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ABSTRACT 

Many people live in cities are suffering from noise pollution, 

which may impair the physical and mental health. A first step 

towards the understanding of urban noises is to measure real 

noise levels. In this technical report, we introduce two 

categories of methods to measure urban noise levels, 

discussing their advantages and disadvantages. Finally, we 

apply one of mobile phone-based methods to an in-the-field 

study that explores the noise situation in New York City 

(NYC) [10]. The data collected and the mobile client used in 

the study are available for download at [2]. 

INTRODUCTION 

The rapid progress of urbanization is leading to serious noise 

pollution [11], which may cause stresses, sleep losses, high 

blood pressures and even heart attacks [4]. Tackling noise 

pollution has been attracted a wide range of attention [5][6] 

[8][9]. For example, European Union planned to build up 

three-dimensional noise maps of all major cities by 2007 [4]. 

In addition, since 2011, NYC has opened the platform where 

people can call 311 to complain whatever makes them 

uncomfortable, including noises [1]. 

To build a noise map based on real noise measurements [5][9] 

[10], it is necessary to collect the real-measured noise data of 

different places. In this paper, we introduce a few measuring 

methods, discussing their applications to different scenarios 

that are concerns with money, time and human resources. 

Using one of the proposed methods, we conducted a study to 

measure the real noise level of 36 locations in Manhattan. 

The results of the experiment are used to explore the 

correlation between real-measured noise levels and people’s 

complaints about urban noises [10]. 

METHODS 

In this section, we introduce two categories of sensing 

methods to collect real-measured noise levels, according to 

the measuring devices. One is based on professional sound 

level meters; the other is using mobile phones. 

Professional Device-Based Methods 

The first category of methods employs a professional noise-

measuring device, named sound level meter [3]. A standard 

sound level meter, as shown in Figure 1 A), gives a readout 

of equivalent continuous sound level in decibels (dBs), 

converted from the voltage signal sensed by its microphone. 

                       
Figure 1. Sound level meter    Figure 2. A network of sound level meters 

A straightforward method is to deploy professional devices 

permanently in different locations with a certain density e.g., 

a device per 0.25 square kilometers. The data collected by 

these devices is then transmitted to a backend system through 

wired or wireless communication channels, as shown in 

Figure 2. While this method can produce a long period of 

high quality noise measurements, it requires a high cost of 

deployment and maintenance, e.g. power supply, a cover 

protecting the device from rain, and data transition channels. 

Additionally, the coverage of this approach is also a concern 

as we cannot really deploy such sets of devices anywhere. 

Without deploying these professional devices permanently, 

another method is to employ many people, each of which 

holds a professional device to simultaneously measure the 

noises in different locations. While this method is more 

flexible than a fixed deployment, carrying a sound level 

meter, which is about 30×10 centimeters, is not a fun for a 

user. Thus, this method is difficult to scale up to thousands 

of users. The coverage of the locations that can be sensed 

through this approach is still a problem. 

Mobile Phone-Based Methods 

To solve the inconvenience of the aforementioned methods, 

mobile phones are used as substitutes whose microphones 

are employed to detect the sound power of the surrounding 

environment. Though the accuracy is slightly lower than a 

professional sound level meter, the wide availability of 

mobile phones in end users significantly increases the spatial 

and temporal coverage of sensing spaces. 

1) In an ideal mobile phone-based method, many people hold 

a mobile phone to measure their ambient noises and then 

send the noise data back to a centralized place for a further 

processing. According to some studies [7][9], however, the 

noise level measured by a mobile phone has a certain 

deviation from the value measured by a professional sound 

level meter. Moreover, different mobile phones have 

*The paper was done when the first author was an intern in Microsoft 

Research under the supervision of the second author. The mobile app was 

developed by the third author in Shanghai Jiao Tong University. 
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different deviations. Consequently, the data collected by 

different phones is not directly comparable. To overcome the 

problem, a calibration is needed for each phone to obtain 

accurate noise data. This is quite time consuming and reduce 

the feasibility of a large-scale deployment.  

Some calibration algorithm has been proposed to do a self-

calibration. For instance, an intervention–free calibration 

algorithm [7] uses a linear function to model the relationship 

between phone measurements and real values, as shown in 

Equation 1: 

    𝑅 = 𝛼𝑀 + 𝛽 + 𝜀,                (1) 

where 𝑅 and 𝑀 denote real values and phone measurements, 

respectively; 𝛼 and 𝛽 are undetermined coefficients; 𝜀 is the 

random error. 𝛼 and 𝛽 can be estimated automatically based 

on the noise levels collected in a quiet indoor environment.  

2) Another method is to use the same mobile phone to 

measure the noise levels of different locations consecutively. 

When we only need to evaluate the ranking among different 

locations in terms of noise level, this method is very 

lightweight and agile. According to the study in [7], the 

measurements of a mobile phone and the true noise have a 

linear relationship. Thus, the measurements of the same 

mobile phone can reveal the relative ranking between the 

noise levels of different locations, even if a mobile phone is 

not calibrated. The aforementioned algorithm can be applied 

to calibrating a mobile phone for a better measurement.  

