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Abstract. The feedback between climate and the terrestrialwere obtained for most processes, whether inferred individ-
carbon cycle will be a key determinant of the dynamics of theually from their corresponding data sets or using the full ter-
Earth System (the thin layer that contains and supports lifeyestrial carbon model and all available data sets, indicating
over the coming decades and centuries. However, Earth Sys strong overall consistency in the information provided by
tem Model projections of the terrestrial carbon-balance varydifferent data sets under the assumed model formulation. A
widely over these timescales. This is largely due to differ- notable exception was plant mortality, in which qualitatively
ences in their terrestrial carbon cycle models. A major goal indifferent climate dependencies were inferred depending on
biogeosciences is therefore to improve understanding of théhe model formulation and data sets used, highlighting this
terrestrial carbon cycle to enable better constrained projeceomponent as the major structural uncertainty in the model.
tions. Utilising empirical data to constrain and assess com-All but two component processes predicted empirical data
ponent processes in terrestrial carbon cycle models will bebetter than a null model in which no climate dependency was
essential to achieving this goal. We used a new model conassumed. Equilibrium plant carbon was predicted especially
struction method to data-constrain all parameters of all comwell (explaining around 70 % of the variation in the withheld
ponent processes within a global terrestrial carbon modelevaluation data). We discuss the advantages of our approach
employing as data constraints a collection of 12 empiricalin relation to advancing our understanding of the carbon cy-
data sets characterising global patterns of carbon stocks ande and enabling Earth System Models to make better con-
flows. Our goals were to assess the climate dependenciestrained projections.

inferred for all component processes, assess whether these
were consistent with current knowledge and understanding,

assess the importance of different data sets and the modgl! |ntroduction

structure for inferring those dependencies, assess the pre-

dictive accuracy of the model and ultimately to identify a Whilst models of the Earth System (the thin layer that con-
methodology by which alternative component models couldtains and supports life) have evolved in response to improve-
be compared within the same framework in the future. Al- ments in our understanding of different processes (Randall
though formulated as differential equations describing car-et al., 2007), wide differences in the predictions of different
bon fluxes through plant and soil pools, the model was fittedmodels still greatly limit decision making about how best to
assuming the carbon pools were in states of dynamic equiadapt to climate change (Cox and Stephenson, 2007; Kerr,
librium (input rates equal output rates). Thus, the parame2011; Maslin and Austin, 2012). Improvements in character-
terised model is of the equilibrium terrestrial carbon cycle. ising the consistency of models with empirical data and with
All but 2 of the 12 component processes to the model wereeach other, in terms of predictive accuracy and in terms of in-
inferred to have strong climate dependencies, although it waguilt assumptions, would improve clarity about why model
not possible to data-constrain all parameters, indicating someredictions differ and hopefully enable critical improvements
potentially redundant details. Similar climate dependencieso be made that improve confidence in predictions.
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Models of the terrestrial carbon cycle are one of the Earthsystem is connected; (ii) to assess whether the inferred rela-
System Model components most critically in need of im- tionships are consistent with current understanding; and (iii)
provement. The terrestrial carbon cycle has major effects ortio define a methodology by which we can build on from this
the dynamics of the Earth System over decadal or longemodel to identify the appropriate balance of details for mak-
timescales (Denman et al., 2007), and, whilst this means thaihg better constrained probabilistic projections of the carbon
terrestrial vegetation currently accounts for approximatelycycle into the future.

60 % of the total annual flux in atmospheric carbon diox-
ide and absorbs around a quarter of anthropogenic carbon
dioxide emissions (Denman et al., 2007), there is great un#
certainty about how this balance will change in the future

(Crame)r/ et al., 2001; Friedlingstein et al., 2%06; Denman et2'1 Carbon stocks and fluxes

al., 2007; Sitch et al., 2008). This uncertainty is largely be- o empirical data primarily came from field-data collation
cause models exhibit wide differences in their predictive ac-nitiatives that targeted an individual terrestrial carbon stock
curacy (Keenan etal., 2012) and lead to widely diverging andy,; fio\y, These are summarised in Table 1. These data sets
inconsistent projections (Friedlingstein et al., 2006). were selected on the basis that they (i) were informative
Resolving the problem of the differences in carbon modelgpq ¢ the stocks and fluxes of carbon in natural terrestrial
predictions is a major research challenge. Traditionally, Car'vegetation, (ii) contained at least some data that were rep-
bon models have not been developed in a way that enabl&g,sentative of vegetation in a state of dynamical equilibrium
detalled.mtercomparlsons to assess why t_he|r pred|ct|9ns ,d'f(selected via a filtering process: see Appendix A) (iii) could
fer. Their component processes and their parameterisationgg \seq as information to constrain parameters in our model,
have been based on contemporary understanding but havg;) hag approximately global coverage, (v) could have single
not explicitly (quantitatively) incorporated confidence in how |44it,de and longitude coordinates assigned each a site-based
that understanding is based on empirical data. Further rezgiimate to enable cross-referencing to spatial climate data,
search has typically added more details to these models buf (vi) could be easily accessed and shared alongside our
has rarely gone back and characterised the consistency of thg, 4y to enable reproducibility, investigations of data pro-
initial assumptions, or the overall model, with empirical data. cessing steps, investigations into the importance of the se-

Recent work has shown that explicitly constraining paramegcted data, and controlled comparisons of alternative mod-
ters of terrestrial carbon models with empirical data can leadyis  Full details of how all of the empirical data sets were

to better understanding of uncertainty in their parametensa-processed are given in Appendix A. Some of these data sets

tions and of the importance of that uncertainty for predictionsy, e peen superseded by more recent data sets (e.g. our fire
(Knorr and Heimann, 2001; Scholze et al., 2007; Zhou andy,¢4 set could now be replaced by the Global Fire Emissions

Luo, 2008; Rayner_et al., 2011; Ricc_:iuto etal., 2011). Recen_tDatabase (GFED) of Giglio et al., 2010). We hope to incor-
systematic comparisons of alternative carbon models or the'borate these improved data sets in the future.

components have also shown how differences and inconsis-

tencies between different models can be identified more pre2 2 Environmental data

cisely (Keenan et al., 2012; van Oijen et al., 2011; Randerson

et al., 2009; Kloster et al., 2010). These analyses have beeAll model components incorporated information from site-

facilitated by the increased availability of more varied and specific environmental variables to make predictions, either

detailed data sets on terrestrial carbon stocks and fluxes frordirectly (e.g. the effect of temperature on net primary pro-

around the globe. ductivity) or indirectly by requiring input from another com-
Delivering better constrained projections of terrestrial car-ponent model that itself required environmental data (e.g. the

bon cycle dynamics could soon be achieved in light of theseallocation to woody plant parts depends on net primary pro-

recent advances. However, delivering that goal is going to re-ductivity). All environmental variables were calculated using

quire improved methodologies for the construction, parame-data contained in either or both of the New et al. (2002) grid-

terisation and evaluation of terrestrial carbon cycle modelsded monthly climate data set and the Global Soil Data Task

which enable the detailed analyses of the consistency of difGroup (2000) “Global Data Set of Derived Soil Properties”

ferent model components and their parameterisations withdata set. These have spatial resolutions of 10 arcmin and 0.5

empirical data. Here we develop such a methodology and imdecimal degrees, respectively. Full details of how the differ-

plement it to fully decompose all component processes of a&nt environmental variables were calculated are given in Ap-

global terrestrial carbon cycle model in terms of their param-pendix B. Again, we hope these data sets will be upgraded in

eter uncertainty and the accuracy of their predictions with re-the future.

spect to different empirical data sets. Specifically, our goals

were to (i) assess the degree of empirical support for simple

functional representations of component processes of the car-

bon cycle, when assessed within a model of how the overall

Data sources
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3 Model environment at that location and time. Our principal aim was
to infer the environmental dependence for each of these func-
3.1 Fullstructure tions. However, we also considered, for each component, a

null model with no climate dependency (i.e. a constant apply-

We developed a terrestrial carbon model as a set of six Calihg to all locations and times: see below). We do not suggest

bon pools,' connec'ted by various flows (illgstrated'in Fig. 1)-that these are the “best” representations of the model com-
Mathematically, this corresponds to a series of six ordinarypgnent functions (boxes in Eq. 1). Rather, we identified rea-
differential equations (one for each pool), each with threeg,nape functional forms from the literature, which could be
general components: an mput.rate (e.g. carbon fixation rate);caq simply to infer climate-dependent relations@de—
an output rate (e.g. leaf mortality); and a cqrbon content (e-9termines the plant carbon fixation rate (kgyr—1), based
leaf ca'r.bon)..The .chosen level of complexity was biased by, the MIAMI model of Leith (1975) scales the frac-
our ability to identify global data on at least two out of these i of carbon allocated to structural plant parts over leaves
three for each carbon pool, so that it would be possible 10,4 roots (unitless) and is new to the literature. The mor-
infer properties of the third. The full terrestrial carbon model tality rates of leaves (y) is predicted from a new
is then expressed as follows: model based on the recent analysis by van Ommen Kloeke
dg R et al. (2011) of global patterns of leaf lifespan. The mor-
5 =L (1_ fma) - (++) G, (1a) ity rates of fine rootgir, whole plantgzs) (yr™), and
the fraction of organic carbon in dead leaves and fine roots
q that enters the metabolic soil organic carbon | (unit-
(T(t:r =[G] (1—fma> - (++) G, (1b) less) are based on simple linear functions. Carbon loss rate
due to fire[s] (yr~1) is based on the models of Thonicke et
al. (2001), Kloster et al. (2010) and Arora and Boer (2005).

