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Abstract. The feedback between climate and the terrestrial
carbon cycle will be a key determinant of the dynamics of the
Earth System (the thin layer that contains and supports life)
over the coming decades and centuries. However, Earth Sys-
tem Model projections of the terrestrial carbon-balance vary
widely over these timescales. This is largely due to differ-
ences in their terrestrial carbon cycle models. A major goal in
biogeosciences is therefore to improve understanding of the
terrestrial carbon cycle to enable better constrained projec-
tions. Utilising empirical data to constrain and assess com-
ponent processes in terrestrial carbon cycle models will be
essential to achieving this goal. We used a new model con-
struction method to data-constrain all parameters of all com-
ponent processes within a global terrestrial carbon model,
employing as data constraints a collection of 12 empirical
data sets characterising global patterns of carbon stocks and
flows. Our goals were to assess the climate dependencies
inferred for all component processes, assess whether these
were consistent with current knowledge and understanding,
assess the importance of different data sets and the model
structure for inferring those dependencies, assess the pre-
dictive accuracy of the model and ultimately to identify a
methodology by which alternative component models could
be compared within the same framework in the future. Al-
though formulated as differential equations describing car-
bon fluxes through plant and soil pools, the model was fitted
assuming the carbon pools were in states of dynamic equi-
librium (input rates equal output rates). Thus, the parame-
terised model is of the equilibrium terrestrial carbon cycle.
All but 2 of the 12 component processes to the model were
inferred to have strong climate dependencies, although it was
not possible to data-constrain all parameters, indicating some
potentially redundant details. Similar climate dependencies

were obtained for most processes, whether inferred individ-
ually from their corresponding data sets or using the full ter-
restrial carbon model and all available data sets, indicating
a strong overall consistency in the information provided by
different data sets under the assumed model formulation. A
notable exception was plant mortality, in which qualitatively
different climate dependencies were inferred depending on
the model formulation and data sets used, highlighting this
component as the major structural uncertainty in the model.
All but two component processes predicted empirical data
better than a null model in which no climate dependency was
assumed. Equilibrium plant carbon was predicted especially
well (explaining around 70 % of the variation in the withheld
evaluation data). We discuss the advantages of our approach
in relation to advancing our understanding of the carbon cy-
cle and enabling Earth System Models to make better con-
strained projections.

1 Introduction

Whilst models of the Earth System (the thin layer that con-
tains and supports life) have evolved in response to improve-
ments in our understanding of different processes (Randall
et al., 2007), wide differences in the predictions of different
models still greatly limit decision making about how best to
adapt to climate change (Cox and Stephenson, 2007; Kerr,
2011; Maslin and Austin, 2012). Improvements in character-
ising the consistency of models with empirical data and with
each other, in terms of predictive accuracy and in terms of in-
built assumptions, would improve clarity about why model
predictions differ and hopefully enable critical improvements
to be made that improve confidence in predictions.
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Models of the terrestrial carbon cycle are one of the Earth
System Model components most critically in need of im-
provement. The terrestrial carbon cycle has major effects on
the dynamics of the Earth System over decadal or longer
timescales (Denman et al., 2007), and, whilst this means that
terrestrial vegetation currently accounts for approximately
60 % of the total annual flux in atmospheric carbon diox-
ide and absorbs around a quarter of anthropogenic carbon
dioxide emissions (Denman et al., 2007), there is great un-
certainty about how this balance will change in the future
(Cramer et al., 2001; Friedlingstein et al., 2006; Denman et
al., 2007; Sitch et al., 2008). This uncertainty is largely be-
cause models exhibit wide differences in their predictive ac-
curacy (Keenan et al., 2012) and lead to widely diverging and
inconsistent projections (Friedlingstein et al., 2006).

Resolving the problem of the differences in carbon model
predictions is a major research challenge. Traditionally, car-
bon models have not been developed in a way that enables
detailed intercomparisons to assess why their predictions dif-
fer. Their component processes and their parameterisations
have been based on contemporary understanding but have
not explicitly (quantitatively) incorporated confidence in how
that understanding is based on empirical data. Further re-
search has typically added more details to these models but
has rarely gone back and characterised the consistency of the
initial assumptions, or the overall model, with empirical data.
Recent work has shown that explicitly constraining parame-
ters of terrestrial carbon models with empirical data can lead
to better understanding of uncertainty in their parameterisa-
tions and of the importance of that uncertainty for predictions
(Knorr and Heimann, 2001; Scholze et al., 2007; Zhou and
Luo, 2008; Rayner et al., 2011; Ricciuto et al., 2011). Recent
systematic comparisons of alternative carbon models or their
components have also shown how differences and inconsis-
tencies between different models can be identified more pre-
cisely (Keenan et al., 2012; van Oijen et al., 2011; Randerson
et al., 2009; Kloster et al., 2010). These analyses have been
facilitated by the increased availability of more varied and
detailed data sets on terrestrial carbon stocks and fluxes from
around the globe.

Delivering better constrained projections of terrestrial car-
bon cycle dynamics could soon be achieved in light of these
recent advances. However, delivering that goal is going to re-
quire improved methodologies for the construction, parame-
terisation and evaluation of terrestrial carbon cycle models,
which enable the detailed analyses of the consistency of dif-
ferent model components and their parameterisations with
empirical data. Here we develop such a methodology and im-
plement it to fully decompose all component processes of a
global terrestrial carbon cycle model in terms of their param-
eter uncertainty and the accuracy of their predictions with re-
spect to different empirical data sets. Specifically, our goals
were to (i) assess the degree of empirical support for simple
functional representations of component processes of the car-
bon cycle, when assessed within a model of how the overall

system is connected; (ii) to assess whether the inferred rela-
tionships are consistent with current understanding; and (iii)
to define a methodology by which we can build on from this
model to identify the appropriate balance of details for mak-
ing better constrained probabilistic projections of the carbon
cycle into the future.

2 Data sources

2.1 Carbon stocks and fluxes

Our empirical data primarily came from field-data collation
initiatives that targeted an individual terrestrial carbon stock
or flow. These are summarised in Table 1. These data sets
were selected on the basis that they (i) were informative
about the stocks and fluxes of carbon in natural terrestrial
vegetation, (ii) contained at least some data that were rep-
resentative of vegetation in a state of dynamical equilibrium
(selected via a filtering process; see Appendix A) (iii) could
be used as information to constrain parameters in our model,
(iv) had approximately global coverage, (v) could have single
latitude and longitude coordinates assigned each a site-based
estimate to enable cross-referencing to spatial climate data,
and (vi) could be easily accessed and shared alongside our
study to enable reproducibility, investigations of data pro-
cessing steps, investigations into the importance of the se-
lected data, and controlled comparisons of alternative mod-
els. Full details of how all of the empirical data sets were
processed are given in Appendix A. Some of these data sets
have been superseded by more recent data sets (e.g. our fire
data set could now be replaced by the Global Fire Emissions
Database (GFED) of Giglio et al., 2010). We hope to incor-
porate these improved data sets in the future.

2.2 Environmental data

All model components incorporated information from site-
specific environmental variables to make predictions, either
directly (e.g. the effect of temperature on net primary pro-
ductivity) or indirectly by requiring input from another com-
ponent model that itself required environmental data (e.g. the
allocation to woody plant parts depends on net primary pro-
ductivity). All environmental variables were calculated using
data contained in either or both of the New et al. (2002) grid-
ded monthly climate data set and the Global Soil Data Task
Group (2000) “Global Data Set of Derived Soil Properties”
data set. These have spatial resolutions of 10 arcmin and 0.5
decimal degrees, respectively. Full details of how the differ-
ent environmental variables were calculated are given in Ap-
pendix B. Again, we hope these data sets will be upgraded in
the future.
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3 Model

3.1 Full structure

We developed a terrestrial carbon model as a set of six car-
bon pools, connected by various flows (illustrated in Fig. 1).
Mathematically, this corresponds to a series of six ordinary
differential equations (one for each pool), each with three
general components: an input rate (e.g. carbon fixation rate);
an output rate (e.g. leaf mortality); and a carbon content (e.g.
leaf carbon). The chosen level of complexity was biased by
our ability to identify global data on at least two out of these
three for each carbon pool, so that it would be possible to
infer properties of the third. The full terrestrial carbon model
is then expressed as follows:
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where Cl , Cr, Cs, Cm, Ca, and Cb are the amounts of organic
carbon stored (kg m−2) in leaves, fine roots, structural plant
parts, metabolic fraction of the soil, structural fraction of the
soil and recalcitrant fraction of the soil (these are defined
below); t is time in years (yr); symbols marked with a box
are functions that are described below and fully defined in
Appendix C;fmax is the maximum fraction of net primary
productivity allocated to structural plant parts;Sf scales the
fire-induced mortality rate of structural plant parts relative to
that of leaves and fine roots (inferred in this study);km, ka
andkb are the maximum loss rates of the metabolic, struc-
tural and recalcitrant soil fractions (yr−1; all inferred); and
F1 is the fraction of the structural carbon pool that does not
decompose directly to carbon dioxide but enters the recalci-
trant pool (unitless; inferred).

The terms in boxes in Eq. (1) are functions that apply at a
given location and given time, which depend on the physical

environment at that location and time. Our principal aim was
to infer the environmental dependence for each of these func-
tions. However, we also considered, for each component, a
null model with no climate dependency (i.e. a constant apply-
ing to all locations and times: see below). We do not suggest
that these are the “best” representations of the model com-
ponent functions (boxes in Eq. 1). Rather, we identified rea-
sonable functional forms from the literature, which could be
used simply to infer climate-dependent relationships.G de-
termines the plant carbon fixation rate (kg m−2 yr−1), based
on the MIAMI model of Leith (1975).fs scales the frac-
tion of carbon allocated to structural plant parts over leaves
and roots (unitless) and is new to the literature. The mor-
tality rates of leaves (yr−1), µl , is predicted from a new
model based on the recent analysis by van Ommen Kloeke
et al. (2011) of global patterns of leaf lifespan. The mor-
tality rates of fine roots,µr , whole plantsµs (yr−1), and
the fraction of organic carbon in dead leaves and fine roots
that enters the metabolic soil organic carbon poolfm (unit-
less) are based on simple linear functions. Carbon loss rate
due to fire µf (yr−1) is based on the models of Thonicke et
al. (2001), Kloster et al. (2010) and Arora and Boer (2005).
A scales the decomposition rate of organic soil carbon based
on classic climate-dependent relationships (Ise and Moor-
croft, 2008; Schimel et al., 1996; Bolker et al., 1998; Adair
et al., 2008).

When inferring the parameters, we further assume that all
carbon pools (and thus all stocks) at the specific locations
and times for the empirical data have reached equilibrium
(the empirical data were filtered as described in Appendix A).
Equation (1) then reduces to simple expressions for the equi-
librium carbon contents of plant and soil carbon pools (omit-
ted for brevity).

