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Abstract

The aim of this thesis is to explore the energy limits that can be achieved by signal-

processing systems when they explicitly utilize signal representations that encode infor-

mation efficiently. Compressive sensing is one method that enables us to efficiently repre-

sent data. The challenge, however, is that in compressive sensing, signals get substantially

altered due to the random projections involved, posing a challenge for signal analysis.

Moreover, due to the high energy costs, reconstructing signals before analysis is also of-

ten infeasible. In this thesis, we develop methodologies that enable us to directly perform

analysis on embedded signals that are compressively sensed. Thus, our approach helps

potentially reduce the energy and/or resources required for computation, communication,

and storage in sensor networks.

We specifically focus on transforming linear signal-processing computations so that

they can be applied directly to compressively-sensed signals. We show that this can be

achieved by solving a system of linear equations, where we solve for a projection of the

processed signals as opposed to the processed signals themselves. This opens up two ap-

proaches: (1) when the projection matrix is the random projection matrix used in compres-

sive sensing, where we show that the linear equations can be solved with a least-squares

approximation, and (2) when the projection matrix is an auxiliary matrix, where we show

that the equations become underdetermined, allowing us to obtain either high-accuracy or

low-energy solutions based on two designer-controllable knobs. We study our methodolo-

gies through information metrics, validating their generality, and through application to

biomedical detectors, utilizing clinical patient data. Through a prototype IC implementa-

tion, we also demonstrate a hardware architecture that exploits the two knobs for power

management. Further, we also explore options for hardware specialization through archi-

tectures based on custom-instruction and coprocessor computations. We identify the limita-

tions in the former and propose a co-processor based platform, which exploits parallelism

in computation as well as voltage scaling to operate at a subthreshold minimum-energy
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point. We show that the optimized coprocessor reduces the computational energy of an

embedded signal-analysis platform by over three orders of magnitude compared to that of

a low-power processor with custom instructions alone.
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Chapter 1

Introduction

Through computation and communication capabilities, sensor networks can exploit dis-

tributed resources and information sources, enabling powerful and scalable monitoring

systems. Frameworks that substantially advance these individual capabilities have re-

cently emerged. In this dissertation, we investigate how these frameworks can be united in

resource-constrained nodes to directly impact sensing systems.

1.1 Need for Energy-efficient Sensing Systems

The ability to provide advanced assessment of data over a large number of signal channels

will be of critical value in next-generation sensor networks. The challenge in many com-

pelling applications is that the physical systems involved are too complex to adequately

model at an analytical level. Data-driven techniques are emerging as an extremely pow-

erful approach for overcoming this challenge [1]. Analysis of physiological signals, in

order to interpret specific, clinically-relevant states, is a representative example that can

lead to biomedical sensors of high clinical value. With the increasing availability of data

in the medical domain, both through low-power sensing technologies and in the form of

electronic records, methods based on supervised machine learning can provide extremely

powerful frameworks for deriving accurate signal models from the data.
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Figure 1.1: Bandwidth and energy limitation of systems for physiological signal acquisi-

tion. Nyquist sampling imposes strict limitations, necessitating over an order of magnitude

reduction in the data, which can potentially be achieved through efficient signal representa-

tions, such as compressive sensing. (ECoG: electrocorticogram, LFP: local field potential).

The problem, however, is that in distributed sensor networks, communication and stor-

age of data pose a critical limitation. Fig. 1.1 illustrates the bottlenecks. First, the signals

of interest may be distributed and/or only invasively accessible. Taking neuronal spikes

as a representative example, in order to transmit these signals from an energy-constrained

implant to an external computational platform, transcutaneous or MICS-band links are typ-

ically utilized [2,3]. However, Fig. 1.1 (bottom left) shows the strict bandwidth limitations

faced for even moderate channel counts. Second, in a low-power sensor network, data

storage on a node and communication (to centralized resources or gateway devices) face

capacity and energy limitations. For instance, in Fig. 1.1 (bottom right), the power re-
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quired to transmit data in a electroencephalogram (EEG) acquisition system is shown to

dramatically dominate that for instrumentation and data conversion [4–6].

Efficient methods for representing the signals that dramatically reduce the data could

thus play a critical role in such systems, particularly as they scale. A powerful concept that

has recently shown great potential is that many physical signals of interest exhibit sparsity

when transformed to some secondary domain. Though representations based on sparsity

are not necessarily optimal, they have shown to be much more efficient on many levels than

the original signals. Thus, as shown in Fig. 1.1, sparsity based signal representations (such

as those employing compressive sensing [7, 8]) can help alleviate some of the network

constraints faced by sensor networks.

Although sparsity-based transforms enable efficient representation of data, they pose a

new set of challenges for machine-learning frameworks, which are required for data-driven

signal analysis. In this thesis, we attempt to overcome these challenges and examine how a

framework for efficient signal representation (that is based on sparsity) can be united with a

framework for advanced signal analysis (that is based on supervised machine learning). In

particular, we investigate the possibility of using signal-processing functions within data-

driven methods that enable efficient representations based on sparsity to be used throughout

the system to significantly reduce system energy. To this end, we explicitly develop method-

ologies for processing signal representations based on sparsity, and analyze the impact and

trade-offs that are introduced on computational energy as a result.

1.2 Challenges posed by Sparsity-based Signal Represen-

tations for Signal Analysis

The way that physical signals exist in nature is not optimal from the perspective of em-

bedded systems that aim to process the encoded information. By reducing the amount of

data required to represent information, frameworks based on sparsity have enabled orders-
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Figure 1.2: Nyquist-domain EEG is sparse in the Gabor basis, enabling substantial com-

pression; although accurate reconstruction is possible, it is computationally intensive, mo-

tivating signal analysis directly using the compressed signal.

of-magnitude improvement in efficiency in data-conversion and communication subsys-

tems [9, 10]. However, a critical challenge is that these transformations greatly alter the

signal features, preventing us from directly performing the originally-intended processing

on the resulting signals. As an illustration, Fig. 1.2 shows an embedded signal [EEG from a

human] acquired from a sensor. The signal is represented both in the time domain (through

Nyquist sampling) and transformed to an alternate domain using a Gabor basis ΨG, i.e.,

where it exhibits sparsity. While this enables an efficient representation through ξ× (ξ ≫ 1)

fewer data samples (derived using a random-projection transformation ΦG that is incoher-

ent with the Gabor basis [11]), as shown, we see that the resulting signal is substantially

altered at the time of measurement. To perform the original signal processing, one option

would be to reconstruct the signal before analysis (as shown at the bottom). However, in

the signal-representation frameworks such as compressive sensing, signal reconstruction is

extremely energy-intensive [12], making it impractical.
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Since our approach in this thesis enables us to exploit sparsity-based efficient signal

representations throughout the system, it helps to not only circumvent reconstruction costs,

but to reduce system energy when data being processed by the system explicitly represents

information in a more efficient manner. The sparsity-based signal representation we focus

on is compressive sensing. This has gained popularity, particularly in low-power nodes,

because of its potential for very low energy compression as well as the range of signals to

which it can be effectively applied [7, 8]. The methodology we propose will thus enable

us to perform direct signal-processing computations on compressively-sensed signals in a

supervised machine-learning framework. Further, we study hardware architectures that are

capable of performing signal analysis on ultra-low-power sensor nodes while extensively

exploiting data in the network through the efficient signal representation of compressive

sensing. Through comprehensive experiments, we also show that our approach enables

the signals to be reconstructed accurately so that network resources can selectively analyze

them in the Nyquist domain. This, for instance, has high value in biomedical applications

where the monitoring regimen may involve offline analysis by clinical experts.

1.3 Thesis Contributions

The motivation behind this thesis is the growing need for low-energy systems that also

enable substantial analysis of embedded signals for high-value applications. We aim to

explore whether the use of efficient signal representations based on sparsity can provide a

strong path to achieving this goal. We identify several aspects to this problem including the

practical question of energy consumption. The overview below outlines the main features

of our work and how each component contributes to an understanding of energy-accuracy

trade-offs in the system.
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[1]. A methodology for processing signal representations based on sparsity that im-

pacts the energy and accuracy of signal processing systems.

For the sake of quantitative analysis, the signal representation framework that we focus on

is compressive sensing. This enables the use of non-square random-projection matrices to

derive compressed representations. We develop a new methodology for transforming lin-

ear signal-processing operations for direct application to compressed representations. We

show that this can be achieved by solving a linear system of equations. To solve these over-

determined system of equations, we first use a least-squares approximation and study the

energy-accuracy trade-offs introduced by our formulation [13, 14]. However, we also find

that by introducing an auxiliary matrix into the formulation, several useful design options

become available [15]. First, it becomes possible to relax the over-determined system of

equations in order to achieve an exact solution; second, it becomes possible to scale the

dimensionality of the resulting matrix transformation, yielding an energy-versus-accuracy

knob for processing on compressed representations. Thus, in our study, we develop met-

rics for accuracy based on generalized signal-processing systems, and analyze the energy-

accuracy trade-offs enabled by our auxiliary-matrix based formulation.

[2]. Quantitative evaluation of the performance of inference stages in signal-

processing systems based on sparsity.

Though, initially, we use directed metrics to evaluate the accuracy of compressed signals

within the system, we extend our study to investigate how such signals perform in the con-

text of inference stages [13–15]. Since inference stages specifically rely on the information

encoded in the signals, we find that they enable promising architectures for systems based

on the signal representations envisioned. Beyond this practical implication, our work sug-

gests another impact on energy-accuracy trade-offs. By relating application performance to

the information in the embedded signals, inference stages quantitatively provide a metric

to establish the accuracy needs of the signals. This gives both an intuitive and quantitative
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meaning to the energy-accuracy trade-offs. It thus helps us understand the energy limits

that might be approached in an application.

[3]. Demonstration of compressed-domain signal-processing systems through proto-

type integrated circuit implementations.

We explore the impact of the proposed methodology on practical systems. Based on mea-

surements from a prototype integrated circuit (IC) implementation, we study new archi-

tectures that exploit our methodology towards embedded power management enabled by

operating in the compressed domain [16, 17]. We show that in the compressed domain,

application-level performance can scale substantially with computational energy. Further,

since, our target platforms face additional needs for dramatic power reduction, through

post-layout simulations of a second IC implementation, we also analyze domain-specific

machine-learning computations in order to study architectures and circuits that selectively

trade flexibility for energy efficiency to achieve the required power savings. Based on

our investigations, we propose a coprocessor-based architecture for energy-efficient signal

analysis on embedded sensor nodes [18, 19].

[4]. Demonstration and quantitative validation of the proposed methodology through

application case studies in the biomedical domain.

In order to demonstrate our methodology and evaluate the energy and performance of a

resulting system, we apply it to the following applications from the biomedical domain.

Epileptic seizure detection using EEGs. We investigate the impact of both the least-

squares ( [13,14]) and the auxiliary-matrix based solutions ( [15–17]) on a seizure detection

application. In this application, analyzing EEG signals locally can help reduce the network

data [4]. However, systems for local analysis still need to collect raw data from multi-

ple distributed sensors. This can potentially limit the number of measurement channels

based on the available communication-energy budget. Moreover, since algorithms analyze
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multiple EEG channels simultaneously, data buffering is necessary on the local processing

platform. By simultaneously alleviating the storage, communication, and computational

energy requirements, a system with end-to-end efficient signal representations can greatly

benefit this application.

Neural prosthesis using neuronal spikes. We apply the auxiliary-matrix based method-

ology to a neural prosthesis system [15]. Neural prosthesis presents critical system chal-

lenges that can be substantially addressed by efficient data representations [20–22]; it thus

serves as another useful demonstration vehicle. In particular, the signals themselves must

be acquired from an implant that faces severe energy constraints [23,24] and must be trans-

mitted via a transcutaneous communication link that faces strict bandwidth constraints [2].

Due to its serial nature, transmission requires data buffering over all sensing channels, thus

also imposing storage limitations on the implant. Once received by a stage worn on the

head, the signals must be processed, still with minimal energy due to size and weight limi-

tations. Finally, the neural information must be decoded for prosthetic control.

Cardiac arrhythmia detection using electrocardiograms (ECGs). High computational

energy is a major barrier for embedded signal analysis. Although compressed-domain

processing enables significant reductions in computational energy, we find that it can lead

to modest increases in the modeling complexity of data-driven algorithms. Moreover, in

certain applications like arrhythmia detection, the required modeling complexity for signal

analysis can be extremely high to begin with. These applications form a suitable basis

for further VLSI optimizations. Thus, we analyze the arrhythmia-detection application

to identify the computational-energy bottlenecks and simulate an IC implementation to

study optimizations at the circuit and architecture levels [18, 19, 25]. We show that our

platform can be generalized to allow selective flexibility for embedded signal analysis in

other applications. We demonstrate that the resulting energy reductions from this approach

can augment the energy savings achievable through compressed-domain signal analysis.
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Figure 1.3: System models used for evaluation: Reconstruction is bypassed in CA to pro-

vide significant savings in computational energy.

1.4 System Models for Evaluation

In this thesis, we use three system models for comparisons. Fig. 1.3 shows the gener-

alized system approaches. First, Nyquist analysis (NA) is defined as the usual approach

wherein the embedded signals are time-domain representations obtained through Nyquist

sampling. Second, reconstructed analysis (RA) is defined as an alternate approach wherein

a compressed signal representation is initially received, but is then reconstructed before

processing (which is represented by matrix transformation H). RA corresponds to the sys-

tem model most commonly used with frameworks like compressive sensing [10,26]. Third,

compressed analysis (CA) is defined as our targeted approach wherein the end-to-end em-

bedded signals are representations based on compressive sensing. Since our methodol-

ogy aims to explicitly enable energy-accuracy trade-offs in signal processing, comparisons

between CA and RA will enable us to isolate the impact on accuracy due to these trade-

offs from the impact on accuracy due to compression of the initial signal. Fig. 1.3 also

shows the processing stages used in each of the three approaches. Embedded signals are
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first processed by a feature-extraction stage. Then, the extracted features are used to de-

velop classification models and perform classification via an inference stage. Note that

in CA, we need to derive new signal-processing operations (Ĥ) that enable us to obtain

a representation of the targeted features (with minimal distortion errors) directly from the

compressively-sensed signals. Thus, CA completely avoids signal reconstruction.

Scope of the Thesis

In this thesis, we derive Ĥ such that it achieves processing on random projections wherein

the inner product of the outputs is preserved with respect to the inner-product of the outputs

obtained from Nyquist-domain processing. Our methodology is thus directly applicable to

supervised linear classifiers where an output score s is derived using the inner product

between a feature vector (FV) ~x and a decision model vector ~w as follows:

s = f
(
~x · ~w) (1.1)

where f is a function that converts the inner product of two vectors into the desired output.

Examples of linear classifiers, which rely the inner-product computation, are (Fisher’s) lin-

ear discriminant analysis, logistic regression, maximum-likelihood estimation, perceptron,

and support-vector machine (SVM) classifiers [27]. Our methodology also applies to unsu-

pervised algorithms such as K-means clustering where the inner-product between the input

FV and cluster centroids is used as a decision function. Our methodology, however, does

not apply to classifiers that do not explicitly involve the inner-product computation.

1.5 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we present background on sparse-signal

representations and compressive sensing. We also discuss related work in compressed-
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domain signal analysis. In Chapter 3, we present the compressed-domain processing

methodology using a least-squares approximation. We apply our methodology to an

epileptic seizure-detection application. To validate our approach, we also provide a math-

ematical rationale and simulated performance results. Next, in Chapter 4, we present an

improved methodology that employs an auxiliary matrix. We apply this methodology to a

neural prosthesis system and show that it enables two strong knobs for controlling energy

and accuracy. In Chapter 5, we take advantage of these knobs to study the benefits at a

hardware level in the seizure-detection system of Chapter 3. We show through a prototype

IC implementation that the auxiliary matrix provides an ability for computational power

management. In Chapter 6, we explore architecture- and circuit-level optimizations to

accommodate high-order data-driven models for signal analysis. We show that such

optimizations can significantly help reduce the computational energy of embedded systems

for arrhythmia detection. Finally, we conclude in Chapter 7.
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Chapter 2

Background and Related Work

As described in the previous chapter, efficient representations of data that exploit sparsity

can play a critical role in overcoming the storage and communication-energy limitations

in distributed sensor networks. In this chapter, we first describe how to find sparse repre-

sentations of a signal in Sec. 2.1. In Sec. 2.2, we then present background on compressive

sensing, which is a framework that takes advantage of signal sparsity in a secondary basis.

We show that a characteristic of compressive sensing is that it enables very low-energy

compression at the cost of high-complexity signal reconstruction. In Sec. 2.3, we then

present related work that exploits compressive sensing in sensor systems. We also high-

light the need for signal analysis in such systems. Finally, in Sec. 2.4, we describe related

methods that have explored some theoretical aspects of signal analysis performed directly

with compressively-sensed signals.

2.1 Sparse Signal Representations

A signal is said to exhibit sparsity when a linear combination of a small number of ele-

mentary signals can account for most or all information of the signal [28]. A large body of

research is focused on the search for sparse representations of signals [28,29]. The problem

of finding a sparse representation of an N-dimensional signal x simplifies to determining
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an N × K-dimensional overcomplete dictionary matrix Ψ and a K-dimensional coefficient

vector s such that the representation of x is either exact x = Ψs, or approximate, x ≈ Ψs.

This process is also known as sparse coding.

Determining the sparsest representation, however, is an NP-hard problem [30]. To

achieve a tractable solution, most algorithms assume the dictionary matrix to be known.

In this case, if N > K and Ψ is a full-rank matrix, an infinite number of solutions exist for

s requiring us to set suitable constraints. The solution with the fewest number of non-zero

coefficients is an appealing representation. Thus, a sparse representation can be derived as

the solution to the following optimization problem:

argmin
s

‖ s ‖0 subject to ‖ x −Ψs ‖22 < ǫ (2.1)

where ǫ is the approximation error in the representation. Recently, there has also been in-

terest in determining the sparsity basis in parallel using a finite set of representative training

data [31]. Results have shown that when compared to fixed bases, learned dictionaries are

often superior in finding the sparsest representation [30, 31].

2.2 Data Compression in Sensor Networks

In this section, we provide an overview of data compression algorithms used to compress

the raw data in sensor networks. We then focus on compressive sensing [7, 8], which ex-

ploits the sparsity of signals to construct efficient representations. We find it suitable for our

study due to a key attribute: it has the potential to realize compressed representations with

very low energy. Moreover, the large compression factors and broad applicability of com-

pressive sensing also yield the potential for substantially impacting the bandwidth, storage,

and communication-energy limitations in large-scale sensor networks, thus enabling more

data to be exploited throughout the network. This makes it even more relevant to low-power

embedded systems [10, 32–35].
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Data compression could either be lossless or lossy. Lossless compression is an encoding

process that exploits data redundancy for compression. The original data are reconstructible

without any loss of information. In general, the entropy of the source that generates the

data is an upper bound on the compression factor. Thus, although lossless compression

provides accurate reconstruction, it typically allows only small compression factors [36].

In [37], Strydis et al. provide a good survey of lossless compression algorithms in the con-

text of medical sensor networks. In contrast, lossy compression algorithms have the benefit

of achieving higher compression factors at the cost of reduced reconstruction accuracy.

Since, higher compression factors are desirable and reconstruction error is permissible in

our applications, we consider lossy compression in detail. Sensor signals can be com-

pressed in the time domain or transform domain [36]. Next, we provide an overview of

these approaches for lossy compression.

Compression in the time domain. Most of the time-domain lossy data-compression

techniques utilize interpolation and prediction algorithms. These techniques attempt to

compress data by examining a succession of neighboring samples. Although time-domain

techniques provide substantial compression factors, a key limitation of these approaches is

error propagation. As a result, any misprediction can impact subsequent data samples. This

limitation makes such algorithms less robust for wireless networks where channel fading

and other artifacts can lead to significant data errors [36]. A widely used algorithm for

time-domain compression is differential pulse-code modulation (DPCM). The main idea in

DPCM is to determine the input signal samples by linear prediction. The current signal

sample, x(n), is estimated from the past samples by using either a fixed or adaptive linear

predictor as follows.

x̂(n) =

N∑

k=1

ak x(n − k) (2.2)

where x̂(n) is an estimate of x(n) at time n, and {ak} is the predictor weight. The error

sequence [i.e., e(n) = x̂(n)− x(n)] is quantized by using a nonuniform quantizer. The quan-
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tizer outputs are then coded by assigning variable-length codewords to the error sequence

according to the frequency of occurrence, e.g., by using Huffman codes [36]. DPCM has

recently found applicability to biomedical signals [38]. Owing to the quasi-periodic na-

ture of cardiac data, it has been shown to be particularly useful for compressing ECG sig-

nals [39, 40]. A compression factor of 7.8 and a reconstruction signal-to-noise ratio (SNR)

of 29.1 dB has been reported for ECG signals sampled at 500 Hz [40]. Some other popular

time-domain compression techniques are differential linear predictive coding where signals

are analyzed to create filter coefficients that best match the input segment [38], zero-order

interpolation such as amplitude-zone time-epoch coding where signals are modeled as a

combination of flat regions and slopes [41], polynomial-predictive compression where the

signals are considered as a combination of high-order polynomials [42,43], etc. A survey of

time-domain compression algorithms is presented in [38, 44–46]. The compression factor

in these methods is limited by the amount of quantization error and permissible code length.

Moreover, most of these algorithms rely on specific signal morphologies and are limited

in their applicability to a broad range of signals. Transform-domain methods provide an

alternate way for data compression.

Compression in the transform domain. The key idea in transform-domain compres-

sion/coding is to divide the signal into transformed components and judiciously allocate

bits in the transform domain (often after discarding near-zero coefficients) [36, 47]. Al-

though these methods provide higher compression factors and a robust alternative to time-

domain methods, they are often computationally intensive since they first require trans-

forming data before compression. Linear transforms are mostly used in sensor networks.

In these methods, the input signal, x, is first divided into blocks of data and each block is

processed as follows:

v = Ax (2.3)
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Table 2.1: Comparison of different lossy compression methods in sensor networks.

Compression method Advantages Disadvantages

1) Time-domain · Low computational · Low compression factors

compression complexity · Error propagation

· Narrow applicability

2) Transform-domain · High compression factors · High computational

compression · No error propagation complexity

· Broad applicability

where v is the transformed sequence and A is the matrix representing the linear transform.

A variety of matrices is used to transform digital waveforms to the frequency domain in-

cluding Fourier transform matrix [48], Karhunen-Loeve transform (KLT) matrix [49] and

discrete cosine transform (DCT) matrix [48]. The transform matrix A can also allow

multi-resolution filtering on the time-frequency scales [38]. Compression after wavelet

transform is the most widely used approach for time-frequency coding [50, 51]. Due to

the matrix multiplications involved, transform-domain coding methods suffer from high

computational costs. Although optimized algorithms and architectures can help alleviate

their complexity, their applicability to severely energy-constrained sensor nodes is still lim-

ited [48, 52–54]. Transform-domain methods, however, permit large compression factors.

For instance, using ECG signals, a compression factor of 24 is reported for KLT-based

coders [55]. Since signal recording conditions and noise levels vary from study to study,

a thorough comparison of the compression methods is very difficult to make. However,

transform-domain methods typically yield much higher compression factors than time-

domain compression methods [38]. Table 2.1 summarizes the benefits and limitations of

time-domain and transform-domain compression techniques in sensor networks.

Exploiting sparse signal representations can potentially obviate the limitations of both

time- and transform-domain techniques. Sparse coding is a special class of data compres-

sion methods. It is used to compress data that are represented sparsely either in the time

domain or the transform domain. A range of algorithms exists for sparse coding [56–58].

16



A survey of different sparse coding algorithms is also presented in [59]. Compressive

sensing is one such technique that exploits the sparsity of signals indirectly. It allows for

compression of signals in the time domain without prediction or interpolation [52]. Since

signals often exhibit sparsity in some basis, compressive sensing applies to a broad-range

of signals. It permits large compression factors and unlike transform-domain methods, the

complexity of compression is also very low since it involves simple addition and subtrac-

tion operations [32]. The cost, however, is the increased computational complexity for

reconstruction. We show ahead in Sec. 2.3 that this asymmetry of compressive sensing

is acceptable for the considered sensor systems. Next, we present details of compressive

sensing.

Exploiting Sparsity for Low-energy Compression: Compressive Sens-

ing

The theory of compressive sensing relies on the principles of uncertainty and incoherence

between two bases. This characteristic has generated much interest due to its implication on

generating efficient signal representations without prior knowledge of the signal structure.

This attribute is also the one that provides broad applicability to compressive sensing in

application areas such as imaging [34, 35, 60], video coding [61], channel estimation [62],

genotyping [63], ultrasonic systems [64], active/passive radar [65, 66], and surface metrol-

ogy [67]. The details of the compressive-sensing framework follow.

For any N-sample signal x, which can be represented as Ψs, where Ψ is the sparse

dictionary and s is a vector of K-sparse coefficients, we can use a measurement matrix Φ

to transform x to a set of M [O{Klog(N/K)} < M ≪ N] compressed samples (denoted by

x̂) in the time domain as follows:

x̂M×1 = ΦM×N xN×1. (2.4)

17



The compression factor ξ = N/M quantifies the amount of compression achieved by the

projection. For accurate recovery of x from x̂,Φ needs to be incoherent with Ψ and satisfy

the restricted isometry property (RIP), which is defined as follows:

(1 − δs) ‖ x ‖22 ≤ ‖ Φx ‖22 ≤ (1 + δs) ‖ x ‖22 (2.5)

where δs < 1 is the isometry constant. An M × N dimensional matrix Φ whose entries

are i.i.d. samples from the uniform distribution U(+1,−1) or from the normal distribution

N(0, 1) is often maximally incoherent withΨ and satisfies the RIP [7,68]. DerivingΦ from

U(+1,−1) also leads to low-energy compression on the sensor node since the projection is

reduced to simple additions and subtractions.

Although sensing can incur very little energy, the reconstruction of x from x̂ can be

costly. We see from Eq. (2.4) that x̂ is underdetermined (i.e., knowing only x̂ and Φ, there

are an infinite number of possible solutions for x and, hence, for s). However, since x is

sparse in Ψ, the sparsest solution for s is often the correct solution with high probability.

One common approach used to determine the sparse solution is to solve the following

convex optimization problem:

minimize ‖ s ‖1 subject to x̂ = ΦΨs, (2.6)

The reconstructed signal is then given by xR = Ψs∗, where s∗ is the optimal solution to

Eq. (2.6). The l1-norm above serves as a proxy for sparseness as it penalizes small co-

efficients so that the optimization drives them to zero. Although Eq. (2.6) requires only

a small number of measurements (M ≪ N) to enable accurate recovery, even with the

most efficient approach, the complexity of solving the optimization problem can be pro-

hibitive on typical power-constrained platforms, such as sensor nodes [12,69–71]. Fig. 2.1

shows that even at ξ = 3×, reconstruction costs over four orders of magnitude more opera-

tions than compression. Recently, there have been attempts to optimize the reconstruction
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Figure 2.1: Reconstruction can cost over four orders of magnitude more operations than

compression (number of operations were estimated using Lightspeed [77]).

process for hardware implementation. For instance, implementations that accelerate the

reconstruction process using parallel computing or GPGPU [72, 73] have been explored.

In [72], Borghi et al. compare the performance of reconstruction algorithms on an IBM

cell processor, NVidia GPU, and Intel dual-core processor. In [73], Andrecut implements

an algorithm that is an approximation to matching pursuit for signal reconstruction [74].

For 512-dimensional vectors, these GPU implementations achieve decompression results

on the order of tens of milliseconds. Their major bottleneck is memory bandwidth from

the main memory to the GPU and back. There have also been FPGA- and ASIC-based

implementations for accelerating reconstruction [75, 76]. At a compression factor of 4×,

these implementations demonstrate reconstruction of 128-dimensional signals in 24 µS and

10 µS, respectively. The reconstruction delays, however, increase exponentially with larger

data vectors and at higher amounts of data compression or signal sparsity. Thus, due to the

large energy/delay overheads involved, reconstruction is still unviable in many low-power

applications.

2.3 Sensor Systems for Exploiting Sparsity

Given its potential for enabling low-energy compression, compressive sensing has also be-

gun to be exploited in sensor networks [32]. Fig. 2.2 illustrates the network-level model

enabled by compressive sensing. On the left, the figure shows the Nyquist-domain picture
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where signals are sampled and compressed using nonlinear transformation functions on a

sensor node before storage/transmission for remote retrieval. Decompression of the data

enables recovery and analysis of the original signal at the receiver. The related trade-offs

in the compressive-sensing approach are shown on the right. An N-sample data vector

x is compressed to M ≪ N samples either using random projections after sampling at the

Nyquist rate [10,26,78] or through analog-to-information (A2I) conversion [9,79–82]. The

A2I conversion process involves three stages: demodulation, filtering, and uniform sam-

pling. A sensed signal is first modulated by a psuedo-random sequence of ±1’s in the ana-

log domain. The modulated signal is then processed by a low-pass filter and finally sampled

at a lower Nyquist rate using a traditional ADC. Both A2I conversion and random projec-

tions enable low-energy data compression on a sensor node at the cost of high-complexity

reconstruction at the receiver. This is exactly the trade-off required for a network of ultra-

low-power sensor nodes (e.g., such as those described in Sec. 1.1, which employ ECoG,

LFP, EEG, and spike measurements). In such applications, the sensor nodes typically face

severe energy constraints whereas the reconstruction process (performed at a base station)

is not energy-constrained. As a result, sensor systems that employ compressive sensing

have been able to efficiently serve as nodes for acquiring and transmitting signals to a base

station, which performs signal analysis after reconstruction [10, 26, 33, 83–86].

The basic network model of Fig. 2.2, however, drastically limits the system functions

that can be implemented on devices, particularly as many sensing applications progress

towards the need for advanced embedded signal analysis. As a representative example,

consider the medical domain where devices are striving to provide high value on-node

analysis of physiological signals. This approach has enabled several new possibilities. For

instance, out-patient monitoring networks in the future promise comprehensive healthcare

delivery over large populations and potentially diverse disease states [87]; deep-brain stim-

ulators [88, 89] offer unprecedented modalities for delivering therapy to patients affected

by neurological conditions, ranging from Parkinson’s disease to epilepsy; neural prosthe-
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Figure 2.2: Comparison of network models (including data flow) of Nyquist sampling and

compressive sensing.

sis (i.e., brain-machine interface) [90–92] is increasingly being employed to restore motor

functions in disabled patients. The central need, as devices in such systems aim to provide

actionable outputs [91], is the ability to detect specific physiological states of interest in

real-time from embedded signals that are available through minimally invasive and low-

power sensors.

The need for embedded on-node signal analysis motivates the preferred network model

shown in Fig. 2.3. In the Nyquist-domain picture shown in Fig. 2.3(a), signals are analyzed

on the sensor node to distill out the most informative data instances, which are then com-

pressed for subsequent storage or transmission to a base station. This approach thus has the

potential to significantly reduce storage/communication energy requirements of the sensor

node [93].

Similarly, the preferred network model in the compressed domain is shown in

Fig. 2.3(b). Ideally, we expect to be able to directly analyze compressively-sensed signals

on the sensor node before storage/transmission. Directly analyzing the compressed data

can save us computational energy in two ways: (1) by avoiding the costly reconstruction

process, and (2) by processing fewer data samples on the node. However, as described in
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Figure 2.3: Preferred network models (including data flow) of Nyquist sampling and com-

pressive sensing.

Sec. 1.2, the problem faced by such approaches is that embedded signals get substantially

altered due to the random projections in compressive sensing. Consequently, sensor

systems that employ compressive sensing are often restricted to the network model of

Fig. 2.2, where signal analysis, which has to begin with reconstruction, is delegated to

base stations with substantially relaxed energy constraints [10, 26, 33, 83–86]. To the best

of our knowledge, this dissertation is the first in demonstrating practical implementations

of sensor systems that directly analyze compressively-sensed data, thereby enabling the

preferred network model of Fig. 2.3(b).