dCs scales the decomposition rate of organic soil carbon based

dr =[G fmaf /o] - <+ Sf) Cs (1) on classic climate-dependent relationships (Ise and Moor-
croft, 2008; Schimel et al., 1996; Bolker et al., 1998; Adair
et al., 2008).

d
TC;m = (<+) C+ (++> Cr> (1d) When inferring the parameters, we further assume that all

carbon pools (and thus all stocks) at the specific locations

—km[A]Crm, and times for the empirical data have reached equilibrium

(the empirical data were filtered as described in Appendix A).

dC, Equation (1) then reduces to simple expressions for the equi-
e (1—) ((+> G+ (++) Cr) (le) librium carbon contents of plant and soil carbon pools (omit-

+[is|Cs—kd A]Ca. ted for brevity).
4Gy 4 Parameter estimation and model assessment
—— = F1kd A|Ca—kp/ A 1 _
dr 1kCa kbe, (10 4.1 Computational framework

where G, Cr, Cs, Cm, Cq, and G, are the amounts of organic \yg it a computational framework to enable the assem-
carbon stored (kg ) in leaves, fine roots, structural plant bly, parameterisation and assessment of multi-component
parts, metabolic fraction of the soil, structural fraction of the ., J4els of arbitrary complexity to enable our study to be
soil and recalcitrant fraction of the soil (these are defined.,nqucted (illustrated in Fig. 2). The framework, model,

below); 7 is time in years (yr); symbols marked with @ box 44 derivative data necessary to reproduce the results of
are functions that are described below and fully defined iny,;q paper, as well as a user's guide, are available from

Appendix C; fmax is the maximum fraction of net primary  agearch microsoft.com/en-us/downloadBfie data result-

productivity allocated to structural plant partg;scales the  j,q from conducting the analyses described in this study are
fire-induced mortality rate of structural plant parts relative to 4 4ilable fronmresearch. microsoft.com/en-us/downloads/
that of leaves and fine roots (inferred in this studyy; k4

andky, are the maximum loss rates of the metabolic, struc-4.2  Data partitioning into training, evaluation and

tural and recalcitrant soil fractions (¥; all inferred); and final test sets

F1 is the fraction of the structural carbon pool that does not

decompose directly to carbon dioxide but enters the recalciThe data sets were partitioned into training, evaluation and fi-

trant pool (unitless; inferred). nal test sets to avoid including parameters only because they
The terms in boxes in Eq. (1) are functions that apply at ahelp explain fluctuations specific to a particular data set, in-

given location and given time, which depend on the physicalstead of the general phenomenon being inferred from the data

www.biogeosciences.net/10/583/2013/ Biogeosciences, 10,&832013
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Table 1. Source data on carbon stocks and flows used in our study for model training and evaluation.
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Data set name

Data description and typical units

Data provider

N. data

Likelihood function

Plant carbon: global
biomass carbon map
in the year 2000

The amount of carbon
held in terrestrial
vegetation, tonnes
carbon hal

Carbon Dioxide Information;

Analysis Center

(cdiac.ornl.gov/epubs/ndp/global
carbon/carborocumentation.html);
Ruesch and Gibbs (2008)

*1000Normal

Litter carbon
production rate

Litter production rates,
g dry matternf yr—1

Matthews (2003)

1000 Normal

Soil carbon: global Soil carbon density Oak Ridge Nat. Lab. Distrib. Active 1.000Lognormal
gridded surfaces (kg f) ata depth Archive Center (ORNL DAAC)
of selected soil interval of 0-100cm (daac.ornl.gov/SOILS/guides/
characteristics igbp-surfaces.html);
(IGBP-DIS) Global Soil Data Task Group (2000)
Plant carbon fixation Net primary Oak Ridge Nat. Lab. Distrib. Active 933 Normal
rate: “Class B site” productivity Archive Center (ORNL DAAC)
net primary (kg carbon m2yr—1) (daac.ornl.gov/NPP/htrdocs/
productivity (NPP) EMDIldes.html); Olson et al. (2001)
Deciduous leaf Estimated lifespan GLOPNET Authors 30 Lognormal
mortality rate (in months) of Wright et al. (2004)

deciduous leaves
Evergreen leaf Estimated lifespan GLOPNET Authors 46 Lognormal
mortality rate (in months) of Wright et al. (2004)

evergreen leaves
Fraction of leaves that Categorical GLOPNET Authors 155 Normal
are evergreen classification of leaves Wright et al. (2004)

as “evergreen”

or “deciduous”
Fine root mortality Mean root turnover Gill and Jackson (2000) 162 Lognormal
rate (lifespan) yrh
Plant mortality rate Forest turnover rates Stephenson and van Mantgem (2005) 191 Lognormal

(yr—1) from different
sites worldwide

Global map of
fraction of area burned
per year, 1900-2000

Percentage of a grid cell

burned per year for
100 yr (1900—2000)

Florent Mouillot
(cefe.cnrs.fr/fe/staff/Florent

Mouillot.html); Mouillot and Field (2005)

1000 Lognormal

Fraction of leaf and fine  Fraction of leaf and fine Ise and Moorcroft (2006) *1000Normal
root carbon entering root carbon that is

fast soil pool decomposed quickly by

(that is “metabolic”) soil organisms (fraction)

Global land cover Discrete classifications European Commission *100Qogistic

in the year 2000.

Used to infer

fraction of plant carbon
allocated to

structural parts

of land cover types
represented as
integer codes

(bioval.jrc.ec.europa.eu/products/
glc2000/dataess.php); Bartholome
and Belward (2005)

Numbers represent those model parameters specifically needed to predict a particular data set. Some models may have taken the outputs of other models as their inputs, and there

may implicitly include more model parametetsApproximate numbers of data points obtained through random stratified sampling of gridded global data.
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Fig. 1. Summary of the inferred climate dependence of the terrestrial carbon cycle within our terrestrial carbon model. The inferred climate
dependence of each component is shown in red (inferred using the full model and all data sets), grey (inferred using minimal subsets of the
model) and, to illustrate the major structural uncertainty in plant mortalityig blue (inferred using the full model but omitting the plant
mortality data). Lines and shading are average median, 5th and 95th percentiles from 10 training data subsets.

set (over-fitting). Over-fitting can still occur when adopting attempt in this study to incorporate or infer errors and biases
this approach if model refinement goes through many itera-associated with the observational data. This is potentially an
tions and the same training and evaluation sets are used. Weportant assumption, and accounting for these errors will
therefore first removed a fraction of each data set to be usetie enabled in the future for empirical data sets that contain
as a final step to assess the performance of our models (thestimates of observational uncertainty

“final test data”). This allows us to test our models against Under these assumptions, estimating the probability distri-
data that played absolutely no role in the model refinemenbutions of the parameters reduces to requiring the estimation
process. We constructed a land surface mask by randomlgf their likelihood, given the observed carbon data and en-
positioning 0.5 degree squares over the terrestrial land suvironmental conditions. This required us to specify a likeli-
face until approximately 25 % of the terrestrial land surfacehood function for each model component, which defines the
had been covered. Any data that fell under this mask wergrobability of the data, given any combination of parameters.
removed permanently as final test data. We performed 10With this function defined, the posterior probability of each
fold cross-validation within our model parameter inference parameter could be estimated. Formally, we assume that

experiments on the data remaining after the removal of the
final test data. L(Pred(Model(Pars, Env))|Obs) o« P (Obs|Pred(Model(Pars, Env))),

_ where bold text denotes a vector. In words, the likelihdod

4.3 Parameter inference of the prediction$red of the parameterised model given the
observationsQbs, is proportional to the probabiliti, of the

We used a Bayesian approach to infer the probability distri-observations given the particular model predictions. The pre-
butions for the model parameters given our empirical datadictions arise from a particular model with parameteass
sets. For every model we used flat (or “uninformative”) prior and set of environmental conditioEsv.
probability distributions for the parameter values. We assuméNe used the Filzbach set of code libraries to find the
that the probability of observing the data under all possibleposterior distributions for the parameters of a given model,
hypotheses is 1 (the marginal probability). We also made nayiven the observed carbon dat@hs) and environmental

www.biogeosciences.net/10/583/2013/ Biogeosciences, 10,&832013
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Fig. 2. Our prototype automated system used for the construction, parameter estimation and assessment of multi-component models of
arbitrary complexity. This automated system was used to develop and analyse our model. Inputs are multi-component models and empirical
data. Data are partitioned into training, evaluation and final test sets. Input libraries provide a common interface to connect code with data.
Inference routines use inference libraries to infer parameter probability distributions. Inference libraries implement approximate Bayesian
inference using Markov chain Monte Carlo methods with the Metropolis—Hastings algorithm. A data viewer provides a standard interface
for inspecting inputs and results. See Sect. 4.1. for details on how to download the framework.

conditions Env; http://research.microsoft.com/en-us/um/ 4.4 Parameter inference experiments
cambridge/groups/science/tools/filzbach/filzbach)htm

Filzbach implements Markov chain Monte Carlo sampling We investigated the sensitivity of the inferred model func-
of parameter space given a set of parameters to be varieonal forms and model performance metrics to using dif-
(Pars) and likelihood function L; Gilks et al., 1996). It  ferent combinations of model components and data sets by
uses the Metropolis—Hastings algorithm to accept or rejeceonducting three different parameter inference experimental
sets of parameter values when compared to the likelihoodProtocols described below.