4 Parameter estimation and model assessment

4.1 Computational framework

We built a computational framework to enable the assem-
bly, parameterisation and assessment of multi-component
models of arbitrary complexity to enable our study to be
conducted (illustrated in Fig. 2). The framework, model,
and derivative data necessary to reproduce the results of
this paper, as well as a user’s guide, are available from
research.microsoft.com/en-us/downloads/. The data result-
ing from conducting the analyses described in this study are
available fromresearch.microsoft.com/en-us/downloads/.

4.2 Data partitioning into training, evaluation and
final test sets

The data sets were partitioned into training, evaluation and fi-
nal test sets to avoid including parameters only because they
help explain fluctuations specific to a particular data set, in-
stead of the general phenomenon being inferred from the data
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Table 1.Source data on carbon stocks and flows used in our study for model training and evaluation.

Data set name Data description and typical units Data provider N. data Likelihood function

Plant carbon: global The amount of carbon Carbon Dioxide Information; 1000* Normal
biomass carbon map held in terrestrial Analysis Center
in the year 2000 vegetation, tonnes (cdiac.ornl.gov/epubs/ndp/global

carbon ha−1 carbon/carbondocumentation.html);
Ruesch and Gibbs (2008)

Litter carbon Litter production rates, Matthews (2003) 1000* Normal
production rate g dry matter m−2 yr−1

Soil carbon: global Soil carbon density Oak Ridge Nat. Lab. Distrib. Active 1000* Lognormal
gridded surfaces (kg m−2) at a depth Archive Center (ORNL DAAC)
of selected soil interval of 0–100 cm (daac.ornl.gov/SOILS/guides/
characteristics igbp-surfaces.html);
(IGBP-DIS) Global Soil Data Task Group (2000)

Plant carbon fixation Net primary Oak Ridge Nat. Lab. Distrib. Active 933 Normal
rate: “Class B site” productivity Archive Center (ORNL DAAC)
net primary (kg carbon m−2 yr−1) (daac.ornl.gov/NPP/htmldocs/
productivity (NPP) EMDIdes.html); Olson et al. (2001)

Deciduous leaf Estimated lifespan GLOPNET Authors 30 Lognormal
mortality rate (in months) of Wright et al. (2004)

deciduous leaves

Evergreen leaf Estimated lifespan GLOPNET Authors 46 Lognormal
mortality rate (in months) of Wright et al. (2004)

evergreen leaves

Fraction of leaves that Categorical GLOPNET Authors 155 Normal
are evergreen classification of leaves Wright et al. (2004)

as “evergreen”
or “deciduous”

Fine root mortality Mean root turnover Gill and Jackson (2000) 162 Lognormal
rate (lifespan) (yr−1)

Plant mortality rate Forest turnover rates Stephenson and van Mantgem (2005) 191 Lognormal
(yr−1) from different
sites worldwide

Global map of Percentage of a grid cell Florent Mouillot 1000* Lognormal
fraction of area burned burned per year for (cefe.cnrs.fr/fe/staff/Florent
per year, 1900–2000 100 yr (1900–2000) Mouillot.html); Mouillot and Field (2005)

Fraction of leaf and fine Fraction of leaf and fine Ise and Moorcroft (2006) 1000* Normal
root carbon entering root carbon that is
fast soil pool decomposed quickly by
(that is “metabolic”) soil organisms (fraction)

Global land cover Discrete classifications European Commission 1000* Logistic
in the year 2000. of land cover types (bioval.jrc.ec.europa.eu/products/
Used to infer represented as glc2000/dataaccess.php); Bartholome
fraction of plant carbon integer codes and Belward (2005)
allocated to
structural parts

Numbers represent those model parameters specifically needed to predict a particular data set. Some models may have taken the outputs of other models as their inputs, and therefore
may implicitly include more model parameters.∗ Approximate numbers of data points obtained through random stratified sampling of gridded global data.
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Fig. 1 | Summary of the inferred climate dependence of the terrestrial carbon cycle within 1200 

our terrestrial carbon model. The inferred climate dependence of each component is shown 1201 

in red (inferred using the full model and all data sets), grey (inferred using minimal subsets 1202 

of the model) and, to illustrate the major structural uncertainty in plant mortality (h), in blue 1203 

(inferred using the full model but omitting the plant mortality data). Lines and shading are 1204 

average median, 5th and 95th percentiles from 10 training data subsets.  1205 
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Fig. 1. Summary of the inferred climate dependence of the terrestrial carbon cycle within our terrestrial carbon model. The inferred climate
dependence of each component is shown in red (inferred using the full model and all data sets), grey (inferred using minimal subsets of the
model) and, to illustrate the major structural uncertainty in plant mortality (h), in blue (inferred using the full model but omitting the plant
mortality data). Lines and shading are average median, 5th and 95th percentiles from 10 training data subsets.

set (over-fitting). Over-fitting can still occur when adopting
this approach if model refinement goes through many itera-
tions and the same training and evaluation sets are used. We
therefore first removed a fraction of each data set to be used
as a final step to assess the performance of our models (the
“final test data”). This allows us to test our models against
data that played absolutely no role in the model refinement
process. We constructed a land surface mask by randomly
positioning 0.5 degree squares over the terrestrial land sur-
face until approximately 25 % of the terrestrial land surface
had been covered. Any data that fell under this mask were
removed permanently as final test data. We performed 10-
fold cross-validation within our model parameter inference
experiments on the data remaining after the removal of the
final test data.

4.3 Parameter inference

We used a Bayesian approach to infer the probability distri-
butions for the model parameters given our empirical data
sets. For every model we used flat (or “uninformative”) prior
probability distributions for the parameter values. We assume
that the probability of observing the data under all possible
hypotheses is 1 (the marginal probability). We also made no

attempt in this study to incorporate or infer errors and biases
associated with the observational data. This is potentially an
important assumption, and accounting for these errors will
be enabled in the future for empirical data sets that contain
estimates of observational uncertainty

Under these assumptions, estimating the probability distri-
butions of the parameters reduces to requiring the estimation
of their likelihood, given the observed carbon data and en-
vironmental conditions. This required us to specify a likeli-
hood function for each model component, which defines the
probability of the data, given any combination of parameters.
With this function defined, the posterior probability of each
parameter could be estimated. Formally, we assume that

L(Pred(Model(Pars,Env))|Obs)∝ P (Obs|Pred(Model(Pars,Env))),

where bold text denotes a vector. In words, the likelihoodL

of the predictionsPred of the parameterised model given the
observations,Obs, is proportional to the probabilityP , of the
observations given the particular model predictions. The pre-
dictions arise from a particular model with parametersPars
and set of environmental conditionsEnv.
We used the Filzbach set of code libraries to find the
posterior distributions for the parameters of a given model,
given the observed carbon data (Obs) and environmental
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Fig. 2 | Our prototype automated system used for the construction, parameter estimation 1208 

and assessment of multi-component models of arbitrary complexity. This automated system 1209 

was used to develop and analyze our model. Inputs are multi-component models and 1210 

empirical data. Data are partitioned into training, evaluation and final test sets. Input 1211 

libraries provide a common interface to connect code with data. Inference routines use 1212 

inference libraries to infer parameter probability distributions. Inference libraries implement 1213 

approximate Bayesian inference using Markov Chain Monte Carlo methods with the 1214 

Metropolis-Hastings algorithm. A data viewer provides a standard interface for inspecting 1215 

inputs and results. See Section 5.1. for details on how to download the framework. 1216 
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Fig. 2. Our prototype automated system used for the construction, parameter estimation and assessment of multi-component models of
arbitrary complexity. This automated system was used to develop and analyse our model. Inputs are multi-component models and empirical
data. Data are partitioned into training, evaluation and final test sets. Input libraries provide a common interface to connect code with data.
Inference routines use inference libraries to infer parameter probability distributions. Inference libraries implement approximate Bayesian
inference using Markov chain Monte Carlo methods with the Metropolis–Hastings algorithm. A data viewer provides a standard interface
for inspecting inputs and results. See Sect. 4.1. for details on how to download the framework.

conditions (Env; http://research.microsoft.com/en-us/um/
cambridge/groups/science/tools/filzbach/filzbach.htm).
Filzbach implements Markov chain Monte Carlo sampling
of parameter space given a set of parameters to be varied
(Pars) and likelihood function (L; Gilks et al., 1996). It
uses the Metropolis–Hastings algorithm to accept or reject
sets of parameter values when compared to the likelihood
associated with the parameter values of the previous iteration
of the Markov chain (Gilks et al., 1996). In our study, the
likelihood function used by Filzbach may depend on the
likelihoods associated with several sub-component models,
depending on the model parameter inference experiment
being run (outlined below, and see Fig. 3 for details). The
specific likelihood function chosen to assess each model
component against its corresponding empirical data set is
detailed in Table 1.

The data sets used contain different relative frequencies
of data for different climate regions of the world. We down-
weighted the log-likelihoods assigned to data points in direct
proportion to the relative frequency of data in their respective
Holdridge life zones (Holdridge, 1967). This avoids biasing
the model parameter inference procedures towards parameter
values that predict well those regions of the world that are
most frequently represented in the data.

4.4 Parameter inference experiments

We investigated the sensitivity of the inferred model func-
tional forms and model performance metrics to using dif-
ferent combinations of model components and data sets by
conducting three different parameter inference experimental
protocols described below.

4.4.1 Build-up experiments

We inferred parameters to each of the component models in-
dicated in Fig. 3 alongside those of the models on which they
depend to make predictions. We refer to these experiments as
“build-up”, because we started by inferring the parameters to
the group 1 models individually and then inferred those to
the group 2 models (alongside those of the NPP model), be-
fore inferring parameters to each of the group 3 models (and
those of the sub-components on which they depend), incre-
mentally working towards inferring all the parameters in all
components of the terrestrial carbon model simultaneously
(the 12th experiment).
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Fig. 3 | The full terrestrial carbon model can be represented as a factor graph. All boxes 1219 

represent model components with accompanying data. Arrows connect a model that acts as 1220 

a subcomponent (tail of arrow) to another model (head of arrow). Models within Group 1 1221 

do not require predictions from other models to predict their accompanying data sets. 1222 

Group 2 models require predictions from the net primary productivity model. Group 3 1223 

models require input from several model components. 1224 
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Fig. 3.The full terrestrial carbon model can be represented as a fac-
tor graph. All boxes represent model components with accompany-
ing data. Arrows connect a model that acts as a subcomponent (tail
of arrow) to another model (head of arrow). Models within group 1
do not require predictions from other models to predict their ac-
companying data sets. Group 2 models require predictions from the
net primary productivity model. Group 3 models require input from
several model components.

