi site. Each Voronoi cell, then, would correspond
to the geographical region assigned to the spectrum an-
alyzer. The resolution bandwidth of each spectrum an-
alyzer would correspond to the detection range required
to accommodate the farthest point in its Voronoi cell.

Now consider the case of heterogeneous spectrum an-
alyzers. Since the scanning times of different analzyers
are different, standard Voronoi partitioning is no longer
optimal. Instead, the SpecNet scheduler performs a mod-
ified version of Voronoi partitioning – equal detection
time partitioning – where proximity is measured in terms
of detection time rather than Euclidean distance.

Given the non-linear and discontinuous nature of de-
pendence of detection time on detection range (Equa-
tion 5), to the best of our knowledge there exists no
known exact solution to this partitioning problem. Con-
sequently we resort to solving the problem numerically.
The entire area of interest is sampled at several locations
generated randomly over the area of interest. Each ran-

dom location is then assigned to its nearest spectrum ana-
lyzer in terms of the scan-time required to detect a trans-
mitter at that grid point. Note that if a point is located
beyond the detection range of a spectrum analyzer, the
corresponding scanning time is set to infinity. Finally,
each spectrum analyzer is assigned a resolution band-
width by setting its detection range to the farthest ran-
dom location assigned to it. The run-time complexity of
this numerical scheme depends on the number of random
points chosen. In our implementation we generated ran-
dom locations with a density of 1 location per sq meter.
For an area of 1 Sq Km (1 × 106 random locations) we
found that geographic partitioning took under a few hun-
dred milliseconds on the SpecNet server.

5.2.2 Geographical versus Spectral Load Sharing
Which of the above two load-sharing schemes should
we use and under what circumstances? To answer this
question we describe the results of two experiments con-
ducted in the Indian Institute of Science (IISC) campus,
depicted in Figures 10a and 10b, scanning from 700-800
MHz. In each of the experiments we compared three
different scheduling methods. InBest Select,the spec-
trum analyzer that can accomplish the task in the shortest
time is selected and used to accomplish the scanning task
without any load sharing. We compared Best Select with
spectral and geographical load sharing.
Experiment I : Two identical spectrum analyzers (both
N9320B Agilent models) were placed 103 m apart at A
and B as depicted in Figure 10a. The region of interest
was specified as a circle of radius 50 m.
Experiment II : Two identical spectrum analyzers (both
N9320B Agilent models) were both placed at location
A and the region of interest was specified as a circle of
radius 50 m as shown in Figure 10b.

Experiment Best Select Spectral Geographical
in sec in sec in sec

Experiment I 1054 561 129
Experiment II 1054 561 1054

Table 2: Comparison of load sharing schemes

Results of Experiment I : As depicted in Table 2, since
the spectrum analyzers are identical, the optimal spec-
tral load sharing resulted in both the spectrum analyz-
ers taking an almost equal amount of time (in practice
a slight difference in their noise floors resulted in one
spectrum analyzer scanning a bit more spectrum than
the other). Consequently, spectral partitioning completed
about twice as fast as Best Select. Curiously,geographi-
cal load sharing completed almost five times faster than
spectral load sharing. In this particular experiment,
Voronoi partitioning resulted in two halves of the circle
indicated by regions R1 and R2 in Figure 10a. Conse-
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(a) Experiment I (b) Experiment II (c) Experiment III

Figure 10: Comparison of scheduling schemes

quently, the detection range required for each of the spec-
trum analyzers in geographical load sharing was smaller
than that required in spectral load sharing. Eqn 5 reveals
that scanning time decreases super-linearly as detection
range, explaining the 5x gains.
Results from Experiment II : As depicted in Table 2,
since the spectrum analyzers are co-located and identi-
cal, optimal spectral load sharing assigns two halves of
the span to each spectrum analyzer. Consequently, spec-
tral load sharing performs approximately twice as well
as scheduling without load sharing. Here, however, geo-
graphical load sharing performs exactly the same as hav-
ing no load sharing and takes twice as long as spectral
partitioning! The Voronoi partition for the experiment
is indicated by the dashed line separating R1 and R2 in
Figure 10b. The maximum detection range required by
each of the two spectrum analyzers to cover their respec-
tive partitions is actually almost the same as that required
to cover the entire circular region of interest. Since both
the spectrum analyzers scan the entire spectrum, one of
the spectrum analyzers is actually redundant.This ex-
periment shows that when spectrum analyzers are very
closely located, spectral partitioning can be more advan-
tageous than geographical partitioning.