associated with the parameter values of the previous iteration ) .

of the Markov chain (Gilks et al., 1996). In our study, the 4-4-1 Build-up experiments

likelihood function used by Filzbach may depend on the . .
oo . . We inferred parameters to each of the component models in-
likelihoods associated with several sub-component models

. . . icated in Fig. 3 alongside those of the models on which they
depending on the model parameter inference experimen epend to make predictions. We refer to these experiments as
being run (outlined below, and see Fig. 3 for details). The, P P : P

specific likelihood function chosen to assess each mode{bu"d'Ljp , because we started by inferring the parameters to

S . = .the group 1 models individually and then inferred those to
component against its corresponding empirical data set IS e group 2 models (alongside those of the NPP model), be-
detailed in Table 1. ’

. %ore inferring parameters to each of the group 3 models (and
of data for different climate regions of the world. We down- hose of the syb—compongnts on which they depend),.mcre-
: oo : . mentally working towards inferring all the parameters in all

weighted the log-likelihoods assigned to data points in direct : .
: . : . -~ components of the terrestrial carbon model simultaneously

proportion to the relative frequency of data in their respectlve(the 12th experiment)

Holdridge life zones (Holdridge, 1967). This avoids biasing P '

the model parameter inference procedures towards parameter

values that predict well those regions of the world that are

most frequently represented in the data.

Biogeosciences, 10, 58806, 2013 www.biogeosciences.net/10/583/2013/
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LN S ——— I —— 4.4.4 Assessing predictive performance

|
Fraction allocated to |
| structural parts :

In general, we calculated performance metrics for each sam-
ple of parameter values from the Markov chain after the burn-
in procedure. The burn-in period was always 20000 itera-
tions, and the Markov chain length used for parameter sam-
pling was always 120 000 iterations and was subsampled ev-
ery 100 iterations. This enabled us to also take mean, median
and 95th percentiles of various performance metrics over the
set of sampled parameter values.

Net primary productivity I

Plant carbon
Evergreen leaf mortality rate [

Deciduous leaf mortality rate [l

Fraction leaves that are |
evergreen |

production rate

—

|
|
|
|
|
|
|
|
|
Litter carbon :
|
|
|
|
|
|
|
|
|
|

Fine root mortality rate | 5 Results
Plant mortality rate : I 50| Eathon 5.1 Full model
|
I
Fracti fl d fi . . . . .
roots that ie “metabolic” : '—G;,.;; ———————— Overall we infer climatically varying functions for all com-
e ponent processes to our terrestrial carbon cycle model when

fitted using all available data sets (red functional relation-
Fig. 3. The full terrestrial carbon model can be represented as a facships in Fig. 1). The inferred climate dependencies of net
tor graph. All boxes represent model components with accompanyprimary productivity (NPP), increasing but saturating func-
ing data. Arrows connect a model that acts as a subcomponent (tafjons of temperature and precipitation (Fig. 1a, b), are consis-
of arrow) to another model (head of arrow). Models within group 1 ant with what was established for the classic MIAMI model
do not require predictions from other mode_ls to prgd_lct their ac- Leith, 1975). The proportion of fixed carbon allocated to
companying data sets. Group 2 models require predictions from th - . .
net primary productivity model. Group 3 models require input from ood (Versys and !eaves and fine r.oots) varies continuously
several model components. as a sigmoid functlon of NPP_ and increases to around 0.35
for the most productive locations (Fig. 1c). The four pro-
cesses then determining carbon loss rates have contrasting
4.4.2 Omit-data experiments climate dependencies (Fig. 1d-h). Fire increases with dry
season length (combustibility) and NPP (fuel), as expected
We sequentially omitted an entire data set associated witlfFig. 1i, j; Kloster at al., 2010). Contrasting dependencies of
each model component in Fig. 3 prior to inferring the param-evergreen and deciduous leaf mortality (Fig. 1e, f) are in-
eters of the full model. This enables investigation of how im- ferred, with the relative frequency of evergreen versus decid-
portant the information contained in a given data set is for theuous leaves being U-shaped against annual frost frequency
inferred parameter probability distributions. Each evaluation(Fig. 1d). This highlights the relatively complex climate de-
step also included a fold of the omitted data sets. Howeverpendence of leaf lifespan globally (van Ommen Kloeke et
this approach does not allow us to estimate process error asl., 2011). Fine root mortality rate is inferred to increase with
sociated with a given model in the absence of its associatethean annual temperature as expected (Fig. 1g; Gill and Jack-
empirical data. We therefore used the posterior parameter eson, 2000). A relatively flat relationship for the climate de-
timates of process error obtained from inferring the paramependency of plant mortality is inferred (Fig. 1h); however,
ters of the full model with all empirical data sets when per- this actually results from contradictory information from dif-

forming model evaluation. ferent data sets under our assumed model formulation (de-
_ tails below). We infer no strong climate dependency in the
4.4.3 Replace-null experiments fraction of dead leaves and roots initially allocated between

) o _ the different soil pools (Fig. 1k). For the soil component, we
We sequentially replaced a model component in Fig. 3 with gner temperature and moisture dependencies of the classical

null model consisting of an inferred constant and associateqlhree_pom soil model that are consistent with previous find-
error. This allows us to investigate how important the cIimateings (Fig. 11, m; Ise and Moorcroft, 2008).

dependency of a particular model is for the predictive per- Tne |ack of a relationship for plant mortality was unex-

formance of other components and their inferred parametebected, because a previous study (Stephenson and van Mant-

values. gem, 2005), using the same empirical data on plant mortal-
ity rates, identified a positive relationship between mortality
rates and productivity — a close correlate of evapotranspira-
tion rates (Leith, 1975). Further analysis reveals this incon-
sistency to be due to differences in the information implied
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Fig. 4. Performance assessments of the terrestrial carbon m@jdPearson’s correlatior(p) the coefficient of determination ang@)

the probability of the model relative to a null model (Gelfand and Day, 1994). Separate data subsets were used for parameter inference anc
model evaluation to avoid over-fitting. A final test data subset was reserved (never used during model development) to provide an independent
estimate of the likely predictive ability when the model is applied to locations that have not been observed. Assessments against evaluation
and final test data are in grey and red, respectively, witleing the respective mean or absolute number of data points per assessment.
Dots and error bars are average medians, 5th and 95th perceniigsimd (b) and medians, maxima and minima(i) using parameter
distributions inferred from 10 training data subsets. Insufficient evaluation data existed to cgk dati{b) for the deciduous leaf mortality

model.