Before we look at processing compressed signals, we note that performing signal anal-

ysis on embedded platforms is a challenging task even in the Nyquist domain. This is due

to (1) the severe platform constraints and (2) the complex computations involved. For in-
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stance, in the biomedical domain, the full functionality of sensor nodes must be achieved at

very low-power levels (e.g., 1-10 mW for wearable devices and 10-100 µW for implantable

devices [94–96]). Next, we discuss related work in Nyquist-domain signal analysis on sen-

sor nodes.

Embedded signal analysis in the Nyquist domain: Algorithms and architectures

In the recent literature, low-power platforms for processing data in the Nyquist domain

have emphasized an optimization of signal-processing computations, largely based on syn-

thesis and analysis operations [97–99]. However, analyzing data in emerging applications

raises issues that cannot be handled by signal processing alone. For instance, physiological

signals in the biomedical domain pose two essential challenges: (1) the signal correlations

to clinically-relevant states are often too complex to model based on physiology, and (2)

the precise correlations are hard to isolate in the presence of normal physiologic activity.

Since the acquired signals themselves represent the good and bad activity, a potential key

to accurate signal detection could thus lie in the ability to develop models based on rep-

resentative or exemplary data. In fact, data-driven modeling techniques are emerging as

a powerful alternative to signal-processing algorithms that help overcome the mentioned

challenges [100–102]. This, in large part, has been prompted by the recent large-scale

availability of data in the medical domain as well as the development of machine-learning

techniques that are capable of exploiting large amounts of data to model specific correla-

tions and then use the models within a decision function [103]. Furthermore, data-driven

modeling often involves probabilistic methods for model construction and can thus also

tolerate substantial variations due to background physiologic activity [104–106].

In contrast to the synthesis and analysis operations employed in signal-processing al-

gorithms, machine-learning methods focus on modeling and detection by exploiting poten-

tially rich data that are available. In practice, although modeling based on exemplary data

can be done offline, detection, through the application of a model, is performed in real-time
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Figure 2.4: Data-driven signal analysis involves two stages of computation: feature extrac-

tion and classification.

for signal analysis. Further, as shown on the left of Fig. 2.4, real-time data-driven signal

analysis in the Nyquist domain involves two stages of computation: feature extraction and

classification. The corresponding computations in the compressed domain are shown on

the right.

With regards to Nyquist-domain implementations in the literature, chronic patient mon-

itoring devices are beginning to exploit data-driven techniques, but have thus far been lim-

ited in their ability to incorporate the complete computation [91,93,107]. It has been shown,

for instance, that local feature-extraction computations can be performed on the signal, re-

ducing the communication data so that computationally-intensive data-driven classification

can be performed on a separate device [93].

In contrast, we show implementations of sensor systems that incorporate the complete

computation both in the Nyquist and compressed domains. We also show the applicability

of our platforms to medical detection problems in the embedded-systems space. We thus

investigate the advantages of using efficient signal representations throughout the system,

most notably for signal analysis based on data-driven methods. The key aspect for our

platforms is a methodology for compressed-domain signal analysis. Next, we consider

related work in this direction.
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2.4 Sensor-signal Analysis (with Representations based on

Sparsity)

Given that signal representations based on sparsity promise to conserve signal information,

analysis on the resulting representations should be possible despite the signal alterations

(e.g., those in Fig.1.2). This thesis utilizes this concept to develop methodologies for sig-

nal processing. Relating back to the compressed-domain signal analysis picture shown

on the right of Fig. 2.4, the key idea is to transform computations in the compressed do-

main so that the result of signal analysis is (nearly) the same as that in the Nyquist do-

main. This can be achieved in three ways: (1) by transforming the compressive-sensing

stage, (2) by transforming the feature-extraction stage or (3) by transforming the classifi-

cation stage. Prior work has made some progress on a theoretical level by transforming

the compressive-sensing stage and the classification stage (for specific discriminative and

generative classifiers). There have also been explorations along a fourth path where none

of the computations are transformed and the result of signal analysis in the compressed

domain is compared directly with that of the Nyquist domain. We, on the other hand, trans-

form computations in the feature-extraction stage. We not only explore this direction at a

theoretical level but also study its implications through practical system demonstrations.

Next, we present details of related work along the other three paths as well as describe the

benefits of transforming feature extraction instead.

2.4.1 Not Transforming any Stage

Previous work has demonstrated the theoretical aspects of performing signal analysis in the

compressed domain without transforming any computations. There have also been some

specific application-level case studies. Random projections used in compressive sensing

preserve the inner-product between data vectors [108–110]. This property has been a cor-

nerstone in most of the empirical results. For example, by directly using compressively-
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sensed data, it has been shown that the accuracy of classifying text documents with K-

means clustering is retained up to compression factors of 3× [111], and the accuracy of

isolating genes with SVM classifiers is retained up to compression factors of 4× [112].

Theoretical work, however, has focused more on deriving error bounds for classifiers

operating on compressed data. The error bounds help us understand the compression lim-

its for accurate signal analysis without transforming any computation in Fig. 2.4. These

approaches consider both discriminative and generative classifiers.

Theoretical methods with discriminative classifiers

In [113], Calderbank et al. derive an error bound for learning discriminative models using

an SVM classifier with linear kernels [114–116]. They show that if the high-dimensional

data points have a sparse representation in some linear basis, then it is possible to train

a soft-margin SVM classifier on a low-dimensional random projection of that data while

retaining a classification performance that is comparable to that achieved by working in the

original data space. They show that performance degradation occurs at a rate of O(
√
δs)

where δs < 1 is the isometry constant used in Eq. (2.5). The authors also mention that if

the data are sampled with large compression factors, δs becomes large, and as a result, the

SVM becomes a weak learner, requiring more training samples for accurate modeling. By

using synthetic data, they demonstrate that with approximately 3× fewer data samples, the

SVM generalization error is less than 5%. Generalization error is a measure of how well a

learning algorithm generalizes to unseen data.

Other explorations with discriminative models consider regression [117–119] and near-

est neighbor classifiers [120]. In [117], Zhou et al. consider the problem of estimating β

using a vector of noisy observations y and control variables x in the compressed linear-

regression model y = Φxβ +Φǫ, where ǫ is standard noise with a known distribution, and

Φ is the random-projection matrix satisfying RIP. The authors provide an analysis of the

LASSO estimator built from these compressed data, and discuss a property called sparsis-
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tence, i.e., the number of random projections needed to recover β (with high probability)

when it is K-sparse. They show that the probability of correctly estimating β (with empiri-

cal risk that is below the value in the Nyquist domain) is retained up to compression factors

of 20× and for sufficiently sparse β, it can be retained even up to 120×.

In [118], Maillard et al. expand upon the results in [117], where they show that with

M = O(
√

K) measurements, it can cost only O(NK3/2) elementary operations to compute

the least-squares regression function in the compressed domain. Using synthetic data, the

authors show that the estimation error is O(logK/
√

K). They also claim that this is com-

petitive with the best methods known in the Nyquist domain.

Another paper showing similar results is for nearest-neighbor classifiers by Indyk and

Motwani [120], which exploits the notion of locally-sensitive hashing. The authors present

extensive theoretical proofs showing the retention of accuracy in compressed-domain

nearest-neighbor classification.

Theoretical methods with generative classifiers

Modeling of compressively-sensed data through generative methods has also been ex-

plored. In [121], Durrant et al. study the performance of Fisher linear discriminant analysis

on compressively-sensed data. The authors demonstrate a tight upper bound on the average

misclassification error over the random choice of the projection matrix. They also present a

simple demonstration using Nyquist-domain data vectors of dimensionality N = 100. They

show that the classification error decreases exponentially as the number of compressed

samples M approaches N. Their results for classifying data from 10 classes show that at

compression factors of 10, 4, and 2×, the empirical error rates of misclassification were

52, 22, and 5%, respectively. For good generalization, the authors suggest that the required

projection dimension (M) grows logarithmically with the number of classes. They also

show that their error bound tightens in a natural way as the number of training examples

increases.
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Figure 2.5: The effects of random projection: the dimension is drastically reduced while

the clusters remain well-separated and become more spherical. Figure adapted from [122].

There has also been work on estimating a mixture of Gaussians by directly using

compressively-sensed data [122, 123]. Besides inner-product preservation, these ap-

proaches exploit another key property of random projections called the concentration of

measure, which states that if data clusters in the Nyquist domain are highly eccentric

(that is, far from spherical), random projection will make them more spherical; spherical

distributions make it easier for algorithms to classify the data instances [124, 125]. This

property is also illustrated in Fig. 2.5. Since clusters of high eccentricity present an algo-

rithmic challenge, modeling randomly projected data can potentially provide a natural way

of data separation, significantly impacting the performance of algorithms such as those that

estimate a mixture of Gaussians. For instance, in [122], Dasgupta presents theoretical error

bounds that show that expectation maximization (EM) with compressively-sensed data

consistently yields models of quality (log-likelihood on a test set) comparable to or better

than those found by EM in the Nyquist domain. Through experimental results, where 50

Gaussians were fitted to optical character recognition data (N = 256), the author shows

that the detection error is just over 4% at compression factors of 6×.

The methods described so far consider classifying compressed data without any fea-

ture extraction. There has also been some work on studying the limits of specific feature-

extraction computations performed directly on compressively-sensed data [126, 127]. In

[126], principal component analysis (PCA) is considered in detail where the Rayleigh-Ritz

theory is extended to the special case of highly eccentric distributions (the first eigenvector
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is significantly larger than the others). The paper demonstrates accurate PCA computations

on compressively-sensed data up to compression factors of nearly 5×.

Practical classifiers are limited in their ability to construct decision models. By not

transforming any computations, the obtainable performance at a given amount of com-

pression is thus restricted by the problem complexity and the available dataset. Increasing

the separability of the data by transforming computations can help simplify the process of

building decision models, thereby enabling accurate classifier performance at higher com-

pression factors. Thus, transforming computations helps us gain more control over the

algorithmic performance. Next, we consider related work in this direction.

2.4.2 Transforming the Sensing Stage

We showed in the previous section that comparing the performance of compressed-domain

analysis with that of the Nyquist domain can help us quantify error bounds and understand

the relationship between compression factor and the performance of data-driven models.

By transforming computations in the compressed domain, however, we can potentially do

better, achieving performance much closer to the Nyquist domain, perhaps at even higher

compression factors. One approach towards this goal involves transforming computations

in the compressive-sensing stage. In this section, we show that although transforming

the sensing stage can help achieve accurate classification, the signals cannot be recon-

structed since the new sensing matrices do not necessarily satisfy RIP and the ±1 structure

of the random-projection matrices is disrupted, leading to higher costs for data compres-

sion. Fig. 2.6 illustrates the concept of transforming the sensing matrices. The key idea is

to derive new mapping functions that preserve low-dimensional geometric structure in the

compressed data so that the performance of a subsequent classifier can be retained. These

mappings could then be used instead of the random projections to reduce the dimension-

ality of the data. An important concept that enables us to find these mappings is that of a

manifold.
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Figure 2.6: Transformation of computations in the sensing stage.

A manifold is a topological space that captures the essential structure of high-

dimensional data with fewer dimensions. In other words, data that possess merely K

intrinsic degrees of freedom can be assumed to lie on a K-dimensional manifold in the

high-dimensional ambient space. The claim is that projections on to this manifold are

sufficient for accurate classification [128]. The problem of manifold learning thus focuses

on identifying the manifold model, given high-dimensional training data. Once identified,

any point on a manifold can be represented using essentially K pieces of information

derived through a new mapping function (similar to the random projection used in com-

pressive sensing). Several manifold learning algorithms exist that help us determine the

mapping function, such as Isomap [129], locally linear embedding [130], multiscale pro-

jections [131], and Hessian eigenmaps [132]. Some approaches [133], [128], however, do

not derive a new mapping but, instead, study the generalization error in manifold learning

when we use random projections for dimensionality reduction. These latter approaches are

similar to the methods presented in the previous section.

Another interesting approach is presented in [134], where the authors incorporate the

discrimination power of a classifier into the optimization problem of Eq. (2.1) for sparse

representation. The idea in this case is different than compressive sensing since it aims to

directly exploit a sparse representation for signal classification. The objective is to find a K-

sparse representation s of an observed signal x that is as discriminative as possible between

the different signal classes. Thus, this approach involves deriving a new dictionary matrix
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Ψ that efficiently represents x, while simultaneously allowing classification directly with

the sparse representation of x. The details of this approach are as follows.

Given a set of D signals in a signal matrix X = [x1, x2, . . . , xD] with the corresponding

representation in dictionary Ψ as S = [s1, ss, . . . , sD], of which Di samples are in class Ci,

1 ≤ i ≤ C. The mean mi and variance σ2
i for class Ci can then be computed in the sparse

space as follows: mi =
1

Di

∑

s∈Ci

s, and σ2
i =

1

Di

∑

s∈Ci

‖ s − mi ‖22 (2.7)

The mean of all samples is defined as m = 1
D

D∑
i=1

si. The Fisher discriminant ratio can then

be defined as:

F(S) =
S D

S V

=

‖
D∑

i=1

Di(mi − m)(mi − m)T ‖2
2

D∑
i=1

σ2
i

(2.8)

The difference between sample means S D can be interpreted as the inter-class distance and

sum of variance S V similarly can be interpreted as the interclass scatter. Maximizing F(S)

thus implies improved classifiability of the data. Fisher’s criterion is motivated by the

intuitive idea that the discrimination power is maximized when the spatial distribution of

different classes is as far away as possible and the spatial distribution of samples from the

same class is as close as possible [135].

In [134], the optimization problem of Eq. (2.1) is modified to incorporate F(S), result-

ing in the following objective function:

J(S,Ψ, λ1, λ2) = F(S) − λ1

D∑

i=1

‖ si ‖0 − λ2

D∑

i=1

‖ xi −Ψsi ‖22 (2.9)

where λ1 and λ2 are positive scalar weighting factors chosen to adjust the tradeoff be-

tween the discrimination power, sparsity, and sparse approximation error. The authors also

present an algorithm for maximizing J(S,Ψ, λ1, λ2), which ensures a sparse representation

for direct classification.
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Figure 2.7: Transformation of computations in the classification stage.

A downside of the methods presented in this section is clearly that the ±1 structure of

the projection matrix (Φ) could be compromised, thereby potentially increasing the energy

costs of compression. These approaches may thus be undesirable in energy-constrained

networks, such as those discussed in Sec. 1.1.

2.4.3 Transforming the Classification Stage

Since tampering with the sensing matrix can potentially increase the energy for data com-

pression, an alternative approach is to transform the classification computations as shown

in Fig. 2.7. In this section, we present related work in this direction. We show that existing

methods attempt to derive new classifiers, which are not necessarily data driven.

In [136], Davenport et al. provide high-probability bounds (over the choice of the ran-

dom projection matrix Φ) on the detection, classification, and filtering of signals from few

measurements when the set of potential signals is known a priori. We present details of

their approach for filtering in Sec. 2.4.4 and for detection/classification below. The authors

consider signal classification performance for a single test point using the Neyman-Pearson

(NP) detector. They transform computations in the Nyquist-domain detector so that it can

act directly upon compressively-sensed data. Their approach is from the perspective of

signal detection. The details of their formulation follow.
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The authors begin by examining the problem of distinguishing between two hypotheses

H0 : y = Φn (2.10)

andH1 : y = Φ(x + n) (2.11)

where x is an N-dimensional signal, n ∼ N(0, σ2IN) is i.i.d. Gaussian noise with variance

σ2, and Φ is the random projection matrix used in compressive sensing. Observe that the

hypothesesH0 and H1 have the probability density functions f0(y) and f1(y), respectively,

which are defined as follows

f0(y) =

exp

[
−1

2
yT
(
σ2ΦΦ

)−1
y

]

∣∣∣σ2ΦΦT
∣∣∣1/2 (2π)M/2

(2.12)

and f1(y) =

exp

[
−1

2
(y −Φx)T

(
σ2ΦΦ

)−1
(y −Φx)

]

∣∣∣σ2ΦΦT
∣∣∣1/2 (2π)M/2

. (2.13)

The NP-optimal decision rule is to compare the ratio Λ(y) = f1(y)/ f0(y) to a threshold η,

i.e., the following likelihood ratio test [135]

Λ(y) =
f1(y)

f0(y)

H1

≷
H0

η.

By taking logarithms, the authors obtain the following simplified ratio test (with a new

threshold γ)

yT
(
ΦΦT

)−1
Φx

H1

≷
H0

σ2log(η) +
1

2
xTΦT

(
ΦΦT

)−1
Φx := γ. (2.14)

Thus, they transform the Nyquist-domain NP detector and define a new compressed-

domain detector as follows

t := yT
(
ΦΦT

)−1
Φx. (2.15)

The authors provide error bounds for this detector and show that the performance degra-

dation is O(
√

N/M). They highlight the relationship between the detector performance
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and the SNR of the input signal and show that at sufficient SNR values (above 25 deci-

bel), the detection rate can be 100% at compression factors of up to 25×. Since, dis-

tinguishing between two signals Φ(x0 + n) and Φ(x1 + n) is equivalent to distinguishing

Φ(x0 + n)−Φ(x0) = Φ(n) fromΦ(x1 − x0 + n), they also generalize the above formulation

to a binary classification problem.

Transforming computations in a maximum-likelihood classifier (MLC) has been ex-

plored in [137]. The authors show that classifying a compressively-sensed signal amounts

to correlating it with a compressed (or smashed) representation of a template. Drawing a

parallel with a matched filter used in the Nyquist domain for correlation, they call their

compressed-domain approach the smashed filter. The details of their formulation follow.

Suppose an N-dimensional signal x belongs to one of P classes Ci, i = 1, . . . , P and

we let hypothesis Hi signify that the signal x belongs to class Ci, and further assume that

class Ci contains a single known signal zi. With noisy measurements y = x + n, the MLC

classifies signals according to which class has the maximum class-conditional likelihood

as follows

argmax
i=1,...,P

p (y|Hi) (2.16)

where p (y|Hi) is the probability distribution for the measured signal under hypothesisHi.

Assuming an additive white Gaussian noise model with variance σ for n, p (y|Hi) can be

denoted as

p (y|Hi) =
1

(2πσ)N/2
e−

1
2σ ‖ y−zi ‖22 . (2.17)

Given the above probability distribution, Eq. (2.16) simplifies to the following

argmin
i=1,...,P

‖ y − zi ‖22, (2.18)

which is the familiar nearest-neighbor problem. The above equation essentially implies

correlating y with known templates zi using a matched filter. A class assignment is then
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made to y based on the maximum correlation value. Similarly, the authors show that in the

compressed domain (i.e., when y = Φx), the MLC simplifies to the following

argmin
i=1,...,P

‖ y −Φzi ‖22. (2.19)

The optimization problem above again represents correlation of y, but this time with a

compressed (smashed) version of zi. In the paper, the authors also generalize the above

classifier to the case when template zi is derived from a parameterized function f (θ), where

θ is the control parameter. They demonstrate that the required number of measurements for

accurate classification grows sublinearly with the number of classes. With σ in the 0.001−

0.02 range, they demonstrate that for an image classification problem, their compressed-

domain classifier can retain accuracies equal to the Nyquist domain up to compression

factors of approximately 100×.

Although transforming computations in the classification stage can help retain the per-

formance of compressed-domain signal analysis up to very high compression factors, the

classification models in previous work are not data driven. Further, transformations are pro-

posed for only specific classifiers. Besides, these approaches do not consider the feature-

extraction stage, which is critical to improving the performance of detectors in several

application domains.

2.4.4 Transforming the Feature-extraction Stage

Our study aims to investigate the potential of practical sensing and signal-processing sys-

tems that are based on representations derived from random projections. This raises two

distinct aspects. First, system energy becomes a primary driver of our methodologies and

analyses (as opposed to approaches in Sec. 2.4.2 that transform the sensing stage). Second,

our methodologies attempt to broaden the scope of this idea to other signal-processing op-

erations (as opposed to approaches in Sec. 2.4.3 that transform specific classification com-
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Figure 2.8: Transforming of computations in the feature-extraction stage.

putations). As shown in Fig. 2.8, our methodology focuses on transforming computations

in the feature-extraction stage, which is important for enabling specific signal-analysis ca-

pabilities in applications. For instance, in medical sensors, discriminative analysis is used

in many applications; however, typically, the algorithms require extracting specific signal

features, which correspond to biomarkers for analysis [50, 102, 138–140]. Feature extrac-

tion is also a vital computation in several other application domains such as computer

graphics [141], character recognition [142], medical imaging [143], image understand-

ing [144], pattern recognition [145], and face detection [146]. Feature extraction involves

signal-processing operations, which need to be performed before classification and cannot

be addressed by previous work. Our investigations in this thesis suggest that a methodology

to address all forms of linear signal processing is possible, while making energy-accuracy

trade-offs explicit.

There are few attempts in the literature to address the problem of signal processing in

the compressed domain. One peripherally related approach is presented in [136] where the

authors perform signal filtering in the compressed domain. Their approach, however, is

from the perspective of detection theory. Assuming knowledge about the desired signal,

they demonstrate a formulation that allows them to remove interference from a measured

signal in the compressed domain. The authors formalize this problem as follows

y = Φ(x + n) (2.20)
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Figure 2.9: Unlike other approaches in the literature, we transform feature-extraction com-

putations to the compressed domain. This approach coupled with a robust classifier results

in an end-to-end performance comparable to the Nyquist domain.

where y, x, and n are the measured, desired, and interference signals, respectively. The

authors only consider the case where either the interfering signal or the signal of interest

lives in a known subspace. The key idea in this case is to use a filtering matrix P to project

the measurements y into a subspace orthogonal to the interference, and thus eliminate the

contribution of the interference to the measurements. Suppose SN is the subspace of the

interference signal n (which is assumed to be known) and Υ is an orthogonal basis for SN.

The authors show that the projection operator

P = I − (ΦΥ)(ΦΥ)† (2.21)

where (ΦΥ)† represents the pseudo-inverse of ΦΥ, represents the interference-removing

filter in the compressed domain. Clearly, the limitation of this approach is generalizability

beyond the interference removal problem. Moreover, in a practical scenario, where signals

are acquired from sensor nodes that monitor physical systems, it is not always possible

to know anything beforehand about the characteristics of the desired or interfering signal.

This restricts the applicability of the above approach even for filtering.

In this thesis, we transform linear signal-processing operations through a generalized

formulation. We demonstrate our results for biomedical systems, where feature extrac-

tion results in the extraction of biomarkers. Biomarkers are features in a sensed signal
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that are determined to have some correlation with the physiological states of interest in

a clinical application. The extraction and representation of these signal features is thus a

critical aspect of medical detectors [102]. Fig. 2.9 illustrates our objective. While most ap-

proaches referenced in this chapter have focused on the performance of various classifiers

after processing input vectors through a random projection (see Fig. 2.9 on the left), our

approach focuses on estimating specific features directly from compressed input signals.

Note that we do not perform signal reconstruction at any stage. Rather, we transform linear

signal-processing operations (e.g., FIR filtering, wavelet transforms, etc.) so that they can

be applied directly to compressed-signal representations. The resulting feature estimates

are coupled with a data-driven classifier for accurate end-to-end performance. Next, we

present details of our methodology and as a case study apply it to a system for epileptic

seizure detection.
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Chapter 3

Transformation to Compressed Domain

with Least-squares Approximation

Storage, energy, and bandwidth constraints in low-power medical sensor networks raise

the need for retaining efficient signal representations throughout the network. In order

to achieve this goal, in this chapter, we present a methodology that transforms signal-

processing functions to the compressed domain. Our approach thus enables signal anal-

ysis without reconstruction. We derive a projection of the processed signals using a least-

squares approximation and exploit the properties of random projections to estimate signal

features. Since mutual information is key to accurate classification of data, we also present

a validation of our approach based on the analysis of mutual information in the estimated

signal features. We show that the resulting estimates retain information up to high com-

pression factors. By taking advantage of a flexible data-driven classifier, our approach thus

enables accurate end-to-end performance. Further, we show that as the number of samples

in the original sensed signal increases, the error in the feature estimates diminishes. We

demonstrate our methodology with a specific focus on a continuous seizure-detection sys-

tem based on EEG sensing, which employs spectral-energy features as biomarkers. The

compressed-domain system we propose addresses two simultaneous clinical requirements:
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(1) the acquisition of EEG signals for offline analysis by clinical experts, and (2) the accu-

rate online detection of seizures for patient charting and eventual closed-loop therapeutic-

stimulation protocols.

3.1 Introduction

Due to tremendous advances in medical sensors, a wide range of physiologically-indicative

signals has become accessible through low-power recording modalities. This has led to the

possibility of creating systems that can both detect clinically-important events on the sensor

node and continuously acquire signals for offline analysis by clinical experts.

The combination of offline expert analysis and real-time on-sensor detection is be-

coming the preferred way to manage chronic diseases such as epilepsy [147]. Systems

are thus beginning to emerge that can perform real-time sensing of EEG and detection of

seizures [78, 93, 147]. However, such systems do not support acquisition, transmission or

storage of waveforms for expert analysis. Fig. 3.1 illustrates the challenges associated with

retaining waveforms in such systems. Since storage is limited in typical on-scalp sensors,

waveforms are transmitted to an intermediate gateway device, which, in turn, transmits

them for remote analysis. The figure (at the bottom) shows that the energy requirements

for communicating waveforms from the sensor to a gateway device over a Zigbee or a

bluetooth radio can be severe even for moderate channel counts [4–6].

Efficient signal compression, such as that enabled by compressive sensing, can help

alleviate these constraints (as also illustrated in Fig. 3.1). Relating back to Fig. 1.3, some

researchers have presented RA systems that exploit compressive sensing to only acquire

waveforms for remote analysis [10, 148]. Others have proposed NA systems that can only

do signal analysis or real-time detection [4]. The CA methodology we develop in this

chapter enables efficient signal representations based on compressive sensing to be ex-
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Figure 3.1: Energy limitations posed by waveform transmission. Zigbee and Bluetooth

energies are shown for raw EEG transmission and compressed EEG transmission. Analog-

front-end (AFE) and analog-to-digital conversion (ADC) energies [4] are also shown for

comparison.

ploited throughout the system, which makes chronic EEG waveform acquisition possible

while simultaneously enabling on-node signal analysis.

3.2 Background

In this section, we present a survey of some algorithms for seizure detection in the Nyquist

domain along with background on SVM classifiers.

3.2.1 Nyquist-domain Algorithms for Seizure Detection

Several approaches for seizure detection have been proposed in the literature. Detection

with probabilistic modeling has been explored in [149] and [150]. Detection using auto
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regression and maximum-likelihood estimators has also been explored [151, 152]. In this

work, we focus on a state-of-the-art patient-specific seizure onset detector, which has the

structure of linear processing and energy extraction followed by classification for seizure

detection. Linear processing implies that we are able to multiply the EEG vectors by a

matrix to derive the signal features. Our approach is thus extensible to seizure-detection

methods, which employ other linear processing functions, such as discrete wavelet trans-

form (DWT), finite-impulse response (FIR) filters, Fourier transform, etc. Our approach,

however, does not apply to feature-extraction methods, which cannot be represented as a

linear matrix operation, e.g., probabilistic modeling and auto-regression.

It has been shown that EEG spectral energy (derived after linear FIR filtering) can

serve as a biomarker that indicates the onset of a seizure [147]. We thus focus on an al-

gorithm that employs spectral-energy features for seizure detection [147]. We refer to this

algorithm, henceforth, as the baseline Nyquist-domain algorithm for seizure detection. Ta-

ble 3.1 shows a comparison of the baseline algorithm with several others from the literature.

The performance of the detectors is characterized using the metrics of detection latency,

sensitivity, and specificity. Latency refers to the delay between an expert-identified elec-

trographic onset and the detector’s recognition of seizure onset. By definition, this latency

is a non-negative number and ideally close to zero. Sensitivity refers to the percentage of

test seizures identified by a detector and is desired to be close to 100%. The specificity is

represented by the number of false alarms per hour, which refers to the number of times,

over the course of an hour, that the detector declares the onset of seizure activity in the

absence of an actual seizure. Ideally, the number of false alarms should be close to zero.

Table 3.1 shows that spectral-energy features with an SVM can achieve improved accuracy

with a low detection latency.
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Table 3.1: Comparison of Nyquist-domain methods for seizure detection.

Algo- Data Features + Performance

rithm (H, S, P)1 Detection Method Specificity Latency FA/hr.

[153] (652, 126, 28) DWT + probabilistic 78% 9.85 sec. 0.86

[154] (29.7, 47, 12) Spatio-temporal + NN 100% 9.35 sec. 0.03

[155] (1360, 91, 57) DWT + SVM 96% 1.60 sec. 0.45

[147] (558, 148, 21) Spectral energy + SVM 96% 4.59 sec. 0.15

1H,S,P: Hours, #Seizures, and # Patients; NN: Nearest Neighbor; FA/hr.: False

alarms/ hr.

3.2.2 Support-vector Machine Algorithm

A range of inference algorithms has been shown to be effective for deriving models from

complex datasets associated with physical systems [115, 156–158]. The SVM algorithm

has emerged as an important candidate [159], particularly in biomedical applications. The

SVM algorithm consists of two phases: training and classification. Training results in a de-

tection model consisting of a set of vectors, called support vectors (SVs), which distinguish

positive data classes from the negative ones. The SVM sequential minimal optimization al-

gorithm is described in [160, 161] and in the excellent tutorial by Chris Burges [116]. The

following provides an overview of the training phase of the algorithm. Given n vectors

~xi, i ∈ {1, 2 . . .n} of training data, each with dimensionality DS V , and corresponding labels

yi, the algorithm finds a subset of training vectors that effectively separates the data into

classes indicated by labels yi. This subset, denoted by ~sv j , j = 1, . . . ,NS V , constitutes the

NS V SVs. The SVs are such that the distance between them and the nearest vectors in dif-

ferent classes are maximized [114]. Finding the SVs is a quadratic minimization problem

with the following objective function [161]:

W(α) =
1

2


n∑

i=1

αiyi

n∑

j=1

δ jy j K(~xi, ~xj)

 −
n∑

i=1

αi,
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Figure 3.2: Hyperplanes for the separable case of an SVM classifier. The SVs are circled.

W is normal to the minimum-margin hyperplane and |b|/||W || is the perpendicular distance

from the hyperplane to the origin.

subject to the constraint
∑n

i=1 δiyi = 0. Once all δi are determined, the SVs ~svi can be

calculated using only those ~xi’s for which the weights δi are non-zero. K(~xi, ~xj) is the kernel

function that transforms data vectors (~xi and ~xj) into a secondary space and often comprises

nonlinear operations. One of the most common kernels is the radial basis function (RBF),

which is of the form:

K(~xi, ~xj) = e−γ||~xi−~xj ||2 ,

where γ is a parameter that controls how aggressively the model fits the training data.

Other possible kernel functions are: (i) polynomial homogeneous: K(~xi, ~xj) = (~xi · ~xj)
d,

(ii) polynomial inhomogeneous: K(~xi, ~xj) = (~xi · ~xj + β)
d, and (iv) hyperbolic tangent:

K(~xi, ~xj) = tanh(κ~xi·~xj+c), where c, d, β, and κ are training parameters. Model construction

with an SVM thus involves selecting data vectors in a feature space that separate positive-

class instances from the negative-class ones. The nonlinear kernel transformation enables

this separation with more flexibility in a secondary subspace. A visualization of the SVM

training algorithm is provided in Fig. 3.2.

In a practical SVM implementation for embedded systems, although training can be

done offline, classification, through the application of the SV model, must be performed in

real-time for signal analysis. The actual classification computation is shown below [for the
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RBF and polynomial transformation kernels]:

Data Class = sgn


NS V∑

i=1

K
(
~x · ~svi

)
αiδi − b

 (3.1)

where K
(
~x, ~svi

)
=



exp(−γ||~x − ~svi||2) RBF kernel

F(~x · ~svi + β)
d Poly. kernel

Here, sgn[] is the signum function, ~x is the FV to be classified, and ~svi is the ith SV (b, d,

αi, β, γ, and δi are training parameters).

