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Abstract

Collaborative filtering attempts to find items
of interest for a user by utilizing the prefer-
ences of other users. In this paper we de-
scribe an approach to filtering that explicitly
uses social relationships, such as friendship,
to find items of interest to a user. Model-
ing user-item relations as a bipartite graph
we augment it with user-user (social) links
and propose an absorbing random walk that
induces a set of stationary distributions, one
per user, over all items. These distributions
can be interpreted as personalized rankings
for each user. We exploit sparsity of both
user-item and user-user relationships to im-
prove the efficiency of our algorithm.

1. Introduction

Information filtering, finding items of interest, has long
been categorized into three approaches (Malone et al.,
1987; Resnick et al., 1994):

e Content filtering, which uses features of the items
to find similar content. If the items are docu-
ments, this also called information retrieval.

e (Collaborative filtering, which uses the preferences
of other users to select items. Most commonly,
these preferences take the form of item rat-
ings (Resnick et al., 1994; Linden et al., 2003;
Breese et al., 1998).
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e Social filtering, which explicitly uses relations be-
tween users to find other items of interest.

There are variations and combinations of the above.
For example, content filtering can exploit relationships
between items - PageRank and related methods uses
links between web pages (Page et al., 1998; Kleinberg,
1999; Lempel & Moran, 2001). Some methods com-
bine both content and collaborative filtering (Gold-
berg et al., 1992; Cohn & Hofmann, 2000; Schein et al.,
2002; Melville et al., 2002; Basilico & Hofmann, 2004).
Others allow users to query social networks to focus
filtering (Kautz et al., 1997).

Most works have focused on content and collabora-
tive filtering, mainly due to the availability of data.
Large document corpora (e.g., TREC), and user rating
data (McJones, 1997; Resnick et al., 1994) are readily
available; large social networks are a relatively recent
phenomenon and large data sets are difficult to come
by. There has been an explosion of social Internet ser-
vices in recent years: online gaming, social network-
ing, instant messaging, blogs, etc. Such services hold
the promise of augmenting existing user-item data sets
with explicit relationships between users, e.g. buddy
lists and blog-rolls. In this paper we specifically ad-
dress the problem of using such social networking data
to augment recommendation.

Collaborative vs Social Filtering: Collaborative
filtering works on the principle of homophilous dif-
fusion, where recommendations for a user are con-
structed from the preferences of similar users (Canny,
2002). Social filtering on the other hand uses asso-
ciation between users; there is some level of implicit
assumption that people usually associate with others
who are similar to them, but this is not necessarily
true. There is a subtle difference between how links are



Recommendations using Absorbing Random Walks

treated in collaborative filtering and in social filtering.
While the existence of social links between users rep-
resents interaction or similarity, the absence of a social
link does not mean that the two users are dissimilar.
Similarly, while there are item ratings for each user it
does not mean that unrated items are rated poorly.
Were this the case we could induce a total ordering on
the items for each user, which would greatly simplify
evaluation (see §6.1).

Vector Space vs Graph methods: We can see from
the above discussion that the definition of “similarity”
is crucial to the idea of recommendation, and algo-
rithms can be further characterized based on the way
in which they compute this similarity. For example,
similarities between users can be computed using vec-
tor space models (Goldberg et al., 2001; Hofmann,
2003; Rennie & Srebro, 2005) where the items form
an m-dimensional space in which users are embedded.
The data is usually available as an n X m matrix, where
the rows correspond to users and a column corresponds
to items. Vector-space models are computationally ex-
pensive, e.g. computing similarities between all pairs
of users is infeasible when n > 103. Moreover, vector-
space models do not readily allow the addition of links
between users or links between items.

As an alternative to vector-space methods, the user-
item matrix can be represented as a graph; specifically,
it can be represented as a bipartite graph. In these
methods similarity between users is based on statistics
such as commute or hitting times between their nodes
(Kubica et al., 2003; Fouss et al., 2004; Brand, 2005).
Under some conditions, the graph can be treated as
a Markov chain, and its long-term stationary distri-
bution (Page et al., 1998; Kleinberg, 1999; Lempel &
Moran, 2001) can be used to induce a global ranking.
However, this global ranking is inconvenient for direct
use in recommendation systems, since the recommen-
dations would not depend on the user. In contrast
to vector space methods, graph methods are represen-
tationally flexible. However, this flexibility is often
associated with an increased computational cost.