by different empirical data sets under our assumed model fortion in the data at a 95% confidence level (Fig. 4b). Com-
mulation. We infer qualitatively different climate dependence paring the performance of the full model to one in which the
from the plant mortality data alone (a positive relationship, relevant model component is replaced with a null model sup-
Fig. 1h (grey), as found by Stephenson and van Mantgemports choosing the climate-dependent model for all processes
2005), from all model components and empirical data setgFig. 4c) except for the two component processes for which
together (a flat relationship, Fig. 1h (red)), or using all modelwe inferred no climate dependencies.
components but omitting individual data sets (omitting plant When applied at global scales, the terrestrial carbon model
mortality data gives a negative relationship, Fig. 1h (blue),predicts global patterns of equilibrium plant and soil carbon
omitting the plant carbon data gives a positive relationship,that match the known patterns well (Fig. 5a, b; calculated us-
similar to Fig. 1h (grey)). These results indicate a clear dis-ing the New et al., 2002; and Batjes, 2000 gridded data sets
crepancy between the information on the climate dependencfor environmental variables). We estimate that the absolute
of plant mortality implied by the mortality data itself and uncertainty is positively related to the median (Fig. 5c, d)
that implied by the other plant carbon data sets under thdor both carbon pools. For plant carbon, relative uncertainty
assumed model formulation. On this basis we identify global(absolute uncertainty/median prediction) tends to be higher
plant mortality rates as a major “structural uncertainty” in in areas in which the model predicts vegetation that is in-
our terrestrial carbon model. termediate between being maximally woody and completely
Other than the non-climatically dependent functions, thenon-woody (Fig. 5e), owing to the contrasting mortality rates
climate dependencies inferred for the full terrestrial carbonof these different carbon pools (Fig. 1e—h). Relative uncer-
model tend to make predictions that both are significantlytainty is also higher over Greenland, and we expect this is
positively correlated with the evaluation data sets (Fig. 4a),because of the inflation of uncertainty under extrapolation:
and tend to explain a positive fraction of the variation within the extreme environments in that region are out of the ranges
each data set (Fig. 4b). The plant carbon data set is predicte@presented in our data (Fig. 5e). We believe a similar phe-
particularly well (final test data median Pearsons 0.84 nomenon explains the relatively higher uncertainty in predic-
(5% and 95 % confidence intervaid).81, 0.86), coefficient tions of soil carbon in extremely dry or cold environments
of determination =0.70 (0.63, 0.77)), as are data on litter pro-{Fig. 5f).
duction rate, plant carbon fixation rate and the fraction of The inferred climate dependencies in the terrestrial car-
carbon allocated to structural plant parts, for all of which bon model, other than the plant mortality function, gener-
the model always explains a positive fraction of the varia-ally support those that have been found in previous studies,
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indicating their consistency when considered as part of thanspection of observational data versus predictions implies
overall system. Although the qualitative nature of many of a lower predictive performance at low fire return intervals
these dependencies is consistent with previous knowledgefraction of burned per year) and a tendency to underestimate
our estimates of parameter values for these functions (anthe fire return interval overall (Fig. 6g).
the associated uncertainty in those parameter estimates) are Although plant carbon is predicted well, the plots of pre-
new. Our analysis also highlighted a number of new insightsdictions versus observations indicate some notable outliers at
into the performance of these climate-dependent functions akbw carbon contents, where carbon is predicted to be much
detailed below. higher that observed for some sites (Fig. 6h). These sites ap-
Although the inferred climate dependencies of NPP pear to be associated with tropical vegetation that has been
(Fig. 1a, b) are consistent with the MIAMI model (Leith, classified as grasslands and shrublands in the global land
1975), one parameter is not-well constrained by the datacover map and have been assigned low carbon content (data
the parameter controlling NPP at zero degrees Celcjua (  omitted for brevity), in contrast to the predictions of the
Eq. C1b) does not converge. Instead, the sigmoid responsmodel.
of NPP to temperature is constrained by the parameter con- For the soil model we could, again, not fully constrain all
trolling the gradient of the temperature dependencyThis model parameters. The parameter downscaling soil decom-
implies that the temperature-dependent function may actuposition rates as a function of extremely high temperatures
ally be over-complex for our purposes. Further investiga-(ts; in Egq. C8a) and the parameters controlling the optimum
tions (omitted for brevity) involving removing this param- moisture content for decomposition and downscaling param-
eter and refitting the model reveal that this and other undereter of decomposition rates in extremely wet conditions;(
constrained parameters discussed below have little effect oandminresh in EQ. C8c) are probably all poorly constrained,
model predictive accuracy. Plots of predictions versus ob-a result of lacking sufficient data representing such extreme
servations also reveal a noisy positive relationship, with theenvironments.
model underestimating NPP for sites with NPP greater than
around 1.0 kg m?yr—1 —a property that has been noted pre- 5.2  Build-up experiments
viously for the MIAMI model (Fig. 6a; Friedlingstein et al.,
1992; Dai and Fung, 1993). The build-up experiments show that the performance of some
The shape of the function controlling the proportion of fixed model components changes as they become part of larger
carbon allocated to structural components implies that strucmodel structures (Fig. 7). The major result from these exper-
tural tissue only makes up around 10 % of vegetation carbonments is the qualitative change in the inferred climate de-
at NPP values of around 0.5 kgrhyr—1 (Fig. 1c). We expect  pendency of plant mortality upon being connected to the full
this probably underestimates structural carbon in vegetatioomodel, as mentioned above (Fig. 1k). The consequent change
types dominated by low-productive woody vegetation suchin model predictions is clearly seen in the plots of predic-
as some boreal forests (Kicklighter et al., 1999), although wetions versus observed data in which a noisy positive relation-
have not verified this. ship between predictions and observations is apparent when
The wide confidence intervals in the function predicting the plant mortality model is fitted to the plant mortality data
the fraction of vegetation leaves that are evergreen imply relalone, whereas a relatively flat relationship is observed for
atively high uncertainty, and inspection of the relationship the model fitted as part of the full model structure (Fig. 6k, I).
between predictions and observations makes clear why this The net primary productivity model (NPP) improves in
is the case, with several observations lying far from thd 1  predictive performance when it is connected to the full
line (Fig. 6b). Despite this, the correlation between obser-model, showing higher correlation coefficients and an im-
vations and predictions is relatively high (Fig. 4a), probably proved fit to the training data (lower deviance information
due to the dominance of sites in the data set that are eitheeriterion values; Fig. 7). Lower uncertainties in NPP func-
entirely evergreen (44 %) or entirely deciduous (14 %). Wetional forms are also visible for the full model compared to
anticipate that the low quantity of data in the data sets ornwhen the model is fitted to the NPP data alone (grey versus
leaf characteristics (the most sparse data in our collectionred in Fig. 1a, b). This implies that information from other
Table 1) strongly influences the variation in model predictive model components helps to further constrain the climate de-
performance for those climate dependencies. pendence of NPP. The component predicting the fraction of
Our inference of the climate dependencies of fire fre-plant material that is woody exhibits a poorer fit to the train-
quency globally again highlights some redundant model paing data as it is connected to other model components but still
rameters: the scaling constamtand the two half saturation slightly increases in predictive performance (Fig. 7). Con-
constants, Ilfgaisat and NPRaifsas are poorly constrained. necting this component to plant carbon also enables the pa-
This implies that the model could be reformulated with fewer rameter controlling the maximum carbon allocation fractions
parameters and still predict the data with the same accuracyo wood to be inferred (grey versus red in Fig. 1c). Connect-
Although the correlation between predictions and observaing the model predicting litter production to the full model
tions is relatively strong for this data set (Fig. 4a, b), visual structure improves its fit to the training data, whereas the
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Fig. 5. Predicted global distributions of equilibrium plant and soil carbon. These match the known patterns well based on visual inspection.
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(18.5km at the Equator).

opposite is the case for the model predicting fraction of landnot dependent on the predictive accuracy of those compo-
area burned (Fig. 7). However, none of these effects signifnents. In contrast, omitting the data for the NPP model still
icantly alter the correlation between predictions and obser+tesults in the inference of very similar parameter values, in-
vations in the evaluation data, and they only cause minor redicating a strong dependency on those parameter values for
ductions in the confidence intervals of the functional forms predicting other empirical data sets.

of the fire model (grey versus red in Fig. 1i, j).
5.4 Replace-null experiments

5.3 Omit-data experiments ) )
In general, and as expected, replacing a component with a

The most notable effects of omitting data sets when infer-model predicting no climate dependency strongly influences
ring parameters to the full models were on the parameterghe predictive performance of that component in the cases
of the plant mortality climate dependency, as reported abovewhere evidence exists for a climate dependency (Fig. 8). For
Otherwise, omitting individual data sets when fitting the full Some components this results in negligible effects on the pre-
model does not dramatically influence the performance of theflictive performance of the rest of the model. However, for
model at predicting the data sets that had not been removetie NPP model, replacement strongly influences the predic-
(we omit details for brevity). Constraining the parameters oftive performance of other components. This is not surprising,
some components is entirely dependent on the presence @iven that it is the initial carbon input term for the plant car-
their corresponding data set. This is the case for the fractioon pools.

of leaves that are evergreen, the mortality rates of evergreen

and deciduous leaves, fine root mortality rates and soil de-

composition rates and indicates that the prediction of other

connected components, such as plant carbon for example, is
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Fig. 6. Model predictions versus observed empirical data (omitting the 25 % final test data). Predictions were made using all 10 posterior
parameter probability distributions from 10-fold model fitting. Points show the average median prediction, and error bars show the average
upper and lower 95 % confidence intervala-k) show predictions from the full model trained to all empirical data sets,(Bnshows
predictions from the plant mortality model trained to the plant mortality data alone.

6 Discussion celerate the identification of where their key inconsistencies
lie, both with each other and with empirical data.

We adopted a relatively simple model here, and we hy-
pothesise that it is probably too simple and uncertain to pro-
vide informative projections of future terrestrial carbon dy-

] ] . . namics. For example, while we adopted the MIAMI model
One of our key aims was to establish a baseline terrestrial carss 3 convenient and well-recognised, simple model of net

bon model to support future work in which we had assessegyrimary productivity, it has several well-known limitations
the empirical support for every component process, including(e_g_ Bonan, 1993) including being insensitive to changes
clearly characterising and incorporating parameter uncertain, atmospheric C® concentrations (discussed further be-
ties. Our new methodology has clearly achieved that, and iqow)_ Rather, what we aimed to do was to develop and im-

also illustrates how the adoption_of such a methodology i”plement methodology to enable quantitative comparisons of
the future development of terrestrial carbon models could ac-

6.1 The degree of empirical support for the component
processes
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Empirical dataset predicted Correlation between pred. and obs. Deviance Information Criterion
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Fig. 7. Correlations between model predictions and hold-out evaluation data (left) and deviance information criterion (DIC) values (right)
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experiment number predicting the data set indicated. The presence of confidence intervals for a given experiment number indicates whethe
a model component was used in a model fitting experiment. Points represent the average median estimate using the parameter probabilit
distributions obtained from 10-fold model fitting, and the whiskers are average 95 % confidence intervals.