3.3 Overview of the Proposed Approach

As mentioned in the previous chapter, signal-analysis algorithms typically base their deci-

sion rules on key features extracted from the signals via signal-processing functions; this

is particularly true for medical detectors, where the features correspond to physiological

biomarkers. These algorithms then use a classifier to perform inference over the extracted

features. Powerful classification frameworks exist in the domain of machine learning that

can construct high-order and flexible models through data-driven training. In many such

frameworks, the classification step utilizes a distance metric (e.g., 2-norm or inner product)

between feature vectors [162, 163]. In certain cases, the distance metric may also be in-

voked within the feature extraction step; for instance, to extract spectral-energy biomarkers

from physiological signals (such as the EEG). In this chapter, we demonstrate our results

for the latter case using a seizure-detection application, where clinical studies have shown

that EEG spectral energy (derived using the inner product between feature vectors after

linear FIR filtering) can serve as a biomarker that indicates the onset of a seizure [147].

In fact, spectral features are generic biomarkers for neural field potentials and are relevant
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Figure 3.3: Transforming any signal-processing function, which can be represented as a

matrix H, into an equivalent operator Ĥ in the compressed domain. This needs a solution

for a projection of y, which preserves the inner product of vectors.

for a broad range of neurological applications (e.g., brain-machine interfaces [91], sleep

disorders [164], etc.).

Connecting the above concepts with the multi-channel system shown in Fig. 3.3, in

the Nyquist domain [Fig. 3.3(a)], an N-dimensional signal x from each data channel is

multiplied with an N × N matrix operator H to perform linear signal processing to derive a

feature vector y. The inner product between feature vectors can then be used to derive the

spectral-energy features from each data channel [as shown in Fig. 3.3(a), spectral-energy

features can be denoted by the inner product yTy]. Extending this to an analysis in the

compressed domain [Fig. 3.3(b)], we now aim to process compressed representations of

the input signal, namely x̂ = Φx, whereΦ represents the N
ξ
×N (ξ ≫ 1) random-projection

matrix used for compressive sensing. We thus seek to find a matrix transformation Ĥ that

leads to a representation of a signal that has been suitably processed as intended, but that is

derived by directly using x̂.

When applied to the baseline seizure-detection system, our approach focuses on trans-

forming signal-processing computations in order to enable extraction of specific spectral-

energy features directly from compressed input signals (i.e., our aim is to achieve ŷTŷ ≈

yTy). We show first that mutual information is preserved in the computed estimate of the

spectral features even at high compression factors, and second that the SVM enables high-

performance detection as long as mutual information is preserved. Despite the flexibility

offered by the SVM, however, in Sec. 3.5, we show that regularization is essential in or-
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der to extract the energy estimates; regularization refers to the use of a transformation that

specifically yields a random projection of the processed signal (we describe the require-

ments on the random projection in Sec. 3.5). We also show that the error of the estimates is

substantially reduced as the number of samples in the original sensor signal increases. Our

specific contributions in this chapter are as follows:

• We describe a methodology for transforming linear signal-processing operations into

the compressed domain using a least-squares approximation. We demonstrate our

methodology on a seizure detector based on spectral-energy features extracted from

compressively-sensed EEG. Our methodology enables a system for local signal anal-

ysis and efficient signal acquisition. Previous work on analyzing compressively-

sensed signals (described in Chapter 2) has investigated theoretical bounds for clas-

sifiers presented with compressed vectors. Our approach focuses on transforming

computations, enabling key signal (spectral-energy) features to be extracted that cor-

respond to the biomarkers for detection. This is critical to improving the performance

of medical-detection algorithms [4, 102].

• We show that, in general, EEG signals can be represented by a small set of basis

vectors. This representation enables us to apply the Johnson-Lindenstrauss (JL)

lemma [110], with a quantitative understanding of the accuracy limits. As a re-

sult we can extract the energy of processed signals directly from their compressed

representations.

• We mathematically validate the proposed approach, emphasizing the importance of

the transformations used to process the compressed signals. We show that this leads

to statistical characteristics in the matrices that are critical for deriving the energy

estimates.
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• We show that the absolute error of the computed features can be very low for large

compression factors when the number of samples in the sensor signal is high. Thus,

we investigate the scaling limits of our approach based on mathematical bounds.

• We analyze the hardware implications of implementing a detector using the proposed

approach. The hardware operations required are compared to optimized Nyquist-

domain methods, where optimizations, such as folded FIR implementations, are pos-

sible.

The rest of this chapter is organized as follows. In Sec. 3.4, we introduce the base-

line Nyquist-domain seizure detector and describe the mathematics behind the proposed

approach for transforming the detector. We provide an analytical rationale for the proposed

approach in Sec. 3.5. In Sec. 3.6, we present experimental results. In Sec. 3.7, we study the

reconstruction error of compressively-sensed EEG. In Sec. 3.8, we describe the potential of

our approach for yielding high performance in applications involving raw sensor signals,

which require a large number of samples. In Sec.3.9, we provide a hardware implementa-

tion analysis. Finally, we conclude in Sec. 3.10.

3.4 Seizure Detection Using Compressively-sensed EEG

In this section, we first describe the baseline Nyquist-domain seizure-detection algorithm

we use in our study. The baseline algorithm employs spectral-energy features and an SVM

classifier. Then, we specifically formulate feature-extraction processing in terms of matrix

multiplications. This permits transformation to the compressed domain using the random

projection matrixΦ, as we describe below.

Fig. 3.4 illustrates the baseline Nyquist-domain seizure detection algorithm, which re-

lies on patient-specific classifier training; this has been shown to substantially improve

seizure-detection performance for scalp-recorded EEG [147]. A two-second epoch of each

EEG channel is processed using eight band-pass filters (BPFs) with passbands of 0-3 Hz,
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Figure 3.4: The baseline epileptic-seizure detection algorithm employing spectral-analysis

feature extraction and SVM classification.

3-6 Hz, . . ., 21-24 Hz. The energy from each filter is then represented by summing the

squared value of the output samples to form a FV, which is then used for classification by

an SVM.

The baseline detector is validated on 558 hours of EEG data from 21 patients (corre-

sponding to 148 seizures) in the CHB-MIT database [165]. For every patient, up to 18

channels of continuous EEG is processed using eight BPFs, leading to an FV dimension-

ality of 144. The Nyquist-domain detector has been demonstrated to achieve an average

latency, sensitivity, and specificity of 4.49 sec., 96.03%, and 0.1471 false alarms per hour,

respectively [147].

In the baseline algorithm, suppose we let each epoch of Nyquist-sampled EEG from

channel j ∈ [1, 18] be denoted by an N-dimensional vector xj ∈ RN and the eight BPFs by

matrices Hi ∈ RN×N, i ∈ [1, 8]. As illustrated in Fig. 3.5(a), a filtering operation based on

Hi can then be formulated as a linear multiplication given by

yij = Hixj, (3.2)

where yij ∈ RN represents the filtered signal of N samples. To form the FV, the energy in

each frequency band defined by Hi must then be computed. This can be achieved via the

following operation:

yi j = yT
ij yij, (3.3)
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Figure 3.5: The seizure detection algorithm involves feature extraction and classification

using an SVM. In the compressed domain, we transform the Nyquist-domain BPFs Hi to

the compressed-domain BPFs Ĥi.

where yi j forms one dimension of the resulting FV. This operation is thus performed up to

the maximum FV dimensionality of 144.

The formulation above makes possible the compressed-domain analysis system shown

in Fig. 3.5(b). In this system, a corresponding matrix Ĥi is constructed such that the desired

filtered signal can be represented by ŷij, which is derived directly from the compressed

input signal x̂j. The energy of yij can then be estimated from ŷij by exploiting a property of

random projections. Each Ĥi thus effectively forms a compressed-domain band-pass filter

(CD-BPF).

Suppose an epoch of compressively-sensed EEG from channel j ∈ [1, 18] is repre-

sented by the M-sample signal x̂j ∈ RM with M ≪ N (for substantial data compression).

The signal x̂j can then be related to the Nyquist-domain signal xj by

x̂j = Φxj, (3.4)

where Φ is the random projection matrix used for compressive sensing. The number of

compressed samples M determines ξ = N/M. Next, we present methodologies to extract

the signal features directly from x̂j and estimate the spectral energy.
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3.4.1 Feature-extraction Formulation

In the compressed-domain system of Fig. 3.5(b), the M-sample random projection of the

filtered signal ŷij (which is derived from the CD-BPFs Ĥi that directly use x̂j) can be repre-

sented as follows:

ŷij = Ĥix̂j

= ĤiΦxj. (3.5)

It may seem that one should thus attempt to derive an Ĥi that would yield ŷij = yij, but we

will see ahead in Sec. 3.5 that solving this equation for such an Ĥi would lead to a poor

estimate of the FV. Instead, ŷij can appropriately represent the energy of yij if it is chosen

to be the random projection of yij, given by

ŷij = Φyij. (3.6)

In Sec. 3.4.2, we will show a justification for this choice of ŷij, but proceeding further,

Eq. (3.6) leads to the following relationship [from Eqs. (3.2) and (3.5)]:

ĤiΦxj = ΦHixj, (3.7)

Then, in order to determine Ĥi, we need to solve the set of linear equations represented by

the following matrix relationship:

ĤiΦ = ΦHi ⇔ HT
i Φ

T = ΦTĤT
i . (3.8)

However, with M ≪ N, matrix ĤT
i

corresponds to M ×M unknowns constrained by N ×M

equations. Such a system with fewer unknowns than equations is considered overdeter-

mined and has no exact solution. We can, however, solve Eq. (3.8) in the least squares
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sense as follows:

argmin
Ĥi

‖HT
i Φ

T −ΦTĤT
i ‖22. (3.9)

To solve the least-squares problem in Eq. (3.9), we set the derivative of the Euclidean-

norm to zero. This approach of solving overdetermined systems is also known as the solu-

tion with normal equations [166]. From Eq. (3.9), we thus have

‖HT
i Φ

T −ΦTĤT
i ‖22 =

(
HT

i Φ
T −ΦTĤT

i

)T (
HT

i Φ
T −ΦTĤT

i

)

= ΦHiH
T
i Φ

T −ΦHiΦ
TĤT

i − ĤiΦHT
i Φ

T + ĤiΦΦ
TĤT

i . (3.10)

To minimize the squared error in Eq. (3.9), we take the derivative of the right hand side of

Eq. (3.10) with respect to Ĥi and set it to zero. We thus get

−
(
ΦHiΦ

T
)T
−ΦHT

i Φ
T + 2ΦΦTĤT

i = 0 (3.11)

From this, we obtain

2ΦΦTĤT
i = 2ΦHT

i Φ
T

=⇒ ĤiΦΦ
T = ΦHiΦ

T (3.12)

Thus, Ĥi = ΦHiΦ
T
(
ΦΦT

)−1

︸         ︷︷         ︸
= ΦHiΦ

†
R
, (3.13)

where Φ†
R
∈ RN×M is called the Moore-Penrose right pseudo-inverse of Φ. The solution

for Ĥi in Eq. (3.13) thus represents the best-fit hyperplane for the system of equations

given in Eq. (3.8). This least-squares solution for each of the CD-BPFs Ĥi can also be

directly written in a closed form from Eq. (3.8) by multiplying both sides of the equation

by ΦT
(
ΦΦT

)−1
. Next, we describe how ŷij, when chosen to be a random projection of yij

[as in Eq. (3.6)], can be used to estimate the energy of yij.
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3.4.2 Spectral-energy Extraction from the Random Projection

The desired spectral energy can be derived in the Nyquist domain using the inner-product

operation shown in Eq. (3.3). An important aspect of the proposed approach is that a

corollary from the JL lemma [110] states that inner products are preserved under random

projections. Eq. (3.6) allows us to exploit this property to approximate the inner product

(yT
ij
yij) of the filtered EEG signal by inner product

[(
Φyij

)T
Φyij

]
of its random projection,

hence justifying the choice of ŷij = Φyij.

Lemma 1. (Johnson-Lindenstrauss) Let ǫ ∈ (0, 1) and B ⊂ RN be a set of Bc vectors with

M = O[logBc/(ǫ
2 logǫ)]≪ N. Then, ∃ a mapping T : RN → RM such that for all u, v ∈ B

(1 − ǫ) ‖u − v‖22 ≤ ‖ f (u) − f (v)‖22 ≤ (1 + ǫ) ‖u − v‖22. (3.14)

The JL lemma makes a compelling statement about the preservation of structure in a sub-

space of RN. It states that although the absolute data values get affected due to a linear

transformation T , the structure in the data is preserved in a lower-dimensional subspace.

Thus, if we are only interested in the pairwise distances among a set of vectors up to a

factor of (1 ± ǫ), ǫ ≪ 1 and do not care about the actual vectors, we can embed the vectors

in a lower-dimensional (M) subspace through projection T . As mentioned in the previous

chapter, this property has also been the cornerstone of a large body of research including

algorithms that exploit manifold structure in machine learning [112,133,167,168]. A num-

ber of useful results can be derived from Eq. (3.14). One important corollary, which we

will take advantage of, is the inner-product preservation property of random projections.

Corollary 1. (JL corollary: Inner-product preservation) Let ǫ ∈ (0, 1) and B ⊂ RN be a set

of Bc vectors with M = O[logBc/(ǫ
2 logǫ)] ≪ N. Further, let Ω ∈ RM×N, where each entry

is sampled i.i.d. from a Gaussian N(0, 1) or from U(+1,−1). Then ∀ y1, y2 ∈ B,

P (|y1 · y2 − (Ωy1) · (Ωy2)/M| > ǫ) ≤ 4e−(ǫ2−ǫ3)M/4. (3.15)
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Figure 3.6: The average absolute error (ǫ) in the inner product of the projected epochs

normalized to the corresponding Nyquist-domain inner products yT
ij

yij is ∼ 0.32 for ξ =

10×.

Note that in the corollary above, the original dimension (N) of the data is irrelevant as far

as the reduced dimension (M) goes; it is the number of points [or the cardinality (Bc) of B]

that is important.

It is postulated that the properties of the JL lemma are valid for small values of Bc (i.e.,

if B is a subset of RN) [110]. For the seizure-detection application, we will show below

that EEG data can be adequately represented by a small number (∼95) of basis vectors.

We thus need to preserve the pairwise distances only for this small basis set. We can

therefore take advantage of the JL corollary by setting Ω, y1, and y2 equal to
√

MΦ, yij,

and yT
ij
, respectively. We see from Eq. (3.15) that the spectral energy derived from yij [as in

Eq. (3.3)] is thus preserved under the random projectionΦ [as in Eq. (3.6)] up to a scaling

factor of
√

M and error ǫ.

Fig. 3.6 shows the average value of the normalized absolute error ǫ across 21 patients

in the CHB-MIT database (note that although the inner-product error has both positive and

negative values, we study the absolute value of the error normalized to the corresponding

Nyquist-domain inner products yT
ij

yij). We observe an error of 0.12 in the inner products

at ξ = 2×, which increases to 0.32 at ξ = 10× and 0.59 at ξ = 20×. Since the error depends
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only on M, we will see ahead in Sec. 3.8 that the error diminishes for large compression

factors ξ as the number of samples N in the original sensor signal increases. This, for ex-

ample, corresponds to an increase in the signal sampling rate or an increase in the length

of the epoch. Even for the signal parameters considered, though the error may seem sub-

stantial, we will show in Sec. 3.6.1 that the mutual information of the resulting features is

preserved, leading to high end-to-end performance for the seizure detector.

Using the rationale above, each dimension of the FV is thus formed from the random

projection of the processed signal according to the following relationship:

f̂i j ≈ fi j = ŷT
ij ŷij, (3.16)

where f̂i j is one dimension of the FV in the compressed domain. As in the Nyquist-domain

case, this operation is performed with eight filters (Ĥi) and 18 EEG channels (x̂j), leading

to a total FV dimensionality of 144.

Representation of the Filtered EEG by a Small Basis Set. To invoke Corollary 1 for

signal yij and its transpose yT
ij
, we argued that the cardinality (Bc) of a basis set, which is

required to represent all the filtered EEG vectors (corresponding to all 2 sec. epochs of a

patient), is small. On an average, EEG recordings for 23 hrs. (totaling ∼40, 000 epochs)

are available from one patient in the CHB-MIT EEG database [165]. Thus, in the Nyquist

domain, after processing 18 channels with eight BPFs, there are a total of about E = 6M

filtered EEG vectors [as obtained from Eq. (3.2)] for each patient. Since this number in-

creases as more data are observed, it can potentially invalidate the use of the JL lemma

for the estimate of Eq. (3.16), which is applicable to only a small number of basis vectors

Bc [from Lemma 1, Bc = O(ǫ−Mǫ2) where M is the number of samples in the compressed

signal and ǫ is the average normalized absolute error in the inner products]. In this section,

we will show that the JL lemma is still valid for the seizure-detection application. For each
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Figure 3.7: At ξ = 10× for Patient #12: (a) the normalized inner-product error has both

positive and negative values. The normalized absolute error has ǫmean = 0.31 and variance

< 3% of the mean. (b) With a 100-fold cross-validation, we observe that ǫ saturates after

∼1k filtered EEG vectors.

patient, there is only a small set of basis vectors (< 175) underlying E, and the number of

such vectors saturates, remaining constant with the number of data epochs.

First, we illustrate the result with a case study using Patient #12. This patient has a total

of E = 6.2M filtered EEG vectors obtained from 24 hrs. of recorded data. Fig. 3.7(a) shows

the distribution of the normalized error in the inner products using a subset of 1M filtered

EEG vectors. The error values are computed at ξ = 10× and normalized to the correspond-

ing Nyquist-domain inner products yT
ij

yij. The figure shows that the actual normalized error

in the inner products has both positive and negative values. For this particular patient, the

mean value of the normalized absolute error (ǫmean) is 0.31. To determine the true average

of the error (ǫ) for 1M filtered EEG vectors, we compute ǫmean [as shown in Fig. 3.7(a)]

for 100 different subsets of 1M vectors chosen randomly from the 6.2M superset. We then

evaluate ǫ to be the average value of the hundred ǫmean estimates. This process is called a

100-fold cross-validation. For 1M filtered EEG vectors of Patient #12, the average error ǫ

at ξ = 10× is plotted in Fig. 3.7(b) along with the deviation in the error around ǫ. Here, the

experiment is repeated as the number of filtered EEG vectors in the subset is increased, re-
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sulting in the profile shown. We observe that the average value of the normalized absolute

error ǫ remains roughly constant beyond ∼1k vectors even though the JL lemma suggests

that ǫ should increase with the number of vectors in the subset under consideration. To

analyze this behavior, we proceed to determine the true set of basis vectors underlying the

filtered EEG epochs.

Suppose, for each patient, we denote all filtered epochs E observed up to time 2E sec.

by yijk, where i ∈ [1, 8] is the filter number, j ∈ [1, 18] is the channel number, and k ∈ [1, E]

is the epoch number. Further, suppose we are able to represent each yijk using a set of B

basis vectors denoted by {bp}, p = 1, . . . , B. We can write the following relationship

between the column vectors yijk and bp:

yijk =

B∑

p=1

αpbp, (3.17)

where αp is a scalar weight applied to basis vector bp. The inner product of yijk with itself

is given by

yT
ijkyijk =


B∑

p=1

αpbp



T B∑

p=1

αpbp =

B∑

p=1

B∑

q=1

αpαqbT
p bq. (3.18)

Thus, the inner product of yijk with itself can be represented as a linear combination of the

pairwise inner products of vectors in {bp}. Hence, if the number of basis vectors B remains

constant (and reasonably small at < 256 to achieve ǫ = 0.3 at ξ = 10×) with increasing

values of E, the inner product of any vector yijk would be approximately preserved under

random projections according to the JL corollary.

In order to compute the basis vector set {bp} for E epochs, we employ the singular value

decomposition (SVD) of the matrix of all filtered EEG vectors [yij1, yij2, . . . , yijE]. Suppose

we denote this high-dimensional matrix of N rows and E columns by Y. SVD enables

decomposition of Y into orthogonal matrices U, V, and a diagonal matrix D such that

Y = UDVT. (3.19)
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Figure 3.8: A small set of basis vectors underlies the filtered EEG data. For Patient #12:

(a) Bc = 80 is achieved at δ = 10−6, (b) the canonical basis set (Bc) saturates after 680 data

instances.

Along the principal diagonal, matrix D has entries βe ≤ 1, e ∈ [1, E], which are known as

the singular values of the matrix Y. The diagonal entries are ordered (i.e., β1 ≥ β2 ≥ . . . ≥

βE) and represent weights for the columns of VT [see Eq. (3.19)]. The column vectors in

VT thus form an orthonormal basis that spans the E epochs in Y. These are also known

as the principal components of Y and represent the eigenvectors of the covariance matrix

FTY. The cummulative sum of the E weights captures full variance in the eigenvalues

(EVs). However, when
∑Bc

e=1
βe ≈

∑E
e=1 βe, a basis (of cardinality Bc) for Y is established.

Since the canonical basis comprises the first Bc columns of VT, the residual error (δ) in the

EV variance is computed as

δ =

E∑

e=Bc+1

βe


E∑

f=1

β f



−1

, (3.20)

Although δ should be zero to capture the full variance in the data, for some small δ, the

number of basis vectors Bc required to represent the E filtered EEG vectors can be deter-

mined. For example, Fig. 3.8(a) sets a threshold of δ = 10−6 to obtain Bc = 80 with E = 104

filtered EEG vectors (results are for Patient #12). Again using δ = 10−6, Fig. 3.8(b) shows

the cumulative increase in the number of canonical basis vectors required as we increase

the number of filtered EEG vectors. We observe that a value of Bc = 80 is required to
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represent all E = 6.4M filtered EEG vectors. Similarly, Fig. 3.9 shows the value of Bc

required for all patients in the CHB-MIT database (for a threshold of δ = 10−6), illustrating

that generally, a small set of basis vectors is required (with an average value of Bc = 95

for the patients in the database) to represent a large number of filtered EEG vectors. This

behavior offers a rationale for the profile observed in Fig. 3.7(b), and justifies the use of

Corollary 1 in Sec. 3.4.2.

3.5 Basis for Regularization Approach

In the methodology presented in the previous section, we aim to find CD-BPFs (defined

by Ĥi) that yield a random projection of the filtered signal ŷij [see Eq. (3.6)]; we then use

the JL corollary to represent the spectral energy of the original input signal. Thus, we

first transform each N-dimensional processed vector yij to an M-dimensional space (i.e.,

to Φyij) through a regularization matrix Φ. We then solve for a mapping between the

59



regularized vector Φyij and a corresponding M-dimensional vector ŷij in the compressed

domain.

In this section, we explore an alternative to the above regularization approach, where

we attempt to solve Eq. (3.6) without using Φ. We, thus, seek a direct mapping between

an N-dimensional vector yij and an M-dimensional vector ŷij. We will see that this di-

mensionality mismatch in the unregularized approach will result in a non-unique mapping.

Thus, the solution will implicitly involve reconstruction of the compressively-sensed sig-

nal. Further, since the regularized detector introduces error due to the least-squares solution

[Eq. (3.25)] and the unregularized detector introduces error due to signal reconstruction, we

will study the characteristics of the error in both approaches in Sec. 3.5.1. We will see that

the error sources lead to new (effective) regularization matrices. Since the statistics of the

regularization matrix is critical to using the JL corollary, we will study the statistics of the

resulting effective regularization matrices in Sec. 3.5.2. We will show that the regularized

detector provides adequate statistics while the unregularized detector does not. We first

derive the formulation for the unregularized detector below.

Suppose we can find a CD-BPF H̃i that yields ỹij from x̂j. Similar to the regularized

approach, we have

ỹij = H̃ix̂j = H̃iΦxj. (3.21)

However, in the unregularized approach, we seek ỹij that attempts to estimate yij (rather

than its random projection):

ỹij = yij. (3.22)

This leads to the following relationship [from Eqs. (3.2) and (3.21)]:

H̃iΦxj = Hixj, (3.23)

60



which allows us to derive the unregularized CD-BPFs H̃i. To determine H̃i, we need to

solve the following new set of linear equations:

H̃iΦ = Hi ⇔ HT
i = Φ

TH̃T
i . (3.24)

With M ≪ N, in Eq. (3.24), matrix H̃T
i

corresponds to N × M unknowns constrained by

N × N equations. Eq. (3.24) thus corresponds to another set of overdetermined equations,

requiring us to once again solve it in the least-square sense using the right pseudo-inverse

as follows:

From Eq. (3.24): H̃iΦ = Hi

Thus, H̃iΦΦ
T = HiΦ

T

=⇒ H̃i = HiΦ
T(ΦΦT)−1

︸         ︷︷         ︸
= HiΦ

†
R
. (3.25)

3.5.1 Projection Matrices with Fitting Error

In this section, we quantify the error in the least-square solution of Eq. (3.25) and compare

it to the regularized case in Eq. (3.13). We will find that the two approaches entail the

implicit use of projection matrices Ω̃ and Ω̂, respectively.

In the regularized case, after we apply the ith CD-BPF from Eq. (3.13) to compressively-

sensed data from the jth EEG channel, we have the following relationship:

ĤiΦxj =
[
ΦHiΦ

†
R

]
Φxj = ΦHiR̂xj, (3.26)

where R̂ = Φ†
R
Φ represents the fitting error of the least-squares solution. After we incor-

porate the fitting error from Eq. (3.26), we can re-write Eq. (3.7) as follows:

ĤiΦ︸︷︷︸ xj = ΦHixj ⇔ ΦHiR̂︸ ︷︷ ︸ xj = Ω̂Hixj. (3.27)
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where Ω̂ is the actual projection matrix implicitly applied to yij and thus should be consid-

ered when discussing the JL corollary. If there is no fitting error (i.e., if R̂ = I), Eq. (3.26)

is identical to Eq. (3.7) and the true projection matrix Ω̂ becomes equal to Φ.

We can similarly incorporate the fitting error into the unregularized formulation of

Eq. (3.24), which leads us to the following relationship [from Eqs. (3.21) and (3.25)]:

H̃iΦxj =
[
HiΦ

†
R

]
Φxj = HiR̃xj, (3.28)

where R̃ = Φ†
R
Φ represents the fitting error of the least-squares solution of the unregu-

larized equations. After we incorporate the fitting error from Eq. (3.28), we can re-write

Eq. (3.23) as follows:

H̃iΦ︸︷︷︸ xj = Hixj ⇔ HiR̃︸︷︷︸ xj = Ω̃Hixj. (3.29)

From Eqs. (3.27) and (3.29), we thus have

Ω̂ = ΦHiR̂H−1
i and Ω̃ = HiR̃H−1

i . (3.30)

If there is no fitting error (i.e., if R̂ = R̃ = I), Ω̂ and Ω̃ become equal to Φ and I, respec-

tively. This, however, does not occur, except when Φ is of full rank, which explains the

identical performance at ξ = 1× shown ahead in Figs. 3.12 and 3.13.

3.5.2 Statistics of the Projection Matrices

Given that we implicitly use projection matrices Ω̂ and Ω̃ in the two compressed-domain

detectors, we next study their statistics to see whether Ω̂ and Ω̃ actually meet the conditions

required for the projection matrixΩ in the JL corollary. We will observe that unlike Ω̃, the

statistics of the regularized projection matrix Ω̂ closely satisfy the conditions of the JL

corollary.
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The JL corollary states that the pairwise inner products among a set of vectors B are pre-

served under projection Ω. The corollary also states that for such an Ω, each entry is sam-

pled i.i.d. from the normal distribution N(0, 1) or from the uniform distribution U(+1,−1).

From Eq. (3.30), it is clear that Ω̂ and Ω̃ contain entries other than ±1. Thus, Ω̂ and Ω̃

cannot be derived from U(+1,−1). We hence proceed to see if the entries are derived from

an underlying normal distribution N(0, 1). For this, we employ two common measures of

Gaussianity, viz. the sample kurtosis excess κ and skewness ς.

Given Z samples, κ measures the peakedness in the data and can be defined as follows:

κ =
m4

m2
2

− 3 =

1
Z

∑Z
i=1

(
dz − dz

)4

[
1
Z

∑Z
i=1

(
dz − dz

)2]2 − 3, (3.31)

where mi represents the ith moment and dz represents the sample mean, respectively. The

excess kurtosis is zero for N(0, 1). A negative or positive value of κ implies a flatness or

peakedness in the distribution [and thus deviation from N(0, 1)].

For the ith CD-BPF Hi, we see from Eq. (3.30) that Ω̂ and Ω̃ contain M × M and

M × N samples, respectively. We evaluate the sample excess kurtosis of Ω̂ and Ω̃ for

two choices of the measurement matrix Φ. First, we construct 100 instances of a random

projection matrix ΦU with the elements derived from U(+1,−1) (as typically chosen for

low-energy compression on sensor nodes). Then, we also construct 100 instances of a

random projection matrix ΦN with the elements derived from N(0, 1). We compute the

kurtosis for each instance of ΦU and obtain κavg as the average of the hundred kurtosis

values. Similarly, we also compute κavg using the 100 instances of ΦN. The corresponding

κavg plots for Ω̂ and Ω̃, averaged over the eight CD-BPFs and using the 100 instances of

ΦU and ΦN are shown in Fig. 3.10(a). We observe that for both ΦU and ΦN, the statistics

of Ω̂ are close to a Gaussian, while those of Ω̃ deviate substantially.
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Figure 3.10: For bothΦB andΦG, the statistics of Ω̂ are closer to N(0, 1), while Ω̃ exhibits

(a) a strong peakedness, and (b) a positive skew in its underlying density function.

Similarly, the skewness ς of the data measures the symmetry in a distribution. For Z

samples, ς is defined as:

ς =
m3

m
3/2
2

=

1
Z

∑Z
i=1

(
dz − dz

)3

[
1
Z

∑Z
i=1

(
dz − dz

)2]3/2 . (3.32)

A value of ς close to zero indicates symmetry in the underlying density (such as that exhib-

ited by Gaussian, uniform, Laplace distributions, etc.). Fig. 3.10(b) shows ςavg for Ω̂ and

Ω̃, using 100 instances of ΦU and ΦN. We compute ςavg in a manner similar to κavg. We

observe that Ω̃ exhibits a strong positive skew. Ω̂, however, has a skewness close to zero

[expected of N(0, 1)].

From the analysis of κavg and ςavg, we conclude that unlike Ω̃, each element of Ω̂ is de-

rived from an underlying distribution that has statistics close to N(0, 1). According to the JL

corollary, the inner products are thus approximately preserved in the case of the regularized

compressed-domain detector, but not necessarily for the unregularized compressed-domain

detector.
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3.6 Experimental Results

We quantify the performance of the proposed approach by first analyzing how the CD-

BPF approach affects the mutual information in the FVs, and then by simulating the actual

end-to-end performance of the detector.

3.6.1 Information Analysis of Compressed-domain FVs

With reference to Fig. 3.6, we remarked that although the error in the inner products in-

creases linearly with ξ, it does not correspond to the performance of the end-to-end detec-

tor. To analyze this, we quantify the information content of the FVs based on the metrics of

Shannon entropy and mutual information. In the regularized approach, we observe that the

mutual information required for analysis is indeed maintained for large compression factors

by the CD-BPFs. Next, we describe the methodology for computing mutual information.

At time 2E sec., let F = { fk} denote the set of D-dimensional FVs with k ∈ [1, E].

Using E epochs (observed up to time 2E sec.), we can specify nb uniformly quantized bins

between min( fi j1, fi j2, . . . , fi jE) and max( fi j1, fi j2, . . . , fi jE) for each FV dimension fi j, where

i ∈ [1, 8] and j ∈ [1, 18] for the seizure detector. Thus, we partition the D-dimensional FV

space into nD
b

bins. Using these bins, the discrete probability density function (PDF) of the

FV set F is given by p(F) =
[
# fk in bin e

]
/E where e ranges from 1 to nD

b
. Using this PDF,

the Shannon entropy in the FVs can thus be computed as follows:

S (F) = −
nD

b∑

e=1

p(F) log2

[
p(F)
]
. (3.33)

Given that the FVs correspond to instances from one of two classes (i.e., seizure class or

non-seizure class), we can define a set C = {cl} (with l = 1 for seizure FVs and l = 0 for

non-seizures FVs). We can thus derive the conditional entropy of the full FV set as follows:
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S (F |C) =
∑

l=0,1

p(cl) S (F |cl), (3.34)

where p(cl) is the probability of the class label cl and S (F |cl) is the conditional entropy of

the FV set F exhibited within class cl, which is defined as

S (F |cl) = −
nD

b∑

e=1

p(F |cl) log2

[
p(F |cl)

]
,

The difference between the initial entropy of the FVs and the conditional entropy within

the classes is defined as the mutual information I(F; C) between the FV set F and the class

values C. We thus have the following relationship:

I(F; C) = S (F) − S (F |C). (3.35)

I(F; C) is a commonly used metric for evaluating the ability of a classifier to successfully

discriminate between data instances. Intuitively, it is the amount by which the knowl-

edge provided by the set of class values C decreases the uncertainty in the FV set F

[169, 170]. I(F; C) thus provides an indication of the end-to-end performance achievable

by the compressed-domain seizure detector.

