
Automatic Physical Design Tuning: Workload as a
Sequence

Sanjay Agrawal
Microsoft Research
One Microsoft Way

Redmond, WA, USA
+1-(425) 705-3507

sagrawal@microsoft.com

Eric Chu*
Computer Sciences Department
University of Wisconsin-Madison

Madison, WI, USA
+1-(608) 628-6941

ericc@cs.wisc.edu

Vivek Narasayya
Microsoft Research
One Microsoft Way

Redmond, WA, USA
+1-(425) 703-2616

viveknar@microsoft.com

ABSTRACT
The area of automatic selection of physical database design to
optimize the performance of a relational database system based on
a workload of SQL queries and updates has gained prominence in
recent years. Major database vendors have released automated
physical database design tools with the goal of reducing the total
cost of ownership. An important assumption underlying these
tools is that the workload is a set of SQL statements. In this paper,
we show that being able to treat the workload as a sequence, i.e.,
exploiting the ordering of statements can significantly broaden the
usage of such tools. We present scenarios where exploiting
sequence information in the workload is crucial for performance
tuning. We also propose techniques for addressing the technical
challenges arising from treating the workload as a sequence. We
evaluate the effectiveness of our techniques through experiments
on Microsoft SQL Server.

1. INTRODUCTION
Database vendors such as IBM, Microsoft and Oracle offer
automated physical design tuning tools. Database Tuning Advisor
(DTA) in SQL Server [1], Design Advisor [16] in IBM DB2 and
SQL Access Advisor [7] in Oracle 10g automate the task of
finding the best physical design structures (e.g., indexes and
materialized views) to optimize server performance. These tuning
tools require a workload comprised of queries and updates to
arrive at a physical design recommendation. All these tools are
set-based – the workload is viewed as a set of statements and no
ordering of statements is assumed during tuning.

The premise of this paper is that the ordering of statements can be
important for performance tuning, specifically for physical
database design. To illustrate this, we describe three scenarios in
the context of physical database design where the set-based tuning
approach falls short, and an alternative approach that exploits
workload sequence information can lead to much superior
workload performance.

Scenario 1: Data warehousing: “Query by day, update at

night”.

During the day there are multiple applications that issue complex
queries against the warehouse. At night there is a batch window
during which the warehouse data is updated, e.g., new data is
inserted. Figure 1 below captures the ordering information in data
warehouses.

If we tune the workload that includes both queries and updates as
a single set using a set-based approach, it is quite possible that we
do not get any physical design structure to be recommended that
benefit the workload as a whole. This is because, although such a
tool may identify structures that speed up the queries (in the day),
the update cost incurred (in the night) for the structures may far
outweigh their benefit.

On the other hand, if we treat the workload as a sequence, we may
recommend the following: create structures before the queries
arrive and drop such structures before the updates arrive. Such a
recommendation gives us the benefit of structures for queries but
without the update overhead. If the benefit of such structures is
greater than their creation cost, the data warehouse scenario can
be optimized for performance as shown in Figure 2. Note that
performance improvement arises from the fact that the structures
incur no maintenance cost since they are dropped prior to
updates .

Observe that the obvious approach of breaking the workload into
two workloads (the query workload and update workload
respectively) and tuning each without awareness of the other can
lead to sub-optimal performance. This is due to the fact that
physical design recommendations for each workload can be very
different and the cost of transitioning between the two
recommendations can be significant. In the above example,
indexes need to be created for the queries and dropped for the

 *Work done when the author was visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’06, June 26–29, 2006, Chicago, IL, USA.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

 Updates Queries Queries

 Updates Queries Queries

Create
Indexes

Create
Indexes

Drop
Indexes

Figure 1. Data warehousing scenario.

Figure 2. Optimized data warehousing scenario.

updates. The creation and dropping of indexes can become very
expensive at times (e.g., the drop of clustered index on a large
table may internally lead to recreation of all non-clustered indexes
on that table). Therefore, the cost of physical design transitions
must be included in the analysis for achieving optimal
performance. Similarly, a strategy that tunes physical design only
for queries and ignores updates while tuning (thus there is no
transition cost since the physical design does not need to change)
can also be sub-optimal since the cost of updating physical design
structures can be substantial.

Scenario 2: SQL applications that use transient tables.

Many applications use transient or temporary tables in the manner
as illustrated in Figure 3. Again one can recommend structures on
transient tables by leveraging the knowledge of how such tables
are used. In this scenario, after Step 2 and before Step 3, one can
create an appropriate index on the transient table to improve the
performance of the SELECT statement. This kind of tuning can
not be achieved by set-based tuning tools since recognizing the
sequence of CREATE TABLE (this marks the start of life of
transient tables), followed by INSERT then SELECT and finally
DROP (this marks the end of life of transient tables) is important.
For example, creation of the index just before Step 2 would not be
optimal since the index would incur update cost but would yield
no benefit in Step 2.

Scenario 3: Periodic data change on production server.

A common scenario in applications is where data pertaining to a
certain time period is available on the production server for a
specified duration. For example, the sales table may contain data
for the current quarter. The data gets populated as follows. At the
end of the current quarter, all rows from the table are deleted.
Subsequently data for the new quarter is inserted into the table.
New data gets added at the end of each day from different sales
sources. Meanwhile, there are queries that run against this data
during the entire time period. Figure 4 captures this scenario.

Note that even though the set of queries and updates can remain
the same, the same physical design may be totally ineffective for a
significantly different data size and/or distribution. For example,

non-clustered indexes may become ineffective for seeks if
selectivity becomes large. Overheads of inserting rows and
benefits of physical design structures are inherently tied to table
sizes. A sequence-based approach in conjunction with additional
database statistics that capture the dynamic nature of data, can
make the better trade offs for suggesting create/drop of physical
design structures to optimize performance as compared to a set-
based approach.

The above scenarios highlight the fact that exploiting the order
between statements can be crucial for improving performance. In
practice, rarely is the workload either a single set or a single
sequence of statements. A more general model of a workload is a
sequence of sets of statements. Let us see how each of the above
scenarios fits this model. For scenario 1 above, we may treat the
workload as alternate sets of queries (during the day) and updates
(during the night). Similarly for scenario 3, sets of queries and
inserts alternate in the workload. Note that in both cases the set of
queries alternate with the set of updates and this defines a
sequence. Likewise each statement in scenario 2 can be viewed as
a single statement set, the sets being ordered naturally as the order
of steps above. In the rest of this paper, for simplicity of
exposition, we assume that workload is a sequence of sets where
each set is a single query/update. This makes it easier to
understand the problem space and reason about our solution. In
Section 7 we briefly discuss how our solution extends to the
generalized model where the set contains multiple statements.

It is important to note that the output model of sequence-based
tuning is different from set-based tuning solutions. Unlike a set-
based approach where the output is a single SQL script with
creates/drops of structures, for a sequence tuning tool the output
contains create and drop of structures interleaved with the input
workload. For example, in Scenario 2 above, the output would be
“create index on transient table between the INSERT statement
(Step 2) and the SELECT statement (Step 3)”. Thus,
implementing the recommendations may require changes in
application code.

We summarize the key contributions of this paper below:

• We motivate the physical design tuning opportunities that
arise by treating the workload as a sequence.

• We formally define the problem of physical design tuning for
workload sequences (Section 2). Our goal is to add “create”
and “drop” of physical design structures to the input
sequence such that the overall performance of the generated
sequence is maximized.

• We present an optimal solution to this problem by showing
that the problem can modeled as finding the shortest path
over a directed acyclic graph (DAG) constructed from the
input (Section 3).

• We present two techniques cost-based pruning (Section 4)
and split and merge (Section 5) that facilitate pruning of the
search space.

• We describe a greedy heuristic (Section 6) that scales well
for large workloads and many physical design structures.

Finally, we note that the techniques developed in the paper are
general in the sense that they apply to any physical design
structure (indexes, materialized views, etc.) that may be supported
by the underlying database.