alternative representations of component processes such #ghey become available, could further reduce uncertainty in
NPP in the future (e.g. those documented in Adams, 2004)the functional form and parameters for the new component.
Setting out to data-constrain all component processes also Skill at predicting the data on the terrestrial carbon cy-
forced us to propose new models for some components, suctle at equilibrium, as we have shown here, is no guaran-
as that for leaf mortality rates based on van Ommen Kloeketee that the model can accurately capture the temporal dy-
etal. (2011). Conducting model development in this way en-namics of the carbon cycle that other data assimilation stud-
ables the empirical evidence for such new component formuies have focussed on (Scholze et al., 2007; Ricciuto et al.,
lations to be rapidly assessed and modified if necessary be2011). For example, our model does not account for carbon
fore becoming a longer-term feature of the model. The omit-dioxide fertilisation effects that are likely to have had, and
data experiments also illustrated that the parameters of a nesould continue to have, a major influence on vegetation car-
component can be estimated even without any direct data obon fixation potential into the future (Friedlingstein et al.,
the process in question, if enough data are included on othe2003). We therefore see a pressing need to build on our rigor-
connected model components. Subsequently, the direct dataus approach and begin the process of comparing alternative
formulations of component models, model structures, and
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different data sets. Such studies would obviously considemost important, by decomposing changes in the output vari-
alternative representations of canopy photosynthesis (Purveables of interest (e.g. soil carbon) to changes in different pro-
and Pacala, 2008), including not only carbon dioxide fertil- cesses (e.g. the effects of extreme temperatures on soil de-
isation effects (Friedlingstein et al., 2003), but also the dy-composition rates), and then finding out which data sets are
namics of other resources such as water and nitrogen (Goll anost important for improving those components. Under our
al., 2012), the importance of different plant functional types, framework the results of key experiments, such as manipula-
vegetation traits, successional processes and permafrost cdive experiments, or of other passive observations could then
bon thawing, to name a few (see Arneth et al., 2012; for a debe included as additional data constraints.
tailed discussion). Although we developed our model within
a generalized framework so that it can become a foundatior6.2 Inferred relationships in relation to current
upon which future intercomparisons can be conducted (see  understanding
Sect. 5.1), it will require further improvements to truly en-
able detailed intercomparisons of state-of-the-art terrestriallhe climate dependencies inferred here mostly confirm those
carbon models. Enabling the inference of the parameters athat have been identified previously. However, the identifica-
dynamical models using time-varying data, and the quantifi-tion of qualitatively different climate dependencies for plant
cation, assessment and propagation of errors in the observaaortality depending on the model formulation and empirical
tional data are two key necessary refinements to enable suatata used, as well as some other more subtle adjustments to
studies. other climate dependencies, highlights the value of the sys-

Future studies should also investigate the effects of intemic approach: it enables us to assess how consistent our
corporating more and improved data sets for data assimilamodel of how the overall system functions is with empirical
tion and model testing than we did here. We deliberately seevidence and identify where discrepancies lie.
lected data sets that were relatively easy to obtain, procesAt present, we do not understand the reason for the struc-
and share. It is reassuring that these were sufficient to infetural uncertainty in the climate dependency of plant mortality
most of the known climate dependencies. However, furtherates. As a group, the plant carbon data sets imply that mor-
constraining and testing the more detailed terrestrial carbonality rates decrease with actual evapotranspiration under our
models will require new data sets that document temporal dyassumed overall model formulation, whereas the plant mor-
namics and, more generally, whichever data have the greatestlity data imply the opposite. Perhaps the high plant mortal-
potential to minimise uncertainty in model predictions. Here ity rates observed in highly productive sites are inconsistent
we made no use of the valuable FLUXNERttp://fluxnet.  with the high carbon values recorded for those sites under
ornl.gov)) data sets on water and carbon fluxes nor the FPARhe inferred climate dependencies. This could have caused
data pttp://modis.gsfc.nasa.gov/data/dataprod/dataproductdhe systematic underestimation of net primary productivity
php?MODNUMBER=15. We expect that incorporating in highly productive sites (Fig 6a), leading to lower than ex-
such data could assist greatly in constraining and comparingected predictions for plant carbon, which in turn could cause
any dynamical models developed in the future. There havehe inferred plant mortality rates for those sites to be higher
already been developments in this direction, especially inthan observed. There are however other possibilities, such as
constraining terrestrial carbon models with carbon flux dataissues to do with the quality of the plant mortality data or the
(Knorr and Heimann, 2001; Kaminski et al., 2012; Scholze etother plant carbon data sets, the possibility of plant mortal-
al., 2007; Ricciuto et al., 2011). Future developments shouldty patterns obeying more complex relationships than repre-
build from these studies to enable more detailed processsented by our mortality component, or missing processes in
based models to be data-constrained within our frameworkthe model (such as the separation of structural carbon losses
although it will be important to take a balanced approach tobetween whole plant mortality and the loss of other structural
refining components and not, for example, focus on refiningpars such as branches). These possibilities add to recent calls
the representation of photosynthesis if it occurs at the exio increase understanding of the role of plant mortality in the
pense of refining other components, such as mortality, whiclglobal carbon cycle (Stephenson and van Matgem, 2005; van
has received much less attention to date. Mantgem et al., 2009; Allen et al., 2010).

While we demonstrated here how multiple component
processes can be data-constrained using multiple data se$,3 Building a model for future predictions
there is obviously a question about how to assess models
when they are projected under future scenarios, for whichWe do not know how accurate predictions of temporal dy-
no observational data can exist. This problem can nevenamics of the carbon cycle from our terrestrial carbon model
be solved fully, and in principle vegetation could exhibit might be, because we have done no assessments of our model
changes, or suffer perturbations, that have never been obin predicting carbon dynamics. Nonetheless, we can use it to
served, either naturally or under artificial perturbations. Ourillustrate the concept of using a data-constrained model to in-
approach offers the promise of being able to identify modelspect the relative importance of parameter and structural un-
components for which improved understanding would becertainty in projections. For example, it could be that, despite
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Fig. 8. Correlations between model predictions and hold-out evaluation data (left) and DIC values (right) obtained from different replace-null
model fitting experiments. Confidence intervals and points have been removed where the empirical dataset predicted corresponds directly
to the model replaced. This is because model performance for that component is typically very poor, making it difficult to visualise the
performance of the other components. Points represent the average median estimate using the parameter probability distributions obtaine
from 10-fold model fitting, and the whiskers are average 95 % confidence intervals. “Control” indicates the results obtained for the full model
fitted to all data sets.

the uncertainties identified, the model makes relatively well-bution Centre; Lowe, 2005ittp://www.mad.zmaw.de/IPCC
constrained projections for some features of the carbon cycleDDC/htmlI/SRESARA4/index.htm]j see Appendix D for de-

or it could be that the uncertainties tend to combine to givetails). We decided to set the land surface to equilibrium car-
extremely uncertain dynamics. To illustrate this we set thebon levels to ensure that any changes in the carbon balance
plant and soil carbon pools across the terrestrial land surfacevere solely due to climate changes, and the climate scenarios
to equilibrium in the year 2000 (as in Fig. 5 but at 0.5 deci- were chosen to create two extremes for comparison.

mal degree global resolution), and simulated climate change The resulting projected changes in the total terrestrial car-
under pessimistic (A1F1) and optimistic (B1) anthropogenicbon balance are similar under both climate forcing scenar-
emissions scenarios using our model to explore the plausiios, both predicting a net carbon sink up to about 2150 be-
ble importance of these uncertainties (The IPCC Data Distrifore becoming a carbon source (Fig. 9). However, the time
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HadCM3 A1F1 Scenario HadCM3 B1 Scenario System Models. Such uncertainty could be decomposed fur-
120 ther into the contributions from different component pro-
cesses and even individual parameters and data. We could
also begin such simulations with vegetation out of equilib-
rium. Such diagnoses are likely to help identify the differ-
ent sources of uncertainty in predictions and projections, en-
abling the most important sources of uncertainty to be tar-
geted for reduction.

Overall, our results complement the progress that has been
made in data-constraining terrestrial carbon models (Rayner
et al, 2011; Knorr and Heimann, 2001; Scholze et al., 2007;
-l ke Ricciuto et al., 2011; Zahele et al., 2011) and the devel-
opment of frameworks to enable such studies to be per-
formed in a repeatable fashion (Scholze et al., 200f:
/lpecanproject.ory/ We hope that, by combining these in-
sights, the biogeosciences community can rapidly move to-
wards identifying the best models for specific purposes, that
is, those models which have been shown to be most consis-
e e s e A~ el e g 8 tent with the a\_/al!ablg empirical evidence, and which incor-

Year Year porate uncertainties in model structure and parameter values

into their predictions.
Fig. 9. Projected changes in terrestrial carbon under two climate

change scenarios. These highlight the potential importance of pa-
rameter and structural uncertainty. Lines and shading represent th
average median, 5th and 95th percentile projected changes (rep-
resenting parameter uncertainty) from the terrestrial carbon model
using parameter probability distributions inferred from 10 training Processing of empirical data on carbon stocks and fluxes
data subsets. Red, grey and blue correspond to different climate de-
pendences for plant mortality, representing the major structural un\We did not actively seek the “best data” pertaining to indi-
certainty in the model (see Fig. 1). Details of how we simulated vidual stocks and fluxes, because we prioritised enabling re-
the model are given in Appendix C. The additional code necessaryproducibility and transparency over obtaining the most accu-
to run these simulations is availablerasearch.microsoft.com/en- rate results. A number of the data sets were only available
us/downloads/and the resulting simulation data are available from 55 gridded land surface data, constructed through analyses of
download.microsoft.com/download/1/F/D/ site-based data but for which the original site data were not
available (Table 1). For these we generated pseudo-site based
data by stratified random sampling. We anticipate that some
courses of uncertainty in the projections are quite different,of our data sets only coarsely represent true carbon stocks
with uncertainty higher under the A1F1 scenario and show-or flows at global scales. Moreover, although not all of the
ing that the terrestrial carbon cycle could be either a carbordata in all data sets represent vegetation in a state of dynam-
source or a sink over the simulated time period (note thaical equilibrium, we screened the data sets that incorporate
these are not intended as reliable projections). Substitutinglisturbance and anthropogenic effects using the Global Land
the alternative models of plant mortality inferred under the Cover 2000 vegetation classification map (Bartholome and
different model fitting experiments indicates that this struc- Belward, 2005) to only select data representative of vegeta-
tural uncertainty has only minor quantitative effects on thetion at equilibrium.
projected change in the terrestrial carbon balance. Remark-
ably, however, this structural uncertainty leads to qualita-A1 Vegetation carbon
tively different predictions for the projected changes in total
vegetation carbon up to 2050 (Fig. 9), with positive, rela- Global site-based data sets of carbon held in natural ter-
tively flat, or negative changes in global vegetation carbon restrial vegetation have been compiled previously and used
depending on the mortality model parameterisation chosento produce global gridded maps. Unfortunately, the origi-
Despite these differences, all simulations predict that vegenal source data have not been made generally available. Re-
tation becomes a net source by 2020. Although these are excently, Ruesch and Gibbs (2008) produced a global biomass
ploratory simulations, they do emphasise the potential impor-carbon map for the year 2000 for the entire global land sur-
tance and value of considering parameter and structural urface at 1 km resolution (approximately). This was derived
certainties in terrestrial carbon models when attributing con-from unique estimates of vegetation carbon values for 124
fidence to projections of the terrestrial carbon cycle in Earthdifferent carbon zones that were defined by considering the

