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Abstract A good model of object shape is essential in
applications such as segmentation, detection, inpainting and
graphics. For example, when performing segmentation, local
constraints on the shapes can help where object boundaries
are noisy or unclear, and global constraints can resolve ambi-
guities where background clutter looks similar to parts of
the objects. In general, the stronger the model of shape, the
more performance is improved. In this paper, we use a type of
deep Boltzmann machine (Salakhutdinov and Hinton, Inter-
national Conference on Artificial Intelligence and Statistics,
2009) that we call a Shape Boltzmann Machine (SBM) for the
task of modeling foreground/background (binary) and parts-
based (categorical) shape images. We show that the SBM
characterizes a strong model of shape, in that samples from
the model look realistic and it can generalize to generate sam-
ples that differ from training examples. We find that the SBM
learns distributions that are qualitatively and quantitatively
better than existing models for this task.
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1 Introduction

Models of the shape of an object play a crucial role in
many imaging algorithms, such as those for object detec-
tion and segmentation (e.g. Borenstein et al. 2004; Winn and
Jojic. 2005; Alexe et al. 2010a; Eslami and Williams 2011),
inpainting (e.g. Chan and Shen 2001; Bertozzi et al. 2007;
Shekhovtsov et al. 2012) and graphics (e.g. Anguelov et al.
2005). In object segmentation, local constraints on the shape,
such as smoothness and continuity, can help provide correct
segmentations where the object boundary is noisy or lost in
shadow. More global constraints, such as ensuring the correct
number of parts (legs, wheels, etc.), can resolve ambiguities
where background regions look similar to an object part (e.g.
Jojic et al. 2009). Shape also plays an important role in gen-
erative models of images (e.g. Frey et al. 2003; Williams
and Titsias 2004; Le Roux et al. 2011; Eslami and Williams
2011). In general, the better the model of object shape, the
more performance will be improved in these applications.

This paper addresses the question of how to build a strong
probabilistic model of object shapes. We define a strong
model as one which meets two requirements:

1. Realism—samples from the model look realistic;
2. Generalization—the model can generate samples that dif-

fer from training examples.

The first constraint ensures that the model captures shape
characteristics at all spatial scales well enough to place prob-
ability mass only on images that belong to the ‘true’ shape
distribution. The second constraint ensures that there are no
gaps in the learned distribution, i.e. that it also covers novel
unseen but valid shapes.

There have been a wide variety of approaches to mod-
eling 2D shape. The most commonly used models are
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grid-structured Markov random fields (MRFs) or conditional
random fields (CRFs, e.g. Boykov and Jolly 2001). In such
models, the pairwise potentials connecting neighboring pix-
els impose very local constraints like smoothness but are
unable to capture more complex properties such as convex-
ity or curvature, nor can they account for longer-range prop-
erties. Carefully designed high-order potentials (e.g. Kohli
2007; Komodakis 2009; Rother et al. 2009; Kohli et al. 2009;
Nowozin and Lampert 2009) allow particular local or longer-
range shape properties to be modeled within an MRF, but
these potentials fall short of capturing all such properties so
as to make realistic-looking samples. For example, a strong
shape model of horses would know that horses have legs,
heads and tails, that these parts appear in certain positions
consistent with a global pose, that there are never more than
four legs visible in any given image, that the legs have to
support the horse’s body, along with many more properties
that are difficult to express in words but necessary to make
the shape look plausible.

Other approaches represent shape using a level set or para-
meterized contour. These have different strengths and weak-
nesses, but all share the fundamental challenge of imposing
sufficient constraints to limit the model to valid shapes while
allowing for the right degree of flexibility to capture all pos-
sible shapes. For example, a common approach when using a
contour (or an image) is to use a mean shape in combination
with some principal directions of variation, as captured by
a principal components analysis (Cootes et al. 1995) or fac-
tor analysis (Cemgil et al. 2005; Eslami and Williams 2011).
Such models capture the typical global shape of an object and
global variations on it (such as changes in the aspect ratio of
a face). However, they cannot capture multimodal distribu-
tions, and tend to be poor at learning about local variations
which affect only part of the shape (e.g. the angle of a horse’s
front legs).

Non-parametric approaches employ what is effectively a
large database of template shapes (Gavrila 2007) or shape
fragments (Borenstein et al. 2004; Kumar and Torr 2005). In
the former case, because no attempt is made to understand
the composition of the shape, it is impossible to generalize
to novel shapes not present in the database. In the latter case,
the challenge lies in how to compose the shape fragments to
form valid shapes. We are not aware of any method which
can generate a variety of realistic looking whole shapes by
composing fragments. Table 1 and Fig. 1 illustrate why these
existing approaches do not meet the criteria for a strong shape
model.

In this paper, we consider a class of models from the learn-
ing community, known as deep Boltzmann machines (DBMs,
Salakhutdinov and Hinton 2009). The main contribution of
this paper is to show how a strong model of binary shape can
be constructed using a form of DBM with a set of carefully
chosen capacity constraints, which we call the Shape Boltz-

Table 1 Comparison of a number of different shape models

Realism Generalization

Globally Locally

Mean e.g. Jojic and Caspi
(2004)

� – –

Deformation field e.g. Winn
and Jojic. (2005)

– � �

Factor analysis e.g.
Cemgil et al. (2005)

� – �

Fragments e.g.
Borenstein et al. (2004)

– � �

Grid MRFs/CRFs e.g.
Rother et al. (2004)

– � �

High-order potentials e.g.
Nowozin and Lampert (2009)

Limited � �

Database e.g. Gavrila (2007) � � –

Shape Boltzmann Machine � � �

(a) (b) (c)

Fig. 1 Samples generated by (a) a mean-only model of horse shapes,
(b) a Markov random field model, (c) discrete factor analysis as defined
in Eqs. 18, 19

mann Machine (SBM). The model is a generative model of
object shape and can be learned directly from training data.
The capacity constraints allow training on relatively small
training sets as are common e.g. for segmentation datasets.
Due to its generative formulation the SBM can be used very
flexibly, not just as a shape prior in segmentation tasks but
also, for instance, to synthesize novel shapes in graphics
applications, or to complete partially occluded shapes. We
learn SBM models from several challenging shape datasets
and evaluate them on a range of shape synthesis and comple-
tion tasks. We demonstrate that, despite the relatively small
sizes of the training datasets, the learned models are both
able to generate realistic samples and to generalize to gen-
erate samples that differ from images in the training dataset.
We provide a detailed discussion of the roles played by the
different capacity constraints in making the SBM work. We
finally present an extension of the SBM that also allows it
to simultaneously model the shape of multiple dependent
regions such as the parts of an object, which can in turn
be used, for instance, as a prior in parts-based segmentation
tasks.

The remainder of the paper is structured as follows. In
Sect. 2 we review several families of probability distributions
that have been used in the literature to model object shape.
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(a) (b) (c) (d) (e)

Fig. 2 Models of shape. (a) 1D slice of a mean model, (b) Markov random field in 1D, (c) Restricted Boltzmann machine in 1D, (d) Deep
Boltzmann machine in 1D, (e) Shape Boltzmann Machine in 1D

In Sects. 3 and 4 we present the SBM and describe efficient
inference and learning schemes for the model. We provide an
extensive experimental evaluation in Sect. 5, and conclude
with a discussion in Sects. 6 and 7.