Now, similar to the Nyquist case, we can define mutual information in the compressed

domain as follows:

I(F̂; C) = S (F̂) − S (F̂ |C). (3.36)

where S (F̂) and S (F̂ |C) denote the entropy and conditional entropy of the FVs derived

from compressed-domain processing.

I(F̂; C) is thus desired to be as close as possible to I(F; C) for correspondence between

the two approaches. For the regularized approach, Fig. 3.11 shows numerical results for

mutual information averaged over 21 patients in the CHB-MIT database. To keep the cal-

culation of entropies tractable, we first reduced the FV dimensionality to 8 using PCA and
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Figure 3.11: Mutual information is retained up to large ξ only for the regularized detector.

then quantized the probability distributions using nb = 8 bins for each dimension of the

FV set. Note that the y-axis in Fig. 3.11 is in bits, which means that the computation of

individual entropies involves logarithm to base 2. I(F; C) = 0.18 bits is the information

content of the Nyquist-domain FVs. Using the compressed-domain analysis, the mutual

information in the FVs, I(F̂; C), is over 0.15 bits for ξ up to 5×, and drops to 0.13 bits

for ξ = 10×. Compressing the EEG signals beyond this point reduces I(F̂; C) to 0.03 bits

at ξ = 20×. Thus, the information in compressed-domain FVs is retained up to substan-

tial compression factors, suggesting high end-to-end performance when using a flexible

classifier. Fig. 3.11 also shows that the degradation in the mutual information for the un-

regularized compressed-domain FVs, denoted as I(F̃; C), is much larger than that observed

for the regularized compressed-domain FVs [i.e., I(F̂; C)].

To validate the information trends observed, we next study the performance of the end-

to-end detector. We expect to see some tolerance in a practical classifier, such as an SVM, to

the degraded information in the signal features. Studying the detector performance will also

allow us to determine the tolerance limits. These limits will then enable us to estimate the

maximum ξ achievable for the seizure-detection application without significantly degrading

the system performance.
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Table 3.2: Comparison of Nyquist-domain performance with the baseline detector.

Performance Metric Shoeb et al. [147] This work (ξ = 1×)

Sensitivity (%) 96.03 96.02

Latency (sec.) 4.59 4.59

Specificity (false alarms/hr.) 0.1471 0.1453

No. of SVs 242 253

3.6.2 Performance Analysis of the Compressed-domain Detector

In this section, we present the end-to-end performance, based on MATLAB simulations,

of the compressed-domain seizure detector using an SVM classifier. We show a trade-

off between the compression factor and system performance. Table 3.2 summarizes the

performance of a baseline detection algorithm that uses the Nyquist-domain EEG [147].

Our Nyquist-domain implementation achieves a performance consistent with that shown

in [147].

To evaluate the performance of the compressed-domain detector, we derive FVs at the

rate of 0.5 Hz from the CHB-MIT database. We use these FVs to train and test the SVM

classifier in a patient-specific manner. We employ a leave-one-out cross-validation scheme

for measuring the performance of the detector. Accordingly, for each patient, we use all

seizure records except one, along with all non-seizure records for training the classifier.

We then apply the resulting SVM model only to the record that was left out in the training

phase. We repeat this validation process for each record of a patient. Fig. 3.12 shows the

scaling in performance (over 21 patients). The performance of the compressed-domain de-

tector is very close to the Nyquist case at ξ = 1× (the performance at ξ = 1× is also shown

in Table 3.2). Thus, for the regularized compressed-domain detector, at a compression of

1×, the sensitivity is 96.02%, latency is 4.59 sec. and the number of false alarms is 0.1453

per hour. These performance numbers begin to degrade with the compression factor. The

corresponding numbers at ξ = 10× are 94.70%, 5.83 sec., and 0.1989/hr., respectively.

Thus, at higher compression factors, the degradation in sensitivity is less than 1.33% up
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to ξ = 10×, beyond which it begins to drop more significantly. The scaling in the number

of false alarms per hour and the latency also follow a similar trend. The mean latency of

detection increases by 1.21 sec., while the specificity of the algorithm degrades by only

0.03 false alarms per hour at ξ = 10×. We see that this performance profile exhibits a close

correlation with the FV information loss investigated in the previous section. We suggest

that very limited degradation is seen up to large compression factors, which enables the

system model.

Performance of the unregularized detector. Fig. 3.13 shows the performance (over 21

patients) of the compressed-domain detector using the unregularized CD-BPFs H̃i. The

detector sensitivity and specificity are much poorer when compared to the regularized de-

tector, degrading substantially even at ξ = 2×. Even though both approaches, at best,

approximate the sought output signal due to the least-square fitting involved, the regular-

ized approach seeks only to find a suitable random projection of ŷij rather than yij directly.

This approach enables much greater tolerance to approximation errors, and allows us to

exploit the JL corollary in order to recover the desired features. Also, the degradation in

the information content of the FVs (observed in the previous section) is in close agreement

with the performance trends observed in Fig. 3.13.

Scaling in SV complexity. Despite an error of ǫ = 0.31 in the inner-product compu-

tation at ξ = 10× (see Fig. 3.6), the performance of the regularized compressed-domain

detector is maintained due to the mutual information when a flexible classifier, such as an

SVM, is used. When trained using compressed-domain FVs, the SVM decision boundary is

suitably adjusted. However, the complexity of the decision boundary, which is represented

by the number of SVs required to represent it, depends on how the data are redistributed

in the feature space. Fig. 3.14 shows that the number of SVs increases modestly as ξ is

increased.
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Figure 3.12: End-to-end performance [measured by (a) sensitivity, (b) false alarms/ hr.,

and (c) latency of detection] nearly equal to that in the Nyquist domain (shown in grey) is

achieved at ξ = 1× in the compressed domain. Also, the performance is maintained in the

compressed domain up to large values of ξ.
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Figure 3.13: Unlike the regularized compressed-domain seizure detector, performance of

the unregularized detector is poor at ξ > 1×.

3.7 Reconstruction Error Analysis

As mentioned in Sec. 3.1, besides performing on-sensor analysis, we also want to acquire

signal waveforms in the system shown in Fig. 3.1. Thus, in this section, we investigate the

feasibility of signal reconstruction. We compute the reconstruction error and qualitatively

observe a correlation with the information-content and detector-performance profiles. The

correlation is expected and suggests that, generally, the performance of the compressed-
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Figure 3.14: The complexity of the SVM decision model increases with ξ, indicating an

adaptation to the errors in the compressed-domain FVs. The number of SVs in the Nyquist

domain is also shown.

domain detector follows the accuracy achievable for signal reconstruction in compressive

sensing.

Sparsity basis. EEG data have been shown to have a sparse representation in several

bases, such as the Wavelet [171], Gabor [11,172], Mexican Hat [171], and Spline [148,173]

bases. In our analysis, we use a Gabor dictionary Ψ ∈ RN×N as the sparsity basis [11].

Functions in this dictionary are defined by cosines under a Gaussian envelope. The mnth

element of matrix Ψ is given by

Ψmn (ω,σ) =
1
√

2πσ

[
e−(m−n)2/σ2

]
cos (ωm + γ) , (3.37)

where the center of the envelope is at column number n, ω ≥ 0 is the angular frequency of

the cosine function, σ ≤ 1 is the spread of the envelope, and γ ∈ [0, π/2] is the phase angle.

We use the values ω = 16, γ = 0, and σ = 0.1 in our experiments, which are empirically

determined to achieve the best reconstruction accuracy of the EEG data. Further, each

column of Ψ is independently normalized such that the corresponding l2 norm is equal to

one.
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For the measurement matrix Φ, we use entries that are ±1 with a uniform probability;

this not only leads to a matrix that is incoherent with Ψ, thus satisfying the RIP, but one

that also enables low-energy compression by avoiding the need for actual multiplications

(such a Φ is commonly chosen for low-power sensing applications). Fig. 3.15(a) shows a

2 sec. epoch of Nyquist-sampled EEG from Patient #12 in the CHB-MIT database. The

EEG is sampled at 256 Hz and clearly not sparse in the time domain. However, as shown in

Fig. 3.15(b), the EEG is sparse in the Gabor basis with only a small number of non-zero co-

efficients. We can thus compressively-sense the EEG usingΦ [an instance of compression

by ξ = 5× is shown in Fig. 3.15(c)].

Signal reconstruction. There are several signal reconstruction methods for compres-

sive sensing [12, 69–71]. We use a gradient projection algorithm, which balances recon-

struction accuracy with computational efficiency [12]. For each compressively-sensed EEG

epoch x̂j of M samples derived from the Nyquist-domain epoch xj, the algorithm solves the

following non-smooth convex optimization problem:

argmin
wj

‖ΦΨwj − x̂j‖22 + λ‖wj‖1, (3.38)

where Ψwj is the corresponding reconstructed EEG epoch and λ ≤ 1 is a scaling constant,

which controls the sparsity (determined by the l1-norm) of wj. Fig. 3.15(d) shows the

reconstructed EEG epoch at ξ = 5×, 10×, and 20×, respectively. We observe from the

figure that EEG data can be accurately reconstructed up to large values of ξ. Reconstruction

errors, absent at ξ = 5×, begin to show up at ξ = 10× and increase substantially at ξ = 20×.

To quantify the accuracy of signal reconstruction, we employ the metric of SNR, which

is calculated for each epoch based on the expected (xj) and reconstructed (Ψwj) EEG sam-

ples. Average SNR, over E epochs, in decibels (dB) is defined as

SNR =
10

E

E∑

j=1

log

[ ‖xj‖22
‖Ψwj − xj‖22

]
. (3.39)

73



1 100 200 300 400 Samples
−80

−40

0

40

A
m

p
lit

u
d
e

(m
V

)
Nyquist−domain EEG

(a)

1 100 200 300 400 Samples
−1

−0.5

0

0.5

1

N
o

rm
a

liz
e

d
a

m
p

lit
u

d
e

Sparse EEG in Gabor basis ( Ψ )

(b)

1 100 200 300 400 Samples
−1

−0.5

0

0.5

1

N
o

rm
a

liz
e

d
a

m
p

lit
u

d
e

Compressively−sensed EEG using
random projection matrix Φ

(ξ=5× fewer samples)

(c)

1 100 200 300 400 Samples
−80

−40

0

40

A
m

p
lit

u
d

e
(m

V
)

Nyquist−domain EEG

Reconstructed EEG (from ξ=5×)

0

1 100 200 300 400 Samples
−80

−40

0

40

A
m

p
lit

u
d
e

(m
V

)

Nyquist−domain EEG

Reconstructed EEG (from ξ=10×)

1 100 200 300 400 Samples
−80

−40

0

40

A
m

p
lit

u
d
e

(m
V

)

Nyquist−domain EEG

Reconstructed EEG (from ξ=20×)

(d)

Figure 3.15: (a) An epoch has 512 samples in the Nyquist domain. (b) EEG is sparse in the

Gabor basis. (c) Sparsity enables substantial compression (case of ξ = 5× is shown). (d)

Reconstruction accuracy degrades at larger values of ξ.
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Figure 3.16: Accuracy of signal reconstruction follows a trend similar to detector perfor-

mance.

Fig. 3.16 shows the SNR as a function of ξ, averaged over all epochs of 21 patients in the

CHB-MIT database. With increasing ξ, the SNR of the reconstructed EEG drops minimally

(≤ 18%) up to ξ = 10×, and more rapidly beyond that. This behavior correlates with the

degradation in performance observed for the compressed-domain detector.

3.8 Discussion of Reduced Dimension Bounds

As remarked in Sec. 3.4.2, the expected value of the error ǫ introduced by the JL corollary

for a basis vector set with cardinality Bc depends on the dimensionality of the random

projection M. However, interestingly, it does not depend on the dimensionality of the

original vector N. This implies that for signals with a very large number of samples N,

high compression factors ξ = N/M are achievable with low error. For the seizure detection

application, an epoch size of 2 sec. (corresponding to N = 512 samples) is used in order to

limit the latency of detection. Combined with the error, this limits the compression factor.

However, in this section, we investigate the general performance of the proposed approach

as the number of input samples in an application scales. We show that, in general, low-error
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inner-product estimates, and thus high performance, can potentially be achieved for very

high compression factors.

A lower bound on the dimensionality of the random projection M, when Ω̂ comes from

N(0, 1) (denoted as Ω̂N), is presented in [174]. It relates M, Bc, and ǫ as follows:

M ≥ logBc/
[
ǫ2log(1/ǫ)

]
. (3.40)

Fig. 3.17 shows the corresponding upper bound on ξ for a given error limit ǫ as well as the

observed value of ǫ from Fig. 3.6 for the seizure detector. The bound on ξ, when Ω̂ comes

from U(+1,−1) (denoted as Ω̂U), is also shown [108]. For a given ξ, the empirical ǫ values

observed for the seizure-detection application breach the bound for Ω̂U, confirming the

conclusion derived from the analysis in Sec. 3.5.2 that the elements of Ω̂ are not derived

from U(+1,−1). In fact, the actual error is within the expected value for Ω̂N. For large

values of ξ, however, the inner-product error ǫ is high, ultimately limiting the compression

that can be handled by the detector. Next, we consider increasing the epoch size beyond 2

sec. to illustrate the potentially large values of ξ that can be achieved.

For a given inner-product error, Fig. 3.18(a) shows the achievable compression factor

with increasing number of samples N at Bc = 100. The case of N = 512 is shown by

the dotted line. At an expected inner-product error of 0.1, we can achieve a maximum

compression factor of 3× (note that the actual achievable compression for this error value is

only 2× for the seizure-detection application). With increasing number of data dimensions

(longer epoch sizes), we can achieve higher compression factors at the same expected error

ǫ. For example, with N = 103, 104, and 106 at ǫ = 0.1, we can achieve ξ = 6×, 60×, and

600×, respectively. At a sampling rate of 256 Hz, these values of N correspond to epoch

sizes of 3.9, 39, and 390 secs., respectively. Some applications may also have a larger

number of underlying basis vectors. Fig. 3.18(b) shows the achievable compression factor

at Bc = 1M. We observe that in such cases, the maximum ξ is just 1× at an inner-product

error of 0.1 at N = 512. With increasing values of N, however, we can achieve ξ = 2×,
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Figure 3.18: Scaling in the upper bound for ξ with respect to N and Bc shows the potential

of the proposed approach at higher data dimensions.

20×, and 200× for N = 103, 104, and 106, respectively, at the same value of ǫ. Thus,

in general, for applications that must handle large amounts of sensor data, the proposed

compressed-domain processing approach can potentially yield substantial savings while

retaining performance.
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3.9 Hardware Implementation Analysis

In this section, we present an analysis of the hardware implementation cost for the

compressed-domain detection algorithm. The proposed approach requires formulating

feature computation as a matrix multiplication with non-zero elements. Moreover, the

regularity of Nyquist-domain processing matrices (e.g., convolution matrices used for FIR

filtering) is disrupted in CA. Thus, CA precludes the use of filter optimizations, such as

multiply-accumulate (MAC)-stage folding. On the other hand, the compressed-domain

approach has the benefit of having to process fewer input samples. Thus, we present a

trade-off related to the compression factors.

Filter optimizations. Fig. 3.19 shows the structure of the compressed- and Nyquist-

domain detectors. MAC operations are the dominant computation in the system and are

used for feature extraction in two stages: (i) the application of the spectral-analysis filters

of Eq. (3.2) (identified as MAC0 in the figure), and (ii) the energy accumulation process

of Eq. (3.3) (identified as MAC1). The number of operations per epoch are shown in dark

boxes below the MAC units (N = 512 is the number of Nyquist samples, k = 64 is the filter

order used, and F = 8 is the number of spectral-analysis filters). For the BPF stage, kN

operations are performed per epoch per channel in the cascade-form FIR implementation.

They can be reduced to kN/2 by exploiting the symmetry of filter coefficients Hi (necessary

for a detector implementation with linear phase).

The optimizations for Nyquist-domain processing are possible because filtering actu-

ally corresponds to convolution, allowing matrix Hi to have a regular structure (with several

zeroed entries), as shown in Fig. 3.19. With compressed-domain processing, however, the

entries of the Ĥi matrix are determined by random projection matrixΦ, disrupting the reg-

ularity, and precluding the optimizations above. Ĥi thus potentially consists of (N/ξ)2 non-

zero coefficients. Therefore, in the most generic case, the compressed-domain implemen-

tation involves a matrix multiplication resulting in (N/ξ)2 operations in MAC0. Fig. 3.20
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Figure 3.19: The structure of the convolution matrix Hi in the Nyquist domain enables filter

optimizations to reduce the number of MAC operations.

shows a practical implementation of the detector using a single MAC engine for each of the

operations, MAC0 and MAC1, described earlier. Fig. 3.21(a) shows the scaling in MAC

operations with ξ (the number of MAC operations required for an optimized Nyquist im-

plementation is also shown). We observe that at sufficient compression factors (around

ξ > 4×), compressed-domain processing can actually enable fewer hardware operations

despite the optimizations possible in the Nyquist implementation. At ξ = 10, the number

of MAC operations in the compressed domain are 6.15×, and 12.3× fewer as compared to

the folded and cascade-form FIR architectures, respectively. Note that random projections

in the compressed domain can be performed without any MAC operations and are excluded

from this analysis.

Another key consideration in the implementation is the amount of memory required

by the detectors [shown in Fig. 3.21(b)]. We need to store kF coefficients for the Nyquist

implementation versus k(N/ξ)2 for the compressed-domain detector. There is thus a subtle
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Figure 3.20: A practical implementation of the detector involves a single MAC engine for

each filtering and spectral-energy estimation.
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Figure 3.21: Hardware implementation analysis in the compressed domain shows (a) that

processing in the compressed domain can potentially outperform processing in the Nyquist

domain by allowing fewer computations for feature extraction, and (b) that there is a subtle

trade-off between an efficient implementation and data storage.
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computation-memory trade-off in the implementation of the compressed-domain detector.

Further, the increased memory needs require new approaches for computational power

management, which we will explore in Chapter 5. In the same chapter, we will also see

that the system-level gains from reduced communication and computation costs, however,

can be significant, typically far exceeding the memory overheads in a low-power sensor

platform.

3.10 Chapter Summary

It is desirable in many sensing applications to analyze the sensed signal on energy-

constrained sensor nodes. Though compressive sensing offers a compelling low-energy

means for signal compression, it presents new challenges for signal analysis since the

resulting representations are substantially altered due to the random projections involved.

In this chapter, we presented a methodology for transforming linear signal-processing op-

erations to the compressed domain using a least-squares approximation. We then extracted

signal features that are based on inner-product computations. Using this approach, we

estimated spectral features from EEG signals, which are shown to maintain the mutual

information required for detecting epileptic seizures. Using an SVM classifier, we thus

demonstrated a compressed-domain seizure detector that yields accurate end-to-end per-

formance at high compression factors (ξ ≈ 10×). Since spectral features are biomarkers

for a wide range of neurological applications, the proposed approach could have broad

applicability. Further, we analyzed how the proposed methodology performs as the number

of samples in the original Nyquist-domain signal increases. Generally, a large number

of samples can be handled while keeping the expected error low, making the approach

promising for applications targeting large data vectors. Our results from this chapter

suggest that although regularization with a fixed random projection matrix Φ helps us

achieve acceptable performance in seizure detection up to large compression factors, the
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error in the feature estimates can still be substantial. In the next chapter, we provide a

methodology to derive a more accurate solution for the compressed-domain equations

[Eq. (3.8)] through a designer-controllable auxiliary matrix Θ instead of Φ. Since the

projection matrix Θ can be tailored, this solution can potentially help reduce the error in

the signal features, enabling accurate detection up to much higher compression factors.
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Chapter 4

Transformation to Compressed Domain

with an Auxiliary Matrix

In this chapter, we use an auxiliary matrix Θ [in place of Φ in the right-hand side of

Eq. (3.8)] to transform linear signal processing operations to the compressed domain. We

show that the flexibility in choosing Θ allows us to derive (1) an exact solution for Ĥ,

which provides the highest accuracy, and (2) an approximate solution for Ĥ, which saves

us computational energy. We also show that the elements of Θ can be chosen freely by a

designer based on the required end-to-end accuracy of the system. We focus on data-driven

inference frameworks for analyzing sensor signals. In this case, our approach enables the

use of compressively-sensed signals while completely avoiding signal reconstruction. Our

transformations also reduce computational energy by enabling processing over fewer input

samples. We demonstrate the approach through two case studies. First, we consider a sys-

tem for neural prosthesis that extracts wavelet features directly from compressively-sensed

spikes. Second, we consider a variant of the system presented in the previous chapter,

where we use multi-rate FIR filters for band-pass filtering followed by spectral-energy fea-

ture extraction. We show that all of these computations can be performed directly with

compressively-sensed EEG.
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4.1 Introduction

As mentioned previously, sparse representations capture most or all information in a signal

via a small number of samples. Such representations can significantly benefit several func-

tions, such as communication, storage, and potentially computation. Compressive sensing

is one specific technique that exploits sparsity in a transform basis to efficiently repre-

sent signals using simple random projections. However, compressive sensing significantly

alters the Nyquist-domain samples. Consequently, before signal processing can be per-

formed using conventional frameworks, it becomes necessary to reconstruct the original

Nyquist-domain signal. The challenge is that reconstruction from random projections, can

be extremely costly. In this chapter, we again consider transforming linear signal process-

ing operations so that they can be applied directly to the compressively-sensed signals.

Since we employ an auxiliary matrix, our transformations improve significantly upon the

methodology presented in Chapter 3. Also, our approach can provide more reductions

in computational energy since it enables processing over much fewer input samples. Our

specific contributions in this chapter are as follows:

• We present a mathematical framework (improved over the one presented in Chap-

ter 3) to derive compressed-domain equivalents of linear signal-processing func-

tions. We consider both rate-preserving and multi-rate systems (e.g., FIR filtering

and wavelet transforms) as well as rate-transforming systems (e.g., down-sampling).

• Since our approach solves for random projections of a processed signal using an

auxiliary matrix Θ, it introduces important designer-controllable knobs for system-

level trade-offs. First, the projections can be used to derive an exact solution for the

compressed-domain equivalents. This limits the error in the resulting output signals

close to the theoretical lower bound. Second, the projections can be used to de-

rive approximate solutions, wherein fewer signal-processing operations are required,

thereby enabling a new knob for computational power management. Unlike the ξ
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knob presented in the previous section for data compression, this new knob allows

us to scale computational energy at the cost of accuracy while keeping the amount

of data compression fixed. Thus, the new knob provides additional energy savings

(over that provided by ξ) while ensuring the required end-to-end performance for the

system.

• To illustrate our approach for multi-rate systems, we derive compressed-domain

equivalents of wavelet computations for neural prosthesis. We use the compressed-

domain features to sort spikes and infer statistical parameters, which can be used to

synthesize control function for prosthetics. We show that we can achieve system per-

formance similar to an approach where features are extracted from signals that are

first reconstructed.

• To illustrate our approach for rate-transforming systems, we derive compressed-

domain equivalents for downsampling and FIR filtering in a seizure-detection system.

We provide an exact solution for the compressed-domain operations and demonstrate

a significant improvement in performance compared with a least-squares approxi-

mate solution presented in Chap. 3, which limited the performance that was previ-

ously achievable.

The rest of this chapter is organized as follows. In Sec. 4.2, we describe our approach for

deriving compressed-domain processing functions. In Sec. 4.3, we describe the specific

metrics used to evaluate system-level trade-offs. We then provide experimental results

from two case studies: (1) a neural-prosthesis system, described in Sec. 4.4, and (2) a

seizure-detection system (involving multi-rate processing) described in Sec. 4.5. Finally,

we conclude in Sec. 4.6.
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4.2 Signal Processing in the Compressed Domain

In this section, we show the feasibility of compressed-domain equivalents Ĥ for any signal-

processing function, which can be represented as a matrix operation H. Our approach

involves minimizing the error in the inner product between FVs, since this is a key compu-

tation in kernel functions for inference stages. We show that Ĥ permits very low distortion

errors with respect to the inner-products between FVs.

Relating back to the systems in Fig. 3.3, recall that our aim is to find a matrix transfor-

mations Ĥ that leads to representations of a signal with the intended signal processing, but

derived by directly using x̂.

Need for regularization. Suppose we can process each vector x̂ in CA by a matrix

operator Ĥ to derive the compressed-domain FV ŷ. A naive approach might be to find Ĥ

such that the output vector ŷ equals y from NA. This gives the following formulation:

y = ŷ ⇒ Hx = Ĥx̂ ⇒ Hx = ĤΦx

⇒ H = ĤΦ.

N × N N × M M × N (4.1)

However, with M ≪ N, matrix Ĥ above corresponds to N × M variables constrained by

N × N equations. Such a system with fewer variables than equations is overdetermined

and has no exact solution. In Chapter 3, we proposed an approach to regularize the left

hand side of Eq. (4.1) through Φ. The resulting solution for Ĥ was accurate only in the

least-squares sense. We show next how an auxiliary matrix Θ can be used instead of Φ to

introduce additional degrees of freedom in order to solve for Ĥ exactly. Instead of solving

for y = ŷ [as in Eq. (4.1)], we solve for some K-dimensional projection Θy of y. This is

similar to the approach presented in Chapter 3. However, in this case, the elements of the

K × N auxiliary matrix Θ are now design variables along with Ĥ. Thus, we need to solve
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for Θ and Ĥ simultaneously in the following equation:

Θy = ŷ ⇒ ΘHx = ĤΦx

⇒ ΘH = ĤΦ.

K × N
N × N

K × M
M × N

(4.2)

With M ≪ N, Θ and Ĥ together correspond to K × (N + M) variables constrained by

K × N equations. Thus, with more variables than constraints, Eq. (4.2) will have an infinite

number of solutions. This lets us set constraints for finding unique solutions that make

several useful design options available:

1. It enables us to solve exactly for the compressed-domain processing matrix Ĥ, avoid-

ing additional error sources in the processing.

2. By using a smaller value of K, it also permits us to solve for an approximate Ĥ of

smaller size. This solution provides us with a knob to scale the number of computa-

tions performed in CA based on the required accuracy for solving Eq. (4.2).

Additionally, by introducingΘ, Eq. (4.2) allows us to extend our methodology from signal-

processing operations where H is a square matrix to those where H is a non-square matrix

(e.g., multi-rate system). We consider the above cases in the sub-sections ahead.

Before proceeding, we parameterize the dimensionality ofΘ and relate it to the dimen-

sionality of Ĥ; this will ease our consideration of the scaling trade-offs related to accuracy

and energy. The size of compressed-domain processing matrix Ĥ is governed by the size

of Θ and Φ [see Eq. (4.2)]. Thus, in addition to compression factor ξ = N/M, we define a

parameter called projection factor ν for Θ as follows:

ν = N/K. (4.3)
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Note that ν > 1 (< 1) denotes a compressive (expansive) projection Θ. Similarly, ξ > 1

(< 1) denotes a compressive (expansive) projection Φ. These, in turn, imply fewer (more)

computations associated with Ĥ.

4.2.1 Exact Solution for Ĥ when H is Square (for Highest Accuracy)

The intuition behind solving for a projection of y instead of y itself in Eq. (4.2) is that many

machine-learning stages (e.g., SVMs) that act after feature extraction do not use the exact

value of y but only its distance from other vectors. Thus, the Euclidean distance between

FVs is the metric we should aim to preserve. The distance between any two FVs, y1 and y2,

is given by the inner product: yT
1
y2. The corresponding distance in the compressed domain

is given by:

ŷ1
T
ŷ2 ⇒ (Θy1)T(Θy2)⇒ yT

1 (ΘTΘ)y2. (4.4)

The right hand side will be equal to the inner product yT
1
y2 of NA if ΘTΘ is equal to the

N × N identity matrix I. Thus, to solve for Θ and Ĥ exactly in Eq. (4.2), we have to solve

the following constrained optimization problem:

argmin
Θ

‖ ΘTΘ − I ‖22 such that ΘH = ĤΦ. (4.5)

Assuming H is a square matrix (e.g., DWT in NA), we can obtain the SVD of ΦH−1 as

VSUT, where V and U are orthogonal matrices (i.e., UTU = VTV = I) and S is an M ×

M diagonal matrix formed by the singular values of ΦH−1. We thus have the following

relationship for ΘTΘ:

ΘTΘ = (ĤΦH−1)TĤΦH−1 = U(SVTĤTĤVS)UT. (4.6)
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The distance from the above matrix to the identity will be at least the rank deficiency of U.

The lower bound in Eq. (4.5) will thus be achieved if we set K = M (or ν = ξ),

Ĥ = S−1VT, and

Θ = ĤΦH−1. (4.7)

4.2.2 Approximate Solution for Ĥ when H is Square (for Designer-

controllable Energy Savings)

In this section, we show how to solve for Θ and an approximate Ĥ to save computational

energy in CA. The final solution for the compressed-domain processing matrix will have

the dimensionality K×N and K×M (K < M or ν > ξ), respectively. Such an approach (with

a smaller Ĥ matrix) would reduce the number of computations by trading overall system

accuracy. This can be done with the help of the JL lemma [110], which states that the inner

product of vectors are preserved under random projections. According to this lemma, ŷ1
T
ŷ2

in Eq. (4.4) will be approximately equal to yT
1
y2, if the entries of the auxiliary matrixΘ are

drawn from normal distribution N(0, 1) [109]. Thus, we can solve the following modified

problem.

Find Θ and Ĥ such that ΘH = ĤΦ and Θ ∼ N(0, 1).

SupposeΘ and Ĥ comprise row vectors θT
i

and ĥT
i
, i ∈ [1,K], where θT

i
∈ RN and ĥT

i
∈ RM.

We have the following representation:

Θ =



θT
1

...

θT
K


(K×N)

and Ĥ =



ĥT
1

...

ĥT
K


(K×M)
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Given the above formulation, we can simplify and represent the ith row of Eq. (4.2) as

follows:

θTi H = ĥT
i Φ ⇒ θi = Dĥi (4.8)

where DT = ΦH−1. Note that D in the above equation is of dimensionality N×M. Suppose

the SVD of D is USVT, where orthogonal matrices U and V are of dimensionality N × M

and M × M, respectively, and the diagonal matrix S, comprising the singular values of D,

is of dimensionality M × M. Then we can simplify Eq. (4.8) as follows:

θi = Dĥi = USVTĥi. (4.9)

Since we seek θi ∼ N(0, IN), to preserve the inner products according to the JL lemma,

we draw ĥi from N(0,Σ), where Σ = VS−2VT. Then we derive each row of Θ based on

Eq. (4.9). This choice of ĥi, in fact, gives the exact JL solution for Ĥ according to the

following corollary:

Corollary 2. (JL solution for Ĥ) Given orthogonal matrices U, V of dimension N × M

and M × M, respectively, and an M × M diagonal matrix of singular values S. Then,

ĥi ∼ N(0,Σ), where Σ = VS−2VT and ĥi ∈ RM, gives the solution for θi = USVTĥi such

that the entries of the row vector θi are drawn i.i.d from the multivariate normal N(0, IN).