EXPERIMENT 

We applied the second mobile phone-based method in a 

research project [10] that explores the noise situation in NYC 

based on the 311 complain data┼. In this project, we modeled 

urban noises as a tensor with three dimensions denoting 

regions, noise categories and time slots, respectively. We 

divided a city into disjoint regions by major roads and 

segmented time of day into 1-hour slots. Each entry of the 

tensor stores the number of 311 complaints about a particular 

noise category in a particular region and a particular time slot. 

As there are not always people reporting the ambient noise 

anywhere and anytime, the 311 data is very sparse, resulting 

in many entries in the tensor without values. So, we 

supplemented the missing entries in the tensor, using the 311 

complaint data together with social media, road network data, 

and Points of Interests.  To validate if the inferred values 

(also called noise indicators) of these missing entries align 

with the true noise situations in the corresponding locations, 

we performed an experiment, where a single mobile phone 

was employed to sense the noise level of 36 locations in 

Manhattan in different time of day.  

Location Selection and Route Design 

Figure 3 A) shows the 36 places in Manhattan, where we 

measured noise levels in the experiment. Specifically, 24 

locations (labeled by black solid circles) were measured 

during the daytime of a weekday; the other 12 locations 

(labeled by blue empty circles) were measured during the 

night of a weekday. We select the locations, considering the 

following aspects.  

First, we try to prove that the more 311 complaints are made 

in a location, the higher the real noise level the location 

suffers, when the number of 311 is big enough. So, we 

selected 30 locations, which have enough 311 complaints but 

with a significant difference between each other’s 

complaints. Second, we want to verify that a location without 

(or having few) 311 complaints may not really be a quiet 

place. To this end, we selected 6 places having less than three 

311 complaints. Third, we want to validate that people’s 

tolerance to noise levels changes over time, e.g. people’s 

tolerance to noise is much lower in the night than the 

daytime. So, we measured the locations at different time of 

day. Fourth, to facilitate the commute of the user who helps 

us collect the noise data, we designed several routes, each of 

which is comprised of six locations to measure, e.g., as 

illustrated in Figure 3 B) and C). Each route is designed to 

allow a user to travel through six locations in one hour (i.e. a 

time slot) and measure each location for at least 5 minutes.   

The first two aspects motivate us to fill the missing entries of 

the tensor, and the third one justifies the necessity of 

modeling the noises of different time slots separately.   

 
Figure 3. Locations selected to measure noise 

As shown in Figure 3 B) and C), in each route, the user 

departed from the location marked ‘A’ and traveled through 

A→B→C→D→E→F. The time slots of the six routes being 

measured are listed in Table 1. The coordinates of each 

location are listed in Table 2. 

Table 1. Measuring time slots of six routes 

Route1 Route2 Route3 Route4 Route5 Route6 

9am ~ 

10am 

10am ~ 

11am 

2pm ~ 

3pm 

3pm ~ 

4pm 

10pm ~ 

11pm 

11pm ~ 

12pm 

Hardware and Settings  

In the experiment, a mobile phone (Samsung GALAXY 

Note I) was employed to measure the ambient sound powers, 

running an application on the Android operating system. A 

user carried the same mobile phone to measure the 36 

locations by traveling through the six routes shown in Table 

1. The interfaces of our application are shown in Figure 4. 

To convert the voltage sensed by the microphone to a noise 

level, we employ the A-weighting noise level, which is 

defined in the international standard IEC 61672:2003. The 

conversing function is defined in Equation 2. 

Route3

Route4

Route2  

Route1

Route5

Route6

Locations of daytime
Locations of nighttime

A) All locations B) Route2 C) Route5

┼: 311 is NYC’s governmental non-emergency services, which allows 
people in the city to complain everything that is not urgent by making a 

phone call, or texting, or using a mobile app. [1] 
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where 𝑣𝐴(𝑡) is A-weighting voltage, 𝑣0 is reference voltage, 

𝑇 is the time interval, and 𝐿𝐴𝑇  is the equivalent noise level 

over 𝑇. In the experiment, 𝑇 is set as 1 second, which means 

a noise level value is computed every 1 second. After 

measuring the noise level in a place for five minutes, all the 

computed values 𝐿𝐴𝑇  are stored in a file and sent to a server. 

       

Figure 4. User interface of the mobile client 

In the experiment, it is actually not necessary to calibrate the 

mobile phone measurements, as we only want to verify 

whether the inferred noise indicators can differentiate 

between the noise situations of different places. As long as 

the ranking among different locations in terms of the noise 

levels can be ensured, the goal of the experiments is achieved. 