4.4.2 Omit-data experiments

We sequentially omitted an entire data set associated with
each model component in Fig. 3 prior to inferring the param-
eters of the full model. This enables investigation of how im-
portant the information contained in a given data set is for the
inferred parameter probability distributions. Each evaluation
step also included a fold of the omitted data sets. However,
this approach does not allow us to estimate process error as-
sociated with a given model in the absence of its associated
empirical data. We therefore used the posterior parameter es-
timates of process error obtained from inferring the parame-
ters of the full model with all empirical data sets when per-
forming model evaluation.

4.4.3 Replace-null experiments

We sequentially replaced a model component in Fig. 3 with a
null model consisting of an inferred constant and associated
error. This allows us to investigate how important the climate
dependency of a particular model is for the predictive per-
formance of other components and their inferred parameter
values.

4.4.4 Assessing predictive performance

In general, we calculated performance metrics for each sam-
ple of parameter values from the Markov chain after the burn-
in procedure. The burn-in period was always 20 000 itera-
tions, and the Markov chain length used for parameter sam-
pling was always 120 000 iterations and was subsampled ev-
ery 100 iterations. This enabled us to also take mean, median
and 95th percentiles of various performance metrics over the
set of sampled parameter values.

5 Results

5.1 Full model

Overall we infer climatically varying functions for all com-
ponent processes to our terrestrial carbon cycle model when
fitted using all available data sets (red functional relation-
ships in Fig. 1). The inferred climate dependencies of net
primary productivity (NPP), increasing but saturating func-
tions of temperature and precipitation (Fig. 1a, b), are consis-
tent with what was established for the classic MIAMI model
(Leith, 1975). The proportion of fixed carbon allocated to
wood (versus and leaves and fine roots) varies continuously
as a sigmoid function of NPP and increases to around 0.35
for the most productive locations (Fig. 1c). The four pro-
cesses then determining carbon loss rates have contrasting
climate dependencies (Fig. 1d–h). Fire increases with dry
season length (combustibility) and NPP (fuel), as expected
(Fig. 1i, j; Kloster at al., 2010). Contrasting dependencies of
evergreen and deciduous leaf mortality (Fig. 1e, f) are in-
ferred, with the relative frequency of evergreen versus decid-
uous leaves being U-shaped against annual frost frequency
(Fig. 1d). This highlights the relatively complex climate de-
pendence of leaf lifespan globally (van Ommen Kloeke et
al., 2011). Fine root mortality rate is inferred to increase with
mean annual temperature as expected (Fig. 1g; Gill and Jack-
son, 2000). A relatively flat relationship for the climate de-
pendency of plant mortality is inferred (Fig. 1h); however,
this actually results from contradictory information from dif-
ferent data sets under our assumed model formulation (de-
tails below). We infer no strong climate dependency in the
fraction of dead leaves and roots initially allocated between
the different soil pools (Fig. 1k). For the soil component, we
infer temperature and moisture dependencies of the classical
three-pool soil model that are consistent with previous find-
ings (Fig. 1l, m; Ise and Moorcroft, 2008).

The lack of a relationship for plant mortality was unex-
pected, because a previous study (Stephenson and van Mant-
gem, 2005), using the same empirical data on plant mortal-
ity rates, identified a positive relationship between mortality
rates and productivity – a close correlate of evapotranspira-
tion rates (Leith, 1975). Further analysis reveals this incon-
sistency to be due to differences in the information implied
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Fig. 4| Performance assessments of the terrestrial carbon model.  (A) Pearson’s correlation, 1227 

(B) the coefficient of determination or (C) the probability of the model relative to a null 1228 

model (Gelfand and Day, 1994). Separate data subsets were used for parameter inference 1229 

and model evaluation to avoid over-fitting. A final test data subset was reserved (never used 1230 

during model development) to provide an independent estimate of the likely predictive 1231 

ability when the model is applied to locations that have not been observed. Assessments 1232 

against evaluation and final test data are in grey and red, respectively, with n being the 1233 

respective mean or absolute number of data points per assessment. Dots and error bars are 1234 

average medians, 5th and 95th percentiles in (A) and (B) and medians, maxima and minima 1235 

in (C) using parameter distributions inferred from 10 training data subsets. Insufficient 1236 

evaluation data existed to calculate (A) and (B) for the deciduous leaf mortality model. 1237 
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Fig. 4. Performance assessments of the terrestrial carbon model:(a) Pearson’s correlation,(b) the coefficient of determination and(c)
the probability of the model relative to a null model (Gelfand and Day, 1994). Separate data subsets were used for parameter inference and
model evaluation to avoid over-fitting. A final test data subset was reserved (never used during model development) to provide an independent
estimate of the likely predictive ability when the model is applied to locations that have not been observed. Assessments against evaluation
and final test data are in grey and red, respectively, withn being the respective mean or absolute number of data points per assessment.
Dots and error bars are average medians, 5th and 95th percentiles in(a) and(b) and medians, maxima and minima in(c) using parameter
distributions inferred from 10 training data subsets. Insufficient evaluation data existed to calculate(a) and(b) for the deciduous leaf mortality
model.

by different empirical data sets under our assumed model for-
mulation. We infer qualitatively different climate dependence
from the plant mortality data alone (a positive relationship,
Fig. 1h (grey), as found by Stephenson and van Mantgem,
2005), from all model components and empirical data sets
together (a flat relationship, Fig. 1h (red)), or using all model
components but omitting individual data sets (omitting plant
mortality data gives a negative relationship, Fig. 1h (blue),
omitting the plant carbon data gives a positive relationship,
similar to Fig. 1h (grey)). These results indicate a clear dis-
crepancy between the information on the climate dependency
of plant mortality implied by the mortality data itself and
that implied by the other plant carbon data sets under the
assumed model formulation. On this basis we identify global
plant mortality rates as a major “structural uncertainty” in
our terrestrial carbon model.

Other than the non-climatically dependent functions, the
climate dependencies inferred for the full terrestrial carbon
model tend to make predictions that both are significantly
positively correlated with the evaluation data sets (Fig. 4a),
and tend to explain a positive fraction of the variation within
each data set (Fig. 4b). The plant carbon data set is predicted
particularly well (final test data median Pearson’sr = 0.84
(5 % and 95 % confidence intervals= 0.81, 0.86), coefficient
of determination = 0.70 (0.63, 0.77)), as are data on litter pro-
duction rate, plant carbon fixation rate and the fraction of
carbon allocated to structural plant parts, for all of which
the model always explains a positive fraction of the varia-

tion in the data at a 95 % confidence level (Fig. 4b). Com-
paring the performance of the full model to one in which the
relevant model component is replaced with a null model sup-
ports choosing the climate-dependent model for all processes
(Fig. 4c) except for the two component processes for which
we inferred no climate dependencies.

When applied at global scales, the terrestrial carbon model
predicts global patterns of equilibrium plant and soil carbon
that match the known patterns well (Fig. 5a, b; calculated us-
ing the New et al., 2002; and Batjes, 2000 gridded data sets
for environmental variables). We estimate that the absolute
uncertainty is positively related to the median (Fig. 5c, d)
for both carbon pools. For plant carbon, relative uncertainty
(absolute uncertainty/median prediction) tends to be higher
in areas in which the model predicts vegetation that is in-
termediate between being maximally woody and completely
non-woody (Fig. 5e), owing to the contrasting mortality rates
of these different carbon pools (Fig. 1e–h). Relative uncer-
tainty is also higher over Greenland, and we expect this is
because of the inflation of uncertainty under extrapolation:
the extreme environments in that region are out of the ranges
represented in our data (Fig. 5e). We believe a similar phe-
nomenon explains the relatively higher uncertainty in predic-
tions of soil carbon in extremely dry or cold environments
(Fig. 5f).

The inferred climate dependencies in the terrestrial car-
bon model, other than the plant mortality function, gener-
ally support those that have been found in previous studies,
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indicating their consistency when considered as part of the
overall system. Although the qualitative nature of many of
these dependencies is consistent with previous knowledge,
our estimates of parameter values for these functions (and
the associated uncertainty in those parameter estimates) are
new. Our analysis also highlighted a number of new insights
into the performance of these climate-dependent functions as
detailed below.

Although the inferred climate dependencies of NPP
(Fig. 1a, b) are consistent with the MIAMI model (Leith,
1975), one parameter is not-well constrained by the data:
the parameter controlling NPP at zero degrees Celcius (t1 in
Eq. C1b) does not converge. Instead, the sigmoid response
of NPP to temperature is constrained by the parameter con-
trolling the gradient of the temperature dependency,t2. This
implies that the temperature-dependent function may actu-
ally be over-complex for our purposes. Further investiga-
tions (omitted for brevity) involving removing this param-
eter and refitting the model reveal that this and other under-
constrained parameters discussed below have little effect on
model predictive accuracy. Plots of predictions versus ob-
servations also reveal a noisy positive relationship, with the
model underestimating NPP for sites with NPP greater than
around 1.0 kg m−2 yr−1 – a property that has been noted pre-
viously for the MIAMI model (Fig. 6a; Friedlingstein et al.,
1992; Dai and Fung, 1993).
The shape of the function controlling the proportion of fixed
carbon allocated to structural components implies that struc-
tural tissue only makes up around 10 % of vegetation carbon
at NPP values of around 0.5 kg m−2 yr−1 (Fig. 1c). We expect
this probably underestimates structural carbon in vegetation
types dominated by low-productive woody vegetation such
as some boreal forests (Kicklighter et al., 1999), although we
have not verified this.

The wide confidence intervals in the function predicting
the fraction of vegetation leaves that are evergreen imply rel-
atively high uncertainty, and inspection of the relationship
between predictions and observations makes clear why this
is the case, with several observations lying far from the 1: 1
line (Fig. 6b). Despite this, the correlation between obser-
vations and predictions is relatively high (Fig. 4a), probably
due to the dominance of sites in the data set that are either
entirely evergreen (44 %) or entirely deciduous (14 %). We
anticipate that the low quantity of data in the data sets on
leaf characteristics (the most sparse data in our collection;
Table 1) strongly influences the variation in model predictive
performance for those climate dependencies.

Our inference of the climate dependencies of fire fre-
quency globally again highlights some redundant model pa-
rameters: the scaling constantcf and the two half saturation
constants, lfshalfsat and NPPhalfsat, are poorly constrained.
This implies that the model could be reformulated with fewer
parameters and still predict the data with the same accuracy.
Although the correlation between predictions and observa-
tions is relatively strong for this data set (Fig. 4a, b), visual

inspection of observational data versus predictions implies
a lower predictive performance at low fire return intervals
(fraction of burned per year) and a tendency to underestimate
the fire return interval overall (Fig. 6g).