Insert
Data

Truncate
table

Insert
Data

Truncate
table

Queries

Queries

Drop
Index

 // Step 1: create table
CREATE TABLE #t (multiple columns TYPES)
// Step 2: populate table
INSERT INTO #t
SELECT columns FROM Y WHERE column = value
//Step 3: use table in multiple queries
SELECT X.*,#t.*
FROM X INNER JOIN #t ON X.CUSTID = # t.CUSTID
WHERE X. PRODUCTID = value
ORDER BY #t.PRICE DESC

//Step 4: drop table
DROP TABLE #t

Figure 3. Transient table usage scenario

Figure 4. Periodic data change

Create
Index

2. PROBLEM DEFINITION

2.1 Preliminaries
We model the workload as a sequence of SQL statements, i.e.,
SELECT, INSERT, DELETE and UPDATE statements. All the
statements are ordered by monotonically increasing ID (a
timestamp is an example). We represent a statement in a sequence
as Sk where k denotes its ID. [S1, S2... SN] denotes a sequence of
N statements S1 through SN. The workload can be gathered using
tracing tools (for example, Profiler tool in Microsoft SQL Server)
that are available on today’s database systems.

A physical design structure can be any access path supported by
the database server, e.g., index, materialized view,
multidimensional clustering of tables, etc.. A configuration is a
valid set of physical design structures that can be realized in a
database. A structure is considered relevant for a statement if it
could potentially be used in an execution plan for answering the
statement (even if the structure is not actually chosen by the query
optimizer in the final plan).

We use the following notations in the paper. COST(S, C) denotes
the cost of executing statement S for configuration C. We rely on
optimizer estimated costs and what-if extensions that are available
in several commercially available database servers [1, 7, 16]. For
the reasons described in [2], this allows our solution to be robust
and scalable; we can try out numerous alternatives during search
very efficiently without disrupting the normal database
operations. TRANSITION-COST(C1,C2) denotes the minimum
cost of realizing configuration C2 in the database starting from
configuration C1, i.e. cost of creating and dropping structures to
get from configuration C1 to configuration C2. For example,
suppose configuration C1 contains a single index {I1} and C2
contains a single index {I2}. C2 can be realized from C1 by
executing the following statements - CREATE INDEX I2

followed by the statement DROP INDEX I1. TRANSITION-
COST(C1,C2) would be the cumulative cost of creating I2 and
dropping I1. In general, this function could be provided as an
input.

We represent the execution of a sequence [S1, S2... SN] as [C1, S1,
C2, S2… CN, SN, CN+1] where Ci is the configuration that is
realized in the database prior to executing Si and CN+1 denotes the
configuration after statement SN is executed. Note that there is an
implicit ordering between the configurations: ∀i Ci is realized
before Ci+1. Let C0 denote the configuration prior to the sequence
execution. Note that C0 is an input and could be implicit (the
current configuration in the database) or optionally specified
through what-if interface [1]. We define the sequence execution
cost of [C1, S1, C2, S2… CN, SN, CN+1] as TRANSITION-COST
(CN, CN+1) + ∑N

k=1 (COST (Sk, Ck) + TRANSITION-COST (Ck-1,
Ck)). Note that this includes the cost of changing the
configurations during sequence execution through the
TRANSITION-COST component.

2.2 Physical Design Problem for a Workload
Sequence
Problem Statement: Given a database D, a sequence workload
W=[S1,S2... SN], initial configuration C0 and a storage bound M,
find configurations C1,C2,…CN+1 such that storage requirement of

Ci (1≤i≤N+1) does not exceed M, and sequence execution cost
of [C1, S1, C2, S2… CN, SN, CN+1] is minimized.

There are few important points to observe about this problem
formulation. First, the output of any solution to the above problem
is itself another sequence where statements corresponding to
create and drop of physical design structures (DDL statements)
are inserted to the input sequence [S1, S2... SN] such that
configurations Ci for i=1 to N+1 are realized as above. Second, if
the workload contains inserts/updates/deletes, the cost of
updating the physical design structures are accounted for
automatically as part of our optimization problem – this is
captured as part of COST(Si,Ci). Third, the cost of transitioning
from one configuration to the next is also accounted for in the
optimization problem – this is done via TRANSITION-COST(Ci-

1, Ci). Finally, observe that the storage bound M is required to
hold at all points in the sequence.

Our problem formulation is general enough to handle some other
common constraints. Some important constraints include:

• Consider the case where the sequences are generated by
individual applications (for example, Scenario 2 in the
Introduction). An application’s impact on the underlying
databases physical design is limited to the duration when the
corresponding workload sequence executes. This can be
incorporated by constraining CN+1=C0, which ensures that
the physical design is restored to the same state as it was
prior to the workload sequence. We refer to this as
transparency constraint. A variation of this includes the case
where CN+1 is constrained to be an explicitly provided
configuration (need not be C0) by the user.

• Physical design changes are allowed only at specific points
in the sequence. For example, in Scenario 1 in the
introduction, the user (e.g., DBA) may allow physical design
changes to happen only at two specific points during the day.
More generally, in the sequence [S1..Sp..Sq..SN] if we want to
allow configuration changes only between statements Sp and
Sq, this can be specified via the constraint: For 1≤ i<p, Ci=Ci-

1 and for q<i≤N+1, Ci= Cq. Thus we only need find
configurations Cp... Cq.

• Only allow physical design changes that complete within a
user specified cost bound. This can be represented as
TRANSITION-COST(Ci-1, Ci) ≤ t for all 1≤i≤N+1.

We now define the set of physical design structures over which
we perform the sequence optimization described above. A naïve
way to generate such a set from the input sequence is to union the
set of all relevant structures for each statement in the input
sequence. However as detailed in [1, 2, 15, 16] the space of
relevant structures for a single statement can become prohibitively
expensive to compute, let alone for the entire sequence. There are
a number of existing techniques that allow us to efficiently
generate a much smaller set of structures for the purposes of
physical database design tuning. One example is the IBM DB2
[15] approach where the optimizer recommends its own structures
for a statement. An alternative approach is discussed in [2] where
very good structures are generated using “candidate selection”
and “merging” steps keeping the query optimizer in the loop. We
note that the focus of this paper is orthogonal to the specific
method used for the purpose. We refer to the set of structures
generated using such a technique as “candidate structures”. For

the rest of paper, we assume that a set of candidate structures can
be obtained, given the input workload.

Finally, we comment briefly on the search space for the
optimization problem. If we are provided as input a sequence of N
statements, and there are M candidate structures, the number of
possible configurations is 2M, since each subset of structures
defines a unique configuration. Hence we have a total of 2M*(N+1)
choices as we need to find N+1 configurations C1,C2,…CN+1. We
contrast this with the set-based tuning problem where there are
“only” 2M possible configurations. Thus, we can view the set-
based tuning problem as a constrained version of sequence tuning
problem, where physical design changes are only allowed at the
beginning of the sequence.

3. OPTIMAL ALGORITHM
In this section, we describe an algorithm to generate an optimal
solution to the physical design problem for workload sequences
(defined in Section 2.2). The key observation is that given an
instance of the problem, we can construct a graph such that the
shortest path in that graph is an optimal solution for that instance.

We illustrate our solution through a simple example. The input
workload is a sequence of N SQL statements. The set of candidate
structures is a single index (referred to as I). The goal is to find
N+1 configurations (C1…CN+1) as described in Section 2.2. We
observe the following. In this example, there are two possible
configurations: (1) The empty configuration {} and (2) The
configuration {I}. Thus, with any statement Si, there are two
possible costs: COST (Si,{}) and COST (Si ,{I}).

Figure 5 shows the graph that is generated for single index, N-
statement case. The graph is constructed as follows:

1. For every statement in the input sequence and for every
possible configuration generated from the input set of
structures we generate a node, i.e., a node n represents a
(statement S, configuration C) pair with a node cost = COST
(S,C). The two nodes SOURCE and DESTINATION
representing the initial and final configuration are added to
the graph and have a node cost of 0. SOURCE precedes the
first statement in the input sequence and DESTINATION
succeeds the last statement in the input sequence. Thus in our
example, there are 2*N+2 nodes in the graph since there are
only two configurations {} or {I} possible for each
statement.