2 Related Work

In this section we will review several undirected models suit-
able for modeling binary shape images. We will start with
the commonly used grid-structured MRF and describe how
it can be modified to form an undirected model known as
the restricted Boltzmann machine (RBM). We then describe
how RBMs can be stacked to form the hierarchical structure
of the deep Boltzmann machine (DBM).

We will specify undirected models in terms of an energy
function E(x1, . . . , xN ) defined over the relevant set of ran-
dom variables x1, . . . , xN (image pixels, possibly latent vari-
ables). The associated Gibbs distribution is then given by:

p(x1, . . . , xN ) = 1

Z
exp {−E(x1, . . . , xN )} , (1)

where Z = ∑
x1,...,xN

exp {−E(x1, . . . , xN )} is the normal-
ization constant. We will further use vi to denote image pixel
i , and v = (vi )

T to denote a column-vector of image pixels.
The pixels are assumed to be binary (we consider categori-
cal pixels in Sect. 3.2). Similarly we use h j and h = (h j )

T

to refer to binary hidden variable j and a vector of hidden
variables respectively.

2.1 Grid Markov Random Fields

The simplest approach is to model each shape pixel vi inde-
pendently with categorical variables whose parameters are
specified by the object’s mean shape (Fig. 2a). Such a ‘mean
model’ can be expressed in terms of an energy function com-
prised of single-variable terms only:

E(v;Θ) =
∑

i

fi (vi ; bi ). (2)

For binary images, for instance, the fi might take the
form fi (vi ; bi ) = −bivi , specifying the unnormalized log-

probability of vi = 1 which results in the normalized proba-
bility being p(vi = 1; bi ) = exp(bi )/ (1 + exp(bi )).

A binary grid-structured MRF defines a distribution over
binary images v whose energy function is:

E(v;Θ) =
∑

i

fi (vi ; bi ) +
∑

(i, j)

fi j (vi , v j ;wi j ), (3)

where i ranges over image pixels, (i, j) ranges over grid
edges between pixels i and j and the potentials are para-
meterized by bi and wi j , again jointly denoted by Θ . The
grid structure of the MRF arises from the pairwise potentials
fi j shown in Fig. 2b. These potentials induce dependencies
between neighboring pixels that can favor local shape proper-
ties such as connectedness or smoothness, but it is commonly
accepted that grid-structured, pairwise MRFs are very limited
models of global shape (e.g. Morris et al. 1996; Tjelmeland
and Besag 1998).

In an attempt to capture more complex or global shape
properties, much recent research has therefore focused on
constructing higher-order potentials (HOPs), which take the
configuration of larger groups of image pixels into account
(i.e. their energy includes potentials f that depend on more
than two pixel variables). The maximum number of variables
per potential is referred to as the ‘order’ of the model. Since,
in general, the cost of naïve inference (e.g. finding the most
likely (MAP) configuration of the variables) in MRFs grows
exponentially in the model order, there has been a strong
emphasis on developing HOPs for which efficient inference
schemes can be devised.

The higher order potentials in Rother et al. (2009), for
instance, are defined in terms of a set of ‘reference patterns’
and penalize deviations of groups of pixels from these pat-
terns. Such HOPs can be considered to be introducing an aux-
iliary hidden variable connected through pairwise potentials
to multiple image pixels. The introduction of such hidden
variables provides a powerful way to capture and learn com-
plex properties of multiple image pixels. When such hidden
variables are marginalized out they induce high-order con-
straints amongst the image pixels. Yet, because the model
only contains pairwise potentials, both learning and infer-
ence remain tractable.

123



Int J Comput Vis

2.2 Restricted Boltzmann Machines

One model that makes heavy use of hidden variables to intro-
duce dependencies between the observed variables is the
RBM (e.g. Freund and Haussler 1994). In an RBM, a number
of hidden variables h are used, each of which is connected to
all image pixels as shown in Fig. 2c. However, unlike a grid
MRF, there are no direct connections between the image pix-
els v. There are also no direct connections between the hidden
variables. Hence, the energy function takes the form:

E(v, h;Θ) =
∑

i

bivi +
∑

i, j

wi jvi h j +
∑

j

c j h j , (4)

where i now ranges over pixels and j ranges over hidden vari-
ables. The key points to note are that the potential functions
are all simple products and that the only pairwise potentials
are those between each visible and each hidden variable. By
learning the parameters of the potentials {wi j , bi , c j }, the
model can learn about high-order constraints in the data set.

The effect of the latent variables can be directly appreci-
ated by considering the marginal distribution over v which
is given by marginalizing over the hidden variables:

p(v;Θ) =
∑

h

1

Z(Θ)
exp{−E(v, h;�)}, (5)

where the normalization constant Z(Θ) is given by Z(Θ) =∑
v,h exp{−E(v, h;Θ)}. This marginalization allows the

model to capture high-order dependencies between the vis-
ible units. In fact, the hidden units can be summed out ana-
lytically (e.g. Freund and Haussler 1994), giving rise to an
alternative formulation of the RBM in terms of high-order
potentials that no longer includes latent variables. The energy
of this marginal distribution is given by:

E(v;Θ) =
∑

i

fi (vi ; bi ) +
∑

j

g j (v; W· j ), (6)

where fi (vi ; bi ) = −bivi and g j (v) = − log(1 +
exp

(∑
i wi jvi + c j

)
).

It is instructive to compare the form of Eq. 6 with the
energy of the grid-structured MRF in Eq. 3: whereas the
energy of the grid-structured MRF was comprised of unary
and pair-wise terms only ( fi (vi ) and fi j (vi , v j ) respec-
tively), the energy of the RBM involves unary potentials as
well as high-order potentials, each of which is defined over
all pixels v (the g j (v)). There is one such high-order poten-
tial for each hidden unit, and it is these high-order potentials
that allow the RBM to model considerably more complicated
dependencies than, for instance, pairwise MRFs.

Whilst marginalization over the latent variables makes the
high-order potentials explicit, the formulation that includes
latent variables suggests an efficient inference scheme (in
loose analogy to the use of latent variables for the HOPs
discussed in Sect. 2.1): When written as in Eq. 4 the RBM

forms a bipartite graph that has edges only between hidden
and visible variables. As a consequence all hidden units are
conditionally independent given the visible units—and vice
versa. This property can be exploited to make inference exact
and efficient. The conditional probabilities are:

p(vi = 1|h) = σ

⎛

⎝
∑

j

wi j h j + bi

⎞

⎠ , (7)

p(h j = 1|v) = σ

(
∑

i

wi jvi + c j

)

, (8)

where σ(y) = 1/(1+exp(−y)) is the sigmoid function. This
property allows for efficient implementations of block-Gibbs
sampling where all v and all h are sampled in parallel in an
alternating manner, which can be exploited during approxi-
mate learning (Hinton 2002; Tieleman 2008).