Although plant carbon is predicted well, the plots of pre-
dictions versus observations indicate some notable outliers at
low carbon contents, where carbon is predicted to be much
higher that observed for some sites (Fig. 6h). These sites ap-
pear to be associated with tropical vegetation that has been
classified as grasslands and shrublands in the global land
cover map and have been assigned low carbon content (data
omitted for brevity), in contrast to the predictions of the
model.

For the soil model we could, again, not fully constrain all
model parameters. The parameter downscaling soil decom-
position rates as a function of extremely high temperatures
(tsc in Eq. C8a) and the parameters controlling the optimum
moisture content for decomposition and downscaling param-
eter of decomposition rates in extremely wet conditions (msc
andmthresh, in Eq. C8c) are probably all poorly constrained,
a result of lacking sufficient data representing such extreme
environments.

5.2 Build-up experiments

The build-up experiments show that the performance of some
model components changes as they become part of larger
model structures (Fig. 7). The major result from these exper-
iments is the qualitative change in the inferred climate de-
pendency of plant mortality upon being connected to the full
model, as mentioned above (Fig. 1k). The consequent change
in model predictions is clearly seen in the plots of predic-
tions versus observed data in which a noisy positive relation-
ship between predictions and observations is apparent when
the plant mortality model is fitted to the plant mortality data
alone, whereas a relatively flat relationship is observed for
the model fitted as part of the full model structure (Fig. 6k, l).

The net primary productivity model (NPP) improves in
predictive performance when it is connected to the full
model, showing higher correlation coefficients and an im-
proved fit to the training data (lower deviance information
criterion values; Fig. 7). Lower uncertainties in NPP func-
tional forms are also visible for the full model compared to
when the model is fitted to the NPP data alone (grey versus
red in Fig. 1a, b). This implies that information from other
model components helps to further constrain the climate de-
pendence of NPP. The component predicting the fraction of
plant material that is woody exhibits a poorer fit to the train-
ing data as it is connected to other model components but still
slightly increases in predictive performance (Fig. 7). Con-
necting this component to plant carbon also enables the pa-
rameter controlling the maximum carbon allocation fractions
to wood to be inferred (grey versus red in Fig. 1c). Connect-
ing the model predicting litter production to the full model
structure improves its fit to the training data, whereas the
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Fig. 5. Predicted global distributions of equilibrium plant and soil carbon. These match the known patterns well based on visual inspection.
(a), (b) Mean median prediction of plant and soil carbon from parameter distributions inferred from 10 training data subsets.(c), (d) Uncer-
tainty range spanned by the 5th and 95th % confidence intervals.(e), (f) Uncertainty relative to the median. Spatial resolution is 10 arcmin
(18.5 km at the Equator).

opposite is the case for the model predicting fraction of land
area burned (Fig. 7). However, none of these effects signif-
icantly alter the correlation between predictions and obser-
vations in the evaluation data, and they only cause minor re-
ductions in the confidence intervals of the functional forms
of the fire model (grey versus red in Fig. 1i, j).

5.3 Omit-data experiments

The most notable effects of omitting data sets when infer-
ring parameters to the full models were on the parameters
of the plant mortality climate dependency, as reported above.
Otherwise, omitting individual data sets when fitting the full
model does not dramatically influence the performance of the
model at predicting the data sets that had not been removed
(we omit details for brevity). Constraining the parameters of
some components is entirely dependent on the presence of
their corresponding data set. This is the case for the fraction
of leaves that are evergreen, the mortality rates of evergreen
and deciduous leaves, fine root mortality rates and soil de-
composition rates and indicates that the prediction of other
connected components, such as plant carbon for example, is

not dependent on the predictive accuracy of those compo-
nents. In contrast, omitting the data for the NPP model still
results in the inference of very similar parameter values, in-
dicating a strong dependency on those parameter values for
predicting other empirical data sets.

5.4 Replace-null experiments

In general, and as expected, replacing a component with a
model predicting no climate dependency strongly influences
the predictive performance of that component in the cases
where evidence exists for a climate dependency (Fig. 8). For
some components this results in negligible effects on the pre-
dictive performance of the rest of the model. However, for
the NPP model, replacement strongly influences the predic-
tive performance of other components. This is not surprising,
given that it is the initial carbon input term for the plant car-
bon pools.
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Fig. 6 | Model predictions versus observed empirical data (omitting the 25% final test data). 1247 

Predictions were made using all 10 posterior parameter probability distributions from 10-1248 

fold model fitting. Points show the average median prediction and error bars show the 1249 

average upper and lower 95% confidence intervals. a)-k) are predictions from the full model 1250 

trained to all empirical data sets and l) are predictions from the plant mortality model 1251 

trained to the plant mortality data alone.  1252 
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Fig. 6. Model predictions versus observed empirical data (omitting the 25 % final test data). Predictions were made using all 10 posterior
parameter probability distributions from 10-fold model fitting. Points show the average median prediction, and error bars show the average
upper and lower 95 % confidence intervals.(a–k) show predictions from the full model trained to all empirical data sets, and(l) shows
predictions from the plant mortality model trained to the plant mortality data alone.

6 Discussion

6.1 The degree of empirical support for the component
processes

One of our key aims was to establish a baseline terrestrial car-
bon model to support future work in which we had assessed
the empirical support for every component process, including
clearly characterising and incorporating parameter uncertain-
ties. Our new methodology has clearly achieved that, and it
also illustrates how the adoption of such a methodology in
the future development of terrestrial carbon models could ac-

celerate the identification of where their key inconsistencies
lie, both with each other and with empirical data.

We adopted a relatively simple model here, and we hy-
pothesise that it is probably too simple and uncertain to pro-
vide informative projections of future terrestrial carbon dy-
namics. For example, while we adopted the MIAMI model
as a convenient and well-recognised, simple model of net
primary productivity, it has several well-known limitations
(e.g. Bonan, 1993) including being insensitive to changes
in atmospheric CO2 concentrations (discussed further be-
low). Rather, what we aimed to do was to develop and im-
plement methodology to enable quantitative comparisons of
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Fig. 7 | Correlations between model predictions and hold-out evaluation data (left) and 1255 

Deviance Information Criterion (DIC) values (right) obtained from different model fitting 1256 

experiments (Gelman et al. 2004). DIC values have been normalised relative to the lowest-1257 

build up experiment number predicting the data set indicated. The presence of confidence 1258 
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Fig. 7. Correlations between model predictions and hold-out evaluation data (left) and deviance information criterion (DIC) values (right)
obtained from different model fitting experiments (Gelman et al., 2004). DIC values have been normalised relative to the lowest build-up
experiment number predicting the data set indicated. The presence of confidence intervals for a given experiment number indicates whether
a model component was used in a model fitting experiment. Points represent the average median estimate using the parameter probability
distributions obtained from 10-fold model fitting, and the whiskers are average 95 % confidence intervals.

alternative representations of component processes such as
NPP in the future (e.g. those documented in Adams, 2004).
Setting out to data-constrain all component processes also
forced us to propose new models for some components, such
as that for leaf mortality rates based on van Ommen Kloeke
et al. (2011). Conducting model development in this way en-
ables the empirical evidence for such new component formu-
lations to be rapidly assessed and modified if necessary be-
fore becoming a longer-term feature of the model. The omit-
data experiments also illustrated that the parameters of a new
component can be estimated even without any direct data on
the process in question, if enough data are included on other
connected model components. Subsequently, the direct data,

if they become available, could further reduce uncertainty in
the functional form and parameters for the new component.

Skill at predicting the data on the terrestrial carbon cy-
cle at equilibrium, as we have shown here, is no guaran-
tee that the model can accurately capture the temporal dy-
namics of the carbon cycle that other data assimilation stud-
ies have focussed on (Scholze et al., 2007; Ricciuto et al.,
2011). For example, our model does not account for carbon
dioxide fertilisation effects that are likely to have had, and
could continue to have, a major influence on vegetation car-
bon fixation potential into the future (Friedlingstein et al.,
2003). We therefore see a pressing need to build on our rigor-
ous approach and begin the process of comparing alternative
formulations of component models, model structures, and
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different data sets. Such studies would obviously consider
alternative representations of canopy photosynthesis (Purves
and Pacala, 2008), including not only carbon dioxide fertil-
isation effects (Friedlingstein et al., 2003), but also the dy-
namics of other resources such as water and nitrogen (Goll et
al., 2012), the importance of different plant functional types,
vegetation traits, successional processes and permafrost car-
bon thawing, to name a few (see Arneth et al., 2012; for a de-
tailed discussion). Although we developed our model within
a generalized framework so that it can become a foundation
upon which future intercomparisons can be conducted (see
Sect. 5.1), it will require further improvements to truly en-
able detailed intercomparisons of state-of-the-art terrestrial
carbon models. Enabling the inference of the parameters of
dynamical models using time-varying data, and the quantifi-
cation, assessment and propagation of errors in the observa-
tional data are two key necessary refinements to enable such
studies.

Future studies should also investigate the effects of in-
corporating more and improved data sets for data assimila-
tion and model testing than we did here. We deliberately se-
lected data sets that were relatively easy to obtain, process
and share. It is reassuring that these were sufficient to infer
most of the known climate dependencies. However, further
constraining and testing the more detailed terrestrial carbon
models will require new data sets that document temporal dy-
namics and, more generally, whichever data have the greatest
potential to minimise uncertainty in model predictions. Here
we made no use of the valuable FLUXNET (http://fluxnet.
ornl.gov/) data sets on water and carbon fluxes nor the FPAR
data (http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.
php?MODNUMBER=15). We expect that incorporating
such data could assist greatly in constraining and comparing
any dynamical models developed in the future. There have
already been developments in this direction, especially in
constraining terrestrial carbon models with carbon flux data
(Knorr and Heimann, 2001; Kaminski et al., 2012; Scholze et
al., 2007; Ricciuto et al., 2011). Future developments should
build from these studies to enable more detailed process-
based models to be data-constrained within our framework,
although it will be important to take a balanced approach to
refining components and not, for example, focus on refining
the representation of photosynthesis if it occurs at the ex-
pense of refining other components, such as mortality, which
has received much less attention to date.

While we demonstrated here how multiple component
processes can be data-constrained using multiple data sets,
there is obviously a question about how to assess models
when they are projected under future scenarios, for which
no observational data can exist. This problem can never
be solved fully, and in principle vegetation could exhibit
changes, or suffer perturbations, that have never been ob-
served, either naturally or under artificial perturbations. Our
approach offers the promise of being able to identify model
components for which improved understanding would be

most important, by decomposing changes in the output vari-
ables of interest (e.g. soil carbon) to changes in different pro-
cesses (e.g. the effects of extreme temperatures on soil de-
composition rates), and then finding out which data sets are
most important for improving those components. Under our
framework the results of key experiments, such as manipula-
tive experiments, or of other passive observations could then
be included as additional data constraints.