Value of Recommendations: Many previous ap-
proaches ignore the fact that the utility of a recommen-
dation depends on the recommendation being made.
In the real-world online gaming application we de-
scribe in §5.1, the most popular 1% of items are owned
by over 50% of users, and account for over 15% of all
items owned. Similarly the most popular 7.5% of items
are owned by over 10% of users, and account for over
60% of items owned. Because of the highly skewed na-
ture of item ownership, the usual practice of randomly
choosing a set of test items and users and then mea-

suring how well a system performs on this test set is
misleading. This is because a small number of popu-
lar items will dominate the test set. Thus, a system
that predicts the most popular items will fare well in
this evaluation. However, the actual utility of such a
system is minimal — users are typically aware of the
most popular items, and do not need a recommenda-
tion system to find out about them.

Our Contribution: In this paper we present an ap-
proach that combines relational graphs (like social net-
works) and ownership data (user-item graphs) to make
recommendations. Our method is based on a random
walk on a graph with absorbing states - we call this an
“absorbing random walk”. We use this approach for
the task of recommendation for online gaming. This
is a domain that has both social features and user
preference data. Our goal is to use the games a user
owns (user preferences) and his network of friends (so-
cial links) to suggest other items the user might want
to buy. Evaluating recommendation can be tricky for
various reasons, including those discussed above. We
propose two new evaluation criteria, the population
R-score R, and Recall vs. item popularity curves, for
recommendations systems. We compare our approach
against standard vector-based approaches as well as a
state-of-the-art co-clustering algorithm.

2. Recommendation as a Link
Prediction Task

Given a set of users and items, ownership can be rep-
resented as a bipartite graph with links between users
and items they own. Recommendation can be thought
of as the problem of inducing a ranking on the item
nodes for each user node. The k top-ranked items are
returned as the most likely items that the user should
own. Evaluating recommendations requires ground
truth, which is only available for the items rated (or
owned) by a user. Starting with a graph where all the
edges are known, testing can be done by holding out
some known links, learning on the rest of the graph and
trying to predict the held-out links. For each held out
link the more highly ranked the corresponding item
is in the recommendations for the corresponding user,
the better the prediction. In this paper, we focus on
predicting whether a user owns an item (binary vot-
ing), which can be viewed as link prediction.

2.1. Augmented Bipartite Graph

We treat relationships between users as augmenting
the bipartite graph with social links (Figure 1). Thus
we now have the following definition:
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Definition 1 Given sets U = {uy, - ,un} and T =
{91, "+ ,gm} of users and items, the ownership graph
G is given by G = (U, Z,0,S) where

O0={(u,9):(u,9) eU xT}
S={(u,v): (u,u') eU x U}

For convenience, we slightly abuse notation and use

O(u) £ {g: (u,9) € O}
S(u) = {u: (u,u) € S}

to denote the items owned by u and the users socially
linked to u respectively.

The adjacency matrix of this augmented bipartite
graph can be written as
| Ws Wo
w=wg V]
where Wy and Wgs are the adjacency matrices corre-
sponding to the links O and S.

3. Absorbing Random Walks

Traditional random walk approaches convert W to a
Markov chain over nodes defined by the row stochastic
matrix T = D~'W where D is a diagonal matrix with
entries D;; = Zj Wi;j. This Markov chain can be used
in different ways to to induce a ranking on the nodes.
For example, statistics of the random walks, such as
hitting times between nodes can be used. Some popu-
lar methods methods allow, with small probability, a
transition to any other state to ensure the existence
of a unique stationary distribution (Lempel & Moran,
2001; Page et al., 1998). Such a distribution can be
used to find the global ranking of nodes, which can be
interpreted as the long term probability of landing on
any node irrespective of where we start from. Spectral
methods that work directly on the bipartite graph can
also be used for recommendations (see §4).