2.3 Deep Boltzmann Machines

RBMs can, in principle, approximate any binary distribution
(Freund and Haussler 1994; Le Roux and Bengio 2008), but
this can require an exponential number of hidden units and a
similarly large amount of training data. The DBM provides a
richer model by introducing additional layers of latent vari-
ables as shown in Fig. 2d. The additional layers capture high-
order dependencies between the hidden variables of previous
layers and so can learn about complex structure in the data
using relatively few hidden units. The energy of a DBM with
two layers of latent variables is given by:

E(v, h1, h2;Θ) =
∑

i

bivi +
∑

i, j

w1
i jvi h

1
j +

∑

j

c1
j h

1
j

+
∑

j,k

w2
jkh1

j h
2
k +

∑

k

c2
k h2

k . (9)

As for the RBM, the posterior distribution over the visibles
is obtained by marginalization, this time with respect to both
sets of hidden variables:

p(v;Θ) =
∑

h1,h2

1

Z(Θ)
exp{−E(v, h1, h2;Θ)}, (10)

and the normalization constant defined analogously: Z(Θ) =∑
v,h1,h2 exp{−E(v, h1, h2;Θ)}.
Although exact inference is no longer possible in this

model, the conditional distributions p(v|h1), p(h1|v, h2),
and p(h2|h1) remain factorized due to the layering:

p(vi = 1|h1) = σ

⎛

⎝
∑

j

w1
i j h

1
j + bi

⎞

⎠ , (11)

p(h1
j = 1|v, h2) = σ

(
∑

i

w1
i jvi +

∑

k

w2
jkh2

k + c1
j

)

,

(12)
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p(h2
k = 1|h1) = σ

⎛

⎝
∑

j

w2
jkh1

j + c2
k

⎞

⎠ . (13)

This allows for computationally efficient inference, either
by layerwise block-Gibbs sampling from the posterior
p(h1, h2|v) (Fig. 4), or by using a mean field procedure
with a fully factorized approximate posterior as described
in Salakhutdinov and Hinton (2009). The layering further
admits a layer-wise pre-training procedure that makes it less
likely that learning will get stuck in local optima. Hence the
DBM is both a rich model of binary images and a tractable
one.

3 Model

RBMs and DBMs are powerful generative models, but also
have many parameters. Since they are typically trained on
large amounts of unlabeled data (thousands or tens of thou-
sands of examples), this is usually less of a problem than in
supervised settings. Segmented images, however, are expen-
sive to obtain and datasets are typically small (hundreds of
examples). In such a regime, RBMs and DBMs can be prone
to overfitting.

In this section we will describe how we can impose a
set of carefully chosen connectivity and capacity constraints
on a DBM to overcome this problem: the resulting SBM
formulation not only learns a model that accurately captures
the properties of binary shapes, but that also generalizes well,
even when trained on small datasets.

3.1 The Shape Boltzmann Machine

The SBM used below has two layers of latent variables: h1

and h2. The visible units v are the pixels of a binary image
of size N × M . In the first layer we enforce local receptive
fields by connecting each hidden unit in h1 only to a subset
of the visible units, corresponding to one of four rectangular
patches, as shown in Fig. 3. In order to encourage boundary
consistency each patch overlaps its neighbor by r pixels and
so has side lengths of N/2 + r/2 and M/2 + r/2. We fur-
thermore share weights between the four sets of hidden units
and patches, however the visible biases bi are not shared.

Similar constraints have previously been used in the litera-
ture (e.g. Desjardins and Bengio 2008; Raina et al. 2009; Lee
te al. 2009; Norouzi et al. 2009; Ranzato et al. 2010, 2011),
especially in convolutional and tiled-convolutional formula-
tions of RBMs and DBNs. In comparison, in the SBM the
receptive field overlap of adjacent groups of hidden units is
particularly small compared to their sizes.

Overall, these modifications reduce the number of first
layer parameters by a factor of about 16 which reduces the
amount of data needed for training by a similar factor. At the

Fig. 3 The Shape Boltzmann Machine in 2D. We enforce local recep-
tive fields by connecting each hidden unit in h1 only to one of four
rectangular patches

same time these modifications take into account two impor-
tant properties of shapes: first, the restricted receptive field
size reflects the fact that the strongest dependencies between
pixels are typically local, while distant parts of an object often
vary more independently (the small overlap allows boundary
continuity to be learned primarily at the lowest layer); second,
weight sharing takes account of the fact that many generic
properties of shapes (e.g. smoothness) are independent of the
image position.

For the second layer we choose full connectivity between
h1 and h2, but restrict the relative capacity of h2: we use
around 4 × 500 hidden units for h1 versus around 50 for h2

in our single class experiments. While the first layer is primar-
ily concerned with generic, local properties, the role of the
second layer is to impose global constraints, e.g. with respect
to the class of an object shape or its overall pose. The second
layer mediates dependencies between pixels that are far apart
(not in the same local receptive field), but these dependencies
will be weaker than between nearby pixels that share first-
level hidden units. Limiting the capacity of the second-layer
encourages this separation of concerns and helps to prevent
the model from overfitting to small training sets. Note that
this is in contrast to Salakhutdinov and Hinton (2009) who
use a top-most layer that is at least as large as all of the
preceding layers.

3.2 A Multi-region SBM

The SBM model described in the previous section repre-
sents shapes as binary images and can be used, for exam-
ple, as a prior when segmenting a foreground object from its
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background. While it is often sufficient to consider the fore-
ground object as a single region without internal structure,
there are situations where it is desirable to explicitly model
multiple, dependent regions, e.g. in order to decompose the
foreground object into parts (Winn and Jojic. 2005; Kapoor
2006; Thomas et al. 2009; Bo and Fowlkes 2011; Eslami and
Williams 2011).

In the SBM this can be achieved by using categorical vis-
ible units instead of binary ones: visible units with L + 1
different states (i.e. vi ∈ {0, . . . L}) allow the modeling of
shapes with L parts. The visible unit representing the i th
pixel then indicates which of the L parts or the background
the pixel belongs to (here we treat the background as part 0).

We use a ‘one-of-L + 1’ encoding for vi , i.e. we choose
vi to be L + 1 dimensional binary vectors and for vi = l we
set vil = 1 and vil ′ = 0, ∀l ′ �= l. The energy function of
this extended model is given by:

E(V, h1, h2|θ s) =
∑

i,l

blivli +
∑

i, j,l

w1
li jvli h

1
j +

∑

j

c1
j h

1
j

+
∑

j,k

w2
jkh1

j h
2
k +

∑

k

c2
k h2

k, (14)

where we use V to denote the the matrix with the L + 1
dimensional vectors vi in its rows.

This change in the nature of the visible units preserves
all of the appealing properties of the SBM. In particular
the conditional distributions over the three sets of variables
V, h1, and h2 remain factorial. The only change is in the spe-
cific forms of the two conditional distributions p(v|h1) and
p(h1|v, h2):

p(vi = l|h1) =
exp

(∑
j w1

li j h
1
j + bli

)

∑L
l ′=0 exp

(∑
j w1

l ′i j h
1
j + bl ′i

) , (15)

p(h1
j = 1|V, h2) = σ

⎛

⎝
∑

i,l

w1
li jvli +

∑

k

w2
jkh2

k + c1
j

⎞

⎠

(16)

where in the left-hand-side of Eq. 15 we use vi = l to denote
the fact that vil = 1 and vil ′ = 0, ∀l ′ �= l as explained
above.

Note that Eq. 16 is effectively the same as Eq. 13 except
that there are now L + 1 binary visible units per pixel. The
conditional distribution given in Eq. 15 implements the con-
straint that for each pixel only one of these L +1 binary units
can be active, i.e. only one of the parts can be present. Due
to the particular form of the conditional distribution (Eq. 15)
categorical visible units are often referred to as ‘softmax’
units (e.g. Bridle 1990). In our experiments below we explore
SBMs with six or seven parts.

It should be noted that the above formulation of the multi-
part SBM is especially suited to model the shapes of several

dependent regions such as non-occluding (or lightly occlud-
ing) object parts. For modeling the shapes of multiple inde-
pendent regions, as arise in the case of multiple occluding
objects, it might be more suitable to model occlusion explic-
itly, as in Le Roux et al. (2011).