6.2 Inferred relationships in relation to current
understanding

The climate dependencies inferred here mostly confirm those
that have been identified previously. However, the identifica-
tion of qualitatively different climate dependencies for plant
mortality depending on the model formulation and empirical
data used, as well as some other more subtle adjustments to
other climate dependencies, highlights the value of the sys-
temic approach: it enables us to assess how consistent our
model of how the overall system functions is with empirical
evidence and identify where discrepancies lie.
At present, we do not understand the reason for the struc-
tural uncertainty in the climate dependency of plant mortality
rates. As a group, the plant carbon data sets imply that mor-
tality rates decrease with actual evapotranspiration under our
assumed overall model formulation, whereas the plant mor-
tality data imply the opposite. Perhaps the high plant mortal-
ity rates observed in highly productive sites are inconsistent
with the high carbon values recorded for those sites under
the inferred climate dependencies. This could have caused
the systematic underestimation of net primary productivity
in highly productive sites (Fig 6a), leading to lower than ex-
pected predictions for plant carbon, which in turn could cause
the inferred plant mortality rates for those sites to be higher
than observed. There are however other possibilities, such as
issues to do with the quality of the plant mortality data or the
other plant carbon data sets, the possibility of plant mortal-
ity patterns obeying more complex relationships than repre-
sented by our mortality component, or missing processes in
the model (such as the separation of structural carbon losses
between whole plant mortality and the loss of other structural
pars such as branches). These possibilities add to recent calls
to increase understanding of the role of plant mortality in the
global carbon cycle (Stephenson and van Matgem, 2005; van
Mantgem et al., 2009; Allen et al., 2010).

6.3 Building a model for future predictions

We do not know how accurate predictions of temporal dy-
namics of the carbon cycle from our terrestrial carbon model
might be, because we have done no assessments of our model
in predicting carbon dynamics. Nonetheless, we can use it to
illustrate the concept of using a data-constrained model to in-
spect the relative importance of parameter and structural un-
certainty in projections. For example, it could be that, despite
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Fig. 8 | Correlations between model predictions and hold-out evaluation data (left) and DIC 1265 

values (right) obtained from different replace-null model fitting experiments. The presence 1266 

of confidence intervals for a given experiment number indicates whether a model 1267 

component was used in a model fitting experiment. Points represent the average median 1268 

estimate using the parameter probability distributions obtained from 10-fold model fitting 1269 

and the whiskers are average 95% confidence intervals. “Control” indicates the results 1270 

Fig. 8.Correlations between model predictions and hold-out evaluation data (left) and DIC values (right) obtained from different replace-null
model fitting experiments. Confidence intervals and points have been removed where the empirical dataset predicted corresponds directly
to the model replaced. This is because model performance for that component is typically very poor, making it difficult to visualise the
performance of the other components. Points represent the average median estimate using the parameter probability distributions obtained
from 10-fold model fitting, and the whiskers are average 95 % confidence intervals. “Control” indicates the results obtained for the full model
fitted to all data sets.

the uncertainties identified, the model makes relatively well-
constrained projections for some features of the carbon cycle,
or it could be that the uncertainties tend to combine to give
extremely uncertain dynamics. To illustrate this we set the
plant and soil carbon pools across the terrestrial land surface
to equilibrium in the year 2000 (as in Fig. 5 but at 0.5 deci-
mal degree global resolution), and simulated climate change
under pessimistic (A1F1) and optimistic (B1) anthropogenic
emissions scenarios using our model to explore the plausi-
ble importance of these uncertainties (The IPCC Data Distri-

bution Centre; Lowe, 2005;http://www.mad.zmaw.de/IPCC
DDC/html/SRESAR4/index.html; see Appendix D for de-
tails). We decided to set the land surface to equilibrium car-
bon levels to ensure that any changes in the carbon balance
were solely due to climate changes, and the climate scenarios
were chosen to create two extremes for comparison.

The resulting projected changes in the total terrestrial car-
bon balance are similar under both climate forcing scenar-
ios, both predicting a net carbon sink up to about 2150 be-
fore becoming a carbon source (Fig. 9). However, the time
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Fig. 9 | Projected changes in terrestrial carbon under two climate change scenarios. These 1274 

highlight the potential importance of parameter and structural uncertainty. Lines and 1275 

shading represent the average median, 5th and 95th percentile projected changes 1276 
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Fig. 9. Projected changes in terrestrial carbon under two climate
change scenarios. These highlight the potential importance of pa-
rameter and structural uncertainty. Lines and shading represent the
average median, 5th and 95th percentile projected changes (rep-
resenting parameter uncertainty) from the terrestrial carbon model
using parameter probability distributions inferred from 10 training
data subsets. Red, grey and blue correspond to different climate de-
pendences for plant mortality, representing the major structural un-
certainty in the model (see Fig. 1). Details of how we simulated
the model are given in Appendix C. The additional code necessary
to run these simulations is available atresearch.microsoft.com/en-
us/downloads/, and the resulting simulation data are available from
download.microsoft.com/download/1/F/D/.

courses of uncertainty in the projections are quite different,
with uncertainty higher under the A1F1 scenario and show-
ing that the terrestrial carbon cycle could be either a carbon
source or a sink over the simulated time period (note that
these are not intended as reliable projections). Substituting
the alternative models of plant mortality inferred under the
different model fitting experiments indicates that this struc-
tural uncertainty has only minor quantitative effects on the
projected change in the terrestrial carbon balance. Remark-
ably, however, this structural uncertainty leads to qualita-
tively different predictions for the projected changes in total
vegetation carbon up to 2050 (Fig. 9), with positive, rela-
tively flat, or negative changes in global vegetation carbon,
depending on the mortality model parameterisation chosen.
Despite these differences, all simulations predict that vege-
tation becomes a net source by 2020. Although these are ex-
ploratory simulations, they do emphasise the potential impor-
tance and value of considering parameter and structural un-
certainties in terrestrial carbon models when attributing con-
fidence to projections of the terrestrial carbon cycle in Earth

System Models. Such uncertainty could be decomposed fur-
ther into the contributions from different component pro-
cesses and even individual parameters and data. We could
also begin such simulations with vegetation out of equilib-
rium. Such diagnoses are likely to help identify the differ-
ent sources of uncertainty in predictions and projections, en-
abling the most important sources of uncertainty to be tar-
geted for reduction.

Overall, our results complement the progress that has been
made in data-constraining terrestrial carbon models (Rayner
et al, 2011; Knorr and Heimann, 2001; Scholze et al., 2007;
Ricciuto et al., 2011; Zahele et al., 2011) and the devel-
opment of frameworks to enable such studies to be per-
formed in a repeatable fashion (Scholze et al., 2007;http:
//pecanproject.org/). We hope that, by combining these in-
sights, the biogeosciences community can rapidly move to-
wards identifying the best models for specific purposes, that
is, those models which have been shown to be most consis-
tent with the available empirical evidence, and which incor-
porate uncertainties in model structure and parameter values
into their predictions.

Appendix A

Processing of empirical data on carbon stocks and fluxes

We did not actively seek the “best data” pertaining to indi-
vidual stocks and fluxes, because we prioritised enabling re-
producibility and transparency over obtaining the most accu-
rate results. A number of the data sets were only available
as gridded land surface data, constructed through analyses of
site-based data but for which the original site data were not
available (Table 1). For these we generated pseudo-site based
data by stratified random sampling. We anticipate that some
of our data sets only coarsely represent true carbon stocks
or flows at global scales. Moreover, although not all of the
data in all data sets represent vegetation in a state of dynam-
ical equilibrium, we screened the data sets that incorporate
disturbance and anthropogenic effects using the Global Land
Cover 2000 vegetation classification map (Bartholome and
Belward, 2005) to only select data representative of vegeta-
tion at equilibrium.

A1 Vegetation carbon

Global site-based data sets of carbon held in natural ter-
restrial vegetation have been compiled previously and used
to produce global gridded maps. Unfortunately, the origi-
nal source data have not been made generally available. Re-
cently, Ruesch and Gibbs (2008) produced a global biomass
carbon map for the year 2000 for the entire global land sur-
face at 1 km resolution (approximately). This was derived
from unique estimates of vegetation carbon values for 124
different carbon zones that were defined by considering the
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continent, ecoregion, vegetation type and degree of human
disturbance. We used this map to generate pseudo-site based
data. We performed stratified random sampling of the Global
Land Cover 2000 vegetation classification map (Bartholome
and Belward, 2005; which has the same 1 km resolution as
the vegetation carbon map) and then for each randomly se-
lected point sampled the corresponding vegetation carbon
value, conditional on whether the vegetation classification in-
dicated specific vegetation types. Specifically, this included
classification types 1–9 (generally “tree cover”), excluded
type 10 (“tree Cover, burnt”), included types 11–15 (gener-
ally shrub or herbaceous cover), and excluded the remaining
types 16–22 (not natural or not vegetation).

A2 Litter carbon production

Different studies use terms like “litter production” to mean
different aspects of vegetation biomass loss (Matthews,
2003). Here, we define “litter carbon production” as the net
mass of carbon lost through natural leaf and fine root mortal-
ity (not including fire-induced mortality) per unit area of land
surface (m2) per year (yr). This does not include woody lit-
ter production through the loss of branches, stems or coarse
roots.

Leaf litter production is commonly estimated in the field
using litter traps (Matthews, 2003). Studies employing this
method rarely estimate root litter production. This led us to
consider modelling leaf and fine root litter production sep-
arately. However, studies estimating leaf litter production
sometimes use it to approximate net primary productivity by
assuming that the gains and losses of carbon in the vegetation
are balanced (Matthews, 2003). This implies that source data
on leaf litter production might not be independent of some of
our net primary production data (although we did not check
to confirm this). These challenges led us to consider alterna-
tive methods for estimating litter carbon production.

Matthews (2003) used multiple methods to estimate litter
production. One of these infers litter production from data
on soil respiration rates and root respiration rates, by assum-
ing that carbon stocks and flows are at equilibrium. Neither
of these data sets was used in our model, so we used data
generated from this method. A further complication however
was that Matthews (2003) never made the source data avail-
able. Instead the author presented averages for 30 different
vegetation types according to the UNESCO vegetation clas-
sification system (Matthews, 1999). We therefore generated
pseudo-site based data. To do this we performed stratified
random sampling of the UNESCO vegetation classification
map (which comes in 1 degree resolution), and for each ran-
domly selected point we associated the vegetation type with
the litter production value given in column 3D of Table 5 in
Matthews (2003). This gives litter dry matter production fig-
ures, so we multiplied by 0.5 to approximately convert from
dry matter to carbon.

