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Abstract

Microsoft Streamlnsight is a platform for developing and deploying streaming applications. StreamlIn-
sight embraces a temporal stream model to unify and further enrich query language features, handle
imperfections in event delivery and define consistency guarantees on the output. With its extensibil-
ity framework, Streamlinsight enables developers to integrate their domain expertise within the query
pipeline as user defined functions, operators and aggregates. Also, the Microsoft SQL Server Spatial
Library delivers comprehensive spatial support that enables organizations to seamlessly consume, use,
and extend location-based data.

This paper covers two approaches to support spatio-temporal stream processing in Streamlnsight.
First, the paper describes the ongoing effort at Microsoft SOL Server to bring together the temporal
aspect of Streamlnsight and the spatial support of the SQL Spatial Library, through the extensibility
[framework, to deliver an end-to-end solution for location-aware and geospatial data streaming applica-
tions. Second, the paper provides the future vision for supporting spatial attributes natively within the
pipeline of the stream query processor.

1 Introduction

Microsoft StreamInsight (StreamlInsight, for brevity) is a platform for stream query processing. Thanks to its
real-time low-latency output, StreamInsight monitors, analyzes and correlates stream data from multiple sources
to extract meaningful patterns and trends. StreamlInsight adopts a deterministic stream model that leverages
a temporal algebra as the underlying basis for processing long-running continuous queries. In most streaming
applications, continuous query processing demands the ability to cope with high input rates that are characterized
by imperfections in event delivery (i.e., incomplete or out-of-order data). StreamlInsight is architected to handle
imperfections in event delivery and to provide consistency guarantees on the resultant output. Such consistency
gurantees place correctness measures on the output that has been generated so far, given the fact that late and
out-of-order stream events are still in transient.

Data stream systems have been widely adopted across multiple business domains. Because domain ex-
pertise is the outcome of focused experience in a specific business sector over years, it is hard to expect that a
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single streaming engine (out-of-the-box without any specialization) can address the requirements of all domains.
However, a streaming system is expected to have an extensibility mechanism that seamlessly integrates domain-
specific logic into the query pipeline. Hence, StreamInsight has been designed to be an extensible system that
accepts and executes user defined modules (UDMs) as part of the continuous query plan.

Meanwhile, Microsoft SQL Server Spatial Library [1] (SQL Spatial Library, for brevity) provides an easy
to use, robust and high performance environment for persisting and analyzing spatial data. SQL Spatial Library
provides data type support for point, line and polygon objects. Also, various methods are provided to handle
these spatial data types. SQL Spatial Library adheres to the Open Geospatial Consortium Simple Feature Access
specification [2] and is provided as part of the SQL Server Types Library.

This paper tackles two approaches for the spatio-temporal stream processing within StreamlInsight: an ex-
tensibility approach and a native support approach. The extensibility approach combines the values of the
StreamlInsight extensibility framework and the SQL Spatial Library by giving the UDM writers the ability to
invoke the library methods within their code. Alternatively, the native support approach deals with spatial at-
tributes as first class citizens, reasons about the spatial properties of incoming events and, more interestingly,
provides consistency guarantees over space as well as time. This paper overviews both approaches and highlights
the pros and cons of each approach. The remainder of this paper is organized as follows. Section 2 provides
basic background on StreamlInsight. Section 3 presents the extensibility approach while Section 4 presents the
native support approach for stream processing . Section 5 concludes the paper.

2 Background

A Data Stream Management System (DSMS) [3, 7, 8, 13] enables applications to issue long-running continuous
queries (CQs) that monitor and process streams of data in real time. DSMSs are used for efficient real-time data
processing in many applications. In this paper, we focus on Microsoft StreamlInsight [4, 6], which is a DSMS
based on the CEDR [5] research project.

2.1 Streams and Events

A physical stream is a sequence of events. An event e; = (p, c) is a notification from the outside world that
contains: (1) a payload p = (py,...,pk), and (2) a control parameter c that provides metadata. The control
parameter includes an event generation time, and a duration that indicates the period of time over which an
event can influence output. We capture these by defining ¢ = (LE, RE), where the interval [LE, RE) specifies the
period (or lifetime) over which the event contributes to output. The left endpoint (LE) of this interval, also called
start time, is the application time of event generation, also called the event timestamp. Assuming the event lasts
for x time units, the right endpoint of an event, also called end time, is simply RE = LE + x.

Compensations StreamlInsight allows users to issue compensations (or corrections) for earlier reported events,
by the notion of retractions [5, 10, 11], which indicates a modification of the lifetime of an earlier event. This
is supported by an optional third control parameter REnew, that indicates the new right endpoint of the corre-
sponding event. Event deletion (called a full retraction) is expressed by setting REnew = LE (i.e., zero lifetime).