Total C change from y2000 (Gt)
3

2000 2050 2100 2150 2200 2000 2050 2100 2150 2200

Plant C change from y2000 (Gt)

ppendix A
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continent, ecoregion, vegetation type and degree of humak3 Soil carbon

disturbance. We used this map to generate pseudo-site based

data. We performed stratified random sampling of the GlobalGlobal site-based estimates of carbon held in soils under nat-
Land Cover 2000 vegetation classification map (Bartholomeural terrestrial vegetation have been compiled for decades.
and Belward, 2005; which has the same 1 km resolution asVe initially considered using the NDP018 data set analysed
the vegetation carbon map) and then for each randomly seby Post et al. (1982, 1985) in their studies of global patterns
lected point sampled the corresponding vegetation carbomwf plant carbon and nitrogen. However, preliminary investi-
value, conditional on whether the vegetation classification in-gations revealed significant differences in the Holdridge cli-
dicated specific vegetation types. Specifically, this includedmate classifications (Holdridge, 1967) associated with the
classification types 1-9 (generally “tree cover”), excludedsites in the NDP018 data and the classifications we ob-
type 10 (“tree Cover, burnt”), included types 11-15 (gener-tained by using georeferenced climate data from the New
ally shrub or herbaceous cover), and excluded the remainingt al. (2002) data set. This led us to suspect that the GPS

types 16—-22 (not natural or not vegetation). coordinates associated with the NDP018 are not sufficiently
_ _ accurate to enable a sufficiently accurate estimate of the cli-
A2 Litter carbon production matic conditions associated with the site. Instead we chose

] ] ) ] ) the “Global Gridded Surfaces of Selected Soil Character-
Different studies use terms like “litter production” to mean g4jcg” (IGBP-DIS) data set produced through the “Global
different aspects of vegetation biomass '0_55” (Matthewsgi| Data Task” project, which was designed specifically to
2003). Here, we define “litter carbon production” as the netaggemple a “reliable and accessible data set on pedosphere
mass of carbon lost through natural leaf and fine root morta"properties on a global scale” (Batjes, 2000). We generated
ity (not including fire-induced mortality) per unit area of land pseudo-site based data by performing stratified random sam-

surface (rﬁ? per year (yr). This does not include woody lit- pjing of the map of soil-carbon density at depth interval of
ter production through the loss of branches, stems or coarsg_100cm (which comes in 5 arcmin resolution).

roots.
Leaf litter production is commonly estimated in the field 4 Net primary productivity
using litter traps (Matthews, 2003). Studies employing this

meth'od rarely e;timate root IiFter prodqction. This I'ed us to Net primary productivity is estimated as the net mass (kg) of
consider modelling leaf and fine root litter production sep- -5rhon fixed by living vegetation per unit area of land sur-

arately. However, studies estimating leaf litter production ¢,.q (n?) per year (yr). We selected NPP data compiled for
sometimes use it to approximate net primary productivity by ,q Ecosystem Model Data Intercomparison project (EMDI,
assuming that the gains and Iosses_of.cart.)on in the vegetatiof|son et al., 2001). We selected the Class B “intermediate
are balanced (Matthews, 2003). This implies that source datauality” data set, because it provided a relatively high quan-

on leaf litter production might not be independent of some ofjr, of data (933 unique sites) and represented all of the major
our net primary production data (although we did not CheCkvegetation zones of the world.

to confirm this). These challenges led us to consider alterna-

tive methods for estimating litter carbon production.
Matthews (2003) used multiple methods to estimate litter

production. One of these infers litter production from data

on soil respiration rates and root respiration rates, by assumps know of no global data sets containing site-based es-
ing that carbon stocks and flows are at equilibrium. Neitheriinates of leaf turnover rate at the whole vegetation stand

of these data sets was used in our model, so we used dafgye| Data from satellite observations are likely to fill this
generated from this method. A further complication however ap in the future. The lead authors of Wright et al. (2004)
was that Matthews (2003) never made the source data avaigrovided the GLOPNET database, which, according to

able. Instead the author presented averages for 30 diﬁere’Wright et al. (2004), “spans 2548 species from 219 fami-
vegetation types according to the UNESCO vegetation clasjieg 5t 175 sites” (approximately 1% of the extant vascular
sification system (Matthews, 1999). We therefore generatedyant species). This database contains georeferenced data for

pseudo-site based data. To do this we performed stratified \ ariety of species-specific leaf traits, for multiple species
random sampling of the UNESCO vegetation classificationg; 4 given site, including an estimate of leaf lifespan and

map (which comes in 1 degree resolution), and for each ranypeher the leaf is classified as deciduous or evergreen. In
domly selected point we associated the vegetation type withy recent analysis of global patterns of leaf mortality, using
the litter production value given in column 3D of Table 5 in o GLOPNET database (Wright et al., 2004) supplemented
Matthews (2003). This gives litter dry matter production fig- it additional data, van Ommen Kloeke et al. (2011) found
ures, so we multiplied by 0.5 to approximately convert from ¢4 trends with environmental variables when the decidu-
dry matter to carbon. ous and evergreen leaves were treated separately. As a result
we calculated the geometric average mortality rate at each

A5 Mortality rates of deciduous and evergreen leaves,
and the fraction of vegetation that is evergreen

Biogeosciences, 10, 58806, 2013 www.biogeosciences.net/10/583/2013/



M. J. Smith et al.: The climate dependence of the terrestrial carbon cycle 599

site, separately for deciduous and evergreen leaves. We als 2500 —
calculated the fraction of the records at each site that were of | | jyz 1 o
evergreen plants and used this as a coarse approximation c © R2=08812

the faction of vegetation at each site that is evergreen. so00 I L L LT T T

A6 Fine root mortality rate

Data on root turnover rates are available for most vegetation g 1500

types, even though estimating root mortality rates is notori-
ously difficult and prone to error. As is conventional, we dis-
tinguished between “coarse roots” and “fine roots”, but only
explicitly modelled the mortality rate of fine roots (structural
roots are implicitly represented in plant structural carbon).
We define “fine roots” as those roots whose primary function
is to acquire water and nutrients, with little role in structural
support or resource storage (Eissenstat and Yanai, 1997). W
obtained data from the Appendix of Gill and Jackson (2000)
who studied global patterns in root turnover. We included
all data from their table with the exception of any entries
that had “root type” classified as “coarse”. We also cor-
rected three obvious errors in their data set: "Adiopodoum,gig_ A1, Comparison between our model-derived estimates of an-
Ivory Coast” should have the longitude30' W; “Portugal”  nyal actual evapotranspiration (AET) and those predicted by the
should have longitude’24' W; and the two entries for “Mac-  model of Matssura and Willmott (2009). Predicted AET (mm) was
guarie Island, Subantarctic” were corrected to have longitudesalculated using the methodology described in Sect. 3.2.6 for land
15857 E. grid squares at 0.5 degree resolution. Points are partially transparent
to help emphasise differences in data density.