A3 Soil carbon

Global site-based estimates of carbon held in soils under nat-
ural terrestrial vegetation have been compiled for decades.
We initially considered using the NDP018 data set analysed
by Post et al. (1982, 1985) in their studies of global patterns
of plant carbon and nitrogen. However, preliminary investi-
gations revealed significant differences in the Holdridge cli-
mate classifications (Holdridge, 1967) associated with the
sites in the NDP018 data and the classifications we ob-
tained by using georeferenced climate data from the New
et al. (2002) data set. This led us to suspect that the GPS
coordinates associated with the NDP018 are not sufficiently
accurate to enable a sufficiently accurate estimate of the cli-
matic conditions associated with the site. Instead we chose
the “Global Gridded Surfaces of Selected Soil Character-
istics” (IGBP-DIS) data set produced through the “Global
Soil Data Task” project, which was designed specifically to
assemble a “reliable and accessible data set on pedosphere
properties on a global scale” (Batjes, 2000). We generated
pseudo-site based data by performing stratified random sam-
pling of the map of soil-carbon density at depth interval of
0–100 cm (which comes in 5 arcmin resolution).

A4 Net primary productivity

Net primary productivity is estimated as the net mass (kg) of
carbon fixed by living vegetation per unit area of land sur-
face (m2) per year (yr). We selected NPP data compiled for
the Ecosystem Model Data Intercomparison project (EMDI,
Olson et al., 2001). We selected the Class B “intermediate
quality” data set, because it provided a relatively high quan-
tity of data (933 unique sites) and represented all of the major
vegetation zones of the world.

A5 Mortality rates of deciduous and evergreen leaves,
and the fraction of vegetation that is evergreen

We know of no global data sets containing site-based es-
timates of leaf turnover rate at the whole vegetation stand
level. Data from satellite observations are likely to fill this
gap in the future. The lead authors of Wright et al. (2004)
provided the GLOPNET database, which, according to
Wright et al. (2004), “spans 2548 species from 219 fami-
lies at 175 sites” (approximately 1 % of the extant vascular
plant species). This database contains georeferenced data for
a variety of species-specific leaf traits, for multiple species
at a given site, including an estimate of leaf lifespan and
whether the leaf is classified as deciduous or evergreen. In
a recent analysis of global patterns of leaf mortality, using
the GLOPNET database (Wright et al., 2004) supplemented
with additional data, van Ommen Kloeke et al. (2011) found
clear trends with environmental variables when the decidu-
ous and evergreen leaves were treated separately. As a result
we calculated the geometric average mortality rate at each
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site, separately for deciduous and evergreen leaves. We also
calculated the fraction of the records at each site that were of
evergreen plants and used this as a coarse approximation of
the faction of vegetation at each site that is evergreen.

A6 Fine root mortality rate

Data on root turnover rates are available for most vegetation
types, even though estimating root mortality rates is notori-
ously difficult and prone to error. As is conventional, we dis-
tinguished between “coarse roots” and “fine roots”, but only
explicitly modelled the mortality rate of fine roots (structural
roots are implicitly represented in plant structural carbon).
We define “fine roots” as those roots whose primary function
is to acquire water and nutrients, with little role in structural
support or resource storage (Eissenstat and Yanai, 1997). We
obtained data from the Appendix of Gill and Jackson (2000)
who studied global patterns in root turnover. We included
all data from their table with the exception of any entries
that had “root type” classified as “coarse”. We also cor-
rected three obvious errors in their data set: “Adiopodoum,
Ivory Coast” should have the longitude 4◦30′ W; “Portugal”
should have longitude 9◦24′ W; and the two entries for “Mac-
quarie Island, Subantarctic” were corrected to have longitude
158◦57′ E.

A7 Plant mortality rate

Any plant matter that is not “leaves” or “fine roots” in our
model is classified as “structural”. We equated the turnover
rate of structural plant parts in the absence of fire to the rate
of plant mortality. We could find no data on plant mortality
rates at global scales. Instead we used the data compiled by
Stephenson and van Mantgem (2005) on forest turnover rates
at global scales. This omits data on non-forested vegetation.

A8 Fractional area burned

A number of projects have sought to obtain accurate esti-
mates of patterns of fire frequency at global scales. Mouil-
lot and Field (2005) generated a global fire map of “frac-
tional area burned per year” at 1◦ resolution for the terrestrial
land surface by synthesizing available data and extrapolat-
ing when data were absent. We used this data set to generate
pseudo-site based data on the fractional area burned per year
by performing stratified random sampling of their map. We
then took averages over the same time period as in the New et
al. (2002) data set (1961–1990), including only samples from
sites that were classified as natural vegetation (codes< 16) in
the Global Land Cover 2000 map (Bartholome and Belward,
2005). In our predictive model we equate the fraction of land
area burned per year with the rate of plant carbon losses due
to fire, although we allow for this to be downscaled for struc-
tural plant parts.
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Fig. A1. Comparison between our model-derived estimates of an-
nual actual evapotranspiration (AET) and those predicted by the
model of Matssura and Willmott (2009). Predicted AET (mm) was
calculated using the methodology described in Sect. 3.2.6 for land
grid squares at 0.5 degree resolution. Points are partially transparent
to help emphasise differences in data density.

A9 Fraction of carbon in leaves and fine roots in
“metabolic” carbon pool

It is common in dynamic soil modelling to distinguish be-
tween the pool of dead plant carbon that decomposes rela-
tively slowly (cellulose and lignin) and that which decom-
poses relatively rapidly (nucleic acids and cytoplasmic con-
stituents; Ise and Moorcroft, 2006; Schimel et al., 1996;
Bolker et al., 1998). However, we have not found any actual
compilations of site-based estimates of the “metabolic frac-
tion” to use to infer global patterns, nor of the two metrics
typically used to calculate it: the ratio of carbon to nitrogen in
plant tissues or the lignin fraction of plant tissue mass. What
does exist are “representative” figures for different vegetation
types: for example, the litter fall of boreal evergreen forest
trees can be calculated to have a metabolic fraction of 0.49,
whereas grassland litterfall has a metabolic fraction of 0.76,
a typically high value. We therefore generated pseudo-site
based data. To do this we performed stratified random sam-
pling of the IBIS vegetation classification map (Ramankutty
and Foley, 1999;http://www.sage.wisc.edu/atlas/data.php?
incdataset=PotentialVegetation, which comes in 0.1 degree
resolution), and for each randomly selected point we asso-
ciated the vegetation type with the metabolic fraction value
given in Table 1 of Ise and Moorcroft (2006).
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A10 Fraction of plants that is “structural”:
everything but leaves and fine roots

The dominant vegetation types across the globe exhibit
highly contrasting patterns in their ratios of leaves and fine
roots to woody plant parts such as stems and woody roots. In
this study we treated all of the biomass that is not leaves and
fine roots as “structural”. Previous global vegetation mod-
elling assumed different allocation patterns between leaves,
roots and structural components for different plant functional
types, such as boreal forests (high fraction “structural”) ver-
sus grasses (low fraction “structural”). In our study we in-
ferred the most likely allocation patterns from data. However,
we know of no global data explicitly documenting leaf : fine
root : structural allocation ratios at the vegetation stand scale
(although such data do exist for individual species). Instead,
we assumed that the fraction of net primary productivity
allocated to structural plant parts was zero in grasslands
and some maximum in evergreen tropical rainforests. To ac-
quire the data we performed stratified random sampling of
the Global Land Cover 2000 map (Bartholome and Belward,
2005) and only recorded samples if they happened to be clas-
sified as these vegetation types. We recorded an integer “1”
alongside the sample GPS coordinates if the vegetation was
recorded as evergreen tropical rain forest (codes 1) or a “0” if
the vegetation was recorded as grassland (codes 13 and 14).

Appendix B

Calculation of environmental variables

B1 Mean annual temperature

Mean annual temperature, used in several of the model com-
ponents, was calculated as the arithmetic mean of monthly
temperatures in the New et al. (2002) gridded climate data
set. If elevation figures were present in georeferenced data,
then the difference between this and the associated elevation
figure in the New et al. (2002) data set was used to calculate a
corrected temperature, assuming a lapse rate of 6.49 degrees
Celsius per km elevation.

B2 Mean annual precipitation

Mean annual precipitation, used in several of the model com-
ponents, was calculated as the sum of the mean monthly pre-
cipitation values in the New et al. (2002) gridded climate data
set.

B3 Mean annual biotemperature

Mean annual biotemperature, used to calculate Holdridge life
zones (Holdridge, 1967), was calculated as the arithmetic
mean of monthly temperatures in the New et al. (2002) grid-

ded climate data set after setting monthly temperatures less
than 0◦C or greater than 30◦C equal to zero.

B4 Fraction of the year experiencing frost

The fraction of the year experiencing frost (FYF), used to cal-
culate the fraction of leaves that are deciduous or evergreen,
was calculated using the method employed by van Ommen
Kloeke et al. (2011) (P. van Bodegom, personal communi-
cation, 2011). The algorithm uses the number of frost days
per month from the New et al. (2002) gridded climate data
set. If the number of frost days was greater than 15, then the
whole month was classified as being a “frost month”. If the
number was less than 15, then it was classified as being a
“non-frost month”. However, if a non-frost month followed
a frost month, or if a non-frost month was to be followed by
a frost month, then the fraction of the month in the non-frost
month was calculated as 1/15 the number of frost days. The
fraction of the year experiencing frost was then the sum of
the number of frost months divided by 12.

B5 Mean annual potential evapotranspiration

Mean annual potential evapotranspiration rate was calculated
using the Penman–Monteith algorithm as specified in Allen
et al. (1998) for calculating monthly evapotranspiration rates.
The algorithm is rather lengthy and we omit details here for
brevity, although all details of the algorithm were checked
using the test data provided in Allen et al. (1998). All en-
vironmental variables for the algorithm are available in the
New et al. (2002) gridded climate data set. The sum of the
monthly evapotranspiration rates gave PET. This calculation
requires making an assumption about the vapour pressure
deficit and stomatal resistance, both of which can be influ-
enced by vegetation type. We simplified the calculation by
calculating the PET according to grassland (the “reference
evapotranspiration”; Allen et al., 1998). A natural area for
future work will be to explore the importance of alternative
formulations for calculating PET.