2. The graph has N+2 stages; a stage for each statement,
SOURCE and DESTINATION. We refer to SOURCE as 0-
th stage and DESTINATION as (N+1)-th stage.

3. The edges in the graph are directed, and exist only between
nodes in stage k and nodes in stage k+1 (0≤k≤N). Let edge

e=(n1, n2) represent the edge from node n1=(*,C) to node
n2=(*,C’); * denotes that it could be any statement. Then cost
of e=TRANSITION-COST(C,C’). In our running example,
there are 4*N edges and the costs of the edges can be: (i) 0
when there is no change in configuration between nodes that
define the edge (ii) cost of creating the index (denoted in the
figure by (Ic)) when transitioning from {} to {I} and (iii) cost
of dropping the index (denoted by Id) when transitioning
from {I} to {}.

4. If the final configuration denoted by CN+1 is constrained to
be the same as initial configuration denoted by C0 or some
other user provided configuration, we assign the appropriate
edge cost between the nodes in stage N and DESTINATION
node. However if we do not have any constraints on the final
configuration, we assign a cost of 0 to all the edges between
the nodes in the stage N and DESTINATION node. In our
example, we assign edge costs of 0 between all nodes in SN
and DESTINATION and CN+1 will be the same as CN.

Once the graph is constructed as above, any path from SOURCE
to DESTINATION represents a valid sequence execution. Note
that the path cost includes the cost of nodes as well as edges. The
optimal output sequence is the shortest path in this graph. The
equivalence between the shortest path in the graph above and
sequence execution cost is straightforward as the node costs
represent COST (Sk, Ck) and edge costs represent TRANSITION-
COST (Ck-1, Ck). We note the following properties of this graph.
(1) The cost of nodes and edges are non negative. (2) The shortest
path in this graph can be computed very efficiently using single–
source shortest path technique for DAGs described in [6] in linear
complexity as number of both edges and nodes are O (N); the
intuition behind the linear complexity is that each edge needs to
be examined exactly once to arrive at the solution.

Generalizing the graph to N-statement sequence and M structures
to generate an optimal solution is conceptually straightforward. In
each stage 1 through N, there are 2M nodes, each representing a
configuration. This is because each subset of input structures
defines a configuration. We refer to the solution that enumerates
all 2M configurations exhaustively at each stage as
EXHAUSTIVE. It is important to note that the graph has O
(N*2M) nodes and O (N*22M) edges, i.e., the graph is exponential
in the number of input structures. Though the shortest path can be
solved in linear complexity of number of nodes and edges as
above, these however are exponential in number of structures.

Thus, if the input workload has only a small number of candidate
structures, we can apply EXHAUSTIVE to get an optimal
solution. However, it becomes impractical for large workloads
that can typically have hundreds or more candidate structures.
Note also that each node represents a (statement, configuration)
pair and has an associated node cost. Thus, we have to compute
COST(S,C) corresponding to that node. Using the costing
technique described in Section 2.1 may involve invoking the
query optimizer, which can also contribute to making graph
construction expensive.

In the next two sections we discuss two techniques that can
improve the efficiency of the above algorithm by reducing the
number of nodes in the graph significantly. The first technique
(discussed in Section 4) is an optimality preserving cost-based
pruning. The second technique (discussed in Section 5) is

SOURCE

{}

{}

{I}

{}

{I}

{}

{I}

{}

DESTI-
NATION

Ic

Ic

 Id

Id

0

0

0

0

S1 SN S2

Figure 5. Graph for single index, N statements

effective for large workloads where different statements touch
different tables/columns of the database.

4. COST-BASED PRUNING
This optimization allows us to prune configurations at a given
stage in the input sequence while preserving optimality. It relies
on the observation that in many cases we can efficiently compute
a lower bound on the cost of a statement for a given configuration.
The intuition behind this technique is that we can leverage
optimal solutions of individual structures as described in Section
3 to significantly prune nodes at various stages in the graph that
would otherwise be generated by EXHAUSTIVE above. We first
describe the pruning technique under the assumption that the
benefits of the structures are independent. We subsequently
describe how the technique can be leveraged when the structures
interact, i.e., the benefits of the structures are not independent; [2]
provides a detailed description of such interactions. One example
of such an interaction is when both indexes used for a Merge Join
are sorted on join key, join proceeds much faster compared to the
case when only one index is sorted on the join key.

We define the following. SPS (s) for a physical design structure s
refers to the shortest path solution that we get by optimizing the
entire sequence for s alone using the algorithm presented in
Section 3. Let [b1, S1, b2, S2… bN, SN, bN+1] represent the solution
SPS(s) where bi represents configurations. Let
[C1,S1,C2,S2…CN,SN,CN+1] denote the solution where Ci represents
configurations that we get by running EXHAUSTIVE over the
graph that has all the configurations (the power set of all
structures). If there are no interactions across structures (i.e., for
every statement, the benefits of structures are independent of the
presence of other structures) then the following claim holds.

Claim: s ∉ bk in SPS(s) ⇒ s ∉ Ck for every structure s and stage
k (k = 1 to N).

Proof: We prove it by contradiction. Assume that there exists a
structure s where k is the first stage such that s ∈ Ck but s ∉ bk.
All the costs are non negative and C0=b0 (both SPS and
EXHAUSTIVE are solved with the same initial configuration).
We use the following notations:

• Ic as the creation cost for s.
• Id as the drop cost for s.
• p1 = COST(Sk, Ck)
• p2 = COST(Sk, Ck–{s}) where Ck –{s} is the configuration

one gets by removing s from Ck.
• q1 = COST(Sk, {s})
• q2 = COST(Sk, {})
Since benefits are independent q1–p1=q2–p2 ⇒ q1–q2=p1–p2. We
enumerate all possible cases as following.

• s ∈ Ck-1. Then p1<Id+p2 must hold as EXHAUSTIVE would
not pick Ck otherwise. If s ∈ bk-1, then q1>Id+q2 ⇒ q1–q2> Id

⇒ p1–p2>Id results in a contradiction. The other case s ∉ bk-1
can not happen as k is the first stage where violation occurs.

• s ∉ Ck-1. Then Ic+p1<p2 must hold. If s ∈ bk-1, then q1>Id+q2
⇒ q1 > q2 ⇒ p1> p2 results in a contradiction. If s ∉ bk-1, then
q1 > q2 ⇒ p1> p2 again results in a contradiction.

We also note that CN+1= CN in our original optimization problem
(or equals C0 in transparency constrained problem) and the proof
holds for stage N+1. This allows us to eliminate structures (and

configurations that contain these) at a given stage as follows. We
run the SPS for all structures and analyze their respective
solutions at each stage. For a given stage k, we construct a set of
structures R={s | s ∈ bk in SPS(s)}. Note that every subset c of R
defines a unique configuration and is added to the graph as node
(Sk,c) if configuration c obeys the storage bound.

Let’s apply this to following example. Assume that the input
sequence has 4 statements [S1,S2,S3,S4]. Also for statement Si
index Ii (i= 1, 2, 3 and 4) and no other index is relevant and the
drop cost of every index is 0. Using EXHAUSTIVE we will
enumerate all 24=16 configurations to find the optimal solution.
By looking at optimal solutions on a per structure basis, i.e.,
SPS(I1)=[{I1},S1,{},S2,{},S3,{},S4,{}], SPS(I2)=[{},S1,{I2},S2,{},
S3,{},S4,{}] and so on, we know that only Ii is present in stage i.
Thus we can construct the “reduced” graph with 5 configurations
as shown in Figure 6 (the unlabelled edges represent a cost of 0);
the solution we get on this “reduced” graph is optimal.