4 Learning

Learning of the model involves maximizing log p(v;Θ) of
the observed data v with respect to its parameters Θ =
{b, W 1, W 2, c1, c2} (see Eqs. 5, 10). The gradient of the log-
likelihood of a single training image with respect to the para-
meters is given by:

∇Θ log p(v;Θ) = 〈∇Θ E(v′, h1, h2;Θ)〉pΘ(v′,h1,h2)

−〈∇Θ E(v, h1, h2;Θ)〉pΘ(h1,h2|v), (17)

and the total gradient is obtained by summing the gradients of
the individual training images (e.g. Ackley et al. 1985; Fre-
und and Haussler 1994; Salakhutdinov and Hinton 2009).
The first term on the right hand side is the expectation of the
gradient of the energy (see Eqs. 9, 14) where the expectation
is taken with respect to the joint distribution over v, h1, h2

defined by the model. The second term is also an expectation
of the gradient of the energy, but this time taken with respect
to the posterior distribution over h1, h2 given the observed
image v. Although the gradient is readily written out, maxi-
mization of the log-likelihood is difficult in practice. Firstly,
except for very simple cases it is intractable to compute as
both expectations involve a sum over a number of terms that
is exponential in the number of variables (visible and hidden
units). Secondly, gradient ascent in the likelihood is prone to
getting stuck in local optima.

In this work we closely follow the procedure proposed
in Salakhutdinov and Hinton (2009) which minimizes these
difficulties in three ways: (a) it approximates the first expec-
tation in Eq. 17 with samples drawn from the model distribu-
tion via MCMC; (b) it approximates the second expectation
using a mean-field approximation to the posterior; and (c) it
employs a pre-training strategy that provides a good initial-
ization to the weights W 1, W 2 before attempting learning in
the full model.

Learning proceeds in two phases. In the pre-training phase
we greedily train the model bottom up, one layer at a time.
The purpose of this phase is to find good initial values for all
parameters of the model. We begin by training an RBM on
the observed data. The likelihood gradient of an RBM takes a
form very similar to Eq. 17. Unlike for the DBM, for an RBM
the second expectation over the conditional distribution of the
hidden units h given the data is tractable and can be computed
exactly (see Eq. 8). The first expectation, taken with respect to
the full model distribution, however, remains intractable. We
therefore perform stochastic maximum likelihood learning
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(SML, also referred to as ‘persistent contrastive divergence’;
Neal 1992; Tieleman 2008; Salakhutdinov and Hinton 2009)
where this expectation is approximated using samples from
the model distribution obtained via MCMC. While a naïve
MCMC approximation of the expectation would be compu-
tationally very expensive, considerable computational sav-
ings can be obtained through a set of Markov chains that are
initialized at the beginning of learning and then maintained
over the course of learning (hence the adjunct ‘persistent’),
alternating updates of the model parameters Θ with Gibbs
sampling steps to update the sample approximation to the
model distribution. This algorithm is an instance of a sto-
chastic approximation scheme of the Robbins–Monro type
(Robbins and Monro 1951; Younes and Sud 1989; Younes
1999).

The number of hidden units of this RBM is the same as
the size of h1 in the full SBM model and it obeys the same
connectivity constraints as the SBM’s first layer. Once this
RBM is trained, we infer the conditional mean of the hidden
units using Eq. 8 for each training image. The resulting vec-
tors then serve as the training data for a second RBM with the
same number of hidden units as h2, which is trained using
SML.

We use the parameters of these two RBMs to initialize the
parameters of the full SBM model as described in Salakhutdi-
nov and Hinton (2009). Simply speaking, we use the weights
of the first RBM to initialize the parameters of the lower layer
of the SBM (b and W 1), and the parameters of the second
RBM to initialize the upper layer (W 2 and c2). As discussed
in detail in Salakhutdinov and Hinton (2009) special care
must be taken to account for the fact that in the full model h1

now receives input from both v and h2.
In the second phase we then perform approximate sto-

chastic gradient ascent in the likelihood of the full model to
fine-tune the parameters in an expectation-maximization-like
scheme. This involves the same sample-based approximation
to the gradient of the normalization constant used for learning
the RBMs (Tieleman 2008; Salakhutdinov and Hinton 2009),
as well as a fully factorized mean-field approximation to the
posterior p(h1, h2|v). This joint training is essential to sep-
arate out learning of local and global shape properties into
the two hidden layers.

5 Experiments

We performed an extensive experimental evaluation of the
SBM model on five datasets in total. The presentation of the
results is divided into four parts:

In Sect. 5.1 we focus on demonstrating that the SBM can
indeed act as a strong model of object shape. For this pur-
pose we perform qualitative and quantitative evaluations on
two challenging datasets: the Weizmann horse datasets and

motorbikes from Caltech-101. Despite both datasets being
relatively small we find that the learned models capture essen-
tial high- and low-level properties of the shapes in the training
data, producing realistic samples and generalizing to novel
shapes not present in the training data. Quantitatively we
find that the SBM outperforms several baseline models in a
difficult shape completion task.

The goal of Sect. 5.2 is to examine the contribution of the
various architectural choices detailed in Sect. 3 to the success
of the SBM. We address the impact of localized receptive
fields, weight-sharing, and of the hierarchical structure of
the model.

In many situations it is desirable or even necessary to
model not just a single but multiple object classes with the
same model. In Sect. 5.3 we therefore introduce an additional
dataset comprised of multiple object categories (Weizmann
horses and several animals from Caltech-101) and demon-
strate that the SBM, with a single set of parameters, can learn
a joint model of several categories from unlabeled data, gen-
eralizing reliably within each category.

Finally, in Sect. 5.4 we analyze the behavior of the multi-
part extension of the SBM introduced in Sect. 3.2 on two
multi-part datasets, the ETHZ cars dataset and the HumanEva
pedestrians dataset.

5.1 Generalization and Realism

In this section we demonstrate that the SBM can be trained
to be a strong model of object shape. For this purpose we
consider two challenging datasets: Weizmann horses and
Caltech-101 motorbikes.

Weizmann horse dataset The Weizmann horse dataset
(Borenstein et al. 2004) contains 327 images, all of horses
facing to the left, but in a variety of poses.1 The dataset is
challenging because in addition to their overall pose varia-
tion, the positions of the horses’ heads, tails and legs change
considerably from image to image.

The binary images are cropped and normalized to 32 ×
32 pixels (see Fig. 5a). We trained an SBM with overlap
r = 4, and 2,000 and 100 units for h1 and h2 respectively.
The first layer was pre-trained for 3,000 epochs (iterations)
and the second layer for 1,000 epochs. After pre-training,
joint training was performed for 1,000 epochs. Our Matlab
implementation completed training in around 4 h, running
on a dual-core, 3 GHz PC with 4GB of memory.

Caltech motorbikes dataset Our second dataset is based on
Caltech-101 (Fei-Fei et al. 2004), and consists of 798 motor-
bike silhouettes.2 These binary images are of higher reso-

1 http://msri.org/people/members/eranb.
2 http://vision.caltech.edu/Image_Datasets/Caltech101.
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Fig. 4 DBM MCMC.
Block-Gibbs MCMC sampling
scheme, in which v, h1 and h2

variables are sampled in turn.
Note that each sample of h1 is
obtained conditioned on the
current state of v and h2. For
sufficiently large values of n,
sample n will be uncorrelated
with the original image

lution than the horses and are cropped and normalized to
64 × 64 pixels (see Fig. 7a). We trained an SBM with over-
lap r = 4, and 1,200 and 50 units for h1 and h2 respectively,
using the same schedule as before.