Canonical History Table A Canonical History Table (CHT) is the logical representation of a stream. Each
entry in a CHT consists of a lifetime (LE and RE) and the payload. All times are application times, as opposed
to system times. Thus, StreamInsight models a data stream as a time-varying relation, motivated by early work
on temporal databases by Jensen and Snodgrass [9]. Table 1 shows an example CHT. This CHT can be derived
from the actual physical events (either new inserts or retractions) with control parameter ¢ = (LE, RE, REpew).
For example, Table 2 shows one possible physical stream with an associated logical CHT shown in Table 1.
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Table 1: Canonical History Table. Table 2: Physical stream corresponding to CHT.

Note that a retraction event includes the new right endpoint of the modified event. The CHT (Table 1) is derived
by matching each retraction in the physical stream (Table 2) with its corresponding insertion and adjusting RE
of the event accordingly.

Detecting Time Progress We need to ensure that an event is not arbitrarily out-of-order; this is realized using
time-based punctuations [5, 12, 15]. A time-based punctuation is a special event that is used to indicate time
progress. These punctuations are called Current Time Increments (or CTIs) in StreamInsight. A CTT s associated
with a timestamp ¢ and indicates that there will be no future event in the stream that modifies any part of the time
axis that is earlier than 7. Note that we could still see retractions for events with LE less than ¢, as long as both
RE and REnew are greater than or equal to z.

2.2 Stream Queries and Operators

A CQ consists of a tree of operators, each of which performs some transformation on its input streams and
produces an output stream. In StreamlInsight, queries are expressed in LINQ [14]. StreamlInsight operators are
well-behaved and have clear semantics in terms of their effect on the CHT. This makes the underlying temporal
operator algebra deterministic, even when data arrives out-of-order. Data enters the streaming system via input
adapters, which convert external sources into events that can be processed by the streaming system. Output
events exit the system via output adapters.

There are two main classes of operators: span-based and window-based. A span-based operator accepts
events from an input, performs some computation for each event, and produces output for that event. Examples
of span-based operators include filter, project, and temporal join. On the other hand, aggregation operators such
as Count, Top-K, Sum, etc. report a result (or set of results) for every unique window, i.e., they are window-
based. The result is computed using all events that belong to that window. StreamlInsight supports several types
of windows: snapshot (sliding), hopping, tumbling, and count-based windows.

Further, one stream can be output to multiple operators using an operator called multicast, while multiple
streams are merged using a union operator. Streamlnsight allows per-group computation using an operation
called Group&Apply, where the same subplan (called the apply branch) is applied in parallel for every group
(defined by a grouping key) in a stream. The results of all the groups are merged (using union) as the final
operator output. In addition, StreamlInsight supports user-defined operators to express custom computations;
these are discussed next.

3 The Extensibility Approach

As shown in Figure 1, there are three distinct entities that collaborate to extend a streaming system. The user
defined module (UDM) writer is the domain expert who writes and packages the code that implements domain-
specific operations as libraries. The query writer invokes a UDM as part of the query logic. A query is expected
to have one or more UDMs wired together with standard streaming operators (e.g., filter, project, joins). Note
that multiple query writers may leverage the same existing repository of UDMs for accomplishing specific
business objectives. The extensibility framework is the component that connects the UDM writer and the query
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Figure 1: Entities in a streaming extensibility model.

writer. The framework executes the UDM logic on demand based on the query to be executed. Thus, the
framework provides convenience, flexibility, and efficiency for both the UDM writer and the query writer.
StreamInsight supports three fundamental types of UDMs to the system — user-defined functions (UDFs),
user-defined aggregates (UDAs), and user-defined operators (UDOs). UDFs are method calls with arbitrary
parameters and a single return value. They can be used wherever expressions (span-based stream operators)
occur: filter predicates, projections, join predicates, etc. A UDA is used on top of a window specification (e.g.,
hopping, snapshot, or count-based window) to aggregate the events contained in each window. A UDA processes
a set of events (in a window) and produces a scalar aggregation result (e.g., integer, float, string, etc). UDOs are
also used on top of a window, but the result is a set of events with timestamps rather than a scalar value. Note that
based on the type of extension, UDMs surface in the StreamInsight LINQ programming model either as method
calls (in case of span-based operators) or as extension methods (in case of window-based stream operators).

3.1 Integrating the SQL Spatial Library within the Stream Query Processor

The SQL Spatial Library [1] provides methods to perform spatial operations on spatial data types. Thanks to the
extensibility framework of StreamlInsight, UDMs that perform intersection, containment, nearest neighbor and
shortest route operations are implemented by invoking the appropriate methods from the SQL Spatial Library.
Combining the StreamInsight extensibility model and the existing SQL Spatial library provides a solution for
spatio-temporal stream processing, increases the value of existing (or out-of-the-box) modules, and reduces the
cost to develop spatial-oriented streaming applications. Note that the SQL Spatial Library is not designed with
the continuous stream processing paradigm in mind and, hence, is non-incremental by nature. An appealing
future direction is to port the SQL Spatial Library to the streaming domain with the incremental single-pass
model of stream processing in mind. For example, an intersection query is evaluated incrementally at time 7" + 1
by reusing the computed state at time 7" as the moving object changes its location from time 7 to time 7 + 1.