Proof. We complete the proof by deriving the mean and variance of ĥi under the as-

sumption of θi ∼ N(0, IM). Consider the following equation:

θi = USVTĥi = Uzi (4.10)

where zi = SVTĥi is an M-dimensional vector of random variables. Since θi ∼ N(0, IM)

and U is a constant matrix, zi ∼ N(0, IN). Further, since ĥi = VS−1zi, we can compute the
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mean of ĥi as E
[
ĥi

]
= E [ẑi] = 0, and the variance of ĥi as follows:

E

[
ĥiĥ

T
i

]
= E

[
VS−1ziz

T
i S−1VT

]

= VS−1
E

[
ziz

T
i

]
S−1VT

= VS−2VT.
�

Thus, the approximate solution for matrix Ĥ is of dimension K × M, where K < M (or

ν > ξ). Such an Ĥ saves computational energy in CA. This energy saving comes at the cost

of accuracy. However, we will present a case study ahead that suggests that this cost can be

small and, in fact, we can reliably employ K ≪ M (ν≫ ξ). Next, we show that the above

approach is also applicable to multi-rate signal-processing systems, and we solve Eq. (4.5)

when H is a non-square matrix.

Note that the approximate solution is also applicable to the case whenΘ has more rows

than columns i.e., when K > M (ν < ξ). As compared to the exact solution where K = M

(or ν = ξ), this case results in a Ĥ, which is bigger in size than the Ĥ obtained from the

exact solution. Thus, the design space of K > M (ν < ξ) results in a higher computational

complexity and reduced accuracy as compared to the exact solution. It is thus not a very

useful design space for low-energy operation. We highlight this case with a cross in all

subsequent figures that show the performance/energy of the approximate solution.

4.2.3 Solution for Ĥ when H is Non-square

For this case, we can also exploit the JL lemma to derive a near-orthogonal matrix Θ and

then solve for Ĥ using the SVDs of H and Φ. To solve Eq. (4.5) for Θ and Ĥ, we take the

transpose of Eq. (4.2) and multiply with itself, obtaining the following relationship:

(ΘH)T (ΘH) =
(
ĤΦ
)T (

ĤΦ
)

HTΘTΘH = ΦTĤTĤΦ

RQPTΘTΘPQRT = USVTĤTĤVSUT, (4.11)
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where H = PQRT and Φ = VSUT are the SVDs of H and Φ, respectively. Since H is of

dimensionality L × N (L < N), P, Q, and R are of dimensionality L × L, L × L, and N × L,

respectively. Similarly, since Φ is of dimensionality M × N (M < N), U, S, and V are

of dimensionality N × M, M × M, and M × M, respectively. If we let Θ = BQ−1PT and

Ĥ = AS−1VT in Eq. (4.11), we have the following relationship:

RBTBRT = UATAUT

⇒ UTRBTBRTU = ATA

where A and B are unknown matrices that need to be determined. We can invoke the JL

lemma and draw the K × L elements of Θ from N(0, 1). We can thus solve for the K × L

matrix B = ΘPQ and use the above equation to derive the K × M matrix A = BRTU.

Finally, we obtain the K × M matrix Ĥ = AS−1VT.

Algorithm 1 shows the pseudocode (with the correct scaling constants) that summarizes

our approach of simultaneously solving forΘ and Ĥ under the three conditions described in

this section. For the case of a non-square L×N (L > N) processing matrix H, the algorithm

also shows (on line 15) an optional step of orthogonalization (e.g., by the Gram-Schmidt

process) before deriving B, A, and Ĥ. This ensures a perfectly orthonormal Θ when its

row rank is greater than the column rank. Next, we describe system-level metrics that will

be used to evaluate our approach in CA.

4.3 Metrics Used to Evaluate the Proposed Approach

The approach of the previous section opens up many system-design options. To understand

the associated accuracy trade-offs, in this section, we discuss precise metrics that are rel-

evant in inference applications. In addition to comparing the proposed CA with NA as a

baseline approach, we also compare it with RA in which the sensor node transmits com-

pressed data to an external platform to reduce the amount of data transmitted (hence, saving
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Algorithm 1 Find compressed-domain processing matrix Ĥ

Require: projection dimension K and matrices Φ and H

Ensure: Θ and Ĥ with ΘH = ĤΦ

1: Init: N← # cols(Φ); M← # rows(Φ); L← # rows(H)

2: if L = N then

3: DT := ΦH−1; USVT ← SVD(D); {for θi = Dĥi}
4: if K = M then

5: Ĥ =
√

(N/M)
(
S−1VT

)
; Θ =

√
(N/M)

(
ĤΦH−1

)
;

6: else

7: for i = 1 to K do

8: xi ∼ N(0, IM)/
√

(K); {for ĥi ∼ N
(
0,VS−2VT

)
}

9: ĥi = VS−1xi; θi = Uxi;

10: end for

11: Θ=
√

(N/M)
(
θT1 ; . . . ; θTK

)
; Ĥ=

√
(N/M)

(
ĥT

1 ; . . . ; ĥT
K

)
;

12: end if

13: else

14: PQRT ← SVD(H); VSUT ← SVD(Φ);

15: Θ ∼ N (0, 1) /
√

(NK/M); {ortho(Θ) if K > L}
16: B = ΘPQ; A = BRTU; Ĥ =

√
N/M

(
AS−1VT

)
;

17: end if

communication energy and/or alleviating bandwidth constraints); the data are reconstructed

on the external platform before performing signal processing. Fig. 4.1 shows the metrics

we use. Since, in CA, we solve for a random projection Θ of the FV [see Eq. (4.2)], we

expect to be able to reconstruct the signal features accurately. Thus, we reconstruct the

FVs in CA and compare them with the features extracted from reconstructed signals in

RA. We also compare the variation in the inner-product error (IPE) and the accuracy of the

inference stage with respect to both ξ and ν.

Reconstruction SNR with respect to ξ: Since CA solves for a projection of the processed

signal (Θy) in NA, the accuracy of processing in CA is expected to be correlated with our

ability to recover the y features from Θy. If we denote the reconstructed features as y∗
CA

,

we can define the SNR in CA as follows:

SNRCA = 10 · log
[
‖y‖22/

(
‖y∗CA − y‖22

)]
dB. (4.12)
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Figure 4.1: Metrics used to evaluate the performance of NA, RA, and CA.

Similarly, the performance in RA is governed by our ability to recover the y∗
RA

features.

However, since reconstruction occurs before processing in RA, the reconstructed features

y∗RA are related to the reconstructed signal x∗RA as y∗RA = Hx∗RA. Thus, the SNR in RA can

be defined as follows:

SNRRA = 10 · log
[
‖y‖22/

(
‖Hx∗RA − y‖22

)]
dB. (4.13)

We will investigate how close the SNR in CA is with respect to the SNR in RA for the two

case studies in Secs. 4.4.3 and 4.5.2, respectively.

IPE in feature extraction with respect to ξ: For feature extraction and classification, a

primary concern is how the IPE of FVs scales with ξ. The total inner product error (IPE-T)

between ŷTŷ and yTy comprises errors arising from the use of two projection matrices: (1)

Φ, which gives rise to an error we define as IPE-1, and (2) Θ, which gives rise to an error

we define as IPE-2. Also, for any two FVs yi and yj, IPE-T between the inner product in

CA (i.e., ŷi
T
ŷj) and the inner product in NA (i.e., yT

i
yj) is given by the following equation:

IPE-T = |ŷi
T
ŷj − yT

i yj|/(yT
i yj) (4.14)
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Earlier, we showed that the distance from ΘTΘ to the identity matrix was the rank

deficiency of U (i.e., UUT). This distance actually represents a projection onto the subspace

of U, since a projection is defined as U
(
UTU
)−1

UT, which simplifies to UUT owing to the

orthogonality of U. Also, since U is derived fromΦ, the above distance actually represents

the error introduced by projectionΦ (i.e., IPE-1). This error is intrinsic to the system. IPE-1

is thus the best-achievable performance with any subsequent feature extraction. This lower

bound can be obtained by solving Eq. (4.7). Using this CA solution, we can determine the

error sub-components IPE-1 and IPE-2 as follows:

IPE-1 = |yT
i UUTyj − yT

i yj|/(yT
i yj)

IPE-2 = |ŷi
Tŷj − yT

i UUTyj|/(yT
i UUTyj). (4.15)

The exact solution in CA makes IPE-2 as close to 0 as possible. We study the scaling

characteristics of IPE-T with respect to the dimensionality of Θ. We explore this trade-off

for the spike-sorting application in Sec. 4.4.3.

IPE-T with respect to ν: In Sec. 4.4.3, we also investigate how scaling of the first dimen-

sion K (or ν) of Ĥ and Θ degrades IPE-T. If it degrades at a slow rate, it enables us to

use a smaller Ĥ and, hence, reduce the amount of computation significantly. The rate of

degradation can be quantified by invoking the distance-preservation guarantees from [109].

For an input vector x, we have the following relationship (from the near-orthogonality of

Θ, as discussed in Sec. 4.2.2):

‖Θx‖ ≈ ‖UUTx‖ (4.16)

However, since Φ is a random projection, from [109], we have ‖UUTx‖ ≈ ‖x‖. With the

scaling of dimensionality K of Θ, the rate of degradation in the above approximation (and

thus in IPE-T) is indirectly governed by the minimum [σmin(Θ)] and maximum [σmax(Θ)]
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singular values of Θ as follows:

1 −
√

N/(MK) < σmin(Θ) < σmax(Θ) < 1 +
√

N/(MK) (4.17)

In Sec. 4.4.3, we determine if the measured bounds for the singular values of Θ are indeed

close to the above theoretical bounds and then investigate the distribution of IPE-T with

respect to ν.

Inference performance with respect to ξ: Recall that ξ = N/M quantifies the amount

of compression achieved by compressive sensing. As ξ becomes larger, we expect the

performance of RA and CA to deteriorate with respect to NA. The first question that arises

is: till what value of ξ do RA and CA remain competitive with NA for an application of

interest? The second question is: as we increase the value of ξ, does CA remain competitive

with RA? If it does, then computations can viably be performed on the sensor node, with the

additional benefit of computational energy reduction (due to the fewer operations required

in CA). This suggests a new design approach to energy-constrained sensor nodes, wherein

devices can be made more computationally powerful, thanks to energy savings enabled

by the explicit use of efficient representations for the embedded signals; this approach to

energy reduction can be exploited alongside algorithmic and architectural optimizations.

We explore these questions for two case studies in Secs. 4.4.3 and 4.5.2, respectively.

Inference performance with respect to ν: Recall that ν = N/K provides us with a knob to

obtain additional computational energy savings in our CA approach since the approximate

solution permits a smaller Ĥ matrix. These savings come at the cost of accuracy. The

first question is what would the impact on performance and computational energy be if

we simultaneously turn the ν and ξ knobs? The second question is how the accuracy and

energy savings compare to the case where an exact solution is used for Ĥ? For the two case

studies, we explore these scaling trends in Secs. 4.4.3 and 4.5.2, respectively.
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Figure 4.2: Block diagram of a typical system for neural prosthesis: we assume a sampling

rate of 31.2 kilo Samples per second per channel (kSps/ch) and 10 bits per Sample (bpS).

Also, the average firing rate is assumed to be 60 spikes/s/ch at 64 Samples/spike.

4.4 Case Study I: Neural Prosthesis with Compressively-

sensed Spikes

In this section, we use the case study of a neural-prosthesis system to validate the system-

level trade-offs arising from the proposed approach. We derive the compressed-domain

equivalent of a square matrix H, which computes the DWT of spike signals. We study

the impact of the exact and approximate solutions for Ĥ on system performance. We also

analyze the IPE-T and SNR trends in NA and CA. Before we proceed, we present some

background highlighting the platform-level constraints in neural prosthesis.

4.4.1 Neural Prosthesis System

Fig. 4.2 shows the block diagram of a typical neural-prosthesis system. After analog

processing and digitization, it comprises four major computational blocks: spike detec-

tion/alignment, sorting, analysis, and prosthesis control [175]. Information in the spikes is

contained in frequencies up to 8 kHz, necessitating sampling rates of at least 16 kHz [20].

Such high sampling rates over a large number of sensing channels can lead to large amounts

of data. From an implant, transmission to an external head-stage is typically achieved se-

rially, thus requiring buffering over all channels, amounting to data rates up to 1Mbps [2].
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Many systems detect and align spikes locally before transmission [24, 176, 177]; as shown

in Fig. 4.2, this can reduce the data rate by nearly 8×. Since an implanted electrode records

the simultaneous firing of multiple neurons, spikes are sorted on the external head-stage

before analysis [175]. This involves feature extraction and clustering [178–181]. DWT

and K-means are two widely employed algorithms for feature extraction and clustering, re-

spectively [175, 182]. After spike sorting, data rates can be significantly lowered, since the

sorted spikes (corresponding to individual neurons) can be represented by threshold com-

parison using a Heaviside function [180]. Spike trains from each sorted cluster can then

be analyzed to extract statistical parameters, such as spike count (SC), neuron firing rate

(FR), inter-spike interval (ISI), coefficient of variation (CV), etc. [179]. These parameters

eventually steer an algorithm for prosthesis control [183–185].

Energy constraints: Next, we discuss the energy constraints in the system and show how

CA can help alleviate them. We also discuss trade-offs in implementing spike sorting on

the implant versus on the head-stage. Detecting spikes on the implant can significantly

reduce the amount of data transmitted to the external head-stage (from 304 kbps/channel

to 38.4 kbps/channel). Processing spikes further on the implant (i.e., sorting) may thus

sound promising to reduce the amount of data even further (from 38.4 kbps/channel to 60

bps/channel). This can alleviate communication constraints on the implant significantly.

However, power density constraints limit the number and type of computations, which can

be supported in vivo [186]. A further limitation is imposed by the mode of power deliv-

ery to the implant – wireless powering of the implant (e.g., through inductive coupling)

is often preferred, and thus minimizing computations is critical to adhere to the implant

power envelop. Nevertheless, some systems in the literature attempt to implement sorting

on the implant [187, 188]. These approaches, however, do not scale easily with increas-

ing data channels and are only designed to support specific algorithms. Thus, full-scale

NA for spike sorting on the implant is not feasible. Table 4.1 quantifies the severity of

the power constraints involved; analog processing alone can incur more than 200 µW/mm2
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Table 4.1: Estimated system energy requirements assuming 60 spikes/s/ch. and 60 S/spike.

The number of OPS were obtained using Lightspeed [77].

Functions on implanted electrode

0.5 µm CMOS 0.13 µm CMOS

AFE+ADC+HPF
487 µW/mm2 [24]

262 µW/mm2 [20]

Spike Detect./ Align 6 µW/mm2 [192]

Functions on external computation platform

Estimated power using 29.0 pW/OP from [187] and [181]

Computational Block µW/Ch. (MOPS) µW/Ch. (MOPS)

Feature Extraction DWT 14.25 (0.49) PCA 5.77 (0.20)

Clustering K-means 66.86 (2.31)

Spike Train Analysis FR 335.54 (11.57) CV 71.59 (2.47)

of power on the implant (excluding any communication costs). Adding computations like

DWT and K-means would push the power density very close to its maximum allowable

value of 220 µW/mm2. The middle ground of performing part of the sorting computations

(viz. feature extraction) on the sensor, as suggested in [24, 181], may be viable. How-

ever, this adds to the computational energy burden on the implant without alleviating its

communication burden (since still 38.4 kbps/channel must be transmitted). Thus, this is

not desirable. Another approach could be to compress the detected spikes on the implant

before transmission. Compressing spikes using DWT has been presented in [189] but the

complexity of DWT limits scalability beyond 32 channels [190, 191].

Since compressive sensing permits large compression (> 10×) at a low cost in the

energy required for compression, representing spikes using compressive sensing after de-

tecting them on the implant seems like a viable approach. This could reduce the amount of

data transmission from 38.4 kbps/ch to 3.84 kbps/ch. We would now need to reconstruct the

spikes on the head-stage before sorting. This amounts to the RA architecture. However, this

approach is not feasible since reconstruction can be very costly in energy and time. Recall

99



Figure 4.3: DWT feature extraction in the neural-prosthesis system; the DWT operation is

formulated as a matrix H in NA, and a corresponding matrix Ĥ is derived for CA.

from Sec. 2.2 that even at a compression of just 3×, it takes four orders of magnitude more

operations to reconstruct than compress the signal. This is not just true for the neural pros-

thesis system, but for other applications (such as EEG) as well, as shown. Reconstruction

also precludes real-time operation on the battery-powered external head-stage. The final

choice is CA, which we described in the previous section. In CA, we perform spike sorting

directly on compressively-sensed data. This can be done either on the external head-stage

or on the implant itself. If done on the head-stage, it permits real-time operation by avoid-

ing reconstruction, while potentially reducing the computational energy of spike sorting.

Our results below suggest that the computational energy can be reduced by more than an

order of magnitude. CA can reduce the communication constraints of the implant drasti-

cally since now only 60 bps/ch needs to be transmitted. This implies that low-energy or

zero-energy communication links (e.g., based on passive impedance modulation [2]) may

be viable. The cost, however, is a small increase in computational energy (for the random

projection of data) on the implant. In Sec. 4.4.3, we evaluate the benefits in computational

energy delivered by CA in this context. Next, we formulate feature extraction as a matrix

operation to enable a transformation to CA.
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4.4.2 Formulating DWT as a Matrix Operation

Fig. 4.3 shows the computations we focus on for spike sorting and analysis. Each detected

spike on the implanted sensor results in a vector of N samples. Suppose we denote each of

these vectors as x. In NA (shown on the left side of Fig. 4.3), the sensor directly transmits

x to the external head-stage. x is then processed by a DWT block to derive the N-sample

FV y. The DWT function shown in Fig. 4.3 can be implemented as a filter bank [193].

To enable a transformation to CA, however, we require DWT to be formulated as a matrix

operation H.

In the filter bank implementation, the DWT of a signal is derived by passing it through a

series of filters. First, vector x is passed through a low pass filter (LPF) through convolution.

The signal is also decomposed simultaneously using a high-pass filter (HPF). However,

with half the frequency band removed, the outputs can be down-sampled by 2×without risk

of aliasing. This comprises one level of wavelet decomposition. The process is repeated

with the LPF outputs to achieve higher levels of decomposition [193]. To formulate the

entire process as a matrix operation in NA, we note that the processing between a vector

of filter coefficients g and the N-sample spike vector x can be represented as a convolution

operation:

z = g ∗ x =

∞∑

k=−∞
g[n − k]x[k] = GNx (4.18)

where z is the filtered signal of N samples and GN is the N × N convolution matrix whose

rows are shifted versions of the coefficient vector g. For the DWT algorithm, GL
N and

GH
N

can be used to represent the LPF and HPF operations, respectively. After the filtering

process, we can then implement down-sampling by 2× at each level of decomposition

through an N/2 × N matrix D2,N:

D2,N =



1 0 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
0 0 0 0 · · · 1


(N/2×N)

.
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Using a cascade of D-G operators, we can thus represent the full DWT operation in NA

as the following linear transformation:

y = Hx =



H1

H2

...

HL+1


N×N



x


N×1

(4.19)

where y is the N-sample DWT of spike samples x. For L levels of decomposition, sub-

matrices Hn (1 ≤ n ≤ L + 1) are given by:

Hn =



D2,NGH
N if n = 1

n−2∏
k=0

(
D2,N/2kGL

N/2k

) (
D2,N/2n−1GH

N/2n−1

)
if 2 ≤ n ≤ L

n−1∏
k=0

(
D2,N/2kGL

N/2k

)
if n = L + 1.

Each pair of matrices, GL

N/2j and GH

N/2j , in the above equation is designed to be a quadrature

mirror filter based on standard mother wavelets, e.g., Haar, Daubechies, Coiflet, biorthogo-

nal wavelet, etc. [193]. Given the DWT formulation in NA, we can derive the correspond-

ing DWT transformation Ĥ in the compressed domain based on the approach presented in

Sec. 4.2.

4.4.3 Experimental Results

In this section, we compare the experimental results for NA, RA, and CA. We begin by

describing our spike sorting framework and discussing how the representative parameters

(SC, CV, and FR) for prosthetic control are computed.

The spike sorting and analysis system of Fig. 4.3 is implemented in MATLAB. For our

experiments, we use four records (named as E1, E2, D1, and D2) from the dataset in [182].
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Each record contains 60 sec. of simulated spike data from three electrodes sampled at 24

kHz, with each spike annotated with its true cluster class. The database closely mimics

signals from the neocortex and basal ganglia. We first process each record to detect and

align spikes using the thresholding algorithm described in [182]. This process results in

a window of 64 samples per spike (denoted by vector x). In NA, we then process the

detected spikes by a matrix H to extract specific signal features. H corresponds to the

DWT matrix, which is derived from four levels of decomposition of a Haar mother wavelet.

In CA and RA, however, we first project the detected spikes using a matrix Φ to obtain

the compressively-sensed signal x̂ = Φx. We choose each entry of Φ from a uniform

distribution U(−1,+1) to facilitate an efficient implementation. In RA, before performing

computations, we reconstruct signal xR from x̂ and then apply H. In CA, however, we

directly apply matrix Ĥ to compressed signal x̂. We then sort the extracted wavelet features

(in NA, RA, and CA) into three clusters using the K-means algorithm. Finally, for each

spike cluster, we derive SC, CV, and FR.

Baseline performance of the spike sorting algorithm. Next, we describe how SC, CV,

and FR can be computed and what their values are using the various analyses (NA, CA,

and RA). SC is simply determined by counting the number of spikes in each cluster after

K-means. The first step in computing CV is to determine the ISI histogram. We then

model the envelope of the histogram as a Poisson distribution. We directly use this model

to determine CV, which is defined as the ratio of the standard deviation to the mean of the

distribution function of the ISI histogram. To compute FR for each class, we first determine

the number of spikes, which occur in non-overlapping windows – each of width 300 ms.

Fig. 4.4 shows this binned FR estimate for the second spike cluster in record E2. We then

use a Gaussian filter with a length (L) of 30 and variance (σ) of 3 to smooth the binned

FR estimates. Fig. 4.4 (at the bottom) shows the final continuous FR curve for the same

spike cluster. The bin-width and smoothing filter parameters are chosen empirically to

avoid discontinuities in the FR curve. The mean FR is then computed from the smoothed
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Figure 4.5: The accuracy of the spike sorting algorithm in NA is close to the ground truth

(GT). Also shown are performance values for CA and RA at ξ = 1× (these are close to

NA).

curve. Fig. 4.5 shows the performance of the spike sorting approach in comparison with the

ground truth (GT) values. The GT values are obtained using annotations, which identify the

true cluster association for each spike in the database. The end-to-end performance values

for CA and RA (with no compression) are also shown. We observe that the performance

of all four approaches is close to one another. Next, we study the performance metrics of

Sec. 4.3 (namely SNR, IPE, and performance of CA, RA, and NA) when we scale ξ and ν.
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Figure 4.6: The SNR in CA is close to the SNR in RA, thus validating the similarity in

performance trends.

Scaling in SNR with respect to ξ. Since the performance in CA and RA is related to our

ability to reconstruct the FVs, we analyze the error introduced in each approach. Fig. 4.6

shows the mean SNR computed over spikes in all the four records. We observe that the

SNR in RA is close to the SNR in CA. Although our ability to reconstruct features governs

the performance trends in CA and RA, the inner-product between the features is the key

parameter used in the K-means algorithm. Next, we study the IPE scaling of FVs with

increasing ξ. Fig. 4.7 shows the reconstructed wavelet features in CA (ν = 1) and RA at

ξ = 6×, 12×, and 24×. We see that the morphology of the reconstructed wavelet features in

CA is similar to that obtained from RA at all compression factors (both approaches begin

to show discernible degradation at ξ = 24×).

IPE with respect to ξ. As mentioned earlier, IPE-T consists of IPE-1 (due to

compressive-sensing error) and IPE-2 (due to ŷ-approximation error). Fig. 4.8 illustrates

the error components introduced before clustering in CA. We next show that IPE-2 is

much smaller than IPE-1, and thus the option to approximate ŷ is beneficial for the energy

savings it affords (i.e., given that IPE-1 is the best-achievable lower-bound error on any

subsequent feature-extraction processing). Fig. 4.9 shows histograms of IPE-1, IPE-2
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Figure 4.7: Reconstructed signal from CA (with the exact solution, ν = 1) and RA (both

dotted); CA is as good as RA, even at ξ = 24×.
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Figure 4.8: IPE-1 (due toΦ) and IPE-2 (due to Θ) contribute to IPE-T.

(ν = 1×), and IPE-T at ξ = 15× when using 100 spike vectors (corresponding to x). x has

the dimension N = 64 (corresponding to one spike window) and N = 512 (corresponding

to eight cascaded windows) in the two overlapping histograms. The IPEs are shown at

ξ = 15×. We can see from the figure that the significant error component is IPE-1. Further,

Fig. 4.10 shows the IPE-T evaluated from the entire spike database. We see that the IPE-T

in CA is only 19% even at ξ = 24× (RA has a similar error). At ξ = 24×, only three

compressively-sensed samples per spike are used for CA processing (compared to 64

samples for NA). In RA, we used gradient projection to reconstruct a sparse representation

of spikes [12]. Also, we obtained IPE-T using 10-fold cross-validation on the total spike

data. In each iteration, we learnt a new sparse dictionary Ψ from K-SVD using 90% of the

total spike data [30].

IPE-T with respect to ν. For Θ to be an orthonormal projection, it is desirable to

have singular values close to 1. Fig. 4.11 shows that the measured singular values (for

the entire spike database) are within the theoretical limits of Eq. (4.17). The theoretical

bounds predict a much larger deviation than what we observe for the spike dataset; the

singular values, however, diverge slightly more at higher values of ξ. From the figure, we

also observe that there is only a small change in the singular values when we increase ν.

The points of exact solution are shown as dark rectangles in the figure. The range for the

singular values of Θ can at best serve as an indirect proxy for the end-to-end performance

of the system; IPE-T is a more direct parameter. Fig. 4.12 shows the IPE-T in the DWT

spike features with respect to ν and ξ. For the exact solution (ν = ξ) shown with dark

107



0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

#
 F

e
a
tu

re
 V

e
c
to

rs

IPE−1

N=512

N=64

ξ=15×

0 0.5 1.0
0

150

300

450

600

#
 F

e
a

tu
re

 V
e

c
to

rs

IPE−2

× 10
−15

N=512

N=64

ξ=15×

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

#
 F

e
a
tu

re
 V

e
c
to

rs

IPE−T

N=512

N=64

ξ=15×
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Figure 4.11: The singular values of Θ are within the theoretical limits. They degrade

minimally with increasing values of ν. The exact solution (i.e., ν = ξ) in each case is

shown with a dark bar.

boxes in Fig. 4.12, IPE-T is below 19% even at ξ = 24×. The figure also indicates that

for ξ < 12×, we can scale ν up to 15× while retaining the same level of IPE-T. This saves

substantial computational energy in CA with 15× fewer operations associated with Ĥ.

Inference performance with ξ. With fewer compressively-sensed samples (i.e., larger

ξ), we expect the accuracy of SC, CV, and FR estimates to deteriorate in RA and CA.

Since H is a square processing matrix in the neural prosthesis application, we use the exact

solution for Ĥ (from Sec. 4.2.1). Fig. 4.13 shows the estimation error for CA and RA.
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Figure 4.12: IPE-T in CA. The exact solution of Fig. 4.10 is shown with dark boxes. The

cases of ν < ξ, which are not favorable for low-energy operation are shown with a cross.

We use three methods for reconstructing the spikes from x̂, namely basis pursuit [12], l1-

Magic [194], and SPG-Lasso [195]. However, the results for only basis pursuit, which

performs better than the other two algorithms, are shown in Fig. 4.13. Each performance

metric is obtained for the exact solution (i.e., ξ = ν case). The estimation errors are with

respect to GT and averaged over the four records and three clusters. We observe that the

performance trends for CA are similar to those of RA. Performance degrades gracefully,

e.g., even at ξ = 24×, the estimation errors with respect to GT for SC, CV, and FR are below

8.65%, 5.06%, and 9.96% in CA and 6.66%, 4.91%, and 7.54% in RA, respectively. Thus,

the exact solution enables CA to perform nearly as well as RA. Since compression does not

introduce significant errors, we can significantly compress the spikes before transmitting

them to the external head-stage. We next study the performance trends in CA under an

approximate solution for Ĥ (from Sec. 4.2.2).

Inference performance with ν: Since the approximate solution permits a smaller Ĥ

matrix, it enables additional savings in computational energy. However, as described in
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increasing ξ, enabling us to compress the spikes significantly.
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Sec. 4.2.2, due to the approximation required in ŷ, this can impose a performance cost.

Fig. 4.14 shows trends in performance as we simultaneously scale projection factor ν and

compression factor ξ. The points corresponding to the exact solution for x̂ are shown as

black squares; we can see that this performance corresponds to the IPE-T trends observed

in Fig. 4.12. Fig. 4.14 also indicates that the degradation in the three parameters (i.e., SC,

CV, and FR) is small with increasing values of ν. For example, for both SC and FR (left

and right plots), ν = 6× (at ξ = 9×) incurs very little error, yet enables >54× reduction in

the size of the transformation matrix for CA processing; CV incurs somewhat higher error,

but still quite small. All these error values are ≤ 3.5%

4.5 Case Study II: Epileptic Seizure Detection using

Compressively-sensed EEG

In this section, we present a second case study that is a variant of the system presented in

Chapter 3. The Nyquist-domain processing matrix H we consider is non-square. We thus

derive the compressed-domain equivalent matrix Ĥ using the solution in Sec. 4.2.3. First,

we describe the modified Nyquist-domain algorithm for seizure detection, which employs

patient-specific classifier training [147]. The Nyquist-domain algorithm is similar to that

presented in Chap. 3 but with additional stages of downsampling incorporated to obtain a

non-square processing matrix H.

Fig. 4.15 shows the baseline algorithm for seizure detection. As before, a two-second

epoch from each EEG channel is processed using eight BPFs with passbands of 0-3 Hz,

3-6 Hz, . . ., 21-24 Hz. Note that unlike in Chapter 3, however, the EEG signals are first

downsampled before filtering. This process makes the BPFs rectangular, requiring the

compressed-domain transformation for non-square H presented in Sec. 4.2.3. The spectral

energy from each filter is then represented by summing the squared value of the output

samples to form an FV, which is then used for classification by an SVM classifier. The
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Figure 4.14: Scaling with ν: performance in CA is retained up to ν = 6×. Points of exact

solution are also shown in the plots as dark squares. The cases of ν < ξ, which are not

favorable for low-energy operation are shown with a cross.
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Figure 4.15: Spectral-energy feature extraction in NA can be represented as a product of

the decimation matrix D4,512 and an FIR BPF H∗.

feature-extraction process represents a special case of non-linear processing, (i.e., we han-

dle this by deriving a random projection and use the JL lemma to represent the signal

energy). Further, note that since the feature-extraction process for this particular applica-

tion involves spectral-energy extraction after filtering, the energy in the filtered EEG signal

from each filter corresponds to one dimension of the FV. This operation can be represented

as an inner-product computation: fij = yT
ij
yij. Relating the entire feature-extraction process

with the stages in Fig. 4.1, we observe that there is an additional inner-product computation

involved before classification (as also shown in Fig. 3.3). Thus, for this case study, the IPE

metric defined in Sec. 4.3 directly represents the error in the signal features.

The baseline detector in NA is again validated on 558 hours of EEG data from 21

patients (corresponding to 148 seizures) in the CHB-MIT database [165]. For every patient,

up to 18 channels of continuous EEG is processed using eight BPFs, leading to an FV

dimensionality of 144.

4.5.1 Formulating Feature Extraction as a Matrix Operation

To enable a transformation to the compressed domain, we focus on computations in the

feature-extraction stage of Fig. 4.15. Recall that to enable efficient processing with a low-

order FIR filter, we down-sample the EEG signals before filtering. Since the BPFs in the
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filter bank have a maximum cut-off frequency of 24 Hz and EEG signals in the CHB-MIT

database are sampled at 256 Hz, we down-sample the data from each channel by a factor

of 4. For each data channel, one EEG epoch (corresponding to 512 Nyquist samples) thus

results in 128 decimated samples. These samples are then processed with eight BPFs of

order 64. To represent the BPF computations as a matrix operation, we generalize the

formulation given in Eq. (4.19) [Sec. 4.4.2 handled decimation of an N-sample signal by

2×]. We define a new decimation matrix D4,512, which acts upon a 512-sample EEG epoch

to give 128 decimated samples. Suppose we represent one EEG epoch from the jth channel

as xj. Then D4,512, which has the structure shown in Fig. 4.15, acts upon xj to give us 128

samples. Further, suppose we represent each 64-order BPF before energy accumulation as

a convolution matrix H∗
i
, 0 ≤ i ≤ 7, of dimensionality 128 × 128 – observe that H∗

i
has a

structure shown in Fig. 4.15, where each row is a shifted version of the previous row. We

can then represent the decimation + filtering operation in the feature-extraction stage as the

following cascaded operation:

yij = H∗i D4,512 xj (4.20)

where yij is the filtered EEG data derived from the ith filter acting upon the jth EEG channel.