Such rankings are problematic for two reasons: lack
of personalization and lack of focus. Typical random
walk statistics produce the same ranking, regardless of
which user wants recommendations. Moreover, we are
only interested in ranking over the items — such tech-
niques can expend energy in providing ranking on user
nodes which is unnecessary. In PageRank, the first
problem is addressed by topic-sensitive (Haveliwala,
2002) or query-dependent (Richardson & Domingos,
2001) variants.

We propose a new method where we perform a random
walk on the augmented bipartite graph shown before.

P(galus) items

Figure 1. An augmented bipartite graph (left) and the cor-
responding absorbing random walk (right).

We treat this graph as a special Markov chain which
has absorbing states i.e. states which once reached
cannot be transitioned out of. We call this approach
an “absorbing random walk”. The walk begins from
the user we want to produce recommendations for —
either transitioning to a friend with probability a or to
an item with probability 1 — a. If the walker chooses
to transition to a friend, one is chosen uniformly at
random from the list of people the user is connected
to. If the walker chooses to transition to a item, one
is chosen uniformly at random from the list of items a
user owns. Items are absorbing states, so the walker
cannot leave an item. Figure 1 illustrates the Markov
chain. Formally, the absorbing random walk is defined
by the following transition probabilities:

mwm:{smﬁwe&w

0 otherwise,
(9 if g e O(u)
Plalu) = 101 19 1
(glu) {O otherwise, W
1 ifg=g

0 otherwise,

P(g'lg) = {

P(ulg) =0

It can be seen that the probability that the walker
is still in a user state after ¢ steps is of, and that the
walk is absorbed with probability (1 —«t) after ¢ steps.
The probability that the walk is absorbed after step ¢
is a'~1(1 — a). Thus, we have

Property 1 The expected number of steps before ab-

sorption s ﬁ .

For each game, the probability P(*)(g|u) of being at
item g after starting at user w and taking ¢ steps is
either O for all ¢ or monotonically increasing, since g
is absorbing. Either P®)(g|u) has trivially converged
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or is bounded above and increasing (in which case, it
must converge). Moreover, the walk is reducible (since
it has absorbing states), so that it is not guaranteed
to have a unique stationary distribution. Therefore

Property 2 The walk starting at user u converges to
an absorbing distribution P,(g) over items g. In gen-
eral, the absorbing distribution depends on u.

Since the probability of not being absorbed after ¢
steps is af, the most any P®)(g|u) can change is af,

giving

Property 3 The error in approzimating P,(g) by
PO (glu) is at most a.

Danglers: In practice, there are users with no so-
cial links, or danglers. Possible solutions include (i)
backing-off to a vector-space method (ii) connecting
the dangler to every other user, averaging all the user’s
item distributions (iii) picking a random subset of
users, and creating artificial social links to the k users
with the most similar set of items.

Ranking: Once P,(g) is computed each item can be
ranked in order of decreasing probability. Because the
contribution of the t-th step to P,(g) decays exponen-
tially, the initial step, and thus the items we know the
user owns, will dominate. We simply remove those
items from the ranking. Another approach is to force
the first step of the walk to be to a friend. We use the
former approach throughout.

3.1. Biased Absorbing Random Walks

Our assumption in §3 is that social links imply similar
interests, which is not always true. To address this
problem we bias the random walk. A social link is still
chosen with probability «, but instead of choosing a
link uniformly at random the choice is biased by the
similarity of the destination user. Thus the user-user
transition probability in equation (1) is replaced by

e cos(g(u), g(u’))

e
P(u'|u) = Eu"esm) eff coslg(t),9(u"")) ifu"eS)
otherwise,
(2)
where
g(u) - g(u)
cos(g,g(u)) = T
lg(u)llg(w)]

g(u) is the binary vector of items owned by user u
and [ is a free parameter that reflects the preference

for transitioning to a friend who owns the same items.
Since the unbiased random walk is a special case (8 =
0) we refer only to the biased case in the sequel.

3.2. Computing the Absorbing Distribution

The transition probabilities of equations (1) and (2)
can be represented by a transition matrix

= 0] ®)

where U is an n X n transition matrix on users, G is
an n X m matrix of user to item transitions, and I is
the m x m identity matrix.