B6 Mean annual actual evapotranspiration

Soil moisture content was simulated on a daily time step to
obtain estimates of the actual evapotranspiration rate and the
length of the “fire season”. It was calculated using a modified
version of the algorithm reported by Prentice et al. (1993).
Climate variables for the algorithm came from the New et
al. (2002) gridded climate data set, and soil maximum water
capacity (field capacity) came from the Global Soil Data Task
Group (2000) “Global Data Set of Derived Soil Properties”
data set. Daily changes in soil water content were calculated
using the balance equation specified in Prentice et al. (1993):

ωi = min
([

ωi−1 + Pi − Ei

]
ωmax

)
(B1)
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whereωi is soil water content (mm),ωmax is soil field capac-
ity, i is time in days,Pi is daily precipitation andEi is actual
daily evapotranspiration. Actual daily losses due to evapora-
tion are calculated as

Ei = ETi

(
ωi−1

ωmax

)
(B2)

where ETi is daily potential evapotranspiration. Our method
is a modification of the algorithm used by Prentice et
al. (1993). Here the supply of water is taken to be pro-
portional to maximum evaporative demand (potential evap-
otranspiration) scaled by the relative soil wetness. Prentice
et al. (1993) calculatedEi as the minimum of daily sup-
ply and demand, where supply was calculated according to
Eq. (B1) but using a maximum evapotranspiration rate con-
stant instead of ETi , and using a slightly different algorithm
to calculate potential evapotranspiration rate (we used Allen
et al., 1998). A natural extension in the future will be to use
the methodology for model building that we report here to
also assess the modelling of evapotranspiration rates.

For each site we initialised the soil water content at field
capacity and simulated Eqs. (B1) and (B2) for 10 yr, which
was long enough for the annual dynamics to converge to an
equilibrium annual cycle. Like Prentice et al. (1993) we used
a daily time step, because we found that adopting a coarser
time step led to extreme numerical artefacts in the time series
of soil water balance. Values forPi and ETi were obtained by
linear interpolation of the monthly precipitation and potential
evapotranspiration values, respectively. Monthly and annual
actual evapotranspiration was then calculated by summation
of theEi values.

We checked that our actual evapotranspiration rate calcula-
tion yielded sensible predictions by comparing our estimates
with model-derived estimates of global actual evapotranspi-
ration rates (Willmott and Matsuura, 2001) averaged between
1961 and 1990, the same period as our New et al. (2002)
climate data. We obtained a good agreement with their cal-
culations (Fig. A1;r2

= 0.88,n = 44 225). However, a natu-
ral area for future work will be to explore the importance of
alternative methods for calculating AET and soil water bal-
ance.

B7 Length of the fire season

Daily soil water content predictions (detailed above) were
used to estimate the length of the fire season – the fraction of
days of the year over which fire is likely to occur. We based
our algorithm on that specified in Thonicke et al. (2001),
which calculates the length of the fire season as a function
of the daily soil moisture status throughout the year. How-
ever, unlike Thonicke et al. (2001) we did not impose any
constraints on the amount of biomass present for the daily
probability of fire to be greater than zero (instead, this is part
of the fire model), and we added the constraint that daily tem-
perature (interpolated from monthly temperature) had to be

greater than zero for the daily probability of fire to be non-
zero (as in Kloster et al., 2010). The algorithm was therefore

LFS=

360∑
i=1

fp(ωi,Ti),where (B3a)

fp =

{
exp

(
−π

(
ωi

ωe

))
, T > 0,ωi < ωe

0, T ≤ 0,ωi ≥ ωe
(B3b)

whereωi is the daily soil water content on dayi, ωe= 0.3 is
the soil moisture content at which fires become impossible
(moisture of fire extinction) andTi is the daily temperature,
which was linearly interpolated from monthly values. Note
that we assume a 360-day year. The parameterωe= 0.3, used
by Thonicke et al. (2001), is clearly one that could be inferred
from data in future studies.

Appendix C

Model component functions

C1 Net primary productivity

We used the so-called “MIAMI” model, developed by
Leith (1975), to predict annual net primary productivity
(NPP) as a function of two of the main environmental vari-
ables known to limit plant productivity: temperature and
available water. It has the following form:

G = min(GT , GP )kgm−2yr−1, (C1a)

where G is NPP (kg carbon m−2 yr−1). The functionsGT

andGP are calculated according to

GT =
Gmax

1+exp(t1−t2MAT)
, (C1b)

GP =Gmax(1−exp(−p1MAP)) , (C1c)

whereGmax, t1, t2, andp1 are unknown constants (inferred
parameters), max is the maximum NPP,t1 and t2 scale the
temperature dependency of NPP,p1 scales the precipitation
dependency of NPP, MAT is mean annual temperature and
MAP is mean annual precipitation.

C2 Leaf mortality rates and fraction of vegetation that
is evergreen

We formulated a new leaf mortality model based on the re-
cent analysis by van Ommen Kloeke et al. (2011) of global
patterns of leaf lifespan. Van Ommen Kloeke et al. (2011)
revealed contrasting global patterns of leaf lifespans (the in-
verse of leaf mortality rates) for evergreen and deciduous
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plants. The mean leaf mortality rateµl (yr−1) is calculated
as a weighted average according to

µl = exp(feln(µe)+(1−fe) ln(µd)) yr−1, (C2a)

where

fe=afeFYF2
+bfeFYF+ cfe, (C2b)

µe = exp(meMAT − ce) , (C2c)

µd = exp(−(mdMAT + cd)) . (C2d)

afe,bfe,cfe,ce,me,cd, and md are unknown constants (in-
ferred parameters); 0<fe< 1 is the fraction of the vegeta-
tion that has evergreen leaves with parametersafe, bfe and
cfe scaling the quadratic Eq. (C2b);µe is the mortality rate
of evergreen leaves with parametersce andme scaling that
exponential function;µd is the mortality rate of deciduous
leaves with parameterscd andmd scaling that function; and
FYF is the fraction of the year that experiences frost (calcu-
lated using the method of van Ommen Kloeke et al., 2011).

C3 Fine root mortality rate

Gill and Jackson (2000) analysed a database on root turnover
rates from all major terrestrial vegetation types and found
clear log-linear positive relationships between turnover rates
and site mean annual temperatures for fine roots in forests,
and for roots in shrublands and grasslands. Reflecting their
findings we predicted fine root turnover rates according to

µr =exp(mfrmMAT + cfrm) yr−1, (C3)

where µr is root-turnover rate (yr−1), and cfrm and mfrm
are unknown (assumed constant) parameters scaling the re-
sponse of fine root mortality rate to MAT.

C4 Plant mortality rate

Stephenson and van Mantgem (2005) analysed patterns of
tree mortality rates across temperate and tropical forests
worldwide and revealed a tendency for mortality rates to be
higher in higher productivity areas. We therefore modelled
plant mortality rates as

µs =exp(p2AET+p1)yr−1 (C4)

where µs is plant mortality rate (yr−1), andp1 andp2 are
unknown constants (inferred parameters) that scale the plant
mortality rate as a function of annual actual evapotranspira-
tion, AET.

C5 Mortality rate due to fire

We developed a fire model based on the models of Thonicke
et al. (2001), Kloster et al. (2010) and Arora and Boer (2005).
We predicted the per capita vegetation mortality rate due to
fire as

µf =cff1(LFS)f2
(
G
)
yr−1, where (C5a)

f1(LFS) =
1

1+exp(−lfsscalar(LFS-lfshalfsat))
and (C5b)

f2
(
G
)
=

1

1+exp
(
-NPPscalar

(
G -NPPhalfsat

)) . (C5c)

Here, µf is the mortality rate due to fire (yr−1), and cf ,
lfsscalar, lfshalfsat, NPPscalar, and NPPhalfsatare unknown con-
stants (inferred parameters). The constantcf scales the over-
all mortality rate due to fire, lfsscalarand lfshalfsatscale the lo-
gistic response of this mortality rate to the length of the fire
season LFS, and NPPscalar and NPPhalfsat scale the logistic
response of fire return interval toG . To infer the parameters
to this model, we assume that the mortality rate due to fire is
equivalent to the fractional area burned per year.

C6 Metabolic fraction

The fraction of leaf and fine root carbon allocated to com-
ponents that decompose relatively rapidly (nucleic acids
and cytoplasmic constituents) notably varies between dif-
ferent plant functional types, with gymnosperms, for exam-
ple, tending to have a relatively low “metabolic fraction”.
Metabolic fraction also tends to be positively associated with
environmental variables such as actual evapotranspiration
rate, even when controlling for changes in plant functional
types (Aerts, 1997). Rather than introduce plant functional
types, we chose to model metabolic fraction as a simple lin-
ear function:

fm =cfm+mfmAET, (C6)

where fs is metabolic fraction andcfm and mfm are un-
known constants (inferred parameters) that scale the re-
sponse of metabolic fraction to AET.

C7 Fraction of carbon allocated to structural
components

We developed a simple model that predicts the fraction of
carbon to woody plant parts as a logistic function of the net
primary productivity of the vegetation. This model has the
following form:

fs = min

 0.01exp

(
f

scalarG

)
1+ 0.01exp

(
f

scalarG
−1

) ,0.99

 , (C7)
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where fs scales the fractional carbon allocation to woody
plant parts andfscalar is an unknown constant (inferred pa-
rameter), scaling the response offs to G . In this form,

0.01< fs < 0.99, with the maxima and minima set to al-
low maximum likelihood estimation of the parameters to the
continuous functionfs given the binary data. However, this
gets rescaled by the maximum fractional carbon allocation
parameterfmax in the full vegetation model (Eq. 1).

C8 Relative soil decomposition rate

A commonly used approach to modelling the decomposition
of carbon in different soil carbon pools is to assume that they
decompose with different maximum rates, but with the same
dependence on environmental conditions (Ise and Moorcroft,
2008; Schimel et al., 1996; Bolker et al., 1998; Adair et al.,
2008). This is normally implemented by scaling the maxi-
mum decomposition rates for each pool with a common envi-
ronmentally dependent decomposition index. We developed
a decomposition index that is highly analogous to those that
have been adopted in other studies, and takes the form

A =AMATAP, where

AMAT=

{(
0.99

(
1

1+tdaexp(tdb MAT)

)
+0.01

)
/AMAT ,max, MAT < tthresh

exp(tsc (MAT−tthresh)) , MAT ≥ tthresh
, where (C8a)

AMAT ,max= 0.99

(
1

1+tdaexp(tdb tthresh)

)
+0.01, and (C8b)

AP=


(

0.99

(
1

1+mda exp
(

mdbMAP
PET

)
)

+0.01

)
/AP,max,

MAP
PET <mthresh

exp
(
msc

(MAP
PET −mthresh

))
, MAP

PET ≥mthresh

, where (C8c)

AP,max= 0.99

(
1

1+mdaexp(mdbmthresh)

)
+0.01. (C8d)

Here, A is the relative soil decomposition rate, andtda ,
tdb, tsc, tthresh, mda , mdb, msc, andmthreshare unknown con-
stants (inferred parameters) and PET is mean annual poten-
tial evapotranspiration. We assume a minimum relative de-
composition rate returned by either “wetness” or temperature
functions of 0.01.