The Nyquist-domain processing matrix for each BPF can thus be defined as Hi = H∗
i
D4,512.

This matrix is rectangular and has a dimensionality of 128 × 512.

Next, we investigate the variation of IPE with ξ as well as its correlation with the per-

formance of the end-to-end algorithm.

4.5.2 Experimental Results

In this section, we study the error in the FVs (represented by IPE) and the performance of

the end-to-end system. We will see that the performance does not correlate directly with

the IPE because the information content of the features is what controls the performance of

the system (see Sec. 3.6.1). This behavior, which is unlike the previous case study, is due to

the presence of the spectral-energy operation in the feature-extraction stage. We thus also
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study the variation in mutual information with respect to ξ in CA and compare it with that

in RA.

In CA, we derive compressed-domain processing matrices Ĥi from the corresponding

rectangular NA matrices Hi using the solution in Sec. 4.2.3. Note that Ĥi has K × M [or

N(1/ν + 1/ξ)] entries. As in NA, we then obtain the processed signal from each filter as:

ŷij = Ĥi Φ xj, where the processing matrix Ĥi acts directly on the compressively-sensed

signalΦxj. We then derive a CA-estimate of the spectral energy as: f̂ij = yT
ij
yij.

Note that varying ν is not very informative in this case, since unlike square matrices,

there is no possibility of an exact solution when ξ = ν. Thus, we study the IPE charac-

teristics and algorithmic performance by fixing ν at 1× and only vary ξ. We present the

simulation results below.

IPE with respect to ξ. The error in the FVs (IPE) is defined as: IPE = ‖f̂ij − fij‖/fij. We

expect the error to increase with increasing compression (ξ > 1×). For our experiments,

we keep ν = 1× and scale ξ. The computational savings in CA thus increase with ξ [Ĥi has

N(1/ν + 1/ξ) entries]. Fig. 4.16 shows the trend in IPE. The plot also shows the variation

across all patients in the database. We observe that the IPE is less than 19.5% upto ξ = 51×,

at which point we only transmit and process 10 EEG samples per epoch. The figure also

shows the IPE in RA, where we reconstruct each epoch using gradient projection [12].

For each patient, we learn a new sparse dictionary Ψ from K-SVD using 10-fold cross-

validation [30]. We observe that IPE in CA is close to the IPE in RA, thus validating the

solution for Ĥi in Sec. 4.2.3. We next proceed to study the impact of the error in the FVs

on overall system accuracy.

Inference performance with respect to ξ. To evaluate the performance of the

compressed-domain detector, we derive FVs from the CHB-MIT database. We use these

FVs to train and test the SVM classifier in a patient-specific manner. We employ a

leave-one-out cross-validation scheme for measuring the performance of the detector.

Accordingly, for each patient, we use all seizure records except one, along with all non-
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Figure 4.16: Variation in IPE-T across 23 patients in the CHB-MIT database. Mean IPE-T

in CA is close to the mean IPE-T in RA.

seizure records for training the classifier. We then apply the resulting SVM model only

to the record that was left out in the training phase. We repeat this validation process for

each record of a patient. Fig. 4.17 shows the scaling in performance (over 21 patients) in

CA. The performance of the compressed-domain detector is very close to the Nyquist case

at ξ = 1×. For CA, at a compression of 1×, the sensitivity is 95.53%, latency is 4.59 sec.,

and the number of false alarms is 0.1538/hr. These performance numbers begin to degrade

with the compression factor. The corresponding numbers at ξ = 21× are 94.43%, 4.70

sec., and 0.1543/hr., respectively. Thus, at higher values of ξ (which give corresponding

energy savings), the degradation in sensitivity is 1.1% at ξ = 21×, beyond which it begins

to drop more significantly. The scaling in the number of false alarms per hour and the

latency also follows a similar trend. The mean latency of detection increases by 2.41%

while the specificity of the algorithm degrades by only 0.33% at ξ = 21×. Fig. 4.18 shows

the performance of RA. We observe that it is close to the performance of CA. These trends,

however, do not correlate with the IPE in Fig. 4.16. For example, at ξ > 33×, IPE in RA is

constant around 16% but the difference in performance for values of ξ > 33× is significant.

Next, we study the information content in the FVs, which we showed to be a metric that

directly indicates the end-to-end performance of the detector in Chapter 3.
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Figure 4.17: Performance of the seizure detection algorithm in CA by transforming a rect-

angular processing matrix H: Performance is maintained upto ξ = 24×.
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Figure 4.18: Performance of the seizure detection algorithm in RA by transforming a rect-

angular processing matrix H: Performance is maintained upto ξ = 24×.
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Figure 4.19: Information in CA and RA by transforming a rectangular processing matrix

H: Mutual information follows the performance trends.

Mutual information with respect to ξ. Fig. 4.19 shows the variation in mutual infor-

mation of the FVs in RA and CA vs. ξ. We see that the inference performance corresponds

to the FV mutual information.

Based on the results for the multi-rate system presented in this section, very limited

degradation is seen up to large compression factors. This supports the CA system model.

4.6 Chapter Summary

Sparsity of signals provides an opportunity to efficiently represent sensor data. Compres-

sive sensing is one technique that exploits signal sparsity in a secondary basis to achieve

very low-energy compression at the cost of high complexity in signal reconstruction. The

energy for reconstruction can present a significant barrier to signal analysis, which is be-

coming increasingly important in emerging sensor applications. In this chapter, we im-

proved upon the approach presented in Chapter 3 to derive computations that can be per-

formed directly on compressively-sensed signals. Our methodology employed an auxiliary
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matrix Θ instead of Φ used in the compressed-domain equation [Eq. (3.8)] in Chapter 3.

Through analytical validations, we observed that this approach can significantly improve

upon the error values in feature estimates obtained in Chapter 3. Thus, our approach can

potentially permit higher amounts of data compression for the same amount of degradation

in detector performance. We also showed that the new error values that we obtain are very

close to the expected lower limit. We validated our approach with two case studies, namely

spike sorting for neural prosthesis and EEG classification for seizure detection. For the

neural-prosthesis application, our experimental results suggest that we can achieve com-

putational energy savings of up to 54× while restricting detection errors to under 3.5%.

Using our approach, the reductions in communication energy can also be significant. For

instance, in the seizure-detection application, the detection error was under 2.41% when we

used ∼ 21× fewer transmitted EEG samples. Our approach thus provides an approach for

signal-processing systems that addresses system-resource constraints, such as energy and

communication bandwidth, through efficient signal representation. This is in contrast to

efforts that focus on efficient architectures and algorithms alone. An interesting offshoot of

the auxiliary-matrix based approach is that it permits flexibility in the compressed-domain

equations allowing us two kinds of solutions: (1) one that provides the highest accuracy,

and (2) another that saves computational energy. This raises a new energy-accuracy trade-

off in CA-based systems. In the next chapter, we explore this trade-off along with other

practical implications of CA through a prototype IC implementation.
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Chapter 5

IC Implementation: Seizure Detection in

the Compressed Domain

Compressed-domain analysis can potentially help overcome the limitations of compressive

sensing. In this chapter, we explore the implications of CA on a practical system. For

a quantitative study, we use the seizure-detection system of Chapter 3, where we employ

square BPF matrices followed by spectral-energy extraction and SVM classification. We

provide measurements from a prototype IC that directly analyzes compressively-sensed

EEG for embedded signal analysis. This has two advantages. First, with compressive

sensing, reconstruction costs are typically severe, precluding embedded analysis; directly

analyzing the compressed signals circumvents reconstruction costs, enabling embedded

analysis within applications. Second, the use of compressed signals reduces the computa-

tional energy of signal analysis due to the reduced number of signal samples. We rely on

the auxiliary matrix based algorithmic formulation for square matrices (from Chapter 4)

to transform computations to CA. Thus, we describe a hardware architecture that exploits

the two strong power-management knobs presented in the previous chapter. These knobs

allow application-level performance to scale with computational energy. The two knobs

are parameterized as follows: (1) ξ, which quantifies the amount of data compression, and
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Figure 5.1: Comparison of our IC implementation with previous work: we propose to

directly analyze compressively-sensed data.

(2) ν, which determines the approximation error within the proposed compressed-domain

processing algorithm.

5.1 Introduction

Compressive sensing has been used to overcome communication-energy and -bandwidth

constraints in low-power sensors. Owing to the high cost of reconstructing the signal,

however, as shown in Fig. 5.1, previous implementations that exploit compressive sensing

have resulted in practical implementations that are limited to primarily serving as nodes

for transmitting raw data to a base station [10, 26]. As mentioned previously, in advanced

medical devices, however, there is a need to also analyze signals on the node [91]. Such

devices typically work by extracting signal features based on physiological biomarkers and

then feeding these features to high-performance classifiers to detect targeted physiological

states [91, 93]. However, since compressive sensing involves multiplication by random

projection matrix Φ, the biomarkers get obscured and thus present a challenge for signal

analysis. The CA methodology we presented in Chapter 4 allowed us to perform detection

directly in the compressed domain. The IC implementation we describe next exploits this

methodology using embedded power-management knobs in an EEG-based seizure-detector

(that employs a square BPF matrix) enabled by operation in the compressed domain.
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The rest of this chapter is organized as follows. In Sec. 5.2, we present simulation re-

sults showing the accuracy of seizure detection using the exact and approximate solutions.

We also provide information analysis of the compressed-domain FVs. In Sec. 5.3, we

describe the low-power compressed-domain processor for seizure detection. Within this

section, we discuss circuit- and architecture-level opportunities for power management.

We present measurement results from an IC prototype in Sec. 5.4. Finally, we conclude in

Sec. 5.5.

5.2 Performance of the Compressed-domain Seizure De-

tector

We apply the NA to CA transformation methodology of Chapter 4 to the seizure detection

algorithm presented in Chapter 3. Recall that to enable a transformation to the compressed

domain, the ith BPF for the jth EEG channel can be formulated as matrix multiplication,

namely of an input signal xj by a matrix Hi to compute the filtered signal yij. This formu-

lation leads to the compressed-domain system shown in Fig. 3.5(b), which is based on the

CD-BPFs. Since Hi is square, in this system, we can derive the corresponding matrix Ĥi

using (1) an exact solution, and (2) an approximate solution, as described in the previous

chapter. Figs. 5.2 and 5.3 show the simulated performance of the two approaches, respec-

tively. Note that these results are different from Fig. 4.17 since, in this case, we use an Ĥ

derived from a square matrix H in the Nyquist domain. In Fig. 4.17, we used a rectangu-

lar matrix to incorporate the additional downsampling process. Fig. 5.2 shows that for the

exact solution, performance very close to the Nyquist-domain seizure detector is retained

up to large values of compression factor ξ. For a given amount of data compression (i.e,

at fixed ξ), Fig. 5.3 shows that using an approximate solution, the performance begins to

degrade gradually with increasing values of ν. Further, these performance trends correlate
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Figure 5.2: Performance in CA by transforming a square processing matrix H: Perfor-

mance of the compressed-domain seizure detection algorithm using the exact solution

(shown over 558 Hrs. of EEG data from 21 patients) is maintained up to large ξ.

well with the information content [13, 14], based on the mutual information of the FVs,

which is shown for the exact and approximate solutions in Fig. 5.4.

Based on the performance analysis presented in this section, we can conclude that ξ

and ν provide us with two knobs to control the end-to-end performance of the compressed-

domain detector. Next, we study the impact of these two knobs on the size of the

compressed-domain processing matrices Ĥi and thus on the processor implementation and

energy.
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Figure 5.3: Performance in CA by transforming a square processing matrix H: When we

use the approximation solution, the performance begins to degrade gradually due to the

JL-approximation at higher values of ν. The exact solution of Fig. 5.2 is shown with dark

boxes. The cases of ν < ξ, which are not favorable for low-energy operation, are shown

with a cross.
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Figure 5.4: Information in CA by transforming a square processing matrix H: Mutual infor-

mation in (a) the exact solution, and (b) the approximate solution follows the performance

trends shown in Figs. 5.2 and 5.3, respectively.

5.2.1 Processor Architecture with Power Management

We exploit the scalability of ξ and ν as knobs for system power management. An impor-

tant consequence of the algorithmic construction proposed is that the CD-BPF matrices Ĥi

(which are of dimensionality N
ξ
× N
ξ

for the exact solution and N
ν
× N
ξ

for the approximate

solution) do not retain the regularity of Hi. Even though Hi are of dimensionality N × N,

as shown in Fig. 5.5, the rows of Hi are simply selected to implement convolution, and thus

are shifted versions of the same FIR-filter impulse response. As a result, very few unique

filter coefficients are required, and many of the coefficients are zero, as determined by the

FIR-filter order k. However, in deriving Ĥi, the shifted impulse responses and zero entries

are disrupted. As shown in Fig. 5.5, the number of multiplications required thus no longer

depends on the filter order, but rather (1) quadratically on the compression factor ξ for the

exact solution, and (2) linearly on both ξ and ν for the approximate solution. This scaling

can potentially reduce the number of multiplications required.
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Figure 5.5: CD-BPF matrices Ĥi, derived using Hi and Φ, disrupt the regularity and zeros

in Hi. The complexity of the CD-BPFs thus scales (a) quadratically with ξ for the exact

solution, and (b) linearly with ξ and ν for the approximate solution.

Figure 5.6: Architecture block diagram of energy-scalable, compressed-domain seizure

detector.
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To exploit this scaling, we propose the energy-scalable processor architecture whose

block diagram is shown in Fig. 5.6. The processor consists of two computational stages:

compressed-domain feature extraction followed by SVM classification. The compressed-

domain feature extractor (CD-FE) includes a CD-BPF and energy-accumulator block. The

coefficients for the CD-BPF are pulled from a scalable SRAM bank. Due to the disruption

in regularity, the Ĥi matrices need a larger number of distinct coefficients to be stored,

potentially increasing the memory requirements. Scalability in the SRAM bank is thus

an important aspect of power management. We achieve this through the use of multiple

subarrays, which enable fine-grained power-gating as well as reduced bit-line and word-line

access energy. The total bank size in our implementation is 32kB, which is partitioned into

four subarrays. An SVM classifier (which comprises an inner-product core followed by a

kernel transform) is also integrated to perform real-time seizure detection using the derived

FVs. Compressively-sensed EEG signals are input directly to the processor for seizure

detection. However, for the case of Nyquist inputs, a compressive-projection frontend

(CPF) is also included to explicitly multiply inputs by a random projection matrix Φ; thus

the energy savings derived from a reduced number of samples can be exploited even if the

original input signal is not compressively sensed.

5.3 Low-energy Compressed-domain Processor

In this section, we describe the circuits used in the compressed-domain processor. We also

present an analysis of SRAM energy, which will help us understand the impact of energy

scalability in the processor with respect to ξ and ν.

5.3.1 Circuits

Fig. 5.7 shows the circuits used in the compressed-domain processor. The CPF is selectable

for front-end signal compression. It uses a 16b linear feedback shift register (LFSR) to im-
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Figure 5.7: Circuits used in the compressed-domain processor for seizure detection.

plement multiplication with a random projection matrix Φ, as shown. Since the processor

operates on an EEG epoch of 2 seconds, FVs are derived at the rate of 0.5 Hz. At this low

rate, the CD-FE can compute each feature dimension sequentially and store the intermedi-

ate results in a data buffer. The CD-FE can be configured to compute up to eight spectral

features (i = 0, . . . , 7) for each EEG channel ( j) over as many as 18 channels, yielding a

maximum FV dimensionality of 144. Within the CD-FE, the control pulse S 0 initiates CD-

BPF computations. A multiply-accumulate (MAC) unit (M0) is used to perform the matrix

multiplications required for compressed-domain band-pass filtering using Ĥi. Each filtered

EEG epoch is then registered by control pulse S 1. Energy accumulation over the output

vector is then performed by a second MAC unit (M1). After the feature-extraction process

[which requires (N/ξ)(N/ξ + 1) MAC operations], each FV dimension ( f̂i j) is stored in an

intermediate FV buffer based on control pulse S 2.
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Fig. 5.8 shows the frequency response of the Nyquist-domain BPFs at different coeffi-

cient resolutions. We observe that even at a resolution of 8 bits, the stopband attenuation is

below -25 dB. To investigate further, all EEG epochs in the CHB-MIT database that contain

seizures are processed using floating-point BPF coefficients. These filtered epochs consti-

tute the baseline signals. The same epochs are then processed using BPF coefficients at

resolutions of 4-16 bits. The difference between these filtered signals and the baseline rep-

resents the noise. The SNR in the filtered EEG epochs is thus computed using the noise and

the baseline EEG epochs. Fig. 5.9 shows the SNR of the filtered EEG epochs processed by

the BPFs quantized at different resolutions. The figure shows that the SNR remains above

40 dB even at 6 bits of coefficient precision. In our implementation, we choose to represent

filter coefficients using 8 bits of precision. To support CD-FE computations, the processor

thus requires a maximum of 32kB accesses per second from the memory bank.

Fig. 5.10 shows that the SRAM energy per access (E sram
acc ) is reduced by choosing

smaller-sized subarrays [196]. Since the ξ and ν knobs scale the memory required, design-

ing a single 32 kB array would be sub-optimal for many of the parameter points. Instead,

we use four subarrays (each of size 8 kB) to balance savings in energy per access with

the overhead of further partitioning. With this partitioning, leakage energy saving can be

achieved by independently power-gating each sub-array (from off-chip).

After the CD-FE computations, each FV is processed by the SVM block within the

epoch duration of two seconds. The SVM can apply linear, polynomial, or RBF kernel

transformations (via an embedded CORDIC engine). The SVs are derived from offline

training of the classifier and are provided through a dedicated interface. The classification

result is encoded in the MSB of the SVM output (MSB = 1 for seizure detected, MSB = 0

for no seizure detected).

131



0 5 10 15 20 25 30
−60

−40

−20

0

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
) Stopband

attenuation:
−25 dB

(a) Floating point

0 5 10 15 20 25 30
−60

−40

−20

0

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
) Stopband

attenuation:
−25 dB

(b) 12 bits

0 5 10 15 20 25 30
−60

−40

−20

0

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
d

B
)

Stopband
attenuation:

−25 dB

(c) 8 bits

Figure 5.8: Frequency response of the Nyquist-domain BPF matrices at different coefficient

resolutions: (a) floating point, (b) 12 bits, and (c) 8 bits. The stopband attenuation is below

-25 dB even at 8 bits of resolution.
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sized arrays.
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Figure 5.11: Summary of energy components contributing to total SRAM energy (the ξ =

4×, ν = 8× case is shown for illustration).

5.3.2 SRAM Energy Analysis

The CD-FE energy comprises the logic and SRAM energy subcomponents. The SRAM

consumes a substantial portion of the total CD-FE energy. Its optimization to exploit scal-

ability with respect to ξ and ν is thus a key factor. The detector processes an EEG epoch

every TEPOCH = 2 sec. However, the optimal operating frequency (and supply voltage

Vdd,opt) for the CD-FE logic is determined by minimizing the overall CD-FE energy, while

ensuring a minimum throughput that allows the active CD-FE computations to be com-

pleted in TCD−FE (< 2) seconds for each value of ξ and ν. For the remainder of the epoch

(i.e., TEPOCH − TCD−FE), the logic and SRAMs can be placed in low-energy idle modes.

Fig. 5.11 summarizes the SRAM operating modes and energies [196]. The total SRAM

energy is the sum of the active-mode (ES RAM
act ) and idle-mode (ES RAM

idl
) energies for each

subarray that is enabled (numbering Nsub); under the assumption that the SRAMs cannot

by fully power-gated in order to ensure data retention, ES RAM
idl

is not zero. During the active

mode, the SRAM operates at the minimum operational supply voltage (Vsram,min), which is

the lowest possible voltage at which data can be read from and written to the SRAM. The

SRAM thus fails to operate normally below Vsram,min. For the process and technology node
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considered in this chapter, we empirically determine Vsram,min to be 0.7 V . At this voltage,

it operates at 920 kHz, thus providing sufficient performance for CD-FE. During the idle

mode, the SRAM operates at its minimum data-retention voltage (Vsram,drv), which is the

lowest possible supply voltage at which the data can be retained inside the SRAM. For the

process and technology node considered in this chapter, we empirically determine Vsram,drv

to be 0.42 V .

In the active mode, while set to a supply voltage of Vsram,min, ES RAM
act comprises active-

switching (ES RAM
act,swi

) and leakage (ES RAM
act,lkg

) energies for a period of TCD−FE . In the idle mode,

while set to a supply voltage of Vsram,drv, ES RAM
idl

comprises only the leakage energy (ES RAM
idl,lkg

)

for the duration (TEPOCH −TCD−FE). Thus, we can represent the SRAM energy components

as follows:

ES RAM
lkg = ES RAM

idl,lkg + ES RAM
act,lkg

= NsubTCD−FE{IVsram,min
Vsram,min}

+ Nsub(TEPOCH − TCD−FE){IVsram,drv
Vsram,drv} (5.1)

ES RAM
act,swi = E sram

acc × #accesses (5.2)

The duration of the active mode (TCD−FE) in Eq. (5.1) depends on ξ, ν, and the optimum

logic voltage Vdd,opt. For smaller (larger) values of ξ and ν, there are more (fewer) coeffi-

cients in Ĥi and TCD−FE (the active CD-FE time) is higher (lower). For instance, TCD−FE

is 0.26 sec. for ξ = 4× and ν = 8×, as shown in Fig. 5.11. It increases to 0.52 sec. at

ξ = ν = 4× and reduces to 0.13 sec. at ξ = 4× and ν = 16×. Further, the number of active

subarrays (Nsub) is also a function of ξ and ν; Fig.5.12 shows this dependence. Eqs. (5.1)

and (5.2) also show that although ES RAM
act,swi

remains invariant with changing values of Vdd, it is

impacted by ξ and ν (since # accesses changes with ξ and ν). Similarly, the SRAM leakage

energy ES RAM
lkg

scales substantially with ξ and ν. Consequently, the optimal logic voltage
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Figure 5.12: Number of active sub-arrays (Nsub) scales substantially with ξ and ν affecting

the SRAM leakage energy.

Vdd,opt, which minimizes the SRAM and the logic CD-FE energy, also changes with respect

to ξ and ν. We study the variation of Vdd,opt in the next section.

5.4 Measurement Results

The IC was prototyped in a 0.13µm CMOS process from IBM. The die photograph and

performance summary are shown in Fig. 5.13 and Table 5.1, respectively. 18 channels

of Nyquist EEG signals are sampled at a rate of 256 Hz, and eight CD-BPFs are derived

corresponding to eight Nyquist-domain BPFs, each of order k = 64 (based on the filter

specifications required for seizure detection [93]). This leads to a total FV dimensionality

of 144. Table 5.1 shows that the CPF permits EEG compression by a factor of ξ = 2-

24×, consuming 85-7.3 pJ of energy. Also, the total processor energy is in the 2.2-0.3 µJ

range (for linear SVMs), 10.5-38.5 µJ range [for non-linear SVMs using a fourth-order

polynomial kernel (poly4)], and 16.0-53.2 µJ range (for SVMs with an RBF kernel). Since

the feature processing rate is 0.5 Hz, the total processor power lies between 0.6-106 µW

136



Figure 5.13: Die photo of IC.

for all SVM kernels. The results presented next consider the impact of ξ and ν scaling on

the feature-extractor, classifier, and overall processor energies.

5.4.1 Determining the Optimal Voltage for CD-FE Logic

As described in the previous section, the SRAM leakage energy changes with both ξ and ν.

Thus, the optimal voltage (Vdd,opt) for the CD-FE logic changes with both ξ and ν. In order

to determine Vdd,opt, we minimize the total CD-FE energy comprising the logic and SRAM

energies.

Fig. 5.14 shows the measured subcomponents of the CD-FE energy with respect to Vdd

when Nsub ranges from 1 to 4 (corresponding to four different values of ξ and ν). For

all values of Nsub, the active energy (E
logic

swi
) of the CD-FE logic increases and the leakage

energy (E
logic

lkg
) decreases with increasing values of Vdd, leading to the minimum-energy

point of 0.46 V [198]. However, this is not Vdd,opt since we need to also consider the

SRAM energy. The SRAM operates at 0.7 V in the active mode. We see from Fig. 5.14

that the SRAM active-mode access energy ES RAM
act,swi

does not change with Vdd [consistent

with Eq. (5.2)]. Further, the leakage energies in the active (ES RAM
act,lkg

) and idle modes (ES RAM
idl,lkg

)
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Table 5.1: Performance summary: energy-scalable, compressed-domain processor IC.

Technology IBM 130nm LP CMOS

Supply voltage CD-FE: 1.2-0.44 V

SRAM: 0.7/0.42 V

CPF/ SVM: 0.48 V

EEG sampling rate 256 Hz

Clock frequency 10.2−0.3 MHz

CPF compression factor ξ 2-24×
Projection factor ν 2-24×

Feature computation rate 0.5 Hz

CD-BPF memory size 0.44-32 kB

SUBBLOCK ENERGY MEASUREMENTS

per FV per Clock

CPF (at 0.48 V) 85.0-7.3 pJ 10.6 fJ

CD-FE logic (at Vdd,opt) 70.8-1.3 nJ 1.3 pJ

SRAM subarray (at 0.7 V) 2.1-0.1 µJ 5.0 pJ

Total Feature Extraction 2.1 µJ-93.2 nJ 6.3 pJ

SVM
RBF 16.0-53.2 µJ 6.0 pJ

Poly4 10.5-38.4 µJ 4.8 pJ

Linear 62.9-209.0 nJ 2.0 pJ

Total Processor (linear SVM) 2.2-0.3 µJ 8.3 pJ
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Figure 5.14: The CD-FE energy subcomponents introduce non-linear dependence on ξ and

ν. Primarily, the SRAM leakage energy in the active (ES RAM
act,lkg

) and idle mode (ES RAM
idl,lkg

) is sub-

stantially impacted by Nsub and TCD−FE . The active-mode SRAM access energy (ES RAM
act,swi

),

however, does not change with ξ or ν.

increase as Nsub increases. This is also expected since from Eq. (5.1), ES RAM
lkg

depends on

Nsub. However, since both ES RAM
act,lkg

and ES RAM
idl,lkg

also depend on Vdd,opt, the increase in the

leakage energies is not proportional to the increase in Nsub [Eq. (5.1)]. The total CD-FE

energy is thus a non-linear function of ξ and ν, which necessitates Vdd,opt to be determined

numerically.

Fig. 5.15 shows the measured CD-FE energy at different voltage values for the cases

considered in Fig. 5.14. For these four instances, we see from the figure that Vdd,opt for the

CD-FE logic is either 0.48 V or 0.5 V. The corresponding frequencies are determined to

be 380 or 420 kHz, respectively, from the frequency vs. Vdd plot in Fig. 5.16. With more

measurements, we determine Vdd,opt, frequency, and active time (TCD−FE) for the CD-FE

logic when ξ and ν vary in the 2-24× range. The results are shown in Figs 5.17(a), (b), and
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Figure 5.16: The operating frequency vs. Vdd for the CD-FE logic.

(c), respectively. For all values of ξ and ν, the active time TCD−FE varies in the 0.9-0.02 sec.

range and is below the epoch time of 2 sec., which allows sufficient time (TEPOCH − TCD−FE)

for the SVM classifier to finish computing.
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Figure 5.17: As ξ and ν scale in the 2-24× range, (a) the optimal voltage for the CD-FE

logic (Vdd,opt) varies in the 0.5-0.44 V range, (b) the corresponding operating frequency

varies in the 420-300 kHz range, and (c) the CD-FE active time (TCD−FE) varies in the

0.9-0.02 sec. range.
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Figure 5.18: The CD-FE logic energy for (a) the exact solution, and (b) the approximate

solution measured at Vdd,opt. The energy scales substantially with ξ and ν.

5.4.2 Feature-extractor Energy

As mentioned previously, the CD-FE energy comprises the logic and SRAM energies. In

this section, we provide measurement results for these energy subcomponents using both

the exact and approximate solutions for Ĥi.

CD-FE logic energy. Recall from Sec. 5.2.1 that for the exact solution (i.e., when

ξ = ν), the CD-FE complexity scales quadratically with ξ; for the approximate solution, it

scales linearly with both ξ and ν. Figs. 5.18(a) and (b) show the CD-FE energy for the exact

and approximate solutions, respectively. For each value of ξ and ν, the energy is reported

for Vdd,opt, which minimizes CD-FE’s active-switching and leakage energies as well as the

SRAM energy; the Vdd,opt values are also annotated in Fig. 5.18(a) and can be correlated to

Fig. 5.17(a).

SRAM energy. Figs. 5.19(a) and (b) show the SRAM leakage energies in the idle and

active modes and Fig. 5.19(c) shows the SRAM access energy in the active mode, versus

ξ and ν. We can see from the figures that for smaller values of ξ and ν, since the size
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of Ĥi is larger, TCD−FE is higher and the SRAM active energy dominates the idle-mode

energy. This is also consistent with a higher value of Vdd,opt at these values of ξ and ν,

which helps the CD-FE computations to finish sooner. In contrast, at larger values of ξ

and ν, however, there are fewer coefficients in Ĥi and the SRAM spends most of the time

in the idle mode. This behavior is clear from Figs. 5.20(a) and (b), which show the total

SRAM energy for the exact and approximate solutions. The figures show that the total

SRAM energy is nearly equal to the SRAM idle-mode energy at higher values of ξ and

ν. Further, the figures also show substantial scaling in the total SRAM energy and in its

constituents with respect to ξ and ν. This scaling occurs due to the variation in Nsub and

TCD−FE versus ξ and ν [see Eqs. (5.1) and (5.2) and Figs. 5.12 and 5.17(c)]. The SRAM

energy thus eventually begins to saturate due to the granularity limit of the four subarrays;

a finer granularity would enhance scaling at the cost of additional hardware overhead.

Total feature-extraction energy. From the above results, we see that the SRAM energy

can significantly dominate the CD-FE logic energy at all values of ξ and ν. This behavior

validates the focus on optimizing the SRAM energy in Sec. 5.3.2; for instance, at ξ = 4×

and ν = 2×, the total SRAM energy is 2.1 µJ and the CD-FE logic energy is 70.8 nJ. The

contribution of the energy subcomponents is also apparent in the total CD-FE energy plots

shown for the exact and the approximate solutions in Figs. 5.21(a) and (b), respectively

(results are for 18 EEG channels with eight CD-BPFs). These plots show that the CD-FE

energy profile is similar to the SRAM energy profile presented in the previous section.

Comparison with Nyquist-domain processing. Since Hi are convolution matrices, the

filter order determines the number of non-zero coefficients in Hi (see Fig. 5.5), which, in

turn, determine the feature-extraction energy in the Nyquist domain. However, in the com-

pressed domain, due to the loss of regularity in Ĥi, the feature-extraction energy does not

depend on the filter order in the same way. Thus, in the compressed domain, the energy can

initially increase due to loss of regularity in Ĥi, but then it can eventually decrease owing

to scaling in the size of Ĥi due to both ξ and ν. Further, at a given value of ξ and ν, we can
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(b) Active-mode leakage energy in µJ
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(c) Active-mode switching energy in µJ

Figure 5.19: Each of the SRAM energy subcomponents, i.e., (a) idle-mode leakage

(ES RAM
idl,lkg

), (b) active-mode leakage (ES RAM
act,lkg

), and (c) active-mode access (ES RAM
act,swi

) scale with

both ξ and ν. ES RAM
act,lkg

tends to dominate at smaller values of ξ and ν.
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Figure 5.20: The total SRAM energy for (a) the exact solution, and (b) the approximate

solution scales substantially at smaller values of ξ and ν. At higher values of ξ and ν,

CD-BPF matrices Ĥi are smaller, which makes ES RAM
idl,lkg

dominate the total SRAM energy.
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Figure 5.21: The total CD-FE energy (logic + SRAM) for (a) the exact solution, and (b) the

approximate solution. The SRAM energy tends to dominate and thus provides scalability

with both ξ and ν.
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scale the total CD-FE energy by the ratio of the number of non-zero coefficients in Hi and

Ĥi to derive an estimate for the Nyquist-domain feature-extraction energy. Fig. 5.21 shows

that for the exact solution, at ξ > 4×, the total energy of compressed-domain processing is

less than that projected for Nyquist-domain processing (for a 64-order FIR filter).