Table 2. The coordinates of the 36 selected locations 

Daytime 

Route1 Route2 

 latitude longitude  latitude longitude 

A 40.80936 -73.94927 A 40.80356  -73.96914 

B 40.80804 -73.94612 B 40.79923 -73.96286 

C 40.80514 -73.94524 C 40.78842 -73.97077 

D 40.79815 -73.94832 D 40.78454 -73.97360 

E 40.79941 -73.95338 E 40.77924 -73.97904 

F 40.79922  -73.95567 F 40.76078 -73.98446 

Route3 Route4 

 latitude longitude  latitude longitude 

A 40.76233 -73.98234 A 40.73326  -73.98118 

B 40.76041 -73.97582 B 40.73763 -73.98611 

C 40.75717 -73.96816 C 40.73035 -73.98998 

D 40.75686  -73.96545 D 40.73352  -73.98985 

E 40.75590 -73.96319 E 40.73453 -73.99225 

F 40.72843 -73.97569 F 40.73734 -73.99265 

 

Night 

Route5 Route6 

 latitude longitude  latitude longitude 

A 40.82155 -73.94287 A 40.76410 -73.98848 

B 40.82470 -73.94427 B 40.76228 -73.98611 

C 40.83584 -73.93991 C 40.76141 -73.98406 

D 40.84414 -73.93754 D 40.75983 -73.98417 

E 40.83659  -73.94314 E 40.75504 -73.98663 

F 40.82647  -73.95053 F 40.75096 -73.98272 

Noise Level Computation 

The mobile client produces a noise level every second, 

resulting in 300 measurements in 5 minutes for each location. 

As illustrated in Figure 5, we computed the average of the 

top 10% big measurements as the real noise level of a place 

in a given time span, instead of the average of all 300 

measurements. A loud sound is more likely to be considered 

as an annoying noise by people. Figure 5 plots the 

measurements of a location in Route1, whose average noise 

level is 62.57 dBs and the top 10% average is 71.94 dBs. 

 

Figure 5. Calculating the noise level for a location 

Correlation with Noise Complaints 

Figure 6 correlates the real noise levels measured by the 

mobile phone and the number of 311 complaints around the 

location. As illustrated in Figure 6 A), the complaints within 

a circle distance of 200 meters to a location is counted for the 

location. In Figure 6 B) and C), each point denotes a location, 

coordinated by its real noise level and 311 complaints. 

 

Figure 6. Correlation between 311 complaints and real noise levels 

On the one hand, given the same time span in a day, the more 

311 calls made in a location, the louder real noises in the 

location. We see the same trend in Figure 6 B) and C). If 

given sufficient 311 complaints, we can recover the noise 

situation throughout the city by doing some simple statistics 

on the complaint data. On the other hand, there are some 

locations (marked by the red circles shown in Figure 6 B)) 

have very few 311 complaints but still with considerable real 

noise. This is caused by the sparsity of 311 complaint data, 

i.e., having no complaint records does not mean no noise. As 

shown in Figure 6 C), the real noise level in 6am-6pm is 

actually higher than 7pm-11pm; however, more complaints 

were made in the latter time span, as people’s tolerance to 

noises is much lower in the night. 

We ranked the 24 locations measured in daytime and the 12 

locations measured in the night separately. For each set of 
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locations, two ranks were obtained, one by the inferred noise 

indicators, the other by the real noise levels collected by the 

mobile phone. We then used nDCG to measure the distance 

between the two ranks, where the rank by the real 

measurement collected by the mobile phone is regarded as 

the ground truth. nDCG computes the relative-to-the-ideal 

performance of information retrieval techniques. The 

discounted cumulative gain of G is computed as follows: 

(here, b = 3.) 

             𝐶𝐺[𝑖] =  {

𝐺[1],                              𝑖𝑓 𝑖 = 1

𝐷𝐶𝐺[𝑖 − 1] + 𝐺[𝑖],     𝑖𝑓 𝑖 < 𝑏

𝐷𝐶𝐺[𝑖 − 1] +
𝐺[𝑖]

𝑙𝑜𝑔𝑏𝑖
,    𝑖𝑓 𝑖 ≥ 𝑏

        (3) 

Given the ideal discounted cumulative gain DCG’, then 

nDCG at i-th position can be computed as 𝑁𝐷𝐶𝐺[𝑖] =
𝐷𝐶𝐺[𝑖]/𝐷𝐶𝐺′[𝑖]. 

Figure 7 shows the ranking performance for the daytime and 

nights, where nDCG@2 to nDCG@10 are presented. Overall, 

both ranks achieved a high performance with nDCGs around 

0.8. Specifically, the rank of the night has a better 

performance than the daytime. As more 311 complaints were 

created in the night, the accuracy of the inference in [10] 

becomes higher, leading to a closer rank to its ground truth. 

The results shows that the inferred noise indicator can reveal 

the true noise situation of a location.  

 

Figure 7. Ranking performance of the inferred noise indicator 

Conclusion 

In this paper, we report on two categories of noise-measuring 

methods: one is based on professional sound level meters; 

the other is to use general mobile phones running a specific 

application. We discussed the advantages and disadvantages 

of different methods in different scenarios. We then applied 

the single mobile phone-based method to a study in NYC. 

Comparing the real-measured noise levels with the 

corresponding noise complaints, we verified the correlation 

between them. The raw noise level data we collected in the 

experiment and the mobile application can be download from 

[2]. 
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