The absorbing distributions P,(g) can be obtained by
reading off the upper right hand n x m block of P*°,
but doing this directly is computationally expensive.
Since the chain is reducible, we cannot compute a sta-
tionary distribution by finding the first eigenvector.
The naive approach is to compute a t step walk

U (1—-a) Zk Ookuk

p=|f (4)

for some value of ¢ and appeal to Property 3. However,
in practice, we may be unable to use high enough a
value of ¢ to have a good approximation for the values
of o we wish to use. One justification for using a t step
walk even for larger « is that in many social networks
the size of the connected components follows a power
law (Albert & Barabsi, 2002). If only a few users are

reachable in the walk, then it is often the case that
large values of « do not significantly alter rankings.

Computing P! can be done in O(tn® + n?m) time by
taking advantage of the structure of P. To address
the issue of computing UF, we note that often the
goal is not to produce recommendations for all users,
but only a small subset of users. If there are r users
who need recommendations, we can replace each U*
term in equation 4 with UU*~! where U is the r x n
row-minor. In this case, the computation required is
O(trn? +rnm). While this is the worst case, the aver-
age case is in fact much better, since the sparse block
structure of the social links ensures the fill-in of TU*~1
is manageable. In the online gaming domain, the prob-
ability that a user has d social links decreases super-
exponentially in d. The savings are significant.

A related approach for exploiting sparsity for comput-
ing item-item similarities is used in (Linden et al.,
2003). There, a cosine-similarity between two items
is computed iff both items were bought by the same
customer. Analogously, one could compute user-user
similarities for every pair of users who owned the same
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item. In our online gaming data, over half the users
own the most popular game, limiting the gains to be
had by exploiting sparsity of user-user similarities.

The use of absorbing random walks is not restricted
to augmented bipartite graphs. (Zhu et al., 2007) uses
absorbing random walks to improve ranking diversity.
Starting with a non-absorbing walk over a weighted
graph, the most highly ranked node is changed to an
absorbing state at each iteration. Then, the node vis-
ited most frequently before absorption becomes the
most highly ranked node. When averaged with a good
static ranking, one can balance relevance and diversity.

4. Related Methods

As discussed in Section 1 there are many recommen-
dation systems. Here we discuss a few methods that
are popular in the recommendation community. We
will later compare our absorbing random walk method
against these two.

Cosine similarity based item-item recommen-
dations We follow the Amazon approach (Linden
et al., 2003), which computes cosine similarity between
items by representing them as vectors of users. The
sparsity of the user vectors for all but the most popu-
lar items makes this method quite efficient. To make
a recommendation for a user, the cosine similarity be-
tween a pair of items is extended to a cosine similarity
between a user u and an item g through

cos(u,g):m Z cos(¢g’, 9)-

g'€0(u)

Ttems are then ranked in order of decreasing cos(u, g),
excluding items that are already owned'.

Cosine similarity based collaborative filtering
One very common approach in collaborative filtering
is to rank users based on some similarity or distance.
The cosine distance is a commonly used in these situa-
tions. Then recommendations for user u are produced
by averaging the preferences of the N nearest neigh-
bours of u, I'(u, N)

Pug)= Y w()P(gl)
u€l(u,N)
wia) = (W, 9))

> cos(g(u”), g(u'))”

Items are ranked in order of decreasing P, (g), exclud-
ing owned titles.

!We also investigated combination using the max oper-
ator instead of averaging, but averaging gave better results.

Spectral Co-clustering A different approach to av-
eraging the preferences of other users together is clus-
tering. We use the spectral co-clustering approach of
(Dhillon, 2001), which simultaneously embeds users
and items onto a low-dimensional space. Applying the
idea to our current task, we derive the first s left and
right singular vectors of G and embed both users and
items into the subspace derived from these singular
vectors. In this embedded subspace, the items are or-
dered according to their distance from a user; recom-
mendations are made based on this ranking.

Alternatively, we follow the same process for the ma-
trix A = UTG. We can interpret this matrix as a
2-step random walk where a user picks another user
they are connected to, and then picks a game that
the other user owns. The spectral algorithm can be
thought of as finding a sub-space embedding of this
modified graph that uses both social network as well
as ownership information. We compare the absorbing
random walk with both these algorithms.