5.4.3 Classifier Energy

One downside of directly processing compressively-sensed EEG is that the SVM model for

classification can become somewhat more complex at higher amounts of data compression.

For instance, Fig. 5.22 shows that NS V can increase up to approximately 28% at ξ = 10×.

Intuitively, this happens due to the additional error introduced in the FVs when we solve the

compressed-domain equations [Eq. (4.5)], which necessitates complex decision boundaries

in the classifier. Fig. 5.23 shows the SVM energy for the exact solution using three kernels:

RBF, 4th-order polynomial (poly4), and linear. Figs. 5.24(a), (b), and (c) show the classifier

energy for the approximate solution using the same three kernels, respectively. In each of

these cases, the SVM operates at its minimum-energy point of 0.48 V . From Fig. 5.24, we

can see that the increase in classifier energy opposes the reduction in CD-FE energy. We

can also see that the SVM energy increase becomes worse when ν is significantly higher

than ξ, which reflects the extra error introduced at the algorithmic level due to a degradation

in the JL-approximation.

5.4.4 Total Processor Energy

Fig. 5.25 shows the effect of ξ scaling on the total processor energy for the exact solu-

tion. Figs. 5.26(a), (b), and (c) show the effect of ξ and ν scaling on the total processor

energy for the approximate solution using the RBF, poly4, and linear classification ker-

nels, respectively. The SVM operates at 0.48 V , the CD-FE operates at Vdd,opt [specified

in Fig. 5.17(a)], and the SRAMs operate at 0.7/0.42 V during the active/idle modes. The

figures show that non-linear SVM kernels (i.e., RBF and poly4) consume significant en-
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(b) Poly4 kernel: Classifier energy in µJ

  0.07464

  0.157

  0.1114  0.1052

  0.1483

  0.0705

  0.09938

  0.1401

  0.06659

  0.1323

  0.09384

  0.1249

  0.08863  0.0837  0.07905

  0.118

  0.07464

  0.1114  0.1052  0.09938

  0.0705

  0.09384

  0.06659

  0.08863  0.0837  0.07905

  0.06659
  0.0705

ξ

  0.06659

  0.0705
  0.07464

  0.07464

  0.06659

  0.07905  0.0837  0.08863
  0.09384  0.09938

  0.06659

  0.06659

  0.1052  0.1114

  0.0705

  0.118  0.1249

  0.06659

  0.1323

  0.07464

  0.1401

  0.07905  0.0837

  0.06659

  0.08863

  0.1483

  0.09384  0.09938  0.1052

  0.157

  0.1114

ν

4 8 12 16 20 24

4

8

12

16

20

24

(c) Linear kernel: Classifier energy in µJ

Figure 5.24: The SVM classifier energy measured at the minimum-energy point of 0.48 V

for the approximate solution using (a) RBF, (b) poly4, and (c) linear kernel.
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Figure 5.25: Total processor energy for the exact solution.

ergy, while SVMs with a linear kernel incur minimal energy, causing the energy-scaling

characteristics to be dominated by CD-FE at all values of ξ and ν. For the non-linear cases,

the SVM energy actually leads to optimal ξ and ν values (e.g., for the exact solution, from

Fig. 5.25, an optimal ξ of approximately 5× minimizes the total processor energy).

5.5 Chapter Summary

Compressive sensing exploits signal sparsity in a secondary basis to achieve very low-

energy compression on the sensing node. In this chapter, we presented the design of a pro-

cessor that applies the auxiliary matrix based algorithmic formulation described in Chap-

ter 4 to the seizure detection application (with square BPFs) described in Chapter 3. Our

processor thus enables on-node signal analysis to detect epileptic seizures by directly using

compressively-sensed EEG. Using the methods described in Chapter 4, we first derived an

exact solution for the CD-BPFs. Through simulations, we showed that the performance of

the compressed-domain detector is retained up to high compression factors. Additionally,

by using an approximate solution, we also derived smaller-sized CD-BPFs, saving us more

energy in the compressed domain. By taking advantage of a subarray of SRAMs in a pro-
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(b) Poly4 kernel: Total processor energy in µJ
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Figure 5.26: Total processor energy for the approximate solution using (a) RBF, (b) poly4,

and (c) linear kernel. For non-linear SVMs, classifier energy dominates due to the extra

modeling complexity in the compressed domain, while for linear kernels, CD-FE energy is

higher and permits substantial scalability with ξ and ν.

150



totype IC implementation, we showed how to exploit the two knobs, ξ and ν, to control the

energy consumption of the processor. Thus, due to the ξ and ν knobs, in addition to com-

munication energy savings, through end-to-end data reduction in a system, our processor

provided a mode of power management where the computational energy scaled due to both

a reduction in the number of input samples that needed to be processed and approximations

introduced at the algorithmic level.

Our results also suggest a caveat. Although compressed-domain processing can help

significantly lower the energy for feature extraction by employing higher amounts of data

compression, the classification energy can increase modestly at higher values of ξ. In fact,

many applications require non-linear classifiers; for instance, RBF or polynomial transfor-

mation functions are required for accurate arrhythmia detection [199]. In such applications,

the energy for classification can significantly dominate the feature-extraction energy in NA

itself. In these cases, processing signals using CA can add to the high initial complexity of

the classifier. In the next chapter, we thus explore VLSI optimizations to reduce the over-

all processor energy by focusing on the optimization of the classifier computations. For

this purpose, we employ hardware specialization, while simultaneously retaining selective

flexibility to accommodate applications involving a range of classifier complexities.
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Chapter 6

Hardware Study: Energy-efficient

Classification

In the previous three chapters, we saw that the need for high-order classification models

in CA arises due to the additional error introduced by the compressed-domain equations.

For instance, Fig. 3.14 showed that in a seizure-detection application, although the model

complexity of processing EEG signals in NA was low (only 251 SVs), the complexity in

CA can be significantly higher (up to 28.3% higher at ξ = 10×). This complexity increase

was also reflected in the energy measurements presented in the previous chapter e.g., see

Figs. 5.23 and 5.24 in Sec. 5.4.3. Further, in several embedded applications, especially in

those that employ non-linear kernels, the SVM complexity can be higher to begin with,

i.e., it can be higher in NA itself. For instance, when we have to discriminate between

very similar ECG signals to detect abnormal heartbeats. Both of these situations call for

a reduction in the classifier energy. In fact, reducing the classifier energy for the latter set

of applications will also help us handle the additional complexity increase arising due to

the CA transformation. In this chapter, we thus focus on an application where the clas-

sifier model complexity is extremely high in NA. In particular, we study two algorithms

for detecting cardiac arrhythmias that employ morphological and wavelet feature extrac-
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tion followed by SVM classification. These algorithms require a large number of SVs

for accurate classification. A large number of SVs in linear SVM kernels do not pose a

computational challenge [199]. However, for arrhythmia detection, linear kernels exhibit

poor classification performance, necessitating the use of non-linear transformation func-

tions such as the polynomial and the RBF [199]. These limitations imply high energy costs

for classification in NA. We thus investigate the energy bottlenecks in these algorithms

and perform an architectural design-space exploration for energy reduction. Based on our

analysis, we propose a coprocessor-based platform for signal analysis. In the arrhythmia

application, since the feature-extraction energy is very small compared to classification, we

offload feature-extraction computations, along with all preprocessing steps like segmenta-

tion and beat alignment, to an embedded processor, while performing classification on a

dedicated coprocessor. Our aim in building this hybrid architecture is to provide hardware

specialization to save computational energy, while simultaneously allowing application-

level flexibility. This balancing act makes our platform adaptable to a range of algorithms

for signal analysis. We also quantify the achievable energy savings in the proposed plat-

form through post-layout simulations of a prototype IC implementation.

6.1 Introduction

The central need when embedded devices aim to provide actionable outputs through sig-

nal analysis is the ability to detect specific states of interest from signals that are available

through low-power sensors [91]. However, the targeted and background variations are often

expressed through subtle manifestations in signal waveforms. These manifestations raise

the need for extremely high-order classification models. As an illustration, the challenges

associated with arrhythmia detection are shown in Fig. 6.1. Abnormal beat morphologies

in an ECG, annotated as premature ventricular contraction (V) and ventricular trigeminy

(T), exhibit subtle intra- and inter-patient variability. Their discrimination from normal
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Figure 6.1: Signal correlations to clinically relevant states are complex to model based

on physiology and precise correlations are hard to distinguish from normal physiologic

activity.

(N) beats thus poses a challenge for signal detection and inference. Thus, since both the

targeted and background variations are often expressed through very specific manifesta-

tions in physiological waveforms, their detection necessitates high-order models for signal

analysis.

In fact, for arrhythmia detection, the detection models can be so complex that the clas-

sification energy can substantially dominate the feature-extraction energy. In this chap-

ter, we thus present a specialized computational platform for data-driven signal analysis

that can help reduce the energy costs associated with high-order classification models.

We investigate the principles behind a hardware-specialized architecture by quantitatively

evaluating various platform options, from general-purpose CPUs to custom instructions to

hardware coprocessors. For the coprocessor approaches, we also evaluate the potential of

microarchitecture- and circuit-level opportunities, such as dynamic voltage and precision

scaling. We thus propose an algorithm-driven methodology that takes advantage of the

computational structure and the characteristics of data-driven signal-analysis algorithms.

Our specific contributions are as follows:

• We present an energy analysis of representative signal-analysis algorithms (algo-

rithms for cardiac arrhythmia detection are considered in detail). Our results are

based on patient data from the MIT-BIH database [200] and show that classification,
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the complexity of which depends on the characteristics of the data, can often pose a

major energy limitation. We also show that the computational structure of classifica-

tion limits the energy savings attainable through the use of custom instructions.

• Based on the energy analysis and the computational requirements of various parts

of the algorithms, we propose a generalized architecture for an embedded signal-

analysis platform. This attempts to employ programmability where computational

flexibility is required, while leveraging hardware specialization for classification,

where set computations are required at very high energy efficiency.

• We propose a transistor-level design of a classification coprocessor that leverages a

low-power technology (i.e., low-leakage FD-SOI). Specific requirements for compu-

tational flexibility are identified and incorporated through hardware scalability in a

parallelized subthreshold implementation that operates at the minimum-energy sup-

ply voltage.

The rest of the chapter is organized as follows. In Sec. 6.2, we present an analysis of the

arrhythmia algorithms and identify the computational bottlenecks involved. In Sec. 6.3,

we explore the architecture of a low-energy data-driven computational platform through

custom instructions and a coprocessor. In Sec. 6.4, we describe specialized circuits at

the transistor level, including a variable-precision MAC unit for the coprocessor based

implementation. In Sec. 6.5, we present post-layout simulation results for the coprocessor.

Finally, we conclude in Sec. 6.6.

6.2 Application-domain Algorithmic Study: Arrhythmia

Detection

In this section, we describe the computational structure of algorithms used for analyzing

ECG signals. Since arrhythmia detection involves high-order detection models, we focus
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Figure 6.2: The structure of arrhythmia detection algorithms includes offline training and

online detection (employing biomarker extraction and interpretation).

on it as an example in our algorithmic study. The algorithms we use employ morphological

and wavelet features and perform detection computations based on an SVM classifier.

6.2.1 General Structure of Algorithms

Cardiac arrhythmias refer to abnormal heart beats that are indicative of a range of cardio-

vascular conditions.

Fig. 6.2 illustrates the structure of the arrhythmia-detection algorithms we consider.

ECG data are preprocessed for noise removal (band-pass filtering), QRS detection [201],

and beat segmentation [202]. Subsequently, the detection process involves the following

two primary steps: (1) biomarker extraction, and (2) biomarker interpretation (through a

classifier) [203]. Recall that biomarkers refer to specific signal parameters that are indica-

tive of the physiological state of interest [204, 205]. For arrhythmia detection, a range of

biomarkers has been used (including ECG morphology, beat intervals, spectral features,

etc. [206–209]). The diversity in the choice of biomarkers is due to the various clinical
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trade-offs introduced by each, which can also be variable across patients [210, 211]. In

this study, we use two prominent biomarkers: waveform morphology [206] and spectral

wavelets [212]. The associated processing steps, including segmentation (to isolate indi-

vidual beats), are then implemented in software (enabling the energy analysis presented

next). The outputs from these stages form the FVs that are used for classification.

Following the feature-extraction process, an SVM is used for modeling and classifica-

tion. Recall from Sec. 3.2 that the actual classification computation in an SVM [for RBF

and polynomial transformation kernels] is as follows:

Data Class = sgn


NS V∑

i=1

K
(
~x · ~svi

)
αiyi − b

 (6.1)

where K
(
~x · ~svi

)
=



exp(−γ||~x − ~svi||2) RBF kernel

F(~x · ~svi + β)
d Poly. kernel

where sgn[] is the signum function, ~x is the FV to be classified, and ~svi is the ith SV (b,

d, αi, β, γ, and yi are training parameters). NS V is the total number of SVs used in the

computation. Note that as the number of SVs (NS V ) and the FV dimensionality (DS V)

scale, the classification computations are dominated by the dot-product between ~x and ~svi.

Further, K represents a kernel function, whose choice, along with NS V and DS V , can have a

major impact on classifier complexity.

6.2.2 Need for Advanced Classification Models

In this section, we present the limitations of using simple classification models (which

would address the complexity challenge described above). Experimental results show

that as the model complexity is reduced, the classifier performance degrades, necessitat-

ing high-order models. The detection algorithms illustrated in Fig. 6.2 are implemented

using SVM-Light [213], an open-source implementation of an SVM, for the classifier. To
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correctly analyze the computational complexities and trade-offs imposed by the model, we

use patient data from the MIT-BIH database [200]1.

If the FVs were linearly separable, a linear kernel function could be used for classi-

fication [214]. The test vector could then be pulled out of the summation in Eq. (3.1),

enabling precomputation of a single decision vector. As a result, even when NS V scales,

the classification energy can remain constant. However, several applications that require

embedded signal analysis, for instance in the biomedical domain, have shown to perform

poorly when linear decision functions are used [101]. Non-linear functions, such as high-

order polynomials, RBFs or sigmoidal kernels, are thus needed for acceptable classifier

accuracies [215]. Several signal-analysis algorithms in the literature employ non-linear

kernels for classification. For instance, using polynomial and RBF kernels, 15.8% and

47.4% improvements in detection accuracy are reported in [216] and [217], respectively.

The performance of the classifier depends on the SV model and the characteristics

of the application data. Figs. 6.3(a) and (b) show how the sensitivity and specificity for

arrhythmia detection degrade as NS V is reduced. In order to reduce NS V , the training pa-

rameters b, d, αi, β, γ, and yi are adjusted along with the choice of the data subset used

for training. Thus, the model complexity depends on the characteristics of the application

data and introduces an unavoidable trade-off with respect to accuracy performance. We

next present an energy analysis of the end-to-end arrhythmia detection algorithm, which

employs high-order detection models for accurate signal classification. This analysis will

enable an architectural study towards a low-energy application-domain processor.

6.3 Application-domain Architectural Study

We adopt three approaches in our architectural study. First, we implement the entire ar-

rhythmia detection algorithm on an embedded low-power base processor. We find that

1Based on the ANSI/AAMI-recommended practice, four of the 48 MIT-BIH records (102, 104, 107, and

217) included paced beats and were not used in our evaluations.
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Figure 6.3: Reducing model complexity (by reducing NS V ) degrades the accuracy of clas-

sification (a) for RBF and polynomial kernels of order 3, and (b) for polynomial kernels of

order 2 and 4.

classification poses an energy bottleneck due to the complexity of the models required.

We then explore opportunities for hardware specialization through custom instructions and

finally through a coprocessor.

For the base processor, we use the Xtensa processor from Tensilica, which is a cus-

tomizable and extensible platform [218]. A family of processors can be built around the

base instruction set architecture (ISA) of the synthesizable Xtensa processor core [219,

220]. As a result, custom processor configurations can be obtained with optimized per-

formance, power dissipation, code size, and die size. Design automation algorithms and

tools used in extensible and configurable processors, such as Tensilica, are discussed in

[221, 222]. A processor generator provides configurability through selectable additional

instructions, accelerators, memory/cache architectures, exception/interrupt configurations,

and debugging support. It provides extensibility through single- or multi-cycle custom

instructions and accelerators that can be defined via the Tensilica Instruction Extension

(TIE) hardware description language. Design-space exploration of the Tensilica processor

parameters allows us to customize the base processor to achieve minimum-energy con-

sumption. The customizable features of the Xtensa architecture are illustrated in Fig. 6.4.
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Figure 6.4: The Xtensa architecture provides a base processor ISA along with optional

instructions and features (e.g., MUL-16/32, register files, etc.). Custom instructions and

accelerators can be defined using the TIE hardware description language and added to the

processor for application extensibility. A software tool suite (e.g., retargetable compiler,

instruction set simulator, etc.) is automatically generated for the custom processor.

The major parameters include the choice of multipliers (MUL32/MUL16), instruction/data

cache sizes and associativities (range of 0-16 kB and 2-16), and datapath/instruction path

widths (range of 8-32 bits). We pick the design parameters that lead to minimum-energy

consumption based on an initial parameter-space exploration. The configuration obtained

for the base processor is shown in Table 6.1. We present energy profiling results of the

arrhythmia detector on the configured base processor.

6.3.1 Implementation on the Base Processor

In this section, we present energy analysis of a software implementation of the arrhythmia

detector on the Tensilica base processor; initial design profiling leads to the configuration

parameters shown in Table 6.1. Note that even though classification involves dot-product

computations, including multipliers (MUL16 and MUL32) in the base processor leads to a

higher energy consumption. We will see ahead in Sec. 6.3.2 that this energy increase is due

to the overhead of fetching high-dimensional data for the multipliers.
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Table 6.1: Xtensa custom processor configuration

Parameter Configuration

Instruction width 24 bits

Pipeline length 5 stages

Pipeline type Uniscalar

General-purpose registers 16

ALUs 1

Branch units 1

Core frequency 10 MHz

Instruction RAM 2 kB

Data RAM 4 kB

Datapath width 32 bits

Disabled Options

Multipliers (MUL32/MUL16), Viterbi unit,

single-cycle MAC, zero-overhead loop,

normalized shift, min/max unit,

ICache/DCache associativity

Table 6.2: Software energy (per test vector) for preprocessing and feature extraction on the

base Xtensa processor core.

Computational step Energy/test vector

Pre-processing segmentation 84.02 µJ

Morphology feature extraction 2.61 µJ

Wavelet feature extraction 29.28 µJ

The energy profiling results for the preprocessing and feature-extraction steps are

shown in Table 6.2 (results are shown at the operating frequency of 10 MHz and supply

voltage of 1.2 V). An FV is derived every heart beat and consumes 84.02 µJ for segmenta-

tion, which includes the process of isolating individual heartbeats along with the filtering

of noise and other interference sources. Subsequently, 2.61 µJ and 29.28 µJ of energy is

consumed for morphological and wavelet feature extraction, respectively.
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Figure 6.5: Arrhythmia detector: (a) classification energy scales with NS V and thus domi-

nates that of feature extraction, and (b) classification energy scales with DS V (NS V and DS V

represent classification complexity.).

Figs. 6.5(a) and 6.5(b) show the energy of classification versus NS V and DS V , respec-

tively. Both the number and dimensionality of the SVs are representative of the model

complexity. It can be seen that due to energy scaling, classification energy rapidly domi-

nates that of feature extraction. NS V = 10, 000, using wavelet features and a fourth-order

polynomial kernel, for instance, leads to an energy consumption ratio of 941:3:1 for clas-

sification, preprocessing, and feature extraction, respectively. At NS V = 100, 000, the ratio

increases to 5172:3:1. As described in Sec. 6.2.2, to avoid compromising accuracy, the ar-

rhythmia application generally requires complex models, causing the classification energy

to be dominant.

The output of the Xtensa profiling tool for classification computations is shown in Ta-

ble 6.3. The dot-product computations required in Eq. (3.1) are shown in bold (sprod ns and

kernel). These functions correspond to the NS V and DS V analysis presented in Sec. 6.2.2,

and constitute over 70% of the computations. Thus, classification is the energy-intensive

computational step and is targeted next for hardware specialization through custom instruc-

tions and a coprocessor.
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Table 6.3: Tensilica code profiler output for the SVM classifier.

Morphological Features, DS V=26, NS V=10,000, Frequency = 10 MHz

Function Percentage Self Cumulative Number of

name time (%) secs. secs. cycles

sprod ns 59.12 0.09 0.09 925748

kernel 11.67 0.02 0.11 182738

smult s 7.95 0.01 0.12 124487

add vector ns 6.54 0.01 0.13 102408

Wavelet Features, DS V=256, NS V=10,000, Frequency = 10 MHz

Function Percentage Self Cumulative Number of

name time (%) secs. secs. cycles

sprod ns 63.30 0.57 0.57 5688984

kernel 12.89 0.12 0.69 1158467

smult s 8.34 0.08 0.77 753113

add vector ns 6.60 0.06 0.83 593164

2Self secs. is the number of seconds accounted for by a particular function alone. Cumula-

tive secs. is a running sum of the number of seconds accounted for by a function and those

listed above it.

6.3.2 Custom-instruction Based Platform

In this section, we explore the use of custom instructions as a hardware-specialization op-

tion. We primarily focus on the classifier due to its importance in determining the total

energy. We find that the custom instructions are insufficient for achieving significant classi-

fier energy savings. This is due to the overheads that remain for fetching high-dimensional

data from memory. Thus, the energy reductions achievable through the use of custom in-

structions for classification are limited due to the large number of operands involved in the

dot-product computation.

The Tensilica Xpress compiler [218] is used to optimize the software implementation.

This involves an automatic design-space exploration of the potential custom instructions.

SVM classification, wavelet transform with Daubechies wavelets of order four, and mor-
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Table 6.4: Custom instructions from the Xpress compiler at NS V=10,000.

Custom instruction % of total instr.

Preproc. +Morphology

fusion.nop.loopgt.extui 32.6

fusion.abs.add8x8.extui 11.4

fusion.nop.neg8.extui 9.0

Preproc. +Wavelet

fusion.ssl.mul8x16 0.extui 21.9

fusion.l8rzl.extai 17.2

fusion.movt.z.extui 8.4

Classification

fusion.movi8x16.extui 13.1

fusion.add.sdd8x16.simcw.extui 5.4

fusion.sll.sub16x16 0.extui 5.3

phological feature-extraction functions (including threshold selection and QRS isolation)

are chosen for implementation as custom instructions. We perform Xpress synthesis using

FLIX, Fusion, and SIMD instructions provided by Tensilica [218]. These design options

provide optimization techniques, including automatic vectorization in the custom proces-

sor. Fusion instructions enable the lowest-energy implementation. Table 6.4 shows the

top three custom instructions obtained for the feature-extraction and classification compu-

tations. The number of calls to each custom instruction is also shown as a percentage of

the total instructions. We observe that there is no commonality in the custom instructions

across feature-extraction and classification computations. Figs. 6.6(a) and 6.6(b) show

the classification energy after a custom-instruction based optimization (corresponding to

wavelet and morphological features, respectively). The energy consumption is still substan-

tially dominated by classification. At NS V = 10, 000, for a fourth-order polynomial kernel,

the ratios of energy consumption for classification, preprocessing, and feature-extraction

computations are 4432:3:1 and 720:3:1, for the wavelet and morphological features, re-

spectively.
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Figure 6.6: Custom-instruction based implementation results in only modest energy im-

provement: classification energy still dominates preprocessing + feature extraction (a) by

1146× for wavelet features, and (b) by 264× for morphological features.

Table 6.5 summarizes the resulting energy savings obtained through custom-instruction

based optimization. This optimization leads to roughly 10× energy improvement for the

preprocessing and feature-extraction operations. However, optimization of classification

computations leads to roughly only 2× reduction in energy. The limited energy reduction

for classification is due to the large amount of data, which need to be fetched from memory,

involved in the dot-product computations (i.e., large NS V and DS V) [219, 221]. This limita-

tion is not adequately addressed by custom-instruction based optimization. To gain further

intuition, consider the following equation [219], which is used to rank candidate templates

for custom-instruction based implementation:

Priority =
OT

max (In − ω, 0) +max (Out − σ, 0) + ρ
.

In the above equation, OT is the fraction of the total execution time of the original program

spent in the template, In and Out are the number of inputs and outputs of the template,

respectively, ω is the number of inputs that can be encoded in the instruction, σ is the num-

ber of outputs that can be encoded, and ρ is the number of cycles required by the template
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Table 6.5: Speedup and energy saving using custom instructions with a base Xtensa pro-

cessor running at Vdd = 1.2 V and 10 MHz, with NS V = 10, 000.

Processor Preproc. +

Morphology

Preproc. +

Wavelet

Classification

Configuration DS V = 26 DS V = 256

Base

Xtensa

No. Cycles 27.56k 36.04k 1.57M 8.99M

Energy (µJ) 86.62 113.29 4935.2 27574

Base Xtensa

+ Custom Instr.

No. Cycles 2.75k 3.91k 0.78M 4.58M

Energy (µJ) 8.65 12.28 2455.3 14068

Energy Improvement 10.01× 9.23× 2.01× 1.96×

when implemented as a custom instruction. For custom instruction candidate templates for

classification computations, OT has a large value of 0.70 (according to Table 6.3). How-

ever, the high-dimensional input vectors (corresponding to DS V) and the large number of

cycles ρ required to fetch a high-order decision model (corresponding to NS V ) reduce the

priority as a potential choice for custom-instruction based implementation. Choosing cus-

tom instructions for the dot-product computation based on an alternate priority function

would still result in sub-optimal energy savings. This is because the processor architecture

would limit the data width in the classifier custom instructions, necessitating additional

cycles for load-store operations. Thus, system memory overheads offset the benefits of

custom-instruction based speedup in classification.

The use of a vector processor core for handling high-dimensional input data can thus

provide a potential solution for the classification computations. However, since the ap-

plication data are not inherently vector in nature, such an architecture incurs unnecessary

overheads for the general-purpose computations required, namely the feature-extraction

computations required across clinical applications. Rather, the representation of data in a

vector form is a specific transformation introduced by the classification framework. Thus,

the complexity and associated energy overheads [223] incurred by a vector-processor based

implementation of the preprocessing and feature-extraction steps are best avoided for a

platform-level design. To exploit both the canonical computations and data structuring
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required in the classification framework, we next turn our attention to coprocessor based

hardware specialization.

6.3.3 Coprocessor Based Platform

In this section, we discuss a coprocessor based specialization that allows the data structures

used by the classifier to be efficiently handled, yielding substantial energy savings. Further,

this degree of specialization raises the opportunity for microarchitectural optimizations

based on parallelism, which can be readily exploited in the computation.

The architecture proposed in Fig. 6.7 aims to take advantage of the structure of the

signal-analysis algorithms where the classifier energy can be dominant. In such cases, a

high degree of flexibility is primarily required in the preprocessing and feature computa-

tions. The need for flexibility arises due to the range of preprocessing and feature computa-

tions involved in various applications. For instance, morphological and wavelet features are

employed in arrhythmia detection [206,212], proteomic classification [224], and heart-rate

estimation [225]; spectral features are employed in brain-machine interfaces [92], sleep

disorder analysis [164], etc.

Thus, a general-purpose processor is employed for preprocessing and feature computa-

tion, while an optimized coprocessor is employed for kernel based SVM classification. The

feature-extraction computations are optimized through custom instructions, providing sig-

nificant energy savings, as shown in Table 6.5. These computations involve floating-point

operations in the Tensilica CPU, incurring somewhat higher energy than a fixed-point im-

plementation. However, as explained in the previous section, in the targeted applications,

the contribution of the feature-extraction energy to the overall processor energy is very

small. Thus, we focus on optimizing the coprocessor. Here, in addition to hardware special-

ization, circuit and microarchitectural enhancements aim to achieve minimum-energy op-

eration [198] through voltage scaling and parallelism, whereby the throughput constraints

for real-time detection can be met. In addition to energy efficiency, however, the need for
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Figure 6.7: General architecture of a processor for embedded signal analysis.

selective flexibility is also recognized so that the classification needs across a wide range

of signal-analysis algorithms can be supported. For example, the rate of processing mass

spectrometry data [224] could be different from ECG signals [206,212]. For these applica-

tions, NS V , DS V , data precision, as well as the kernel functions will also be different. The

coprocessor thus introduces this flexibility through a precision-scalable multiplier. It also

yields programmability in the classification model, computation precision, and the choice

of kernel transformation function (these aspects are summarized in the block diagram of

Fig. 6.7).

6.4 Low-energy Classification Coprocessor

In this section, we describe the architecture of the classification coprocessor in further

detail.

6.4.1 Coprocessor Microarchitecture

Fig. 6.8 shows the architecture and layout of the classification coprocessor. It has three

major functional blocks: (1) SV and test vector (TV) buffers, (2) MAC engine, and (3)
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programmable polynomial kernel core. Following offline training, SVs are loaded into the

SV preload buffers. The TVs, produced through feature extraction by the general-purpose

processor, are loaded into the TV line buffer. TVs and SVs are then fed dimension-by-

dimension to the MAC array in order to perform the dot-product operations in Eq. (3.1).

Readout from these buffers is optimized using a multiplexer based array decoder. Hardware

parallelism is employed through an array of MAC units: MAC 1 to MAC N, each of which

is associated with an SV preload buffer. The coprocessor operates on integer data. Once

multiplication over all the dimensions is complete, the dot-products are multiplexed to the

kernel transformation block, where a second-, third- or fourth-order polynomial transfor-

mation is computed. Furthermore, a CORDIC module in the kernel block would potentially

accommodate additional transformation functions, such as RBF, sigmoid, etc. The results

are scaled and summed by a final accumulator whose output sign determines the classifica-

tion result.

6.4.2 Voltage Scaling and Parallelism

In this section, we describe the energy optimization pursued for the coprocessor through

voltage scaling. Since the dot-product derivation (in the MAC array) dominates the com-

putation, we focus on optimizing its energy.

The total energy is determined primarily by the sum of active-switching (Eact) and sub-

threshold leakage (Elk). The reduction in Eact due to Vdd scaling is opposed by the increase

in leakage energy (due to longer resulting leakage-current integration time TMAC). The

energy-optimal point thus typically occurs in the subthreshold region, since here the cir-

cuit speed begins to degrade rapidly [198]. Although this implies that energy optimization

leads to low circuit performance, computational throughput constraints can be efficiently

met if the required computations can be performed in parallel without imposing substantial

overheads due to parallelization [226]. We can thus exploit the parallelism possible in the

classifier dot-product computation (i.e., MAC array) to achieve minimum-energy operation
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Figure 6.8: The architecture and layout of the classification coprocessor designed in an FD-

SOI process. The coprocessor architecture comprises an array of MAC units to compute

the dot-product of SVs and TVs. The output is then transformed by a kernel function in

order to evaluate the classification result.

for real-time signal detection. To do this, we first determine the minimum-energy Vdd of a

MAC unit. We then determine its performance at this Vdd (i.e., seconds per MAC operation,

TMAC). The total rate of MAC operations (RT.MAC) required in the classifier computation

[of Eq. (3.1)] is given by

RT.MAC = ⌈NS V × DS V × RCLAS S ⌉, (6.1)

where RCLAS S is the classification rate. The required parallelism is then RT.MAC ×TMAC . For

the application considered, the RT.MAC required ranges from 2.7M to 7.7M MACs/second

[19, 25].
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Figure 6.9: The Eact and Elk profiles for a MAC unit with the minimum total energy occur-

ring at Vdd = 0.4V .