When the benefits of structures are not independent, in SPS(s) we
use the lower bound cost of any configuration that contains s for
statement Sk as COST(Sk,{s}). We note that the claim above
remains true when the assignment of the costs to individual
structures is done as described above. The argument is similar as
for the independent structure case. We reuse the notation from the
proof above. We assume the optimizer is well behaved; for a
query the addition of a structure to a configuration can never
increase the cost of the statement. For the case where s ∈ Ck and s
∈ bk-1, we get the following: p1–p2< q1–q2 ⇒ (p1–q1) + (q2–p2)<0.
However p1≥q1 due to the way we assign costs above and q2≥p2
for queries. This leads to a contradiction. The proof for other
cases is similar and is omitted.

The effectiveness of cost-based pruning depends on how
accurately and efficiently we can determine the lower bound of
costs. This itself is a hard problem as we do not want to
enumerate all configurations containing {s} to arrive at the lower
bounds. A trivial lower bound is the minimal cost of a query
under any physical design. This can be computed very efficiently
by probing the optimizer once [3]. There are other techniques
(e.g., [5] discusses how to derive costs of configurations using
atomic configurations) that can be leveraged to get better lower
bounds efficiently. The updates/inserts/deletes can be handled by
“splitting” the update into a query part which identifies the
specific rows that need to be updated and the actual update part.
We omit details due to lack of space.

We expect the cost-based pruning technique to work well when s
∈ bk in SPS(s) for few values of k. This typically happens when
there are a significant number of updates/inserts/deletes in the
input sequence or in the presence of the transparency constraint.
In our experiments, see Section 8.2.2 we demonstrate the

SOURCE

Figure 6. Graph with cost-based pruning

{} {}

DESTI-
NATION

I1
c

{}

{I1}

S1

{}

{I2}

S2

{}

{I3}

S3

{}

{I4}

S4

I2
c

I3
c

I4
c

0

effectiveness of this pruning technique where it results in orders
of magnitude reduction in number of nodes in the graph.

5. EXPLOITING DISJOINT SEQUENCES
As we saw in Section 3, the efficiency of our solution depends on
the number of input structures which in turn depends on the
statements in the sequence. In general, workloads can be large.
These could be trace files collected by tracing the server activity
and could be over a period of days with thousands of statements
that touch different parts of the database. In this section we
present a technique that leverages the fact that groups of
statements access different parts of data, to reduce the search
space significantly.

We motivate the technique through an example. Figure 7 shows
an input sequence workload W = [S1, S2... S7]. Suppose structure
I1 is relevant for S1, S3 and S4 only (these statements reference
table A only), I2 is relevant for S2, S5 and S6 (these statements
refer table B only) and I3 is relevant for S7 only (it is on table C).
S4 and S6 are updates on the tables A and B respectively.
Applying EXHAUSTIVE on S with input structure set {I1,I2,I3}
would enumerate 23 = 8 configurations. If we apply cost-based
reduction as discussed in Section 4 we can reduce the number of
configurations significantly. However at S2 and S3, we still need
to consider the configurations corresponding to all the subsets of
{I1,I2} a priori as both I1 and I2 are present in stages 2 and 3. Note
that I1 and I2 are on different tables in the database and are
relevant for different statements in the sequence. The interesting
question is whether we can avoid generating such configurations
up front and if possible at all. It turns out that for the above
sequence we can do much better as described below.

We define the notion of disjoint sequences. Two sequences X
and Y are said to be disjoint if (1) X and Y do not share any
statements and (b) no statement in X shares any relevant physical
design structure with any statement in Y. This implies that given a
physical design structure s, all the relevant statements
corresponding to s are present in only one such sequence, i.e., its
impact is limited to one sequence. On applying this to our
example in Figure 7, whether we create or drop index I2 on table

B cannot impact the cost of statements in W1 (recall that S1, S3
and S4 are on table A). We note that disjoint sequences may be
interleaved with respect to how these occur in the original
sequence (W1 and W2 in Figure 7 are interleaved as S2 in W2
starts before W1 ends).

It may be tempting to suggest that we can “break” the input
sequence into a set of disjoint sequences, solve each one
independently as the choice of configurations in one disjoint
sequence does not impact choices for other sequences and
“combine” the results to get the globally optimal solution. In the
absence of storage violations this strategy is indeed optimal and
can lead to much better search performance than the alternative
approach that tunes the input as a single sequence. The efficiency
comes from significant reduction in number of configurations
(and hence nodes) that needs to be generated for the graph. In our
current example, each disjoint sequence in our example is solved
for just one index (Wi for Ii) and configurations like {I1,I2} are
never considered. However if there are storage violations, then the
above strategy does not work as the resulting solution is not valid.
In our example if we do not have sufficient storage for both I1 and
I2, by using the above strategy we get {I1,I2} at S2 and S3 as shown
in Figure 7 which is not valid. An interesting question is how can
we generate a valid solution efficiently in the latter?

We present two operators that mirror the ideas above. The first
operator Split described in 5.1 takes an input a sequence and the
relevant set of structures and splits it into a set of disjoint
sequences. The second operator Merge (in 5.2) takes as input a
set of disjoint sequences and their respective solutions and
combines these to generate a valid solution for the sequence
derived from superimposing input set of sequences. The two
operators can be combined to efficiently generate close to optimal
solutions.

5.1 Split
The algorithm to achieve this is straightforward. For every
structure we know the set of statements that are relevant by
looking at the syntactic structure of statements. Consequently, for
every statement, the set of relevant structures is known. Now, the
split is achieved by doing a transitive closure over the statements
as follows. (1) Start with each statement as a separate sequence.
With every sequence associate its relevant set of structures. (2) If
two sequences share any structure, combine them into one
sequence (union of the statements) and union their set of
structures. (3) Continue step 2 till no more sequences can be
combined. At the end, our input sequence is split into a set of
disjoint sequences that neither share any statements nor any
structures. In the example above, we split the input sequence W
into 3 disjoint sequences W1 = [S1,S3,S4], W2 = [S2,S5,S6] and W3

= [S7] with relevant structure sets {I1}, {I2} and {I3} respectively.

5.2 Merge
The input to Merge is a set of disjoint sequences and their
respective solutions. The output of Merge is a solution that obeys
storage constraint and is defined over all the statements from
input disjoint sequences. Let P={p1,…pm} represent the set of
solutions where pi corresponds to the solution for Wi (1≤i≤m)
that is provided as input to Merge. Merge proceeds in two steps.

Step 1: From the input set of solutions P, a solution Pu is
constructed by performing a union of configurations of pi (1≤i≤m)

Figure 7. Disjoint sequences

DEST

S7

DEST

“Combine” solutions of W1, W2 and W3 to get solution for W

S1 SRC

 {I1}

S2 S3 S4

 {I2}

 {I1,I2}

S5

 {I2}

S6

 {}

 S7

 {I3} {} {I1,I2} {I3}

W:
 S1 S2 S3 S4 S5 S6 S7

I2
c

S2 S5

 {I2} {I2}

S6

 {}
I2

d

 {}

SRC

 {}

SRC
I3

c

 {I3}

DEST

 {I3} {}

DEST
I1

c

S1 S3 SRC

 {I1} {I1}

S4

{}

I1
d

 {} {} {}

W1 = [S1,S3,S4]

W2 = [S2,S5,S6]

W3 = [S7]

at each stage. In our current example as shown in Figure 8, we get
P1,3 by performing the union of solutions of W1 and W3. Pu

represents the union of solutions of disjoint sequences W1, W2
and W3. Note that the union involves the superimposition of the
individual statements in the input sequences as well as the union
of configurations at each stage.

Step 2: If all the configurations that are part of Pu obey storage
bound then Pu is optimal and is the output of Merge. However if
there are configurations in Pu (as shown in Figure 8) that violate
storage bound, then Pu is not valid. In that case we make local
changes to Pu to make it a valid solution. The intuition behind
local optimization is based on the following observation. The
solutions in the regions where storage bounds do not get violated
remain optimal as long as the preceding and following
configurations remains unchanged. This is guaranteed by the
shortest path algorithm. If the cost of the violating ranges is small
with respect to the entire sequence execution cost, then applying
local optimizations to the violating ranges only to generate a valid
solution can result in nearly optimal solutions.