5. Data Sets

5.1. Online Gaming

We evaluate the methods described above using data
from an online gaming service. The service allows a
few million users to interact with each other and play
games. In particular, the users of the service main-
tain friend lists, and their game consoles report games
played, high scores, and other achievements to the ser-
vice. In addition, the service allows users to download
content such as media, and extensions to games.

We view the service as an augmented bipartite graph,
with nodes representing users and content. The graph
has two types of links: user-user links representing
friend relationships, and user-content links represent-
ing ownership of items of content. At the time when
the data was collected, there were over 400 items of
content. We use two subsets of the users: a “small”
set containing over 60,000 users and a “large” set con-
taining over 800,000 users. In either case, all users
have at least one friend in the set, and own at least
one piece of content. User-user links leading outside
the “small” or “large” set were omitted.

5.2. NIPS Corpus

The absorbing random walk approach is motivated by
a social network on users, but the algorithm can also
be used where the links are not explicitly social interac-
tions. A publicly available example of such a data set
is the NIPS corpus (Roweis, 2002), a collection of pa-
pers from a machine learning conference covering 1987-
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1998. The entities in the corpus are papers, authors,
and words. As an augmented bipartite graph we view
the problem as one of recommending words to papers
(treat papers as users and words as items). Social links
between papers are induced by co-authorship. An edge
of weight k is placed between two papers if they share
k authors. While this task is somewhat artificial, we
report results on it for the sake of reproducibility of
results on an easily available data set.

In the online gaming data n > m; the situation is
reversed on the NIPS corpus (n = 1740 and m =
13,649). Every word is associated with at least six
papers, and there are over 15K social links and 900K
paper-word links. As with the online gaming data,
the chance that a paper has d social links diminishes
superexponentially in d.

6. Experiments
6.1. Evaluation criteria

While we view generating recommendations as a link
prediction task, it does not change our goal of pre-
senting a ranked list to the user. The problem with
zero-one loss is that it assumes the user only reads the
first item on his list. This can be relaxed by assuming
that a user’s likelihood of considering the first j items
decreases exponentially in j (Breese et al., 1998):
p(u,t) = 9—(=1/(A-1)

where j; is the position of title ¢ on the list (co if the
title is not on the list). The half-life A is the position
in the list where a user has a 50-50 chance of stopping.
In our experiments A = 5.

Another limitation of zero-one loss is that it treats
every link as equally hard to predict. Guessing that a
user owns a popular item is easy; guessing that a user
owns an unpopular or niche item is harder. Define the
utility function

Ul(ui, gi) = —log(p(gi))

N I
p(g:) = - ;5(% owns g;).

The expected utility, or R-score (Breese et al., 1998),
given test links from a user, {(u,¢g1),..., (u,g¢)}, is

4

Ru = Zp(uv gi)U(u7 gi)'

Because different users can receive different numbers
of recommendations, the R-scores are normalized by
the maximum possible R-score and then averaged over

users. The maximum possible R-score is achieved by
placing the held out links at the top of the ranking,
sorted in order of decreasing utility.

1« Ry
E[R, = = .
R)= 33

Averaging over users obscures the fact that some users
own less popular items. For example, in the extreme
case where we have two test users, one of whom has
only a very rare test item and the other of whom has
only a very popular item, predictions of the two test
items are weighted equally.

We propose to instead links

{(Ul,gl)a ) (ufagf)}

_ > p(wi, 90)U (us, gi)
Zi U(Ui, gi)

which we refer to as the population R-score.

average over

Ry

If we restrict ourselves to holding out at most one test
link per user, then recall has a simple interpretation.
Following (Sarwar et al., 2000) a set of test links are
held out {(u1,91),- .-, (ue,g¢)}- An algorithm outputs
k < m recommendations, for a chosen threshold k.
Recall is the percentage of links where g; appears in
the top k£ recommendations for user u;. If we hold out
at most one link per user, recall can be interpreted
as the percentage of users who were satisfied by their
recommendations (i.e., the algorithm ranked the held
out item highly). We report recall for test items binned
by popularity. Items are sorted in order of popularity,
and binned so that each bin contains approximately
the same number of test links. Recall is reported sep-
arately for each of these bins. Thus, we can evaluate
whether an algorithm performs well because it is good
at predicting popular items (not useful in practice) or
at predicting less popular items.