5.2.3 Geo-Spectral Load Sharing

Spectral and geographical task sharing, as described in
Section 5.2.1, each optimize along a single dimension
only, namely either frequency (spectral) or area (geo-
graphical). As seen from Experiments I and II (Sec-
tion 5.2.2), while geographical task sharing may be su-
perior to spectral in some scenarios, the opposite may be
true in others. A more general task partitioning scheme
then isgeo-spectralpartitioning—where optimization is
performed simultaneously along both the spectral and
geographic dimensions.

Optimal geo-spectral task sharing, where spectrum an-
alyzers are assigned a combination of frequency range

and geographical area to minimize overall task comple-
tion time while ensuring that the entire area and spec-
trum of interest are covered, falls under a class of non-
convex optimization problems for which, to the best of
our knowledge, there exists no known exact solution.
However, Experiments I and II (Section 5.2.2) reveal
two key observations that allow us to develop a heuristic
to enable geo-spectral task sharing. First, geographical
partitioning typically out-performs spectral partitioning
owing to the super-linear relationship between detection
range and scanning time. Second, when spectrum ana-
lyzers are located near each other, spectral partitioning
tends to outperform geographical partitioning.

In order to facilitate explanation of our heuristic for
geo-spectral task sharing, we introduce the notion of a
spectrally sharing cluster (SSC) of spectrum analyzers –
a set of spectrum analyzers that share their scanning tasks
spectrally over the same geographical region (possibly
over only a small part of the entire region of interest). An
SSC can be replaced by a single representative Virtual
Spectrum Analyzer (VSA). The distance of a location
from this VSA is then the maximum over the distances
all spectrum analyzers in the corresponding SSC, since
even the farthest constituent spectrum analyzer must de-
tect occupancy at this location. The occupancy detection
time for any location using the VSA is determined by op-
timally partitioning the spectrum among the constituent
spectrum analyzers in the corresponding SSC (as de-
scribed in Section 5.2.1). The union of two SSCs yields
a VSA comprising the union of all constituent spectrum
analyzers in both SSCs.

Our geo-spectral task sharing heuristic forn spectrum
analyzers is initialized by creatingn SSCs, each com-
prising a single distinct spectrum analyzer and perform-
ing geographical task sharing on them. The algorithm
is a greedy iterative scheme, where at each step, pair-
wise SSC unions are considered in order to determine if
overall task completion time can be reduced. In order
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Model Frequency Range RBW steps
Agilent N9320B 9 KHz- 3 GHz 11 (10 Hz - 1 MHz)
Agilent Fieldfox N9912A 5 KHz - 6 GHz 36 (10 Hz - 1 MHz)
Agilent EXA N9010A 9 KHz - 26.5 GHz 62 (1 Hz - 8 MHz)
Agilent PSA E4440A 3 Hz - 26.5 GHz 68 (1 Hz - 8 MHz)
Hewlett-Packard E4403B 9 KHz- 3 GHz 15 (10 Hz - 5 MHz)

Table 3: Spectrum analyzer models used in SpecNet

to determine overall task completion time given a set of
SSCs, each SSC is replaced by its corresponding VSA
and geographical partitioning is performed on this set of
VSAs. The SSC pair union that results in the maximum
reduction in overall task completion time is accepted for
the next iterative step. The procedure continues until no
further opportunities to unite SSCs exist that can reduce
the overall task completion time. In the worst case, the
algorithm terminates inn steps, as at each step the num-
ber of SSCs decreases by 1. As, at each step all pairs
of SSCs must be explored, the worst-case running time
of this algorithm isO(n3). Since spectral sharing typi-
cally yields benefits only when two spectrum analyzers
are “close”, in practice the running time can be reduced
to O(n2) by considering a fixed number of closest SSCs
rather than all possible SSC pairs at each step.

Figure 10c depicts an example of Geo-Spectral load
sharing. The scanning frequency range was chosen as
700 MHz to 800 MHz. Spectrum analyzers S1, S2 and
S3 are located at A, B and C respectively. S3 (Fieldfox)
is a much faster spectrum analyzer compared to S1 and
S2 (both N9320B Agilent). The circular region of in-
terest is geographically partitioned into two regions R1
and R2. S1 and S2 scan region R1 using spectral load
sharing while S3 scans the entire spectrum in geographic
region R2. To compare the performance of geo-spectral
partitioning we also tried scheduling using the purely ge-
ographic and spectral schemes. Geographic load sharing
took 1205 seconds; spectral load sharing 1118 seconds;
and geo-spectral load sharing only 526 seconds.