Let us see how we apply this to our current example. Using the
notation from 2.2, C1={I1}, C2=C3= {I1,I2}, C4={I2} and so on in
Pu (obtained from step 1 above). Assume that we have sufficient
storage for only one index. Then Pu is not a valid solution as C2
and C3 (= {I1,I2}) violate storage bound. By leveraging the
observation above, we isolate the violating sequence which in this
case is [S2,S3]. For the remaining parts of the sequence ([S1] and
[S4,S5,S6,S7]), there are no storage violations in their respective
solutions. If we locally optimize [S2,S3] to get a solution that
respects the storage bound with SOURCE={I1} and
DESTINATION={I2}, we preserve the optimality of solutions of
[S1] and [S4,S5,S6,S7]. Here, if the benefit of indexes I1 and I2 far
outweigh their create costs, then optimizing [S2,S3] with
SOURCE={I1} and DESTINATION={I2} results in
[{I2},S2,{I1},S3,{I2}]. Next we combine the locally optimal
solutions of [S1] (from Pu), [S2,S3] (computed locally as above)
and [S4,S5,S6,S7] (from Pu) to get Pu’ which is a valid solution.

The sequence execution cost of Pu is a lower bound on the cost
that we can get for any solution that obeys the storage bound and
therefore for the optimal solution. If the cost of the solution we
get by applying Merge (=Pu’) is close to the sequence execution
cost of Pu then we have a nearly optimal solution at hand.

In general one may apply Merge in different ways over the
disjoint sequences to build alternative search schemes (for

example, one may Merge disjoint sequences pair wise in a greedy
manner). This is made possible as Merge preserves disjointedness,
e.g., if W1, W2 and W3 are mutually disjoint, then output sequence
after Merge of W1 and W3 is disjoint with respect to W2.

In our experiments, see Section 8.2.4, we used a simple strategy
where we generated a valid solution for the entire sequence by
first applying Split, and then Merge over the solutions of all
disjoint sequences. We observed that even this simple strategy
often led to an order of magnitude speed up compared to a
strategy that blindly treated the input as a single sequence. Also
the resulting solution after Merge was close to optimal (within
3%) even under very limited storage bounds. We note that in data
warehouse scenarios (see 8.2.4 for TPCH experiments that
simulates this) the applicability of this becomes limited as almost
all queries reference the fact table and we do not get multiple
disjoint sequences. However if the same server hosts multiple
such data warehouses (and workloads) then this technique can
still be used very effectively.

6. GREEDY HEURISTIC
As described in Section 3, the number of configurations, and
hence nodes and edges in our graph, is exponential in the number
of candidate physical design structures for the workload. The
EXHAUSTIVE approach (Section 3) can therefore infeasible in
practice where a workload can often have a large number of
candidate structures. Observe that the above problem exists even
in the approach where the workload is treated as a set, e.g., [3,5,
15]. We note that previous work in the context of set-based
workloads (e.g., [3, 5]) have developed techniques to deal with
the combinatorial explosion that results in the number of
configurations that need to be considered. These techniques
typically use a greedy heuristic to search through the space of
configurations instead of looking at the entire (exponential) space.
In this section, we describe how to adapt such a greedy heuristic
for the case of workload as a sequence. We refer to our algorithm
as GREEDY-SEQ. The GREEDY-SEQ algorithm uses a function
we refer to as UnionPair. We first describe this function in
Section 6.1, and present the overall algorithm in Section 6.2.

6.1 UnionPair
UnionPair takes as input two solutions denoted by
p1=[a1,S1,…,aN,SN,aN+1] and p2=[b1,S1,…bN,SN,bN+1]. Observe that
the inputs are both solutions for the same sequence1 [S1, …, SN]
but the configurations in each solution are over a disjoint space of
physical design structures. UnionPair generates a new solution
for the sequence as described below. Initially, a graph is
constructed that has all the nodes (and edges) from the two input
solutions p1 and p2. At each stage k in the graph, additional
configurations (as described below) are generated from
configurations ak and bk and corresponding nodes and edges are
added to the graph. The output of UnionPair is the shortest path
solution in the graph thus generated.

Next we discuss how to generate the additional configurations at
each stage. Intuitively, at each stage k in the graph, i.e., (for Sk)
we are looking for the best configuration (we refer to this as dk)
we can generate from the structures in (ak ∪ bk) that satisfies the

1 Observe also that unlike UnionPair, Merge (Section 5.2) is defined over

solutions to disjoint sequences.

 {}

 {}

P1,3 = Merge solutions of W1 and W3

S1 SRC

 {I1}

S3 S4

 {}

 S7

 {I3}

DEST

 {I3} {I1}

Pu = Merge of solutions of W1, W2 and W3 when no storage violation

S1 SRC

 {I1}

S2 S3 S4

 {I2}

 {I1,I2}

S5

 {I2}

S6

 {}

 S7

 {I3} {I1,I2} {I3}

Pu’ = Merge of solutions of W1, W2 and W3 when storage is violated

S1 SRC

 {I1}

S2 S3 S4

 {I2}

 {I1}

S5

 {I2}

S6

 {}

 {I3} {} {I2} {I3}

Figure 8. Merge of disjoint sequences

storage constraint. In general, the number of configurations we
need to consider are exponential in |(ak ∪ bk)|. We observe
however, that in many common cases the configuration (ak ∪ bk)
itself is optimal at stage k (e.g., if Sk is a query and (ak ∪ bk)
obeys the storage constraint) since (ak ∪ bk) preserves the benefits
of both ak and bk. In general however, (ak ∪ bk) can have worse
update characteristics compared to ak and bk. Note that since we
preserve the original configurations ak and bk in the generated
graph, the update characteristics of (ak ∪ bk) get accounted for
automatically in our strategy (for example if (ak ∪ bk) has a high
update overhead, the shortest path output may ignore it and pick
ak instead). Figure 9 represents the generated graph for the above
input pair assuming dk = (ak ∪ bk).

In general, it may be important to introduce other configurations
in addition to (ak ∪ bk) as well. In such cases, we can take
advantage of previous techniques developed (e.g., in [3,5]) to
generate nearly optimal configurations very efficiently. We omit
further details due to lack of space.

6.2 The GREEDY-SEQ Algorithm

We use UnionPair to build our greedy solution. The individual
steps of GREEDY-SEQ are described in Figure 10.

Let’s take a look at how GREEDY-SEQ works in the following
example. Assume that the input sequence has 8 statements
[S1,S2,S3,S4,S5,S6,S7,S8], input set of structures is {I1,I2,I3,I4} and
storage is infinite. Also for statements Si and S4+i index Ii (1≤i≤4)
and no other index is relevant and that the benefit of every index
for the relevant statement is greater than its creation (and drop)
cost. Also assume that the cost using index Ii<Ii+1 (1≤i≤3). The
exhaustive approach in conjunction with cost-based pruning
would still lead to 24 configurations at stage 4. Using GREEDY-
SEQ in Step 4 above we have 8 configurations only and we still
get the optimal solution as it lazily generates the configurations
({I1,I2},{I1,I2,I3} and {I1,I2,I3,I4}) that significantly impact the over
all quality of recommendation. In Step 3, we look at a few extra
configurations (because of UnionPair) but the overall number of
generated configurations is typically much smaller than
EXHAUSTIVE. In Section 8.2.3, we present results that
demonstrate the effectiveness of GREEDY-SEQ where it results
in close to optimal solutions and with significantly better
performance compared to EXHAUSTIVE.