6.2. Online Gaming Results

From the small online gaming data set two thousand
user-item links were selected at random. Because n is
large, it is unlikely that more than one link is removed
per user, minimizing perturbations in G.

The item-item approach is denoted Amazon. The co-
sine similarity approach (§4) using N nearest neigh-
bours is denoted Cosine-N. The biased random walk
approach using a t-step approximation is denoted
Absorbing-t. The spectral embedding algorithm which
is based on only the user-item ownership graph is
called Spectral-A. The algorithm which uses both so-
cial and ownership networks is called Spectral-B. For
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Table 1. Small online gaming data set, using R-scores.

Method R, | E[R.]
Amazon 0.429 | 0.508
Cosine-1 0.194 | 0.220
Cosine-10 0.423 | 0.482
Cosine-100 0.485 | 0.561
Cosine-1000 | 0.478 | 0.559
Absorbing-1 | 0.351 | 0.408
Absorbing-7 | 0.420 | 0.492
Spectral-A 0.351 | 0.437
Spectral-B 0.384 | 0.455

the small online gaming data set, we use all the sin-
gular vectors that correspond to the non-zero singular
values (there are 435 of them).

Holding out two thousand links for training and us-
ing a 7-step walk the learnt parameters were (o, §) =
(0.99,10). Because the subsampling of the small data
set artificially created many users who connect only
to each other and other small connected components,
there is little penalty for increasing o without bound.
In addition, this minimizes the effective power of the
random walk.

On this data set, Cosine-100 wins both in terms of
R-scores (Table 1) and in terms of recall (Figure 2).
Because n is small, it is possible to compute the cosine
similarity between each test user and the n — 1 other
users. Spectral-B (using the additional social infor-
mation) is able to outperform Spectral-A, the plain
co-embedding algorithm. Even with a large number of

singular vectors, these two approaches do not outper-
form Absorbing-7 (Table 1).

Breaking down the recall by item popularity (Figure 2)
provides a clear illustration of the problem that be-
guiles recommendation algorithms. We expect a large
fraction of the N nearest neighbours to own a popu-
lar item, but a much smaller fraction of those neigh-
bours to own a less popular item. In the limit of an
item owned by no one, this problem is known as cold-
start (Maltz & Erlich, 1995). The first seven bins in
Figure 2 contain the twenty most popular items. In
contrast, the rightmost bin contains almost four hun-
dred items.

6.3. Large Gaming Set

The same procedure was done using the large online
gaming data set. On this set, we drew 2500 test
links and 2500 training links. Since n ~ 900,000 we
could not feasibly compute the required 900, 000 x 2500
cosine similarities necessary for the cosine similarity

Table 2. Large online gaming data set, using R-scores.

Method R, | E[R,]
Amazon 0.296 | 0.384
Absorbing-3 | 0.312 | 0.397

Table 3. NIPS corpus, using R-scores.

Method R, E[R,]
Cosine-1 0.024 | 0.031
Cosine-10 0.015 | 0.019
Cosine-100 0.019 | 0.025
Cosine-1000 0.020 | 0.026
Cosine-All 0.020 | 0.026
Absorbing-10 | 0.039 | 0.048
Spectral-A 0.029 | 0.038
Spectral-B 0.027 | 0.035

based user-user technique. Using a 3-step walk the
learnt parameters were («, 3) = (0.6,14), which sug-
gests that treating every friend as equally informative
is unwise. The R-scores for the Amazon algorithm are
compared with the 3-step walk in Table 2. The re-
sults suggest that on the full data set it is significantly
harder to produce good recommendation, as confirmed
by the recall curve (Figure 3). The absorbing walk
outperforms the Amazon algorithm on the larger set,
perhaps confirming that the sub-sampling introduced
too many small connected components in the smaller
set. The large data set was too big for us to compute
the singular vectors (memory limitations).

6.4. NIPS Results

Our procedure for the NIPS corpus is analogous to
that used for the online gaming data. Two thousand
links were held out at random, half for training walk
parameters, and words were grouped into bins by pop-
ularity. The parameters chosen by maximizing R, on
the training links are (a, §) = (0.475, 10).