It is noteworthy that for both datasets the number of train-
ing images is relatively small compared to the variability
present in the data and, in particular, compared to the size of
datasets that deep learning models are typically trained on.
Both datasets consist of significantly less than 1,000 train-
ing images which is in stark contrast to the several thou-
sand or, more often, tens of thousands of training images for
most applications of deep models in the literature. Salakhut-
dinov and Hinton (2009), for instance, use the 60,000 training
images from the MNIST dataset for their experiments.

Baseline models For comparison we considered two base-
line models: First, we trained a factor analysis (FA) model
with 10 latent dimensions. The FA model was modified to
work on discrete binary images. Similar to the clipped factor
analysis model described in Cemgil et al. (2005) the inde-
pendent Gaussian latent variables are mixed linearly and
then passed through a sigmoid to obtain binary observed
variables:

p(h) = N (0, I), (18)

p(vi = 1|h) = σ

⎛

⎝
∑

j

wi j h j + b j

⎞

⎠ , (19)

where 0 is a vector of zeros and I denotes the identity matrix.
The model was trained using gradient ascent, and inference
was performed using elliptical slice sampling as described in
Eslami and Williams (2011).

Our second baseline model was the RBM as defined in
Eq. 4. We used 500 hidden units and trained the model using
SML as described in Sect. 4. For both baseline models the
hyperparameters and number of hidden units were manually
optimized for each dataset.

5.1.1 Realism

To assess the Realism requirement, we sampled a set of
shapes from each model, as shown in Figs. 5 and 7 for the
horse and motorbike datasets respectively.

The FA shape models can be sampled from directly.
For the RBM and SBM models samples are generated by
extended block Gibbs sampling. In particular, for the SBM
models samples were generated using the scheme outlined in
Fig. 4. As is common in the literature, we visualize the sam-
ples by showing for each pixel i the (grayscale) conditional
probability of that pixel p(vi = 1|h) given the particular
hidden configuration that constitutes the current state of the
Markov chain. Binary samples can be generated per-pixel
from a Bernoulli distribution where the gray level specifies
the distribution mean.

FA effectively defines a transformed Gaussian distribution
over the image pixels and is thus inherently unimodal. In
order to account for the diversity of shapes in the training data
it is therefore forced to allocate probability mass to images
that do not correspond to realistic horse or motorbike shapes,
as shown in Figs. 5b and 7b.

By contrast, the RBM can, in principle, account for multi-
modal data and could thus assign probability mass more
selectively. However, as the samples of horses (Fig. 5c) indi-
cate, the model also fails to learn a good model of the vari-
ability of horse shapes—the samples are mostly of the same
pose, and details of the shape are lost when the pose changes.
We found this effect to be even more dramatic for RBM sam-
ples of motorbikes, due to the larger image size (see Fig. 7c).

These problems are symptomatic of training RBMs with
insufficient data. The SBM aims to overcome these problems
through a combination of connectivity constraints, weight
sharing, and model hierarchy. As we will discuss in more
detail in Sect. 5.2 below, the combination of these ingredients
is necessary to obtain a strong model of shape.

Samples from the SBM for horses and motorbikes are
shown in Figs. 5d and 7d respectively. First, we note that
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Fig. 5 Sampled horses. (a) A
selection of images from the
Weizmann horse dataset, (b) A
collection of samples from a
discrete factor analysis model.
The Gaussianity assumption
forces the model to allocate
probability mass to unlikely
horse shapes, (c) Samples from
an RBM, (d) Samples from an
SBM. The model generates
samples of varying pose, with
the correct numbers of legs and
details are preserved (samples
are arranged left-right, up-down
in decreasing order of
generalization)

the model generates natural shapes from a variety of poses.
Second, we observe that details such as legs (in the case of
horses) or handle bars, side mirrors, and forks (in the case

of motorbikes) are preserved and remain sharply defined in
the samples. Third, we note that the horses have the cor-
rect number of legs while motorbikes have, for instance, the
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Fig. 6 Generalization. (a) A
sample from the SBM, the
closest image in the training
dataset to the generated sample,
and the difference between the
two images. Red pixels have
been generated by the sample
but are absent in the training
image; yellow pixels are present
in the training image but absent
in the sample. The model has
generalized to an unseen, but
realistic horse shape,
(b) Generalizations made in
each of the samples in Fig. 5d

correct number of handle bars and wheels. Finally, we note
that the patch overlap ensures seamless connections between
the four quadrants of the image. Indeed, horse and motor-
bike samples generated by the model look sufficiently real-
istic that we consider the model to have fulfilled the Realism
requirement.

5.1.2 Generalization

We next investigated to what extent the SBM meets the gener-
alization requirement, to ensure that the model has not simply
memorized the training data. In Fig. 6 we show for horses
the difference between the sampled shapes from Fig. 5d and
their closest images in the training set. We use the Hamming
distance between training images and a thresholded version
of the conditional probability (>0.3), as the similarity mea-
sure. This measure was found to retrieve the visually most
similar images. Red indicates pixels that are in the sample but
not in the closest training image, and yellow indicates pixels
in the training image but not in the sample. Fig. 7e shows
a similar analysis for samples from the model learned for
motorbikes. Both models generalize from the training data-
points in non-trivial ways whilst maintaining validity of the
overall object shape. These results suggest that the SBM gen-
eralizes to realistic shapes that it has not encountered in the
training set.

5.1.3 Shape completion

We further assessed both the realism and generalization capa-
bilities of the SBM by using it to perform shape comple-
tion, where the goal is to generate likely configurations of
pixels for a missing region of the shape, given the rest of
the shape. To perform completion we obtain samples of
the missing—or unobserved—pixels vU conditioned on the
remaining (observed) pixels vO (U and O denote the set
indices of unobserved and observed pixels respectively). This
is achieved using a Gibbs sampling procedure that samples
from the conditional distribution. In this procedure, samples
are obtained by running a Markov chain as before, sampling
v, h1, and h2 from their respective conditional distributions,
but every time v is sampled we ‘clamp’ the observed pix-
els vO of the image to their given values, updating only the
state of the unobserved pixels vU . Since the model speci-
fies a distribution over the missing region p(vU |vO), multi-
ple such samples capture the variability of possible solutions
that exist for any given completion task. In Fig. 8 we show
how the samples become more constrained as the missing
region shrinks. Figures 9 and 10 show sampled completions
of regions of horse and motorbike images that the model had
not seen during training. Despite the large sizes of the missing
portions, and the varying poses of the horses and motorbikes,
completions look realistic.
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Fig. 7 Results on Caltech-101
motorbikes. (a) A selection of
images from the training set (at
64 × 64 pixels), (b) A set of
samples from the FA baseline
model, (c) A set of samples from
the RBM baseline model, (d) A
chain of samples generated by
the SBM, (e) Difference images
for each of the samples in (d)
(same format as in Fig. 6): the
model generalizes from training
examples in non-trivial ways,
whilst maintaining overall
motorbike look-and-feel

Fig. 8 Shape completion
variability. Blue in the first
column indicates the missing
regions. The samples highlight
the variability in possible
completions captured by the
model. As the missing region
shrinks, the samples become
more constrained
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Fig. 9 Sampled image
completion for horses. The
SBM completes rectangular
imputations of random size on
images not seen during training

Fig. 10 Sampled image
completion for motorbikes

The SBM’s ability to do shape completion suggests appli-
cations in a computer graphics setting. Sampled completions
can be constrained in real-time by simply clamping certain
pixels of the image. In Fig. 11a and c we show snapshots of a
graphical user interface in which the user modifies a horse or
motorbike silhouette with a digital brush. The model’s abil-
ity to generalize enables it to generate samples that satisfy
the user’s constraints. The model’s accurate knowledge about
horse and motorbike shapes ensures that the samples remain
realistic.