While GREEDY-SEQ appears to work well in practice, it is
important to note that it can in general be sub-optimal. The
following example demonstrates such a case. Table 1 shows the
cost of 4 statements in the sequence for various indexes. Assume
that the storage available is 100 MB and that I1 requires 80 MB, I2

and I3 require 40 MB each. GREEDY-SEQ returns
[{I1},S1,{I1},S2,{I1},S3,{I1},S4,{I1}] while optimal solution is
[{I2,I3},S1,{I2,I3},S2,{I2,I3},S3,{I2,I3},S4,{I2,I3}].

Table 1. Sub-optimality of GREEDY-SEQ

Sequence
Index

S1 S2 S3 S4 Total Cost

Initial Cost 100 100 100 100 400

I1 50 100 100 50 300

I2 70 70 100 70 310

I3 70 100 70 70 310

The two main reasons for sub-optimality of GREEDY-SEQ are
storage constraints and interactions across various physical design
structures. We note there are already effective greedy search
techniques that result in very good and efficient solutions in the
context of set-based workload to overcome the limitations
mentioned above. For example, one such technique discussed in
[5] advocates generating configurations with up to a certain size
exhaustively and proceeding greedily there after. The other [15]
uses measures like benefit per unit store instead of pure benefit to
mirror knapsack like approaches. We note that these techniques
can be integrated easily with GREEDY-SEQ.

Let’s analyze the complexity of GREEDY-SEQ discussed above
for a N-statement sequence and M structures. The graph for each
structure is same as 3.1 and has O (N) edges and nodes. Step 1
requires O(N*M) time. Step 3 can be repeated at most M times
(In each invocation an element, i.e., two paths in P get merged
and subsequently removed from the set and the merged path gets
added). Since we only retain shortest path solutions in P, an
element in P always has O (N) edges and nodes. This allows us to
solve step 3 in O (N*M2) time. In step 4, C has O(M*N)
configurations as we generate at most M solutions in step 3 and

1. For every structure in the set S={s1,..sM}, find the
optimal solution using the graph formulation as
described in Section 3. At this point, we have a set of
solutions P for individual structures. Let P= {p1,…pM}
and pi=[ai1,S1…SN,aiN+1].

2. Let C be the set of all configurations over all pi’s.

3. Run a greedy search over P as follows.

a. Let r = [c1, S1, … cN, SN, cN+1] represent the least
cost solution in P. P=P-{r}. Let C = C ∪ {c1, …
cN+1}

b. Pick an element s from P such that
t=UnionPair(r,s) has the minimal sequence
execution cost for among all elements of P and
sequence execution cost of t is less than that of r.
If no such element exists go to step 4. P=P-{s}.
P=P ∪{t}. Go to a.

4. Generate the graph with all the configurations in C at
each stage. Run the shortest path over this graph and
return the solution.

Figure 10. The GREEDY-SEQ algorithm

Figure 9. Generated graph for UnionPair

SOURCE

a1

b1

a2

b2

ak

bk

aN

bN

S1 S2 Sk SN

DESTI-
NATION

 a1∪b1 a2∪b2 ak∪bk aN∪bN

each solution has O(N) configurations; hence number of nodes in
step 4 is O(M*N2) and edges is O(M2*N3). Therefore GREEDY-
SEQ runs in O(M2*N3). However in practice, we found number of
nodes in step 4 to be O(M*N) as step 3 led to O(M)
configurations resulting in O(N*M2) running time. We validate
our analysis above through experiments in Section 8.2.3.

7. DISCUSSION

7.1 End to End Solution
We briefly outline a possible end to end solution based on the
ideas discussed in the paper. Figure 11 shows the architecture of
our solution. We Split the input sequences into disjoint sequences
(Section 5.1) based on the candidates (Section 2.2 describes how
to get candidates). We apply the optimality preserving cost-based
pruning (Section 4) on each sequence. Subsequently we tune each
sequence separately using EXHAUSTIVE (Section 3) or
GREEDY-SEQ (Section 6). Finally we Merge (Section 5.2) the
results of disjoint sequences to get the over all solution. We note
that the various techniques discussed in the paper can be put
together in different ways based on quality and performance
requirements. For example, one may want to use the
EXHAUSTIVE strategy and not apply the Split and Merge
operations if quality is the driving factor and enumerating all the
configurations is not prohibiting.

7.2 Extending to Sequence of Sets
Extending our techniques when the workload is treated as a
sequence of sets of statements is straightforward. In the graph
formulation discussed in Section 3 each stage represents a set of
statements rather than individual statements and each node
represents a (set, configuration) pair. The configurations selected
optimize the performance of a set. There are known techniques [5]
that we can leverage to find such configurations efficiently. Here

the physical design changes occur at the set boundaries instead of
possibly at each statement.

8. EXPERIMENTS
We have implemented the algorithms presented in this paper via a
prototype that extend the Database Tuning Advisor [1] in
Microsoft SQL Server 2005. In our experiments we demonstrate
the following:

• In the presence of updates and/or at low storage bounds,
sequence-based approach leads to much better quality
recommendations than a set-based approach.

• Cost-based pruning technique discussed in Section 4 results
in significant pruning in number of nodes that need to be
generated in the graph.

• The quality of recommendations from our greedy approach
discussed in Section 6 is close to that achieved by an
exhaustive solution that enumerates all configurations. The
performance of greedy scales linearly with the workload size
in practice and quadratically with the number of structures.

• Our split and merge approach for exploiting disjoint
sequences (Section 5) results in close to optimal quality
solutions and is much more efficient than the alternative that
treats the input as a single sequence on “real” workloads.

8.1 Experimental Setup
The experiments were performed on a HP workstation with 2.8
GHz CPU with hyper-threading and 1 GB RAM on a
commercially available database server. All the databases used in
the experiment were stored locally on 80 GB hard disk. We used
the available what-if APIs on the server to simulate the “create”
and “drop” costs of various structures. This was further used to
simulate the cost of transitions between various configurations.

We use the following workloads in our experiments to
demonstrate the effectiveness of our techniques.

• TPCH-1-n consists of the first n queries from TPC-H 22
query benchmark [14]. TPCH-1-n-M-m is same as TPCH-1-n
except the queries of TPCH-1-n are repeated m times.

• TPCH-1-n-U-k-MID consists of TPCH-1-n and updates to
LINEITEM table that increases the #rows by k%. Updates
are in the middle of the workload. TPCH-1-n-U-k-END same
as TPCH-1-n-U-k-MID except updates are present at the end.

• Two “real” workloads and databases, WKLD1 and WKLD2
on databases DB1 (~250 MB with about 1000 tables) and
DB2 (~500 MB with about 250 tables) respectively. WKLD1
has a mix of 1000 insert/update/delete/select statements.
WKLD2 contains complex stored procedures as statements.

8.2 Experimental Results

8.2.1 Effectiveness of sequence-based approach
Here we compared the quality of sequence and set-based tuning
approaches. We used TPCH1G database and workloads TPCH-1-
22, TPCH-1-22-U-10-MID and TPCH-1-22-U-10-END at two
storage bounds (i) a low storage bound of 1.2 GB which allows
for maximum 20% of data size for redundant structures and (ii) a
high storage bound of 3 GB which allows for an extra 2 GB space
for redundant structures. Table 2 below compares the quality of
the two approaches. The % improvement is relative to the optimal
output of set-based approach and thus getting any further

Sequence,
Constraints

Candidate set of structures

Recommendation

Apply split operator to get disjoint sequences

Solve each sequence independently using
EXHAUSTIVE or GREEDY-SEQ

 Merge results of disjoint sequences

Apply cost based pruning on each sequence

Figure 11. Architecture of our solution

improvement was not an easy task. When there were no updates
and high available storage (TPCH-1-22 at 3GB), both approaches
led to similar results as expected. However when updates were
added to the workload (or at low storage), sequence-based
approach could further improve the solutions of set-based
approach by another 16-28%. In the low storage cases with
updates, set-based approach led to almost no improvement over
the initial physical design while sequence-based approach
improved it by about 25%. The running time of the two
techniques was very similar as (a) the overhead of computing
shortest path itself was negligible and (b) both techniques looked
at almost the same set of structures and configurations. This
shows that sequence-based tuning leads to much superior
recommendations compared to set-based tuning approach in the
presence of updates and/or low limited storage; it performs the
required trade off between storage requirements, update costs and
benefits of structures dynamically to decide not only the specific
structures to create and drop but also where in the sequence to do
the required creates and drops.