In summary, load sharing across multiple spectrum
analyzers is a challenging problem. SpecNet’s Geo-
Spectral load sharing algorithm is able to achieve 2-5X
speedup compared to using a single spectrum analyzer in
our experiments.

6 Implementation
The SpecNet platform is accessible at [15] via a web ser-
vice API. It consists of amaster serverthat manages sev-
eralslave servers.

6.1 Master Server
The master serverperforms two major functions—
first, it exposes an API (Section 4) which the Spec-
Net clients/users utilize to write programs and second,
it manages all theslave serversconnected to it.

As mentioned in Section 4, the API is exposed as
XML-RPC calls to allow access from a wide-range of

platforms. Themaster serverimplements a push-based
model and thus, TCP connections to the slave servers are
kept persistent using heartbeats. The current implemen-
tation of the master server is centralized and consists of
approximately 5000 lines of C# code. However, parti-
tioning of the slave servers along geographic boundaries
is possible, thus allowing distributed execution across
multiple master servers if scalability concerns arise.

One of the key challenges in managing slave servers
is dealing with the heterogeneity of spectrum analyz-
ers. As shown in Table 3, spectrum analyzers differ
in their supported resolution bandwidth steps and fre-
quency range of operation. Further, as discussed earlier,
scan times (Figure 5) and noise floor (Figure 2) also vary
across spectrum analyzers. SpecNet accounts for each of
the above variations through a novel, automatic remote
benchmarking process, described in detail in [8], that al-
lows the master server to quickly build up a lookup table
of scan times and noise floor values at different resolu-
tion bandwidth steps for each of its slave servers.

6.2 Slave Servers
The slave serveris a small piece of software that runs
on a desktop or laptop that are directly connected to the
spectrum analyzer. The main task of theslave serveris to
act as a bridge between the spectrum analyzer connected
to it and themaster server. To avoid issues with NAT/-
firewalls, theslave serverinitiates an outbound TCP con-
nection on port 22 to themaster server. It also connects
to the local spectrum analyzer through VISA. Once con-
nected, it translates commands from the master server
to the spectrum-analyzer-specific-commands, runs spec-
trum scans, and returns the results.

In order to support multiple platforms, we have im-
plemented the slave server in Python in approximately
1000 lines of code. We use the PyInstaller [13] package
to generate platform specific (Windows & Linux as of
today) executables.

7 Applications
In this section, we present three example user applica-
tions on the SpecNet platform that highlight the simplic-
ity of building a networked, geo-distributed system of
spectrum analyzers.

7.1 Remote Spectrum Measurement
In this section we demonstrate how SpecNet can be used
to make spectrum measurements anywhere in the world.
The user code fragment written in Python is shown in
Listing 1. One simply needs to connect to the SpecNet
server, identify available devices in the region of interest
and then use theGetPowerSpectrum() API to ob-
tain power values in the desired parts of the spectrum.
This data can be used, for example, to compare avail-
able free spectrum in different parts of the world or as
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(a) Bangalore, India (b) Edinburgh, UK (c) Stony Brook, USA

Figure 11: Spectrum occupancy in various geographic regions

traces for evaluation of new white-space protocols such
as WhiteFI [3].

Listing 1: Code snippet for remote measurement.
# connect to SpecNet server
apiServer = xmlrpclib.ServerProxy(

"http://bit.ly/SpecNetAPI",
allow_none=True);

# Find devices from region of interest
devices = APIServer.GetDevices(

[55.944350, -3.187745, 500.0], None);
for device in devices:

power_vals = APIServer.GetPowerSpectrum(
device[’ID’], Fs, Fe, 1e3);

At the time of writing, in addition to a few spectrum
analyzers in Bangalore (India), we had one spectrum an-
alyzer in Stony Brook (USA) and one in Edinburgh (UK)
that were connected to SpecNet. Figure 11 shows the
spectrum measurements at these three sites located in
three different continents, demonstrating the world-wide
reach of the SpecNet platform. As seen from Figure 11,
spectrum measurements at each of these locations across
the world clearly identify the well-known transmitters
such as FM, TV,etc., and the available spectrum whites-
paces.