Appendix D

Methodology for projections under climate change

The full terrestrial carbon model is simulated by solving
Eq. (1) using a standard forward Euler method with time
step1t = 1/12 yr. Preliminary investigations were made to
ensure that this time step was sufficiently small to avoid

extreme numerical artefacts in the simulated time series.
Changes in soil water content were solved at a higher tempo-
ral resolution (1t = 1/360, or 30 times per update in Eq. 1)
in between updates of the carbon stocks to maintain consis-
tency with the method used in model parameter inference and
to avoid extreme numerical artefacts in the dynamics of soil
water balance.

The model (Eq. 1) was simulated across the terrestrial
land surface at 0.5 degree resolution. Initial values were
calculated by solving Eq. (C1) to obtain equilibrium car-
bon stocks. Environmental variables were obtained using the
same method as for model parameter inference – using the
New et al. (2002) gridded climate data and the Global Soil
Data Task Group (2000) “Global Data Set of Derived Soil
Properties” data set for soil field capacity.

We obtained two data sets arising from simulations of
the HadCM3 model run under different anthropogenic emis-
sions scenarios from the IPCC Data Distribution Cen-
tre (http://www.mad.zmaw.de/IPCCDDC/html/SRESAR4/
index.html; Lowe, 2005). These detail predicted monthly val-
ues of environmental variables for the surface of the Earth
gridded at a 2.5× 3.75 degree resolution from the year 2000
through to 2199. We did not use these environmental data di-
rectly to drive the model but instead applied the difference
between a given year and that at 2000 to the values in the
New et al. (2002) data set.

The future climate data sets did not contain all of the en-
vironmental variables we had used for model parameter in-
ference. In particular, they did not include several of the
variables needed for calculating potential evapotranspiration
(PET) using the Penman–Monteith algorithm. We therefore
resorted to using the simpler Malmstrom algorithm for calcu-
lating changes in PET for the global simulations, which only
uses data on monthly temperatures. We also used a differ-
ent algorithm for calculating the number of days of the year
in which frost is present prior to calculating yearly changes
in the fraction of the year that is frost (FYF). This was cal-
culated by associating predicted monthly temperatures with
the middle day of each month, then linearly interpolating be-
tween these to calculate the fraction of the year over which
temperatures are less than zero.

Climate change simulations were run for all 1200 sampled
joint posterior parameter estimates resulting from parame-
ter inference of the full dynamic global vegetation model
(DGVM), for the parameter sets returned from each of the 10
different subsets of training data (thus, 12 000 simulations).
To run simulations with different plant mortality models we
simply replaced the list of sampled mortality model param-
eter values with those obtained from either inferring the pa-
rameters for the mortality model alone to the data on plant
mortality rates, or from inferring the parameters for the full
DGVM in the absence of the data on plant mortality rates.

To obtain estimates of changes in the stocks of terres-
trial plant and soil carbon we multiplied the estimated values
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for each grid point (in units of kg C m−2) by the area
of the grid cell.

Acknowledgements.We thank the Computational Science Labora-
tory and the Machine Learning and Perception group at Microsoft
Research Cambridge for technical assistance and comments
on the manuscript. We thank Colin Prentice, Bjorn Brooks,
Eva Falge and an anonymous reviewer for comments that greatly
improved this manuscript. We thank 3 anonymous reviewers to
a previous version of the manuscript for detailed constructive
comments. We thank Florent Mouillot, Ian Wright, Peter Reich,
H. Gibbs, Elaine Matthews, Rob Jackson, Nathan Stephenson,
Philip van Mantgem, Takeshi Ise, the Joint Research Centre of
the European Commission, Springer, John Wiley & Sons, the
American Geophysical Union, Oak Ridge National Laboratory
Distributed Active Archive Center (ORNL-DAAC) and the Climate
Research Unit and the University of East Anglia, for their kind
permission in allowing us to make derivatives of their data available
with our publication, and the same authors as well as Mac Post,
Robert Hijmans, the Center for Sustainability and the Global
Environment (SAGE) and The IPCC Data Distribution Centre for
making their data available for us to use in our research. We thank
G. Mace, A. Friend, P. van Bodegom, Neil Crout, Pete Smith,
Jessica Bellarby, Tim Lenton, Ben Adams, Kirsten Thonicke,
Stephen Beckett and the GREENCYLCES2 members for providing
advice for our study. We thank Pablo Tapia, Carole Boelitz,
Chuck Needham, Rachel Free and Rob Knies for technical assis-
tance.

Edited by: E. Falge

References

Adair, E. C., Parton, W. J., del Grosso, S. J., Silver, W. L., Harmon,
M. E., Hall, S. A., Burke, I. C., and Hart, S. C.: Simple three-pool
model accurately describes patterns of long term litter decompo-
sition in diverse climates, Global Change Biol., 14, 2636–2660,
2008.

Adams, B., White, A., and Lenton, T. M.: An analysis of some di-
verse approaches to modelling terrestrial net primary productiv-
ity, Ecol. Mod., 177, 351–391, 2004.

Aerts, R.: Climate, leaf litter chemistry and leaf litter decomposi-
tion in terrestrial ecosystems: a triangular relationship, Oikos ,79,
439–449, 1997.

Allen R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evap-
otranspiration – Guidelines for computing crop water require-
ments, FAO Irrigation and drainage paper, 56,http://www.fao.
org/docrep/X0490E/X0490E00.htm, 1998.

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., Mc-
Dowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears,
D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Cas-
tro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Se-
merci, A., and Cobb N.: A global overview of drought and heat-
induced tree mortality reveals emerging climate change risks for
forests, For. Ecol. Manage., 259, 660–684, 2010.

Arneth, A., Mercado, L., Kattge, J., and Booth, B. B. B.: Fu-
ture challenges of representing land-processes in studies on

land-atmosphere interactions, Biogeosciences, 9, 3587–3599,
doi:10.5194/bg-9-3587-2012, 2012.

Arora, V. K. and Boer, G. J.: Fire as an interactive component
of dynamic vegetation models, J. Geophys. Res., 110, G02008,
doi:10.1029/2005JG000042, 2005.

Bartholome, E. M. and Belward, A. S.: ; a new approach to global
land cover mapping from Earth Observation Data, Int. J. Remote
Sens., 26, GLC2000,doi:10.1080/01431160412331291297,
1959–1977, 2005.

Batjes, N. H.: Global Data Set of Derived Soil Properties, 0.5-
Degree Grid (ISRIC-WISE), Data set, from Oak Ridge National
Laboratory Distributed Active Archive Center, Oak Ridge, Ten-
nessee, USA, available at:http://www.daac.ornl.gov, 2000.

Bolker, B. M., Pacala, S. W., and Parton Jr., W. J.: Linear analysis of
soil decomposition: insights from the century model, Ecol. App.,
8, 425–439, 1998.

Bonan, G.: Physiological derivation of the observed relationship
between net primary productivity and mean annual air temper-
ature, Tellus B, 45, 379–408,doi:10.1034/j.1600-0889.1993.t01-
4-00001.x, 1993.

Cox, P. and Stephenson, D.: A changing climate for prediction, Sci-
ence, 317, 207–208, 2007.

Cramer, W., Kicklighter, D. W., Bondeau, A., Moore III, B., Churk-
ina, G., Nemry, B., Ruimy, A., and Schloss, A. L.: Global re-
sponses of terrestrial ecosystem structure and function to CO2
and climate change: results from six dynamic global vegetation
models, Global Change Biol., 7, 357–373, 2001.

Dai, A., and Fung, I. Y.: Can climate variability contribute to the
“missing” CO2 sink?, Global Biogeochem. Cy., 7, 599–609,
1993.

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.
M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E.,
Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L.,
Wofsy, S. C., and Zhang, X.: Couplings Between Changes in the
Climate System and Biogeochemistry, in: Climate Change 2007:
The Physical Science Basis. Contribution of Working Group I
to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Solomon, S., Qin, D., Manning,
M., Chen, Z., Marquis, M. Averyt, K. B., Tignor, M., and Miller,
H. L., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2007.

Eissenstat, D. M. and Yanai, R. D.: The ecology of root lifespan,
Ads. Ecol. Res., 17, 1–60, 1997.

Friedlingstein, P., Delire, C., Muller, J. F., and Gerard, J. C.: The
climate induced variation of the continental biosphere: a model
simulation of the Last Glacial Maximum, Geophys. Res. Lett.,
19, 897–900, 1992.

Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner P.: How
positive is the feedback between climate change and the carbon
cycle?, Tellus B, 55, 692–700, 2003.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W.,
Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G.,
John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W.,
Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick,
C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K.,
Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cy-
cle feedback analysis: results from the C4MIP model intercom-
parison, J. Climate, 19, 3337–3353, 2006.

Biogeosciences, 10, 583–606, 2013 www.biogeosciences.net/10/583/2013/

http://www.fao.org/docrep/X0490E/X0490E00.htm
http://www.fao.org/docrep/X0490E/X0490E00.htm
http://dx.doi.org/10.5194/bg-9-3587-2012
http://dx.doi.org/10.1029/2005JG000042
http://dx.doi.org/10.1080/01431160412331291297
http://www.daac.ornl.gov
http://dx.doi.org/10.1034/j.1600-0889.1993.t01-4-00001.x
http://dx.doi.org/10.1034/j.1600-0889.1993.t01-4-00001.x


M. J. Smith et al.: The climate dependence of the terrestrial carbon cycle 605

Gelfand, A. E. and Day, D. K.: Bayesian model choice: asymptotics
and exact calculations, J. Roy. Statist. Soc. B, 56, 501–514, 1994.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian
Data Analysis, Chapman and Hall, Boca Raton, USA, 2004.

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P.
S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assess-
ing variability and long-term trends in burned area by merging
multiple satellite fire products, Biogeosciences, 7, 1171–1186,
doi:10.5194/bg-7-1171-2010, 2010.

Gilks, W. R., Richardson., S., and Spiegelhalter, D. J.: Markov
Chain Monte Carlo in Practice, Chapman and Hall, Boca Raton,
USA, 1996.

Gill, R. and Jackson, R. B.: Global Patterns of root turnover for
terrestrial ecosystems, New Phytol., 81, 275–280, 2000.

Global Soil Data Task Group: Global Gridded Surfaces of Se-
lected Soil Characteristics (IGBP-DIS), [Global Gridded Sur-
faces of Selected Soil Characteristics (International Geosphere-
Biosphere Programme – Data and Information System)], from
Oak Ridge National Laboratory Distributed Active Archive Cen-
ter, Oak Ridge, Tennessee, USA, available at:http://www.daac.
ornl.gov, 2000.

Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Re-
ich, P. B., van Bodegom, P. M., and Niinemets,Ü.: Nutrient lim-
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