Table 2. Sequence vs. Set-based tuning comparison

Workload % improvement
compared to set -
based approach at
1.2 GB

% improvement
compared to set-
based approach at
3 GB

TPCH-1-22 19% 0%

TPCH-1-22-U-10-MID 22% 16%

TPCH-1-22-U-10-END 25% 28%

8.2.2 Effectiveness of cost-based pruning technique.
In this experiment, we demonstrate how the cost-based pruning
technique results in significant reduction in number of nodes that
are added to the graph. First, we compared this to the exhaustive
strategy EXHAUSTIVE discussed in Section 3 that considers all
possible configurations that obeys the provided storage bound.
EXHAUSTIVE-BEN refers to our strategy where cost-based
pruning is applied at every stage on the graph. We used the
database TPCH1G and smaller workloads TPCH-1-5 and TPCH-
1-5-M-10 for this experiment as it was infeasible to enumerate all
possible configurations for the entire TPCH-1-22 workload for
EXHAUSTIVE. We evaluated the effectiveness of
EXHAUSTIVE-BEN at two storage bounds (i) a low storage
bound of 1.2GB and (ii) a high storage bound of 3 GB as
described in 8.2.1 above.

Table 3. Effectiveness of cost-based pruning

Workload

% Reduction in #
nodes compared to
EXHAUSTIVE at

1.2GB

% Reduction in #
nodes compared to
EXHAUSTIVE at

3GB

TPCH-1-5 99.4% 99.8%

TPCH-1-5-M-10 94.3% 97.7%

Table 3 shows two orders of magnitude reduction in #nodes for
EXHAUSTIVE-BEN compared to EXHAUSTIVE. It is
interesting to note that when storage bound was increased from
1.2GB to 3GB, we got relatively more reduction. That is because
the number of configurations in EXHAUSTIVE increased much
more rapidly than EXHAUSTIVE-BEN. We also note that as the
benefit of individual structures increases (we achieved this by

making 10 copies of the queries and there are no updates in the
workload), the pruning achieved by EXHAUSTIVE-BEN
decreases. However the reduction was still significant compared
to EXHAUSTIVE (two orders of magnitude).

In the second part, we eliminated EXHAUSTIVE from
consideration. We evaluated the effectiveness of EXHAUSTIVE-
BEN for workloads with different update characteristics. We used
TPCH1G database and TPCH-1-22, TPCH-1-22-U-k-MID (k=1,
10 and 20), TPCH-1-22-U-1-END as workloads for this part.

#Nodes for workloads with different update characteristics

0%

200%

400%
600%

800%

1000%

1200%

1400%
1600%

1800%

2000%

TPCH-1-22-U-10-
MID

TPCH-1-22-U-1-
MID

TPCH-1-22-U-1-
END

Workloads

In
cr

ea
se

 in
 #

N
o

d
es

 c
o

m
p

ar
ed

 t
o

T

P
C

H
-1

-2
2-

U
-2

0-
M

ID

Figure 12 shows the increase in #nodes for update workloads
compared to the workload TPCH-1-22-U-20-MID that has the
maximum update overhead. We observed that as the updates
became more expensive the reduction in #nodes increased
significantly. The #nodes for TPCH-1-22-U-1-MID was more
than twice the #nodes for TPCH-1-22-U-20-MID. We also
observed that the reduction depended very strongly as to where
the updates occurred in the workload. When the updates were at
the end (TPCH-1-22-U-1-END) the #nodes was more than 18
times the #nodes in TPCH-1-22-U-20-MID, i.e., EXHAUSTIVE-
BEN did not result in significant pruning. This is expected as the
shortest path algorithm can choose to drop the structures that
incur heavy update overheads just before the updates and not
before that. Consequently, the results for TPCH-1-22-U-1-END
and TPCH-1-22 (no updates) were similar. This shows that
EXHAUSTIVE-BEN is most effective in the presence of updates
especially when these are interspersed with the queries in the
workload (workloads with MID).

8.2.3 Effectiveness of GREEDY-SEQ.
In this experiment, we evaluated the effectiveness of our greedy
technique GREEDY-SEQ discussed in Section 6. In the first part
of the experiment, we compared our approach to EXHAUSTIVE-
BEN. We used the database TPCH1GB and the following
workloads: TPCH-1-3, TPCH-1-5-M-5 and TPCH-1-22.

Table 4 compares the quality and performance characteristics of
GREEDY-SEQ normalized with respect to EXHAUSTIVE-BEN
for various workloads. For the smaller workload TPCH-1-3 both
techniques resulted in similar results as both look at good
configurations yet GREEDY-SEQ ran almost twice as fast as
EXHAUSTIVE-BEN. For the larger workload TPCH-1-5-M-5 the
performance of EXHAUSTIVE-BEN degraded much faster. It
looked at about a 100 times the number of configurations as
compared to what GREEDY-SEQ generated. Consequently

Figure 12. Variation of #Nodes with updates

GREEDY-SEQ ran two orders of magnitude faster than
EXHAUSTIVE-BEN while the quality degradation was about 2%
compared to latter. For TPCH-1-22, we had to terminate
EXHAUSTIVE-BEN after 24 hours as the #structures was more
than 50 and despite all the optimizations the #nodes generated
was order of hundreds of thousands rendering EXHAUSTIVE-
BEN impractical. On the other hand, GREEDY-SEQ returned
with a solution with ~56% improvement compared to pre-
optimization workload cost in less than an hour.

Table 4. GREEDY-SEQ and EXHAUSTIVE-BEN comparison

Workload % reduction in running
time of GREEDY-SEQ
compared to
EXHAUSTIVE-BEN

% reduction in quality
of GREEDY-SEQ
compared to
EXHAUSTIVE-BEN

TPCH-1-3 50% <1%

TPCH-1-5-M-5 98.4% 2.3%

TPCH-1-22 EXHAUSTIVE-BEN was
terminated after 24 hours

Not available

Here we measured the scalability of GREEDY-SEQ with varying
number of queries in workload and candidate structures.

Performance of GREEDY-SEQ with number of queries: Here
the number of queries was increased while number of structures
was kept constant. We achieved this by making multiple copies of
TPCH-1-5 workload (TPCH-1-5-M-m for m=10 through 70 in
steps of 10). Figure 13 shows the running time normalized to that
for TPCH-1-5-M-10. We observe that the running time increased
almost linearly with the number of queries in the input.

Running Time for workload sizes

0

5

10

15

20

25

1x 2x 3x 4x 5x 6x 7x

 x Workload size

R
u

n
n

in
g

 t
im

e
co

m
p

ar
ed

 t
o

T

P
C

H
-1

-5
-M

-1
0

Performance of GREEDY-SEQ with number of structures:
Here we used TPCH-1-3-M-8, TPCH-1-5-M-5, TPCH-1-8-M-3
and TPCH-1-22. These workloads have similar number of queries
(close to 25 each) but very different number of structures. Figure
14 shows the increase in running time for different workloads
compared to TPCH-1-3-M-8. We observed that the running time
increased almost quadratically with the number of structures. The
number of structures applicable for TPCH-1-22 was about 5 times
that for the TPCH-1-3-M-8 and resulted in about 16x increase of
running time. Similarly for TPCH-1-8-M-3, the number of
structures was about 3.5 times that for TPCH-1-3-M-8 and
increase in running time was about 11 times. For TPCH-1-5-M-5,
the number of structures was about 1.5x that for TPCH-1-3-M-8
and increase was close to 3x.

RunningTime for varying number of structures

0

2

4

6

8

10

12

14

16

18

TPCH-1-5-M-5 TPCH-1-8-M-3 TPCH-1-22

Workloads

In
cr

ea
se

 in
 r
u
n
n
in

g
 t
im

e

co
m

p
ar

ed
 t
o
 T

P
C
H
-1

-3
-M

-8

This shows that the variation of running time of GREEDY-SEQ is
consistent with our analysis presented in Section 6.