7.2 Primary Coverage
The next example application determines the spatial foot-
print of a TV transmitter located within a large city. This
may be useful for whitespace network operators in plan-
ning their deployments. Determining the footprint of a
TV transmitter invariably requires knowledge of its lo-
cation. While accurate databases of these locations are
available in countries such as the US, such a database
is not readily available in many developing countries, in-
cluding India. We tried to obtain this information by con-
tacting the Indian government agencies via postal mail
(under the Right-to-Information Act). While we received
information on about 150 TV tower locations (out of an
estimated 700 towers), we found many inaccuracies in
the data. For example, one tower’s location was mapped
well into a bay! Upon analyzing this TV tower data for

five cities (ground truth based on Wikimapia), we found
localization errors to range between 2-83 km (average
22 km, median 5 km). We now highlight how SpecNet
could be used as a low-cost solution to improve the cov-
erage and accuracy of the existing TV tower database.

Listing 2: Code snippet for primary coverage.
# Get Spectrum Analyzers in region
area_of_interest = [13.02236,77.56558, 100000.0];
devices = APIServer.GetDevices(area_of_interest, None);

# Get Power Spectrum Values
for device in devices:

power_vals = APIServer.GetPowerSpectrum(
device[’ID’], Fs, Fe, 1e3);

power_vals.append(average(power_vals));
observation_locations.append([device[’latitude’],

device[’longitude’]]);
# Localize
if number_of_locations < 5

localization_res = APIServer.LocalizeTransmitter(
area_of_interest, observation_locations,
power_values, ’LDPL’, [-35.0, 3.0]);

else
localization_res = APIServer.LocalizeTransmitter(
area_of_interest, observation_locations,
power_values, ’LDPL’, None);

# Interpolate
pow = APIServer.FindPowerAtLocation(new_location,
[localization_res], ’LDPL’, None);

The code snippet for this application is shown in List-
ing 2. The region of interest is identified and power
spectrum values from devices in that region are ob-
tained. Then the TV transmitter is localized using the
LocalizeTransmitter() API. Finally, a path loss
model is used to build the spatial footprint of the TV
transmitter. The APIFindPowerAtLocation() is
then used to determine the received power at desired new
locations.

Bangalore city has one terrestrial TV transmitter. For
the purpose of evaluation in a large-scale setting, we
needed data from multiple spectrum analyzers at differ-
ent locations in the city. Also, the accuracy of the lo-
calization API depends on the number of measurement
locations. However, at the time of evaluation we only
had access to four slave servers inside Bangalore. To get
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around this problem, we modified the master server to
allow mobile slave servers to connect to it. This enabled
us to gather data from multiple locations in the city us-
ing just one mobile slave server by driving on the major
roads and highways of the city. Figure 12 depicts the lo-
cations in the city where measurements were collected.

Figure 13 shows the TV tower localization error mean,
25th and 75th percentile (y-axis) as the number of mea-
surement locations are varied (x-axis). To generate each
point in Figure 13, twenty subsets of locations were ran-
domly picked from the set of all measurement locations.
We see that even when the number of measurement loca-
tions is between 5-10, the mean localization error varies
between 2.5-3.8 km. This demonstrates that even by us-
ing measurements from a small number of spectrum an-
alyzers in each city, the gaps and inaccuracies in the gov-
ernment database can be corrected significantly.1 As the
number of measurement locations is increased to 100,
we see that the localization error goes below 0.5 km.
While it is unrealistic to assume that SpecNet would have
over 100 spectrum analyzers in each city, an alternative
is to have spectrum analzyers that are mobile as part of
SpecNet—we plan to look into this in the future.

Figure 14 shows the mean, 25th and 75th percentile er-
rors in signal strength predictions obtained by using the
interpolation API. The mean signal error varies between
6 to 8 dB, similar in magnitude to the expected signal
variations due to the environment.2 Thus, using SpecNet
to calculate coverage of a primary transmitter can pro-
vide a good estimate to an operator.

7.3 SpectrumCop
Our final application demonstrates the two key features
of SpecNet: 1) simplicity of writing a complex real-time
application through the use of high-level APIs and 2) ef-
ficiency of SpecNet in scanning a wide frequency range
when more than one spectrum analyzer is available, in
order to detect violators quickly.

The goal of this application is to quickly detect a static
narrow-band transmitter within a certain geographical re-
gion of interest and then localize the transmitter. The
transmitter can be operating anywhere within a wide fre-
quency range. This application is especially useful for,
say, government officials to monitor unauthorized trans-
mitters in a certain band.