As a direct comparison we also consider a simple data-
base driven (‘non-parametric’) approach where we try to
find suitable completions via a nearest-neighbor search in
our database of training shapes. As shown in Fig. 11 such a
database-driven approach can fail to find shapes that match
the constraints.

The same approach can also be used to generate com-
plete silhouettes in different poses given simple stick fig-
ures provided by the user (see Fig. 11b, d). This GUI and a
video showing its use may be downloaded from http://bit.ly/
ShapeBM.

5.1.4 Quantitative Comparison

A natural way to directly evaluate a generative model quanti-
tatively is by computing the likelihood of some held-out data
under the model. Unfortunately, this likelihood computation
is intractable for DBMs. Approximations, e.g. based on
annealed importance sampling, (Neal 2001; Salakhutdinov
and Murray 2008; Salakhutdinov and Hinton 2009; Murray
and Salakhutdinov 2009) are computationally very expensive
and their accuracy can be difficult to assess.

As an alternative we therefore introduce what we will refer
to as an ‘imputation score’ for the shape completion task as

a measure of the strength of a model. We collect additional
horse and motorbike silhouettes from the web (25 horses and
25 motorbikes), and divide each into nine segments. We then
perform multiple imputation tests for each image. In each
test, we remove one of the segments and estimate the con-
ditional probability of that segment under the model, given
the remaining eight segments. The log probabilities are then
averaged across the different segments and images to give
the score.

Except for the mean model (where they are trivial) the
conditional distributions over the subsets of unobserved pix-
els given the rest of the image are infeasible to compute in
practice due to the dependencies introduced by the latent
variables. We therefore approximate the required conditional
log-probabilities via MCMC: for a particular image and seg-
ment we draw configurations of the latent variables from the
posterior given the observed part of the image and then eval-
uate the conditional probability of the true configuration of
the unobserved segment given the latent variables, i.e. we
compute:

p(vU |vO) ≈ 1

S

∑

s

p(vU |ĥs), (20)

where vU and vO indicate the set of unobserved/observed
pixels (corresponding to the one removed and the eight
remaining segments), and ĥs ∼ h|vO are samples from
the conditional distribution over the hidden units given the
observed part of the image obtained via MCMC.3 Provided
that our MCMC scheme allows us to sample from the true
posterior the right hand side of Eq. 20 provides us with an
unbiased estimate of p(vU |vO).

3 We set S = 10, 000 in our experiments.
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Fig. 11 Constrained shape
completion. Missing regions
(blue pixels, top row) are
completed using the SBM and
by finding the closest match
(middle row) to the prescribed
pixels in the training data.
(a) The horse’s back is pulled up
by the SBM (bottom row) using
an appropriate ‘on’ brush.
Notice how the stomach moves
up and the head angle changes
to maintain a valid shape. The
horse’s back is then pushed
down with an ‘off’ brush,
(b) Given only minimal user
input, the model completes the
images to generate realistic
shapes. (c), (d) Motorbikes. In
many cases, the nearest
neighbor method fails to find a
suitable training image to satisfy
the constraints

A high score in this test indicates both the realism
of samples and the generalization capability of a model,
since models that do not allocate probability mass on good
shapes (from the ‘true’ generating distribution of horses)
and models that waste probability mass on bad shapes are
both penalized. In particular for the motorbike dataset we
found a small amount of regularization to be beneficial
for most models. This prevented overly confident predic-
tions (and hence large penalties in the log-probability), e.g.
in the situation where a particular pixel happened to be 0
for all training images, but 1 in one or some of the test
images. To this end we replaced the predicted probabil-
ity p of a pixel being 1 given the observed portion of the
image by d + (1 − 2d) · p. The results of these experi-
ments can be seen in Table 2. For optimal damping SBM
is the top-performing model on both the horses and motor-
bikes datasets, but the FA model performs well on the
motorbikes.

Table 2 Imputation scores

Horses Motorbikes
Score d Score d

Without regularization

Mean −50.72 0.000 −248.28 0.000

FA −41.28 0.000 −109.17 0.000

RBM −48.57 0.000 −142.47 0.000

SBM −27.90 0.000 −132.97 0.000

With regularization

Mean −50.65 0.012 −154.14 0.010

FA −40.33 0.028 −108.41 0.006

RBM −47.52 0.016 −142.47 0.000

SBM −26.90 0.014 −104.21 0.034

In the ‘with regularization’ scenario, we also report for each model the
regularization d which maximizes that model’s score
Bold values indicate the highest score achieved by the four models on
each dataset in each scenario
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5.2 Analysis of the SBM Formulation

So far we have demonstrated that the SBM is able to learn
strong models of object shapes, producing realistic samples
without overfitting to the training data. In this section we
explore in more detail how these capabilities of the SBM
depend on the specific properties of the architecture described
in Sect. 3: local receptive field and weight sharing; hierarchi-
cal formulation; and receptive field overlap.

5.2.1 Generalization Through Local Receptive Fields

In the first layer of the SBM we employ localized receptive
fields and parameter sharing. This dramatically reduces the
number of parameters that need to be learned and in conse-
quence substantially reduces the propensity of the model to
overfit.

One way to diagnose this effect is to inspect the first layer
weight matrix of the SBM and compare it to those of the two
baseline models (RBM and FA) which were implemented
without weight sharing. Each column in the weight matrices
W of the models (Eqs. 4, 9, 19 for the RBM, SBM, and FA
model respectively) corresponds to a ‘filter’ that is associated
with the activation of one of the hidden units. As shown
in Fig. 12a, b, the filters for the FA and RBM have only
global structure. This means that these models are unable
to combine local filters to generate novel horse shapes. In
contrast, because spatial locality and parameter-sharing are
built into the SBM, it learns general-purpose filters that allow
it to generalize factorially from the training examples as can
be seen in Fig. 12c.

Increasing the number of hidden units in the RBM in the
hope that additional capacity would allow it to learn more
local filters did not solve the problem but rather worsened
the overall results, suggesting that it is indeed the lack of
data rather than a lack of capacity that is the issue. On the
other hand, an RBM with similar connectivity constraints as
the first layer of the ShapeBM has fewer parameters than a
fully connected RBM and thus suffers less from overfitting
(cf. Fig. 13). But as we discuss in more detail in the next
section without the second layer it fails to account for global
constraints on the shape.

5.2.2 Global Consistency Through Hierarchy

Localized receptive fields and weight sharing are crucial
for the ability of the SBM to generalize well. In order to
obtain a model that produces realistic samples these need to
be embedded in a hierarchical architecture that ensures the
global consistency of the shapes.

This is demonstrated by the samples in Fig. 13: They are
obtained from an RBM equivalent to only the first layer of the
SBM, i.e. this RBM has localized receptive fields with a small
overlap between them. It was trained on the Weizmann horse
dataset and has the same number of hidden units as the first
layer of the horse SBM for which we have shown samples
above. Unlike the fully connected RBM whose samples are
shown in Fig. 5c this constrained RBM learns to generate a
diverse set of shapes. The samples are, however, only locally
plausible. In contrast to the samples from the SBM they do not
exhibit any of the large-scale structure present in the training
data and therefore are not realistic horse shapes in most cases.