0.1 - == Absorbing Top-10 ‘N,
—©— Amazon Top-10 g

1 2 3 4 5 6 7 8 9 10

Figure 3. Recall vs. item popularity for the large online
gaming data set.
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Figure 2. Online gaming (small) — Recall vs. item popularity. The z-axis lists the ten bins the games were divided into.
The higher the bin number; the less popular the games in the bin. Top-k: k recommendations were made to each user.

Since the number of papers is small, we can compute . i e
the cosine similarity between all pairs of users (Cosine- o8 I et
All). It is also possible to compute a 10-step walk. The 07

network on papers lends itself to a random walk model,
the social network is less sparse than the online gaming
data. Table 3 shows that the absorbing random walk
does almost twice as well as the best cosine method.
The two spectral algorithms best the cosine method,
but are poorer than the absorbing random walk ap-
proach. For the NIPS corpus, the spectral algorithms
use s = 1000 singular values. Since m is large in this
task, and word occurrence quite dense, we were unable
to use the Amazon approach.

4 5 6 7 8 9 10

(a) NIPS corpus, Top-10

More importantly from the perspective of recommen-
dation algorithm is Figure 4. If we ask each algorithm
to choose 10 or 20 words for each paper, the absorbing
random walk dominates all the cosine methods. Even
when a cosine method does better on popular words,

0.2F —@— Cosine-100 - b\ R
the absorbing random walk is better at matching rare 01 Za - Secran’ NV
- & - spectral-B <
words to papers. %2 3 4 s 6 7 8 9 10

(b) Online gaming (small), Top-10
6.5. Learning Random Walks
Figure 5. Comparison of spectral co-clustering on both the
online gaming and NIPS problems. Recall vs. item popu-
larity.

An absorbing random walk has free parameters, o and
(. Both parameters have compelling interpretations —
« measures how far out influence should extend on
the social network (social filtering) while 5 measures
the degree of homophilous diffusion (collaborative fil-
tering). However, it is not obvious what these values ~ bound on f3 is chosen). Alternating maximization of «
should be for a particular data set. As a proof of con- and [ leads to a local optima. Computing VR, using
cept, we propose an alternating maximization proce- equation 4 is a topic of future research.

dure for learning (a, 3).

Our goal is to maximize R, which corresponds best to 7. Discussion
our view of recommendation as link prediction. Train-
ing links are held out, and we can evaluate R, on the

There are three arecas for advancement on this work:
computational, user-user transition models, and gen-

training lists, R. Fixing (, maximize o by grid search;  gpa1ization to arbitrary relational domains.
then fixing o maximize (3 by grid search (a loose upper

While our approach represents a more efficient
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—©— Cosine-1
0.9 = B - Cosine-10 0.9
*# ' Cosine-100

0.8 —®— Cosine-1000 0.8
= © = Cosine-All

0.7 Absorbing-10 0.7

(a) Top-10

(b) Top-20

—©— Cosine-1 —6— Cosine-1
= B = Cosine-10 09F = B = Cosine-10
*+ ' Cosine-100 + Cosine-100
—®— Cosine-1000 0.8+ ~®~ Cosine-1000
= © = Cosine-All = © = Cosine-All
Absorbing-10 Absorbing-10

(c) Top-50

Figure 4. (NIPS corpus) Recall vs. item popularity. The z-axis lists the 10 bins the words were divided into. The higher
the bin number, the less popular the words in the bin. Top-k is the number of recommendations each algorithm made.

memory-based model, which can exploit sparse ma-
trix operations, it still does not scale to n > 10%. The
most obvious way to avoid matrix-matrix multiplies
is to simulate the random walk — i.e., Monte Carlo
estimation of P,(g).

The only feature of our user-user transition model is
the item ownership vector. More features may be use-
ful. For example, on the online gaming data the age of
each user is available; papers are categorized by topic
in the NIPS corpus. To deal with the problem of very
sparse social structure (e.g., danglers) incorporating a
small chance of transition between any pair of users
may help.

The class of problems we have dealt with have a
fixed relational structure. There are two types of en-
tities (users, items) and fixed types of relationships
(user-user, user-item). Exploring whether this algo-
rithm generalizes to arbitrary instances of relational
databases is an open question.
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