The code snippet for this application is shown in List-
ing 3. The application uses theGetOccupancy()API
for the transmitter detection part, which basically tasks

1Note that we used basic triangulation to locate the T.V tower, it
may be possible to achieve a higher accuracy through more sophisti-
cated localization schemes proposed in literature.

2In our implementation we used a simple log distance path loss
model. The use of more sophisticated path loss models such asthose
that use terrain information may provide more accurate predictions

one or more spectrum analyzers in the vicinity to per-
form scans at an appropriate resolution bandwidth and
frequency range. The result of this API call is an occu-
pancy list, which indicates frequencies that have ongoing
transmissions. A more detailed spectrum measurement
is then performed only in the region around the detected
frequency. The results of the scan are then fed to the
LocalizeTransmitter() API to determine the lo-
cation of the transmitter.

Listing 3: Code snippet for SpectrumCop.
# Find occupancy in desired region
bound = [lat, lng, radius];
options = [lat, lng, radius, min_power_to_detect];
occupancy_list = APIServer.GetOccupancy(bound,
start_frequency, end_frequency, min_power_detect);

# Get power spectrum for transmitter frequency
for occupancy in occupancy_list:

if (occupancy[’Occupied’] == 1):
new_f_start = occupancy[’Frequency’] - 250e3;
new_f_end = occupancy[’Frequency’] + 250e3;
devices = APIServer.GetDevices(bound, None);
for device in devices:

locs.append([device[’Latitude’],
device[’Longitude’]]);

results[device[’ID’]] = APIServer.
GetPowerSpectrum(device[’ID’],
new_f_start, new_f_end,
options); # Actual call in new thread.

break;

# Localize transmitter based on power measurements
for r in results:

powers.append(max(r));
print APIServer.LocalizeTransmitter(bounds, locs,
powers, ’LDPL’, [P, 3.0]);

Evaluation: We used this application to detect and lo-
calize a microphone in a region of 75 meters radius in
IISc. The setup consisted of 3 spectrum analyzers that
were placed near 3 corners of the region of interest. The
microphone transmits in a 250 KHz narrow band and the
frequency range of the search space is set to 3 MHz. The
SpectrumCop application detected the microphone per-
fectly and localized it to within 20 meters of the actual
location. The entire process of detecting and locating the
microphone took 165 seconds.

8 Limitations
First, spectrum analyzers are expensive equipment that
researchers have procured for specific needs. It may not
be easy to convince owners to volunteer this resource to
the community, especially during the bootstrapping stage
where the benefit of the platform is not clear to the owner.
To date, we have approached a few of our acquaintances
and have observed mixed results. In the long run, per-
haps governments may be willing to sponsor a set of
spectrum analyzers dedicated for SpecNet use.

Second, spectrum analyzers are typically used inside
labs that may be in basements or deep inside buildings.
Our measurements indicate that buildings can add 5-20
dB of attenuation (20dB in the basement for FM/TV
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Figure 12:Measurement locations
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Figure 13:TV Tower Localization
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Figure 14:Interpolation results

transmissions) which restricts the detection range of the
analyzer. If the owner can be convinced to mount the an-
tenna near a window, the utility of the spectrum analyzer
can be significantly increased. To minimize variability
due to antenna placements, SpecNet can choose to only
include spectrum analyzers with unobstructed antennas.

Finally, we have not considered the privacy/security
implications of allowing remote scanning of the spec-
trum. For now, SpecNet only exposes the power values
measured from the spectrum scan. Thus, it prevents di-
rect security and privacy threats such as fine-grained traf-
fic monitoring or user tracking. Advanced spectrum ana-
lyzers can provide time domain (I/Q) samples of the scan
and support for these features in SpecNet would require
sophisticated controls for privacy and security.

9 Conclusion
After the FCC ruling in the U.S. allowing opportunistic
access to portions of licensed frequency bands, there has
been tremendous interest in both academia and indus-
try in developing novel wireless techniques and products
that take advantage of the new rules. A key requirement
for enabling this new ecosystem is a measurement infras-
tructure that can provide real data. SpecNet fulfills this
critical need by enabling geographically distributed spec-
trum analyzers to be networked, thereby allowing both
real-time remote measurements as well as collection of
historic spectrum usage data. Furthermore, SpecNet ex-
poses an API that allows users to build interesting dis-
tributed sensing applications like SpectrumCop with rel-
ative ease. There is still a lot of work left to achieve our
goal of building a planet-scale networked spectrum an-
alyzer testbed, but we believe SpecNet provides a good
base to build upon.
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