Predicted AET (mm)

1000 -— L e L0 N

0 500 1000 1500 2000 2500
AET {mm) from Willmott & Matsuura (2001)

A7 Plant mortality rate

Any plant matter that is not “leaves” or “fine roots” in our A9 Fraction of carbon in leaves and fine roots in

model is classified as “structural”. We equated the turnover “metabolic” carbon pool

rate of structural plant parts in the absence of fire to the rate

of plant mortality. We could find no data on plant mortality It is common in dynamic soil modelling to distinguish be-
rates at global scales. Instead we used the data compiled gyveen the pool of dead plant carbon that decomposes rela-
Stephenson and van Mantgem (2005) on forest turnover ratelédvely slowly (cellulose and lignin) and that which decom-

at global scales. This omits data on non-forested vegetationPoses relatively rapidly (nucleic acids and cytoplasmic con-
stituents; Ise and Moorcroft, 2006; Schimel et al., 1996;

A8 Fractional area burned Bolker et al., 1998). However, we have not found any actual
compilations of site-based estimates of the “metabolic frac-
A number of projects have sought to obtain accurate estition” to use to infer global patterns, nor of the two metrics
mates of patterns of fire frequency at global scales. Mouil-typically used to calculate it: the ratio of carbon to nitrogen in
lot and Field (2005) generated a global fire map of “frac- plant tissues or the lignin fraction of plant tissue mass. What
tional area burned per year” & fiesolution for the terrestrial  does exist are “representative” figures for different vegetation
land surface by synthesizing available data and extrapolattypes: for example, the litter fall of boreal evergreen forest
ing when data were absent. We used this data set to generafes can be calculated to have a metabolic fraction of 0.49,
pseudo-site based data on the fractional area burned per ye@ereas grassland litterfall has a metabolic fraction of 0.76,
by performing stratified random sampling of their map. We a typically high value. We therefore generated pseudo-site
then took averages over the same time period as in the New @fased data. To do this we performed stratified random sam-
al. (2002) data set (1961-1990), including only samples frompling of the IBIS vegetation classification map (Ramankutty
sites that were classified as natural vegetation (cedE®) in  and Foley, 1999http://www.sage.wisc.edu/atlas/data.php?
the Global Land Cover 2000 map (Bartholome and Belward,incdataset=PotentialVegetatiowhich comes in 0.1 degree
2005) In our predictive model we equate the fraction of |and|’eso|uti0n), and for each rand0m|y selected point we asso-

area burned per year with the rate of plant carbon losses dugiated the vegetation type with the metabolic fraction value
to fire, although we allow for this to be downscaled for struc- given in Table 1 of Ise and Moorcroft (2006).

tural plant parts.
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A10 Fraction of plants that is “structural”: ded climate data set after setting monthly temperatures less
everything but leaves and fine roots than °C or greater than 30C equal to zero.

The dominant vegetation types across the globe exhibiB4 Fraction of the year experiencing frost
highly contrasting patterns in their ratios of leaves and fine
roots to woody plant parts such as stems and woody roots. IThe fraction of the year experiencing frost (FYF), used to cal-
this study we treated all of the biomass that is not leaves andulate the fraction of leaves that are deciduous or evergreen,
fine roots as “structural”. Previous global vegetation mod-was calculated using the method employed by van Ommen
elling assumed different allocation patterns between leavesKloeke et al. (2011) (P. van Bodegom, personal communi-
roots and structural components for different plant functionalcation, 2011). The algorithm uses the number of frost days
types, such as boreal forests (high fraction “structural”) ver-per month from the New et al. (2002) gridded climate data
sus grasses (low fraction “structural”). In our study we in- set. If the number of frost days was greater than 15, then the
ferred the most likely allocation patterns from data. However,whole month was classified as being a “frost month”. If the
we know of no global data explicitly documenting leaf: fine number was less than 15, then it was classified as being a
root : structural allocation ratios at the vegetation stand scalénon-frost month”. However, if a non-frost month followed
(although such data do exist for individual species). Insteada frost month, or if a non-frost month was to be followed by
we assumed that the fraction of net primary productivity a frost month, then the fraction of the month in the non-frost
allocated to structural plant parts was zero in grasslandsnonth was calculated ag15 the number of frost days. The
and some maximum in evergreen tropical rainforests. To acfraction of the year experiencing frost was then the sum of
quire the data we performed stratified random sampling ofthe number of frost months divided by 12.
the Global Land Cover 2000 map (Bartholome and Belward,
2005) and only recorded samples if they happened to be claB5 Mean annual potential evapotranspiration
sified as these vegetation types. We recorded an integer “1”
alongside the sample GPS coordinates if the vegetation waslean annual potential evapotranspiration rate was calculated
recorded as evergreen tropical rain forest (codes 1) or a “0” ifusing the Penman—Monteith algorithm as specified in Allen
the vegetation was recorded as grassland (codes 13 and 14t al. (1998) for calculating monthly evapotranspiration rates.
The algorithm is rather lengthy and we omit details here for
brevity, although all details of the algorithm were checked

Appendix B using the test data provided in Allen et al. (1998). All en-
vironmental variables for the algorithm are available in the

Calculation of environmental variables New et al. (2002) gridded climate data set. The sum of the
monthly evapotranspiration rates gave PET. This calculation

B1 Mean annual temperature requires making an assumption about the vapour pressure

deficit and stomatal resistance, both of which can be influ-

Mean annual temperature, used in several of the model congnced by vegetation type. We simplified the calculation by
ponents, was calculated as the arithmetic mean of monthifalculating the PET according to grassland (the “reference
temperatures in the New et al. (2002) gridded climate date£vapotranspiration”; Allen et al., 1998). A natural area for
set. If elevation figures were present in georeferenced datduture work will be to explore the importance of alternative
then the difference between this and the associated elevatidiormulations for calculating PET.

figure in the New et al. (2002) data set was used to calculate a

corrected temperature, assuming a lapse rate of 6.49 degreB$ Mean annual actual evapotranspiration

Celsius per km elevation. ) _ ) o
Soil moisture content was simulated on a daily time step to

B2 Mean annual precipitation obtain estimates of the actual evapotranspiration rate and the
length of the “fire season”. It was calculated using a modified
Mean annual precipitation, used in several of the model comversion of the algorithm reported by Prentice et al. (1993).
ponents, was calculated as the sum of the mean monthly préClimate variables for the algorithm came from the New et
cipitation values in the New et al. (2002) gridded climate data@l- (2002) gridded climate data set, and soil maximum water

set. capacity (field capacity) came from the Global Soil Data Task
Group (2000) “Global Data Set of Derived Soil Properties”
B3 Mean annual biotemperature data set. Daily changes in soil water content were calculated

using the balance equation specified in Prentice et al. (1993):
Mean annual biotemperature, used to calculate Holdridge life
zones (Holdridge, 1967), was calculated as the arithmetic
mean of monthly temperatures in the New et al. (2002) grid-w; = min ([a),-_l + P — E,~] a)max) (B1)
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wherew; is soil water content (mmjymax is soil field capac-  greater than zero for the daily probability of fire to be non-
ity, i is time in days,pP; is daily precipitation andg; is actual  zero (as in Kloster et al., 2010). The algorithm was therefore
daily evapotranspiration. Actual daily losses due to evapora-

tion are calculated as 360

a)i—l) LFS= ) fp(wi,T;),where (B3a)

E;, =ET; ( (B2) -1

Wmax

Wy
Oa Tioaa)lzwe

is a modification of the algorithm used by Prentice etfp — w_e)) T>0,0 <we

al. (1993). Here the supply of water is taken to be pro-
portional to maximum evaporative demand (potential evap- ) . . )
otranspiration) scaled by the relative soil wetness. PrenticdVherew; is the daily soil water content on daywe= 0.3 is

et al. (1993) calculated; as the minimum of daily sup- the soil moisture content at which fires become impossible

ply and demand, where supply was calculated according t¢moisture of fire extinction) and; is the daily temperature,

Eq. (B1) but using a maximum evapotranspiration rate conWhich was linearly interpolated from monthly values. Note

stant instead of ET and using a slightly different algorithm  that we assume a 360-day year. The parameger0.3, used

to calculate potential evapotranspiration rate (we used AllerPY Thonicke etal. (2001), is clearly one that could be inferred
et al., 1998). A natural extension in the future will be to use oM data in future studies.

the methodology for model building that we report here to
also assess the modelling of evapotranspiration rates.

For each site we initialised the soil water content at field
capacity and simulated Egs. (B1) and (_BZ) for 10yr, which y;44el component functions
was long enough for the annual dynamics to converge to an
equilibrium annual cycle. Like Prentice et al. (1993) we usedC1 Net primary productivity
a daily time step, because we found that adopting a coarser
time step led to extreme numerical artefacts in the time serie$Ve used the so-called “MIAMI” model, developed by
of soil water balance. Values f@% and ET; were obtained by  Leith (1975), to predict annual net primary productivity
linear interpolation of the monthly precipitation and potential (NPP) as a function of two of the main environmental vari-
evapotranspiration values, respectively. Monthly and annuahbles known to limit plant productivity: temperature and
actual evapotranspiration was then calculated by summatioavailable water. It has the following form:
of the E; values.

We checked that our actual evapotranspiration rate calculdG|=min(Gr, G p)kgm 2yr—, (Cla)
tion yielded sensible predictions by comparing our estimates . _ .
with model-derived estimates of global actual evapotranspi—Where is NPP (kg carbon T“zyr ). The functionsGr
ration rates (Willmott and Matsuura, 2001) averaged betweer' ndG p are calculated according to
1961 and 1990, the same period as our New et al. (2002) Gmax
cllma_te datz;. We obtained a good agreement with their CaI-GT—1+ exp(r1—1aMAT)’ (C1b)
culations (Fig. Aly2 = 0.88,n = 44 225). However, a natu-
ral area for future work will be to explore the importance of
ert]i;native methods for calculating AET and soil water bal- G , — G .....(1— exp(— p1MAP)), (Clc)

where ET is daily potential evapotranspiration. Our method
{ eXp(_” ( (B3b)

Appendix C

. where Gmay, 11, 2, and p; are unknown constants (inferred
B7 Length of the fire season parameters), max is the maximum NPPandr, scale the

, . . . temperature dependency of NRR, scales the precipitation
Daily soil water content predictions (detailed above) Were jenendency of NPP, MAT is mean annual temperature and
used to estimate the length of the fire season — the fraction ofyap is mean annual precipitation.