Fig. 12 First layer example weights. (a) Weights learned by the FA model capture only global modes of variability (32 × 32), (b) Weights learned
by the RBM also fail to capture local modes of variation (32 × 32), (c) General, more local filters learned by an SBM (18 × 18)
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Fig. 13 Samples from an SBM
with only a single layer. (a) A
set of samples drawn from an
RBM with the same connectivity
constraints (localized receptive
fields; small receptive field
overlap; weight sharing) as the
first layer of the SBM. Although
the RBM enforces local
smoothness (including at the
receptive field boundaries, due
to the overlap) it fails to enforce
global constraints on the pose of
the horses therefore often
appears distorted (see, in
particular, examples in (b); the
pink lines indicate receptive
field boundaries). Note that the
visible biases bi are not shared,
and this is what allows the
model to reproduce very
coarsely the main features of
horse shapes

Fig. 14 Clamped sampling.
Sampling chains are run for two
fixed, but different,
configurations of h2. The
horse’s pose remains fixed, but
configurations of legs, and neck
and back positions vary

The second layer of the SBM is crucial for enforcing global
consistency of the shapes.

In order to further understand the role of the hierarchy
and to tease apart the roles of the two layers of the SBM in
representing shape information we performed the following
experiment: we fixed the configuration of the hidden units in
the second layer (h2) to values inferred from training images
and then iterated between sampling v and h1 only. In Fig. 14
we plot two sets of samples for two different settings of h2.
We observe that by freezing h2 we fix the horse’s pose, but
since h1 changes from sample to sample the position of its
legs and other small details vary. This suggests that the high-
est layer in the model predominantly captures global infor-
mation and has learned to be invariant to small-scale changes
in shape (achieving an effect similar to the pooling layers e.g.
in (Lee te al. 2009). This automatic, implicit, separation of
large-scale and small-scale statistics is fundamental to the
operation of the model.

5.2.3 Local Consistency Through Receptive Field Overlap

The hierarchical formulation encourages global consistency
of the shapes by coordinating the overall pose across recep-

tive fields. In order to also ensure local consistency at the
receptive field boundaries we further introduced a small over-
lap of the receptive fields (denoted by r in Fig. 3).

The effect of this is illustrated in Fig. 15 where we show
samples from an SBM (two-layer with local receptive fields
and weight sharing) trained in the usual manner, except that
there is no receptive field overlap (i.e. r = 0). This leads to
a loss of continuity at the patch boundaries and also (albeit
to a lesser extent) to a more global deterioration of sample
quality, suggesting that the second layer on its own strug-
gles to enforce local consistency. This global deterioration is
due to the fact that some of the modeling capacity of the
second layer is now needed to enforce local continuity.
Increasing the number of hidden units in the second layer
would reduce this deterioration at the cost of increasing the
number of parameters and so reducing the advantage gained
from the hierarchical structure. Experimentally we found that
it led to overfitting and did not give satisfactory results.

5.3 Multiple Object Categories

Class-specific shape models are appropriate if the class is
known, but for segmentation/detection applications this may
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Fig. 15 Samples without
overlap. (a) Samples from a
SBM trained on Weizmann
horses in the same way as the
SBM described in Sect. 5.1
except that there is no receptive
field overlap in the first layer
(i.e. r = 0). The lack of
receptive field overlap leads to
discontinuities at the receptive
field boundaries not present in
the samples from the SBM
trained with r = 4 (see in
particular the examples
highlighted in (b) and compare
to the SBM samples shown in
Fig. 5d) and more generally
reduces the overall sample
quality somewhat

not be the case. A similar situation arises if the view point
is not fixed (e.g. objects can appear right or left facing).
In both cases there is large overall variability in the data but
the data also form relatively distinct clusters of similar shapes
(e.g. all objects from a particular category, or all right-facing
objects).

To investigate whether the SBM is able to successfully
deal with such additional variability and structure in the data
we applied it to a dataset consisting of shapes from multiple
object classes and tested whether it would be able to learn a
strong model of the shapes of all classes simultaneously.

We trained an SBM on a combination of the Weizmann
data and three other animal categories from Caltech-101 (Fei-
Fei et al. 2004). In addition to 327 horse images, the dataset
contains images of 68 dragonflies, 78 llamas and 59 rhinos
(for a total of 531 images). The images are cropped and nor-
malized to 32 × 32 pixels. An SBM with r = 4, and 2,000
and 400 units for h1 and h2 was jointly trained without infor-
mation about image class.

In our experiments we found that the SBM still learns a
strong model, as demonstrated by Fig. 16 which shows sam-
ples as well as shape completions obtained from the learned
model.

We further wanted to know whether the SBM’s unsuper-
vised learning procedure has led it to discover the under-
lying grouping of the shapes into categories. In order to
test this, we compute average inter- and intra-class dis-
tances of all training instances, both in data-space (v)
and in latent-space (h2). In Fig. 17a we plot the ratio
of these distances for the four classes. These results sug-
gest that the SBM latent representation groups the shapes

from each category much more closely than they are in
pixel-space.

We also tested how well the model discovered object cat-
egories by using it to classify in a setting with very few
labeled examples. We trained a generalized linear model
(GLM) using the glmnet algorithm (Friedman et al. 2010)
on between T = 1 . . . 20 randomly selected images of each
category and tested on 59 − T images per category, averag-
ing over 100 runs. We find that despite its smaller size, given
only a few training examples, the latent h2 is most discrim-
inative (see Fig. 17b). After just one labeled example per
category, classification accuracy using the trained GLMs is
56.0% using h2 versus just 36.8% using v.

Overall these results suggest that the SBM is not only able
to deal with the additional variability arising from multiple
object classes, but also reliably generalizes within each class.
It further appears to naturally separate clusters of related
shapes in its latent representation, which can be exploited,
for instance, for classification purposes.

5.4 Multiple Object Parts

For the evaluation of the multi-part formulation of the SBM
presented in Sect. 3.2 we considered the ground truth label
images from two segmentation datasets:

ETHZ cars dataset The first dataset that we considered was
the ETHZ labeled cars dataset (Thomas et al. 2009), which
itself is a subset of the LabelMe dataset (Russell et al. 2008).
It consists of 139 images of cars, all in the same semi-profile
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Fig. 16 Multiple object
categories. (a) A selection of
images from the augmented
dataset, (b) The model
simultaneously identifies the
object class and fills in the
missing image region,
(c) Samples from a single
tempered chain

Fig. 17 (a) The ratio of inter-
and intra-class distances (values
>1 indicate that inter-class
distances are larger), (b) GLM
classification accuracy as a
function of the number of
training images, averaged over
100 runs
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view. We used the associated ground-truth segmentations for
L = 6 parts (body, wheel, window, bumper, license plate,
headlight; see Fig. 18a for examples). We trained an SBM
at 50 × 50 pixels with overlap r = 4, and 2,000 and 100
hidden units in the first and second layers respectively. Each
layer was pre-trained for 3,000 epochs and joint training was
performed for 1,000 epochs.