Fig. 6.9 shows the Eact and Elk of a MAC unit (based on a transistor-level simulation)

implemented in the target 150nm FD-SOI CMOS process (described further in Sec. 6.4.4).

The total energy, Etotal, is minimized at a Vdd of 0.4V, which is in the subthreshold region for

the technology. Fig. 6.10 shows the performance achieved by a MAC unit as Vdd is scaled.

Under worst-case process and temperature conditions (i.e., low temperature in subthresh-

old), the maximum frequency at the minimum-energy Vdd is 520 kHz (i.e., TMAC = 1.92 µs).

The level of parallelism required is thus 6 to 15 MAC units. Fig. 6.9, however, shows that

the energy minimum is shallow, particularly if Vdd is increased slightly. For instance, to

increase the MAC performance by a factor of three (in order to cover the target RT.MAC

range), Vdd must be increased by less than 50 mV (based on Fig. 6.10), causing a negligible

increase in total energy (based on Fig. 6.9). We thus optimize for the lower performance (by

employing 6 MAC units) and use voltage scaling, with minimal impact on the optimization,

to elevate the performance when required.

6.4.3 Circuit-level Optimization

In this section, we describe how the scalability desired in the classification coprocessor is

achieved.
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Figure 6.10: The operating frequency at Vdd = 0.4V is 520 kHz at 285K (low temperature

is slowest in subthreshold).

SV and TV buffers. The energy of the buffers is optimized for read operations since

the SVs are loaded infrequently (i.e., only when a new classification model is required).

The coprocessor buffers support a DS V × NS V of 64. If additional storage is required to

represent the classification model, the control block permits expansion by allowing up to

16,384 write sequences from the processor cache or from off-chip memory to the local

buffers. As an example, 4, 095 SVs and 256 feature dimensions can be supported, along

with any other combination that results in the same product.

Variable-precision MAC. Due to the wide range of SVs and feature dimensions across

applications, the precision requirements of the classifier computation are variable. Several

approaches for scalable-precision multipliers have been reported, e.g., those in [198]. The

approach used here exploits the efficiency of the Booth encoding algorithm [227].

Fig. 6.11 shows the architecture of the variable-precision MAC unit. In the MAC unit,

the BOOTH ENC blocks compute the partial products based on the select bits of the mul-

tiplier (y). The shifted partial products are output as PPi, i ∈ [0, 5]. This allows a maxi-

mum precision of 12 bits for the input operands (corresponding to six partial products). In

Fig. 6.11, PP0 and PP1 are the partial products used when precisions of 12 and 10 bits, re-

spectively, are required; otherwise the precision is 8 bits. The carry-bypass adders (CBAs)

consist of M = 4-bit full adder chains, and N represents the total input bit-width of each
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Figure 6.11: The variable-precision MAC unit. Partial product additions can be terminated

at CBA-0/1/2 to scale the precision for 8/10/12-bit inputs.

adder. The common partial products required for the 8/10/12 precision bits are added using

3:2 and 2:1 compressors in a Wallace tree. The outputs of CBA-0/1/2 are read out via a

precision-selection multiplexer (for 8/10/12-bit precision, respectively). The unused CBAs

can be power-gated. Fig. 6.12 shows the energy reductions due to precision scaling. Al-

though the minimum-energy Vdd remains the same, scaling the precision from 12 to 8 bits

reduces the energy per multiplication by 17.6%. Following precision selection, the output

of the multiplier has either a 24-, 20-, or 16-bit output. The truncation-selection multiplexer

selects a level of truncation (to 12, 10, or 8 bits, programmable via the status register). The

output of the truncation-selection multiplexer is accumulated into an output register using

a 16-bit final CBA.

MAC delay estimation. Based on the proposed MAC architecture (Fig. 6.11), the criti-

cal path delay through a MAC unit can be estimated as follows:

Tdelay = TCQ + TBOOT H + TWAL + TCBA,19-4 + TCBA,23-4

+2TAND + 3TMUX + TCBA,16-4 + TS U ,
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Figure 6.12: Scaling precision of input data enables a second level of energy optimization.

The figure shows energy savings of 17.6% while scaling the data-representation precision

from 12 to 8 bits.

where TCBA,N-M is the delay of a CBA, which has a segment length of M and an operator

bit length of N, TBOOT H is the delay through the Booth encoder unit, TWAL is the delay

through the Wallace-tree compressor chain, TCQ and TS U are the clock-to-output and clock

setup delays, respectively, and TAND and TMUX are the AND gate and multiplexer delays,

respectively. Further, these delays can be simplified using a sum of delays through basic

sub-blocks as follows:

TCBA,N-M = TS U + MTC

(
N

M
− 1

)
TMUX + (M − 1)TC

+TS

TBOOT H = TMUX + 4TNOR + TCBA,12-4

TWAL = 3TS + TCBA,14-4,

where TC and TS are the delays for the carry and sum paths in a full adder, respectively,

and TNOR is the NOR gate delay.
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Figure 6.13: The programmable kernel enables choice among kernels of degree one through

four.

The delay through the critical path of the MAC unit can thus be estimated systemati-

cally. Estimating the MAC delay based on the performance of the mentioned sub-blocks

thus facilitates rapid estimation of the maximum operating frequency, level of parallelism,

and hence the associated system parameters, thereby overcoming the need for extensive

transistor-level simulations in the early phases of system design.

Flexible polynomial kernel. A polynomial kernel can be selected to transform the

dot-product output from the MAC engine. The flexible kernel module comprises two

12×12×24 multipliers to support polynomial transformations of order two through four.

Only one such multiplier is needed for a second-order polynomial function. Going from

a second-order to a third-order polynomial kernel, however, incurs the cost of using an

additional 12×12×24 multiplier. Further, the difference between a fourth-order and a third-

order polynomial function is only an additional array of multiplexers. These aspects are

summarized in Fig. 6.13.

6.4.4 Choice of Technology

Due to the modest performance requirements of typical sensing applications (owing to, for

instance, the relatively low bandwidth of physiological signals), employing a technology

that is aggressively optimized for low leakage is beneficial. As an example, for arrhythmia

detection, a performance on the order of 5 million MACs/second is required. The tech-
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Figure 6.14: The FD-SOI device has a steep sub-threshold slope to minimize leakage and

maintain high transistor on-to-off ratios in subthreshold CMOS gates.

nology we use for this study is thus a 1.5 V 150 nm ultra low-leakage FD-SOI CMOS

process [228]. FD-SOI allows the technology to exhibit reduced process variations due to a

reduction in random-dopant fluctuations and gives the transistors steep subthreshold slopes;

the Id-Vgs characteristic for the devices is shown in Fig. 6.14. Additionally, the devices are

designed to have high threshold voltages to reduce the leakage current (i.e., Vt,N = 0.65V ,

|Vt,P| = 0.53V) [228].

6.5 Results and Analysis

In this section, we present post-layout simulation results of the coprocessor.

Table 6.6 summarizes the impact of the architectural optimizations considered (which

include feature extraction on the Tensilica processor and classification using custom in-

structions or a coprocessor). A 2× improvement in the energy consumption per SV dimen-

sion is obtained while going from an implementation on a base Tensilica processor (which

consumes 11.85 nJ) to a design with custom instructions (which consumes 5.89 nJ). The

limited energy reductions, as mentioned in Sec. 6.3.2, is due to the high-dimensional input
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Table 6.6: Energy per SV dimension

Tensilica

(at 1.2V)

Tensilica +

Custom Instr.

Tensilica + Custom Instr. + Coprocessor

VCOPROC
dd

= 1.2V VCOPROC
dd

= 0.6V VCOPROC
dd

= 0.4V

11.85 nJ - 1× 5.89 nJ - ↓2× 22.84 pJ - ↓519× 5.59 pJ - ↓2119× 5.31 pJ - ↓2231×

data required for classification. More aggressive specialization, through the use of a copro-

cessor, leads to a 519× energy reduction over the base case. Subsequent voltage scaling,

taking advantage of the parallelism possible in the coprocessor implementation, leads to

energy reductions of 2119× and 2231× for Vdd corresponding to 0.6 V and 0.4 V, respec-

tively.

6.5.1 Coprocessor Energy Measurements

In this section, we present an analysis of the energy consumption of the classification co-

processor versus NS V and DS V . Further, we also quantify the energy reductions achievable

through voltage and precision scaling.

Energy versus NSV and DSV. We perform energy measurements on the post-layout ex-

tracted netlist at various values of NS V for the wavelet and morphological features. Fig. 6.15

shows the scaling in the energy consumption versus the number of SVs for the classification

computation. The energy for classification scales roughly linearly with NS V . A similar be-

havior is observed with DS V (as shown in Fig 6.16, where the energy numbers are provided

at Vdd = 1.2 V). Fig. 6.15 shows results for a fourth-order polynomial kernel and spectral

wavelet features (DS V = 256) for arrhythmia detection. At 100,000 SVs, the optimiza-

tion of a base Tensilica processor with custom instructions leads to an energy reduction

by 1.96× (Sec. 6.3.2). For the FD-SOI coprocessor based design, energy reductions by

228× are achieved at a supply voltage of 1.2 V. Voltage and precision scaling applied to

the coprocessor leads to further energy reductions. For instance, as shown in Fig. 6.15,

classification computations after wavelet feature extraction (DS V = 256) consume 12.00-
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Figure 6.15: The classification coprocessor enables energy reductions of 228× at 1.2 V;

energy reductions are increased to 1170× at Vdd = 0.4 V and 8 bits of precision.

120.05 µJ using 10,000-100,000 SVs at 8 bits of data precision and a supply voltage of

0.4 V. This represents 1170× lower energy than that of a Tensilica processor with custom

instructions alone. Classification computations after morphological feature extraction, at

the same precision and voltage levels, consume 10.24-24.51 µJ of energy, which is 1548×

smaller than one based on a custom-instruction based design. Detailed analysis results for

the voltage- and precision-scaling experiments are presented next.

Energy versus Vdd. Eact and Elk measurements from the coprocessor are shown in

Fig 6.17, demonstrating the benefit of voltage scaling. The results are shown at 12 bits

of data precision. A second-order polynomial kernel is used for the simulations. On an

average, for a data precision of 12 bits, Eact accounts for 98.1%, 95.1%, and 71.2% of the

total energy at supply voltages of 1.2 V, 0.6 V, and 0.4 V, respectively. Voltage scaling thus

enables energy reduction by up to 77%.

Energy versus precision. Table 6.7 shows the Eact and Elk measurements from

post-layout simulation of the coprocessor using 8 bits of data-representation precision.

A second-order polynomial kernel is used for the results shown. On an average, for a

178



10
1

10
2

10
3

10
−1

10
0

10
1

10
2

# SUPPORT

VECTORS = 1000

Morphological
Features, D

SV
=26

Wavelet
Features, D

SV
=256

Support Vector Dimension (D
SV

)

E
n

e
rg

y
 p

e
r 

C
la

s
s
if
ic

a
ti
o

n
 (

µ
J
)

 

 

Poly2 Kernel

Figure 6.16: Coprocessor energy versus DS V per TV (at 12-bit data precision).
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Figure 6.17: Coprocessor energy versus Vdd per TV (at NS V = 10, DS V = 8, and 12-bit data

precision). Vdd scaling enables energy reduction by up to 77%.
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Table 6.7: Precision scaling enables up to 9.25% reduction in the coprocessor energy.

Vdd (V) DS V NS V Precision Eact (pJ) Elk (pJ) Etotal (pJ) fop, T=287K

1.2 8 10
12 bit 3089.1 53.7 3142.8 }

9.25%↓ 10 MHz
8 bit 2799.8 52.4 2852.2

0.6 8 10
12 bit 730.5 31.0 761.5 }

9.09%↓ 2 MHz
8 bit 667.2 25.1 692.3

0.4 8 10
12 bit 508.7 213.2 721.9 }

9.09%↓ 550 kHz
8 bit 457.1 199.2 656.3

Table 6.8: Coprocessor energy scaling with respect to the kernel function.

Specification Eact (pJ) Elk (pJ) Etotal (pJ) Kernel Order

Vdd=1.2V,

NS V=10, DS V=8,

12-bit precision

3078.7 64.1 3142.8 }
30.92%↓ Poly2

4036.2 78.2 4114.4 }
7.56%↓ Poly3

4344.4 81.1 4425.5 Poly4

Vdd=1.2V,

NS V=10, DS V=8,

8-bit precision

2799.8 52.4 2852.2 }
33.57%↓ Poly2

3738.7 70.9 3809.6 }
4.12%↓ Poly3

3914.6 74.7 3989.3 Poly4

data precision of 12 bits, Eact accounts for 98.1%, 95.2%, and 71.3% of the total energy

at supply voltages of 1.2 V, 0.6 V, and 0.4 V, respectively. Consequently, performing

computations at a data-representation precision of 8 bits enables an overall 9.25%, 9.09%,

and 9.09% reduction in total energy as compared to an implementation that relies on 12

bits of data precision [most savings come from a 17.6% reduction from the MAC unit

alone (see Fig. 6.12)].

Energy versus kernel selection. Table 6.8 shows the energy consumption for various

classifier kernels at a data precision of 12 and 8 bits. Since the kernel transform is not the

dominant computation, the energy scaling is modest.

On an average, going from a second- to a third- to a fourth-order polynomial costs

30.92% and 7.56% extra energy for 12 bits and 33.57% and 4.12% for 8 bits of data-
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Table 6.9: Energy (per TV) and area of the sub-blocks.

Meas. Condition Total BUF MAC, pJ KER, pJ CNTRL

Vdd DS V NS V pJ pJ (% Total) (% Total) pJ

8-bit data precision

1.2 V

8 10

2852.2 38.8 1511.8 (53.0) 900.9 (31.6) 400.7

0.6 V 692.3 18.9 360.7 (52.1) 220.2 (31.8) 92.5

0.4 V 656.3 18.5 343.8 (52.4) 203.9 (31.1) 90.1

12-bit data precision

1.2 V

8 10

3142.8 40.2 1640.5 (52.2) 990.0 (31.5) 472.1

0.6 V 761.5 19.3 402.8 (52.9) 242.2 (31.8) 97.2

0.4 V 721.9 20.1 383.3 (53.1) 223.8 (31.0) 94.7

Area (in mm2) 2.90 1.62 0.61 0.65 0.02

representation precision, respectively. The incremental change in energy between a

third- and a fourth-order polynomial kernel is due to the optimization enabled by the

programmable kernel architecture [19, 25].

6.5.2 Sub-block Energy Measurements

Table 6.9 shows the computational energy contributions for the coprocessor sub-blocks dur-

ing online classification at a data-representation precision of 8 and 12 bits. In the table, the

energy consumed in the TV and SV buffers, the MAC array engine, kernel, and the control

block are shown in the BUF, MAC, KER, and CNTRL columns, respectively. The MAC

engine consists of six MAC units and the KER block consists of three MUL 12×12×24

multipliers, which are sub-blocks within a MAC unit. As shown, the MAC+KER energy

dominates (∼84%), validating the need to focus on its energy through the optimization

discussed in Sec. 6.4.2. Although the buffers dominate the transistor count, their low en-

ergy contribution shown in the table is due to the low leakage enabled by the choice of

technology. The buffers have a very weak influence on the minimum energy point of the

coprocessor due to the low activity factor and low leakage energy.
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6.5.3 Processor-level Energy Measurements

In this section, we present energy measurements for the entire processor. The architecture,

which employs custom instructions for feature extraction and a coprocessor for classifica-

tion, achieves over two orders of magnitude energy reductions as compared to an imple-

mentation, which employs only custom instructions for the entire computation.

Energy versus NSV . In this section, we show energy scaling results versus NS V for the

full signal detection process (which, along with classification, includes the energy num-

bers for a custom-instruction based implementation of preprocessing and feature-extraction

computations).

Fig. 6.18 shows simulation results for a fourth-order polynomial kernel and spectral

wavelet features (DS V = 256). Significant energy reductions are observed for the total

detection process. For instance, using NS V = 10, 000, the total detection energy at 1.2 V

and 12 bits of data precision is 73.98 µJ. It is reduced to 63.69 µJ using 8 bits of precision at

1.2 V. Voltage scaling applied to this optimized coprocessor configuration results in a total

detection energy of 24.29 µJ at 0.4 V (this is about 580× lower than an implementation

using a base Tensilica processor, which consumes 14.08 mJ at Vdd = 1.2 V).

Computational-energy contributions. Fig. 6.19 shows the proportions of energy con-

sumption for the preprocessing, feature extraction, and classification computations follow-

ing the various optimizations. The design space ranges from a full-software, base Tensil-

ica implementation to a coprocessor based architecture. The percentages are shown for

NS V = 20, 000. It is observed that even after a custom-instruction based optimization, the

classification computations dominate feature extraction and preprocessing (less than 1% of

the total energy). After an optimization through the use of the FD-SOI coprocessor, how-

ever, the classification energy is reduced substantially. The energy ratio is 1.8:1 for classifi-

cation and preprocessing + feature-extraction computations. However, at NS V = 100, 000,

the corresponding ratio is 9:1 (the total energy consumption for the associated computa-
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Figure 6.18: Total application energy (segmentation + feature extraction + classification)

is reduced by up to 1062× through the use of a coprocessor for classification.

tions being 120.32 µJ at a supply voltage of 0.4 V and a data-representation precision of 8

bits).

Energy versus Vdd. We next illustrate the benefits of voltage scaling on the coprocessor.

This leads to operation of the arrhythmia detector at a power level < 500 µW.

Figs. 6.20(a) and (b) show the energy optimizations achieved for the detection process

using a polynomial kernel of order four for the wavelet and morphological features, re-

spectively. Similarly, Figs. 6.21 (a) and (b) show the energy optimizations achieved for

the detection process using a second-order polynomial kernel for the wavelet and morpho-

logical features, respectively. It is observed that for wavelet features, voltage and preci-

sion scaling applied to the coprocessor enable computations in signals-analysis algorithms

within an energy consumption range of 24.29-132.33 µJ for NS V = 10,000-100,000. Simi-

lar experiments with morphological features demonstrate the full detection process within

10.24-24.51 µJ for NS V = 10,000-100,000 [see Fig. 6.20(b) and Fig. 6.21(b)]
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Figure 6.19: Energy proportions for preprocessing, feature extraction, and classification

computations illustrate the benefits of voltage and precision scaling applied to the classi-

fication coprocessor for low-energy operation: (A) base Tensilica processor operating at

Vdd = 1.2 V, (B) custom-instruction based implementation, (C) hardware-software code-

sign with custom instructions for preprocessing + feature extraction and the classification

computations implemented on a coprocessor at Vdd = 1.2 V and 12 bits of data precision,

(D) coprocessor at Vdd = 1.2 V and 8 bits, and (E) coprocessor at Vdd = 0.4 V and 8 bits.

6.6 Chapter Summary

Machine-learning based algorithms for signal analysis are emerging as a highly promis-

ing means for detecting specific states of interest in the sensed signals. In several such

algorithms, although exploiting sparsity through CA can help reduce the network data, the

complexity of classification can be extremely high, often dominating the preprocessing

and feature-extraction computations. The structure in these algorithms can be exploited

towards the design of a generalizable low-energy computation platform. In this chapter, we

showed how to optimize kernel-based classification through the use of hardware special-

ization. We observed that although feature-extraction computations can be implemented

efficiently as custom instructions on a low-power processor, the energy reductions achiev-

able through the use of custom instructions for classification were limited due to the large

number of operands involved in the dot-product computation. We thus explored oppor-

tunities for optimization through the use of a hardware coprocessor. This specialization
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Figure 6.20: Benefits of voltage scaling applied to the coprocessor (with the Tensilica

processor at 1.2 V) using a fourth-order polynomial kernel and a beat classification rate

(RCLAS S ) of 3 beats/sec. Voltage scaling enables the full detector computations at less than

500 µW.
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Figure 6.21: Benefits of voltage scaling applied to the coprocessor (with the Tensilica

processor at 1.2 V) using a second-order polynomial kernel and a beat classification rate

(RCLAS S ) of 3 beats/sec.

provided an approach for hardware-software codesign, expanding the scope of the em-

bedded processor architecture to a broader range of applications. By employing specific

hardware configurability in the classification coprocessor, we not only exploited the fixed

kernel computations required for classification, but also incorporated selective flexibility

required across a range of applications. For a case study of arrhythmia detection, the op-

timized coprocessor reduced the computational energy of the embedded platform by over

three orders of magnitude compared to that of a low-power processor with custom instruc-

tions alone. We showed that implementing signal-analysis algorithms on a base Tensilica

processor consumes about 100 mW for the entire computation. Thus, a wearable device
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(which runs on a typical 3V, 560 mAh capacity coin-cell battery) employing a Tensilica-

like processor would have an average recharge cycle of 16.8 hours. If the computational

power for the entire processor can be reduced by two-three orders of magnitude, continuous

signal analysis can become more viable (with battery lifetimes extended to 2-24 months).

Our platform thus introduces great promise for applications employing real-time embedded

signal analysis, such as healthcare networks, which are becoming increasingly important,

as a wide range of real-time patient signal correlations is being discovered with new clinical

states of interest.
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Chapter 7

Conclusions and Future Work

Energy constraints have posed a major challenge to meeting the demand for ever-increasing

functionality in embedded systems. The dominant approaches to overcoming this obstacle

have focused on developing efficient signal-processing circuits and architectures. In this

thesis, our primary focus instead has been on the way in which information is represented

throughout the system. We attempted to answer the question of what the impact on en-

ergy would be if the embedded signals explicitly represent information more efficiently.

The challenge we faced is that much of the signal-processing theory has been developed in

the context of time- and frequency-domain methods. Though practical and substantially-

general methods for representing information efficiently based on sparsity have emerged,

they involve signal transformations that prevent the use of conventional signal-processing

approaches. To address this issue, we developed methodologies that suitably transform all

linear signal-processing operations so that they can be applied directly to representations

that are based on sparsity. In addition to enabling generalized signal-processing systems

based on efficient representations, we also quantitatively characterized the impact of such a

methodology on system energy and algorithmic accuracy. To achieve this goal, we brought

together mathematical approaches based on theoretical concepts and architectural innova-

tions for practical signal-processing systems.
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7.1 Thesis Summary

In this thesis, we attempted to unite a framework based on sparsity (i.e., compressive sens-

ing) with frameworks for linear signal processing. To demonstrate our results, we consid-

ered three biomedical applications as case studies: detecting epileptic seizures using EEG,

sorting spikes for neural prosthesis, and detecting cardiac arrhythmias using ECG. The rest

of this section summarizes our results and contributions in each chapter of the thesis.

In Chapter 3, we focused on transforming linear signal-processing computations

in a seizure detection application. To achieve this goal, we first formulated feature-

extraction computations using matrix operations. This enabled us to derive corresponding

compressed-domain processing matrices by solving a set of overdetermined linear equa-

tions. In order to achieve this, we employed a least-squares approximation. We also

showed that solving for a projection of the Nyquist-domain features (instead of the features

themselves) helps achieve smaller error values in spectral-energy estimates, which were

key to accurate seizure detection. The intuition was that the projection of the features

preserves the inner-product between vectors. This projection was used to extract the

spectral-energy values from the processed EEG signals before classification. To show that

the inner-products are indeed preserved by our compressed-domain processing matrices,

we showed that EEG signals can be represented through a small set of basis vectors. This

allowed us to apply the JL lemma, validating the hypothesis of inner-products preserva-

tion. To further validate our methodology, we also used statistical metrics of kurtosis and

skewness, as well as information metrics of KL divergence and mutual information in the

FVs obtained from compressed-domain processing. Through these metrics and through

simulation of the end-to-end algorithm, we showed that at a compression factor of 10×,

despite ≈ 30% error in the spectral-energy features, the accuracy of seizure detection

suffers minimally. This chapter led us to identify two key limitations of our methodology.

First, the error introduced by the least-squares approximation negatively impacted the

end-to-end performance of the detector. This meant that an accurate method of solving
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the equations could potentially help us achieve higher compression factors for the same

degradation in detection accuracy. Second, we learnt that the inner-product error was im-

pacted by the length of the input vector used for compressed-domain processing; the length

of the input EEG vector processed for seizure detection was 512 samples. By exploring

the theoretical error bounds, we saw that the inner-product error could be alleviated by

processing high-dimensional input vectors.

In Chapter 4, we addressed the first limitation identified in Chapter 3. We introduced

a designer-controllable auxiliary matrixΘ to solve the compressed-domain equations. The

system of linear equations now became underdetermined, allowing us an infinite number

of valid solutions. We showed that by constraining these equations appropriately, we can

derive two types of solutions: (1) an exact solution with minimum error in the compressed-

domain equations, and (2) an approximate solution with smaller-sized processing matrices

in the compressed domain, potentially saving us additional computational energy. Further,

introducing Θ allowed us to also transform multi-rate signal-processing systems. We val-

idated our methodology using a neural prosthesis application where we performed spike

sorting followed by classification using a K-means algorithm. We showed that the inner-

product error among FVs could be reduced to below 20% at a compression factor of 10×.

This lower error helped us achieve much higher detection accuracies than the least-squares

approach. Further, we also showed the applicability of our methodology to multi-rate sys-

tems by using a modified version of the seizure-detection algorithm, where we downsam-

pled EEG signals before processing. From this chapter, we learnt that compressed-domain

processing is limited by a theoretical lower bound on the inner-product errors. These errors

are governed by the random projections used in compressive sensing. We also learnt that an

auxiliary matrix based approach provides us with new knobs to explore the energy-accuracy

tradeoff in compressed-domain processing systems.

In Chapter 5, we took advantage of the knobs provided by the methodology presented

in Chapter 4 in a practical IC implementation. We presented a hardware architecture for
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the seizure-detection algorithm used in Chapter 3. We showed that the compressed-domain

processing matrices disrupted the regularity of FIR filters used in the Nyquist-domain algo-

rithm. This necessitated the use of an SRAM to store the filter coefficients for processing.

We observed that in compressed-domain processing, the SRAM energy dominates the logic

energy. However, the size of the compressed-domain processing matrices could potentially

be much smaller. The size of the matrices was controllable through two knobs: (1) ξ,

which determined the amount of compression and (2) ν, which determined the error in the

compressed-domain equations. By utilizing these knobs, we thus showed that a subarray of

SRAMs could be extremely advantageous for power management. Through measurement

results, we studied the energy scaling characteristics of the compressed-domain seizure de-

tector with respect to ξ and ν. We observed that the compressed-domain feature-extraction

energy scaled substantially with both parameters. Thus, we demonstrated that our method-

ology could provide an effective energy-accuracy knob for processing signals. Based on the

prototype IC presented in this chapter, we learnt that by directly processing compressively-

sensed signals, we can simultaneously reduce energy for communication and computation.

The computational energy savings are obtained since we not only avoid the reconstruction

process but also process fewer input samples compared to the Nyquist domain. However, a

limitation we observed was that for algorithms, which rely on non-linear SVMs (i.e., those

that employ RBF or polynomial kernels), the energy for classification could significantly

dominate the feature-extraction energy. This could potentially obviate the computational-

energy benefits of compressed-domain processing.

In Chapter 6, we attempted to address the limitation observed in Chapter 5. We per-

formed an application-driven algorithmic study of data-driven algorithms for signal analy-

sis. Our aim was to investigate the reason for the high complexity of classification. We used

two algorithms for arrhythmia detection as representative examples. We saw that in these

algorithms, the classifier complexity could be extremely high (as much as 243× higher

than preprocessing and feature extraction when implemented on a Tensilica processor) in
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the Nyquist domain itself. The reason for this complexity was the high-order detection

models used in the SVM classifier. High-order models were necessary to maintain accurate

detection. We thus conducted an architectural study for optimizing such algorithms. We

observed that using custom instructions was not very effective for reducing the energy con-

sumption of classification computations since the large data vectors pulled from memory

posed the main energy bottleneck. However, we found that a coprocessor based archi-

tecture could be more effective in minimizing classifier energy. The challenge, however,

was to provide selective flexibility along with hardware specialization. This was neces-

sary to be able to support classifier complexities across a range of applications. We thus

proposed a coprocessor architecture for SVM classification, which had a variable-sized

buffer, variable-precision MAC, and programmable polynomial kernel. We implemented

the coprocessor using a low-power FD-SOI technology where we also employed circuit-

level optimizations of voltage scaling and parallelism. Through post-layout simulations,

we demonstrated reductions of up to three orders of magnitude for SVM classification as

compared to implementations using custom instructions. The results from this chapter also

suggest that our coprocessor based platform could bring down the energy consumption

of the end-to-end signal-analysis algorithms to under 0.5 mW. This could potentially be

promising for enabling continuous on-node signal analysis, which, in several applications,

is often constrained by limited battery resources.

7.2 Future Directions

In this thesis, we attempted to explore the question of whether we can directly process

signals when they are represented efficiently. In particular, we considered signal repre-

sentations that exploit sparsity. There are several avenues along which the techniques we

presented can be further explored.
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Develop a suite of compressed-domain processing functions. Our approach focused

on transforming computations so that they can be applied directly to compressively-sensed

signals, which are derived by sub-Nyquist sampling. Specifically, we demonstrated

methodologies to transform linear signal-processing functions, including multi-rate sys-

tems. For the considered applications, we derived compressed-domain processing matrices

corresponding to wavelet transforms and FIR filters (including downsampling) in the

Nyquist domain. In the future, it would be beneficial to derive compressed-domain

matrices for other linear signal-processing functions. Eventually, this could help build a

suite of compressed-domain functions, which can also be mapped to a hardware library.

This process can help characterize the range of energy savings provided by different linear

signal-processing operations. Building a suite of compressed-domain functions would also

help designers quickly explore error bounds and compression factors for a much broader

range of applications.

Study compression limits for algorithms that process high-dimensional data vectors.

In Sec. 3.8, we explored theoretical bounds for inner-product errors achievable by our

methodology. We observed that the error can potentially be lowered when we process high-

dimensional vectors. Our input-vector dimensionality was restricted by the algorithms we

used for evaluation. However, our methodology can potentially be of more benefit to those

algorithms that process high-dimensional input vectors. In the future, it would thus be in-

teresting to explore the compression limits for algorithms that must handle large amounts

of sensor data. This can arise either due to the high sampling rates involved or process-

ing of longer signal epochs. This research direction could be especially compelling for

image-processing and computer-vision algorithms. With increasing emphasis on mobile

computer vision, compressed-domain processing could be very beneficial for substantial

energy reduction and increased battery lives.

Derive transformations for algorithms that process low-dimensional data vectors de-

rived from a large number of measurement channels. Another related direction is to
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extend our methodology to applications with very low-dimensional input vectors. The idea

in this case is to derive new compressed-domain matrices so that they can be applied to

a concatenated vector derived using signals from multiple data channels. Concatenating

channels could help our methodology since it artificially generates high-dimensional vec-

tors, thereby reducing the inner-product error. The challenge in this case, however, is to be

able to subsequently isolate the processed results for individual channels without any loss of

information. A potential method for achieving this may involve projecting data from each

sensing channel onto an orthogonal subspace and then applying the compressed-domain

processing matrix. Application domains, such as brain-machine interfaces that rely on

ECoGs, typically require a large number of low-dimensional measurement channels [229].

Such applications can benefit substantially from this approach.

Extend the compressed-domain processing methodology to non-linear systems and

systems with feedback. The processing algorithms we considered in this thesis assume

feed-forward signal-processing functions in the Nyquist domain (e.g., FIR filters). Ex-

tending our methodology to systems with feedback (e.g., infinite impulse response filters)

would be interesting. However, this research path may require overcoming a new set of

challenges like buffering in the compressed domain. Another compelling exploration for

future research is to extend our methodology to non-linear signal-processing functions.

This could be a very challenging task. One possible way to tackle this problem could be

through piecewise linear approximations of a non-linear processing function. We could

model each linear component using a matrix and transform it to the compressed domain.

The challenge, however, is in stitching together the processed pieces in the compressed

domain so that it effectively mimics the result of transforming the non-linear function.
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