days of the year over which fire is likely to occur. We based

our algorithm on that specified in Thonicke et al. (2001), C2 Leaf mortality rates and fraction of vegetation that
which calculates the length of the fire season as a function is evergreen

of the daily soil moisture status throughout the year. How-

ever, unlike Thonicke et al. (2001) we did not impose any We formulated a new leaf mortality model based on the re-
constraints on the amount of biomass present for the dailycent analysis by van Ommen Kloeke et al. (2011) of global
probability of fire to be greater than zero (instead, this is partpatterns of leaf lifespan. Van Ommen Kloeke et al. (2011)
of the fire model), and we added the constraint that daily tem+evealed contrasting global patterns of leaf lifespans (the in-
perature (interpolated from monthly temperature) had to beverse of leaf mortality rates) for evergreen and deciduous
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plants. The mean leaf mortality reffer] (yr~1is calculated C5 Mortality rate due to fire

as a weighted average according to
We developed a fire model based on the models of Thonicke

= exp(feln(ue)+ (1— feo) IN(1q)) yr2, (C2a) etal.(2001), Kloster et al. (2010) and Arora and Boer (2005).
We predicted the per capita vegetation mortality rate due to

where fire as

- 2 =ci f1(LFS) f2 (G yrt, where (C5a)

fe ateFYF +bieFYF + cte, (C2b) fJ1 2 y ,
f1(LFS) = 1 and (C5b)

e = eXp(meMAT — ce), (C2c) ! 1+ exp(—Ifsscalal LFS-Ifshaitsad)
f2 ()=1 N ! N . (C5¢)

id = exp(—(mgMAT +cq)). (C2d) +exp(-NPRscalar| GNP Rharfsa))

Here, [111] is the mortality rate due to fire (yb), andcs ,
IfSscalas IfShalfsas NPPscalas and NPRaifsatare unknown con-
stants (inferred parameters). The constarstcales the over-

all mortality rate due to fire, lfgaiarand Ifg,aisatScale the lo-
gistic response of this mortality rate to the length of the fire
season LFS, and NRRjarand NPRaitsat Scale the logistic
response of fire return interval {6 ]. To infer the parameters

to this model, we assume that the mortality rate due to fire is
equivalent to the fractional area burned per year.

ase, bte, Ce, Ce, Me, ¢d, @nd my are unknown constants (in-
ferred parameters); @ fe< 1 is the fraction of the vegeta-
tion that has evergreen leaves with parametgysbse and

cte Scaling the quadratic Eq. (C2h), is the mortality rate

of evergreen leaves with parametersandme scaling that
exponential functionuq is the mortality rate of deciduous
leaves with parameterg andmgq scaling that function; and
FYF is the fraction of the year that experiences frost (calcu-
lated using the method of van Ommen Kloeke et al., 2011).

) _ C6 Metabolic fraction
C3 Fine root mortality rate

. The fraction of leaf and fine root carbon allocated to com-
Gill and Jackson (2000) analysed a database on root tumovejonents that decompose relatively rapidly (nucleic acids
rates from all major terrestrial vegetation types and foundg,q cytoplasmic constituents) notably varies between dif-
clear log-linear positive relationships between turnover rateggrent plant functional types, with gymnosperms, for exam-
and site mean annual temperatures for fine roots in forestsme tending to have a relatively low “metabolic fraction”.
and for roots in shrublands and grasslands. Reflecting theifjetanolic fraction also tends to be positively associated with
findings we predicted fine root turnover rates according t0 - gnyironmental variables such as actual evapotranspiration

_ 1 rate, even when controlling for changes in plant functional
[Hr]=exp(mimMAT + cfrm) yr—, (C3) types (Aerts, 1997). Rather than introduce plant functional

where is root-turnover rate (yr), and and types, we chose to model metabolic fraction as a simple lin-
yr), andcrm andmmm — gar fnction:

are unknown (assumed constant) parameters scaling the re-

sponse of fine root mortality rate to MAT. [ fm [=cfm+mmAET, (C6)
C4 Plant mortality rate where| fs| is metabolic fraction andm and mm are un-

known constants (inferred parameters) that scale the re-
Stephenson and van Mantgem (2005) analysed patterns sfponse of metabolic fraction to AET.
tree mortality rates across temperate and tropical forests )
worldwide and revealed a tendency for mortality rates to beC7  Fraction of carbon allocated to structural
higher in higher productivity areas. We therefore modelled components

lant mortality rates as . . .
P y We developed a simple model that predicts the fraction of

Tisl=exp(p2AET+p1) yr-1 (C4) ca_rbon to woody plant parts as a quistic f_unction of the net
primary productivity of the vegetation. This model has the

where[zg] is plant mortality rate (yr'), and p1 and p, are following form:
unknown constants (inferred parameters) that scale the plant
mortality rate as a function of annual actual evapotranspira- 0.01exp fsca|

tion, AET. =min
1+0.01 exp(fscal—1>
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where scales the fractional carbon allocation to woody extreme numerical artefacts in the simulated time series.
plant parts andfscaiaris an unknown constant (inferred pa- Changes in soil water content were solved at a higher tempo-
rameter), scaling the response to [G]. In this form,  ral resolution A7 = 1/360, or 30 times per update in Eq. 1)
0.01 <[ fs| < 0.99, with the maxima and minima set to al- in between updates of the carbon stocks to maintain consis-
low maximum likelihood estimation of the parameters to the tency with the method used in model parameter inference and
Continuous functio given the binary data_ However, th|S to avoid extreme numerical artefacts in the dynamiCS of soil
gets rescaled by the maximum fractional carbon allocationwater balance.

parameterfyax in the full vegetation model (Eq. 1). The model (Eg. 1) was simulated across the terrestrial
land surface at 0.5 degree resolution. Initial values were
C8 Relative soil decomposition rate calculated by solving Eqg. (C1) to obtain equilibrium car-

bon stocks. Environmental variables were obtained using the

A commonly used approach to modelling the decompositionsame method as for model parameter inference — using the

of carbon in different soil carbon pools is to assume that theyNew et al. (2002) gridded climate data and the Global Soil

decompose with different maximum rates, but with the sameData Task Group (2000) “Global Data Set of Derived Soil
dependence on environmental conditions (Ise and MoorcroftProperties” data set for soil field capacity.

2008; Schimel et al., 1996; Bolker et al., 1998; Adair et al., We obtained two data sets arising from simulations of

2008). This is normally implemented by scaling the maxi- the HadCM3 model run under different anthropogenic emis-

mum decomposition rates for each pool with a common envi-sions scenarios from the IPCC Data Distribution Cen-

ronmentally dependent decomposition index. We developedre (http://www.mad.zmaw.de/IPCODC/html/SRESAR4/
a decomposition index that is highly analogous to those thaindex.htm| Lowe, 2005). These detail predicted monthly val-
have been adopted in other studies, and takes the form  yes of environmental variables for the surface of the Earth
gridded at a 5 x 3.75 degree resolution from the year 2000

[Al=Amar Ap,  where through to 2199. We did not use these environmental data di-
rectly to drive the model but instead applied the difference

between a given year and that at 2000 to the values in the

(099( e ) +001) /AvaT ma MAT <amesn oo (C82) ~ NEW etal. (2002) data set.

EXP(1Se (MAT —tthresh) , MAT > fehresh The future climate data sets did not contain all of the en-
vironmental variables we had used for model parameter in-
ference. In particular, they did not include several of the

>+o_01, and (C8b) variables needed for calculating potential evapotranspiration
(PET) using the Penman—Monteith algorithm. We therefore
resorted to using the simpler Malmstrom algorithm for calcu-

lating changes in PET for the global simulations, which only

AP_[ (O%(@) +0~01) /Apmax fpET<mmesn e (C8C)  USes data on monthly temperatures. We also used a differ-

exp(ms. (s —minest)) , ooy =mihresh ent algorithm for calculating the number of days of the year
in which frost is present prior to calculating yearly changes
in the fraction of the year that is frost (FYF). This was cal-

)+0,0]_ (C8d) culated by associating predicted monthly temperatures with

the middle day of each month, then linearly interpolating be-
tween these to calculate the fraction of the year over which

AMAT=’

1
1+tdaexp(tdp tthresh

AMAT, max= 0.99 (

1
1+mdaexp(mdpminresh

A P, max= 0.99 (

Here,[A] is the relative soil decomposition rate, antj ,
10h, 1% mdy, mdp, mS., andm P are unknown con- temperatures are less than zero.

b >, fthresh 7% , 711%b, 11>, thresh Climate change simulations were run for all 1200 sampled
stants (inferred parameters) and PET is mean annual poten-. : . .
. - - . joint posterior parameter estimates resulting from parame-
tial evapotranspiration. We assume a minimum relative de-

o . . " ter inference of the full dynamic global vegetation model
composition rate returned by either “wetness” or temperature(DGVM) for the parameter sets returned from each of the 10
functions of 0.01. ’

different subsets of training data (thus, 12 000 simulations).
To run simulations with different plant mortality models we

Appendix D simply replaced the list of sampled mortality model param-
eter values with those obtained from either inferring the pa-
Methodology for projections under climate change rameters for the mortality model alone to the data on plant

mortality rates, or from inferring the parameters for the full
The full terrestrial carbon model is simulated by solving DGVM in the absence of the data on plant mortality rates.
Eq. (1) using a standard forward Euler method with time To obtain estimates of changes in the stocks of terres-
stepAtr = 1/12yr. Preliminary investigations were made to trial plant and soil carbon we multiplied the estimated values
ensure that this time step was sufficiently small to avoid

www.biogeosciences.net/10/583/2013/ Biogeosciences, 10,&832013
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for each grid point (in units of kgCnf) by the area
of the grid cell.
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