3.2 Breaking the Optimization Boundaries

Since a UDM is a black box to the query optimizer, the UDM stands as an optimization boundary in the query
pipeline. However, there are two approaches to break the optimization boundary in the extensibility approach.
The first approach is to work hand-in-hand with the UDM writer who has the option to provide several prop-
erties about the UDM through well-defined interfaces to the cost-based query optimizer. Examples of these
properties include the selectivity and the expected CPU load (cycles) per input tuple. The optimizer reasons
about these properties and shoots for optimization opportunities, €.g., via query plan reorganization and oper-
ator migration (in case of multiple StreamInsight instances running in parallel). In the second approach, the
system automatically instruments the UDM to measure its average throughout and selectivity. While the second
approach relieves the user from specifying the operator properties, the system goes through a learning period
during which sub-optimal performance may be observed. With either approach, there is nothing special about
spatio-temporal data streams from the extensibility framework’s point of view. As we directly leverage the ex-
tensibility framework in order to break the optimization boundary, spatio-temporal stream processing benefits
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Figure 2: An example of native support for spatio-temporal streams.

from these optimizations without the need to specialize the system for spatio-temporal processing. This solution
highlights the value and generality of the extensibility framework.

4 Native Support for Consistent Spatio-temporal Stream Processing

As described in Section 2, the canonical history table maintains the temporal endpoints LE and RE of the event’s
validity interval over time. Consider a spatial application where we wish to track the movement of objects (e.g.,
cars). The naive technique is to let the object generate an event periodically as its spatial location (detected using
GPS, for example) changes. However, this can result in considerable network traffic and does not scale well as
the number of objects increases.

We can instead augment the control parameters with the following information: (1) two location markers SL
and DL to denote the start and destination locations of the moving object between times LE and RE, (2) the route
selection policy, that is the route the system assumes the object takes to travel from the starting location to the
destination. Each route selection policy optimizes for one or more criteria (e.g., shortest distance, shortest travel
time, highway avoidance, etc) and deterministically decides on the route between the endpoints. (3) detailed
temporal information of the planned trip to compute the time at which the object hits a specific point on the
route — this could use a simple model such as assuming constant speed over the entire route.

Given the spatial and temporal attributes that describe the object’s route over time (for every moving object
in the system), the system has the ability to speculate and predict the state of the monitored environment at
any point in time. For example, in a traffic management scenario, the system answers queries about the past,
current, and future road conditions. Further, it suggests the best driving directions for newly added vehicles
by taking future road conditions into consideration. Note that as long as the vehicle is on track, i.e., following
the route planned by the system according to the expected speed, there is no need for the vehicle to transmit
regular events to the system, which results in reducing transmission load over the wireless network. However,
if the vehicle changes its route selection policy, makes an unexpected turn, or stops for some time, the vehicle
generates retraction and insertion events to adjust its path. In response to the retraction event, the system updates
the result of its CQs and possibly generates compensation events or new speculative output. Further, we could
define a spatio-temporal algebra with new streaming operators that natively take location into consideration;
for example, we may add a spatio-temporal left-semi-join operator that accepts a proximity metric and outputs
events related to the left input object only when it overlaps in time as well as space (within the proximity metric)
with a matching object on the right input. Note that such native support exposes optimization opportunities
beyond those possible with black-box approaches.

As a concrete example, consider a CQ that reports the number of cars moving over “Microsoft Way”. In



Figure 2(a), the DSMS receives an insertion event that denotes the intent of car 1 to travel from point A to point
B at time T. In response, it evaluates the query output to be one car traveling over Microsoft Way for a specific
time interval, i.e., the expected time duration when car 1 is present on Microsoft Way. In Figure 2(b), the DSMS
receives another insertion that denotes the intent of car 2 to travel from point C to point B at time 7”. The system
modifies the lifetime of the earlier event accordingly, and generates a new event for the duration when 2 cars
are present on the road segment. In Figure 2(c), the DSMS receives a retraction that denotes a change in the
intent of car 2 from destination B to destination D. Consequently, it retracts the previously generated event and
reverts the count back to one. Although this example shows a simple query over a spatio-temporal stream of two
objects, the concept is generalizable to larger road networks and more objects.

5 Conclusions

Microsoft StreamlInsight is a high-performance platform for developing streaming applications. In this paper, we
presented two approaches to support spatio-temporal data streams in StreamInsight. The first approach utilizes
the extensibility framework of StreamlInsight to invoke methods from the Microsoft SQL Server Spatial Library.
The second approach supports the spatial attributes of moving objects natively as system attributes. The first
approach increases the value of existing libraries and components, and gives spatio-temporal stream processing
the ability to piggyback on optimizations applied within the extensibility framework as it evolves over time.
The second approach extends the temporal algebra adopted by StreamlInsight in the spatial direction to provide
consistency guarantees over space as well as time, in addition to greater optimization opportunities.
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