8.2.4 Effectiveness of split and merge.
Here we demonstrate the effectiveness of split and merge
technique discussed in Section 5. We compared the two
alternatives (1) SPMR which was the split and merge and (2)
WO-SPMR where the entire input sequence was considered as
single sequence during optimization. We used GREEDY-SEQ
search technique for each disjoint sequence.

Table 5. Split and merge quality and performance

Workload % reduction in
running time
compared to
WO-SPMR

% cost
difference

compared to
unconstrained
optimal cost

% cost
difference

compared to
WO-SPMR

TPCH-1-22 <0.1% 0% 0%

WKLD1 89.9% 0% 0%

WKLD1-LOW 71.4% 3.4% 3.0%

WKLD2 83% 0% 0%

We used the following in this experiment: TPCH-1-22 on
TPCH1G, WKLD1 on DB1, and WKLD2 on DB2. The
motivation for using “real” workloads and databases was to
demonstrate the effectiveness of SPMR in practice. We allow
storage to be at most 3 times the data size that is more typical in
practice. We also ran WKLD1 where extra storage is only 20%
data size that we refer to as WKLD1-LOW; this allowed us to
measure the quality degradation of SPMR (how far it was from
WO-SPMR) when storage was extremely limited leading to more
storage violations during merge of individual solutions.

Table 5 summarizes our results. We observed that when storage
was not a limiting factor (cases except WKLD1-LOW) SPMR
resulted in the same quality as WO-SPMR. For TPCH-1-22, the
quality and performance of the two techniques was the same; split
resulted in a single sequence and its overhead was negligible
(<0.1%). The input sequence was split into multiple disjoint
sequences for WKLD1 and WKLD2 (6 and 10 respectively)
which resulted in much better performance compared to WO-
SPMR (5 times speed up). The case when storage was extremely
low (WKLD1-LOW), we still got answers close to WO-SPMR;
the parts of sequence where storage violation occurred after
merging individual solutions were relatively small and sub-
optimality in that region did not impact the over all solution by
much (about 3% degradation even for extremely limited storage).
This shows that SPMR is very effective in practice for getting
very good results.

Figure 13. GREEDY-SEQ running time for workload sizes

Figure 14. GREEDY-SEQ running time with # structures

9. RELATED WORK
Automated physical design tuning solutions are offered by major
database vendors such as IBM, Microsoft and Oracle. IBM offers
DB2 Design Advisor [16] that recommends indexes, materialized
query tables (i.e., materialized views), shared nothing partitions
and multidimensional clustering of tables. Microsoft SQL Server
has Database Tuning Advisor [1] that allows for integrated
selection of indexes, indexed views and horizontal partitions.
Oracle 10G includes an Oracle Tuning Pack that has a SQL
Access Advisor [7, 10] that deals with selection of indexes and
materialized views. Rao et al. [11] uses a workload to recommend
data partitions. [9] talks about index selection in an adaptive
fashion. There is also work in the area of monitoring databases
workload and to use the information for physical design tuning.
Chaudhuri et al. [4] describes a framework that can be used to
gather such a workload very efficiently. Sattler et al. [13] details a
system QUIET that provides continuous query driven index
selection. While the workload gathered using such approaches can
be provided as input to our approach directly, these techniques are
all set-based and hence are unable to exploit sequence information
in the workload (e.g., the scenarios described in the introduction).

There is a significant amount of literature that deals with how to
determine interesting physical design structures, i.e., candidates
for a given workload. Bruno et al. [3] and Valentin et al. [15]
advocate the use of query optimizer to generate candidates. The
work in [2,5] adopts an approach where it uses query optimizer in
conjunction with various strategies like candidate selection, index
and view merging on the entire workload to arrive at candidates.
Rozen [12] presents a framework to choose physical design
automatically where the space of materialized views is restricted
to single table aggregation views with group by. There have been
several papers, e.g., [8] on selection of materialized views in the
context of OLAP/Data Cube. Typically these assume a space of
aggregation views over dimensions. We view these as
complementary to our work. The main focus of our work is how
to perform sequence-based tuning using the candidates efficiently
once the set is identified. In fact instead of reinventing the wheel
we leverage such strategies in our approach. Also some of these
techniques [3, 5] advocate the use of approximations during
optimization to make the physical design selection very efficient.
Chaudhuri et al. [5] mentions atomic configurations and details
how to exploit these to derive costs of other configurations in
order to reduce optimizer calls; [3] uses bounding techniques to
estimate a cost for a configuration at times. Again these
techniques complement our work and can be incorporated into our
approach to enable more efficient solutions.

10. CONCLUSION
In this paper we motivate the need for exploiting sequence
information in the workload for the purpose of physical design
tuning. We define the problem formally and present an optimal
approach to tune sequences by mapping it to shortest path
problem. We present two pruning techniques as well as an
efficient greedy heuristic that is effective in practice.

11. ACKNOWLEDGMENTS
We thank Christian König for his insightful comments on the
paper.

12. REFERENCES
[1] Agrawal, S., Chaudhuri S., Kollar L., Marathe A., Narasayya

V., and Syamala M. Database Tuning Advisor for Microsoft
SQL Server 2005. In Proceedings of VLDB (2004). 1110-
1121.

[2] Agrawal, S., Narasayya, V., and Yang, B. Integrating
Vertical and Horizontal Partitioning Into Automated Physical
Database Design. In Proceedings of ACM SIGMOD (2004).
359-370.

[3] Bruno N., and Chaudhuri S. Automatic Physical Design
Tuning: A Relaxation Based Approach. In Proceedings of
ACM SIGMOD (2005). 227-238.

[4] Chaudhuri, S., König, A., and Narasayya, V. SQLCM: A
Continuous Monitoring Framework for Relational Database
Engines. In Proceedings of ICDE (2004). 473-485.

[5] Chaudhuri, S., and Narasayya, V. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In
Proceedings of VLDB (1997). 146-155..

[6] Cormen, T., Leiserson C., and Rivest R. Introduction to
Algorithms. MIT Press Edition. Twenty-third printing, 1999.
536-537.

[7] Dageville B., Das D., Dias K., Yagoub K., Zait M., and
Ziauddin M. Automatic SQL Tuning in Oracle 10g. In
Proceedings of VLDB (2004).1098-1109.

[8] Gupta H., Harinarayan V., Rajaramana A., and Ullman J.D.
Index Selection for OLAP. In Proceedings of ICDE (1997).
208-219.

[9] Hammer M, and Chan A. Index selection in a self-adaptive
data base management system. In Proceedings of ACM
SIGMOD (1976).1-8.

[10] Oracle Tuning Pack. www.oracle.com/technology/products/
manageability/database/pdf/ds/tuning_pack_ds_10gr1.pdf.

[11] Rao J., Zhang C., Meggido N., and Lohman G. Automating
Physical Database Design in a Parallel Database. In
Proceedings of ACM SIGMOD (2002). 558-569.

[12] Rozen S. Automating Physical Database Design: An
extensible approach, PhD Thesis, New York Univ. (1993).

[13] Sattler K.,Geist I., and Schallen E. QUIET: Continuous
Query-driven Index Tuning. In Proceedings of VLDB (2003).
1129-1132.

[14] TPC Benchmark H. Decision Support. http://www.tpc.org.

[15] Valentin, G., Zuliani, M., Zilio, D., and Lohman, G. DB2
Advisor: An Optimizer That is Smart Enough to Recommend
Its Own Indexes. In Proceedings of ICDE (2000).101-110.

[16] Zilio, D., Rao J., Lightstone S., Lohman G., Storm A.,
Garcia-Arellano C., and Fadden S. DB2 Design Advisor.
Integrated Automatic Physical Database Design. In
Proceedings of VLDB (2004). 1087-1097.