HumanEva pedestrians dataset The second dataset we con-
sidered was a labeled version of HumanEva (Sigal et al. 2010;
annotations by Bo and Fowlkes 2011) showing humans in dif-

ferent poses and facing in different directions. The images
are annotated with ground-truth segmentations for L = 7
different parts (hair, face, upper and lower clothes, shoes,
legs, arms; see Fig. 19a). We trained an SBM on 684 images
together with their flipped counterparts (for a total of 1,368
images) at 48 × 24 pixels with overlap r = 4 (this corre-
sponds to a receptive field size in the first layer of 26 × 14),
and 400 and 50 hidden units in the first and second layers
respectively. Each layer was pre-trained for 3,000 epochs.
After pre-training, joint training was performed for 1,000
epochs.
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Fig. 18 ETHZ cars. (a) Examples from the training data. Different
colors represent different object parts, (b) A chain of samples (1,000
samples between frames). The apparent ‘blurriness’ of samples is not
due to averaging or resizing. We display the probability of each pixel
belonging to different parts. If, for example, there is a 50–50 chance that
a pixel belongs to the red or blue parts, we display that pixel in purple,

(c) Differences between the samples and their most similar counterparts
in the training dataset, (d) Sampled completions of occlusions (pink).
For each occlusion we show two different completions produced by
the model (i.e. we show two different samples from the conditional
distribution over the unobserved pixels)

To assess the realism and generalization characteristics of
the learned SBM models we then performed experiments
analogous to the ones in Sect. 5.1: Figures 18b and 19b
show a chain of unconstrained samples from the SBM mod-
els learned for cars and pedestrians respectively. The models
capture highly non-linear dependencies in the data whilst
preserving the objects’ details (such as face and arms for the
pedestrians; or headlights, license plates, and the window
frames for cars). We also show for each sample the differ-
ence to the closest image in the training set (based on per-
pixel label agreement). We see that the model generalizes in
non-trivial ways to generate realistic shapes that it had not
encountered during training.

We also evaluated the models on constrained shape com-
pletion tasks: In Figs. 18d and 19d we show how the SBM
completes rectangular occlusions. The left-most example of
Fig. 19d highlights the variability in possible completions
captured by the model. In the middle example the length of
the person’s trousers on one leg affects the predictions for
the other, demonstrating the model’s knowledge about long-
range dependencies.

Overall these results demonstrate that the multi-part for-
mulation of the SBM significantly extends the binary SBM in
that it allows the modeling of shapes with internal structure
while preserving its ability to produce realistic samples and
to generalize in a meaningful manner from the training data.

6 Discussion

Thanks to its formulation as a generative model the SBM
is very versatile. In our experiments we investigated it as
a ‘stand-alone’ shape model and focused on its ability to
generate and complete shapes. But it can also directly be
used as a component of a more comprehensive probabilis-
tic architecture: As demonstrated in Le Roux et al. (2011),
Heess et al. (2011), Eslami and Williams (2012) and Chen
et al. (2013), for instance, it is possible to combine undi-
rected models of shapes formulated as RBMs or DBMs with
models of appearance to obtain complete probabilistic gener-
ative models of RGB images with well-defined and efficient
inference schemes. Such models allow reasoning about var-
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Fig. 19 HumanEva results. (a) A selection of images from the dataset,
(b) A chain of samples (1,000 samples between frames); same format
as in Fig. 18, (c) Differences between the samples and their most simi-
lar counterparts in the training dataset. As observed for the horses and
motorbikes the model generalizes in interesting and non-trivial ways to

pedestrian shapes not present in the training data, (d) Sampled comple-
tions of occlusions (pink). For each occlusion we show two example
completions. Note the variability in the conditional distribution for the
large scale occlusion on the left

ious image properties and can be applied, for instance, to
segmentation tasks. Indeed, Eslami and Williams (2012) use
the multi-region SBM presented in Sect. 5.4 to obtain com-
petitive results on two challenging parts-based segmentation
benchmarks.

There are three main open questions associated with such
applications of the SBM:

Firstly, our shape models are currently of fairly low reso-
lution compared to many real-world images. Naïvely scaling
up the SBM by increasing the receptive field size is unlikely to
work as this would greatly increase the number of parameters
(and hence the potential to overfit) and also lead to practi-
cal problems such as slow mixing when sampling from the
model. Eslami and Williams (2012) have demonstrated how
to side-step these problems by upsampling the predictions of

the low-resolution shape prior at test-time. This appears to
work well in practice but it still limits the level of detail at
which shapes can be modeled.

A second open question is that of translation and scale
invariance. These invariances are challenges for many dense,
pixel-level models, not just the SBM. Convolutional archi-
tectures (e.g. Desjardins and Bengio 2008; Roth and Black
2005; see also e.g. Ranzato et al. 2010) are inherently trans-
lation invariant but can be expensive as they require enough
capacity to learn the structure of interest at all possible posi-
tions. An alternative way to achieve large-scale translation
invariance is through a model that is defined only for a tight
bounding box enclosing the shape and which is then explic-
itly translated to all possible image positions (e.g. Frey et
al. 2003; Williams and Titsias 2004; similar to the sliding
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window approach for object detection e.g. Rowley et al.
1998; Schneiderman 2000; Felzenszwalb et al. 2009). When
the processing of individual image positions is expensive an
exhaustive search over all positions can be computationally
very demanding or even infeasible. This problem can, how-
ever, be mitigated with a fast and lightweight mechanism to
reduce the number of candidate positions for which the more
expensive computations are being performed (see e.g. Lam-
pert and Blaschko 2008; Harzallah et al. 2009; Alexe et al.
2010).

We believe that by further increasing the number of layers
in the model in combination with appropriate constraints on
the connectivity we will be able to make progress with respect
to both of these questions. As demonstrated in Sect. 5.2.2 the
hierarchical formulation in combination with joint training
leads to a ‘separation of concerns’ across layers, in which
the lower layer is responsible for the local details while
the higher layer determines primarily the overall pose. This
allows the model to learn some degree of small-scale invari-
ances, achieving an effect similar to the pooling layers e.g. in
Lee te al. (2009) (but without having to explicitly build them
in). We expect that a deeper model, in which such effects
will be replicated across several layers, will be able to han-
dle larger invariances, and that it will also allow us to work
with shapes at higher resolutions while avoiding overfitting.

The third question is how to handle real-world images
that contain not just one but many objects. This will make
it necessary to model the interactions between the shapes
of multiple occluding objects. Although the multi-part SBM
can model multiple regions it is unlikely to be a good model
of the regions that are the result of occlusion, as discussed
in Le Roux et al. (2011). Their proposed solution is, in prin-
ciple, directly applicable to the SBM and we are currently
investigating how their or similar approaches can be utilized.

7 Conclusions

In this paper we have presented the Shape Boltzmann
Machine, a strong generative model of object shape. The
SBM is based on the general DBM architecture, a form of
undirected graphical model that makes heavy use of latent
variables to model high-order dependencies between the
observed variables. We believe that the combination of (a)
carefully chosen connectivity and capacity constraints, along
with (b) a hierarchical architecture, and (c) a training proce-
dure that allows for the joint optimization of the full model,
is key to the success of the SBM.

These ingredients allow the SBM to learn high qual-
ity probability distributions over object shapes from small
datasets, consisting of just a few hundred training images.
The learned models are convincing in terms of both realism
of samples from the distribution and generalization to new

examples of the same shape class. Without making use of
specialist knowledge about the shapes the model develops
a natural representation with some separation of concerns
across layers.

Overall we believe that by integrating powerful compo-
nent models like the SBM into comprehensive generative
models of images, performance in many computer vision
tasks can be improved. We believe this to be a very promis-
ing direction of research.
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