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Objectives Knowledge of the secondary attack rate (SAR) and

serial interval (SI) of influenza is important for assessing the severity

of seasonal epidemics of the virus. To date, such estimates have

required extensive surveys of target populations. Here, we propose a

method for estimating the intrafamily SAR and SI from postings on

the Twitter social network. This estimate is derived from a large

number of people reporting ILI symptoms in them and\or their

immediate family members.

Design We analyze data from the 2012–2013 and the 2013–2014
influenza seasons in England and find that increases in the estimated

SAR precede increases in ILI rates reported by physicians.

Results We hypothesize that observed variations in the peak value

of SAR are related to the appearance of specific strains of the virus

and demonstrate this by comparing the changes in SAR values over

time in relation to known virology. In addition, we estimate SI (the

average time between cases) as 2�41 days for 2012 and 2�48 days for

2013.

Conclusions The proposed method can assist health authorities by

providing near-real-time estimation of SAR and SI, and especially in

alerting to sudden increases thereof.
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Introduction

Understanding the transmission dynamics of influenza and

influenza-like illnesses (ILI) is vital for deciding on public

health strategies to reduce the impact of the virus. An

important parameter in the spread of pandemic diseases is

their secondary attack rate (SAR): the probability that

infection occurs among susceptible persons within a reason-

able incubation period following known contact with an

infectious person or an infectious source.1 A further impor-

tant parameter for influenza transmission models widely

used to design control measures is the serial interval (SI): the

time between symptom onset of a primary case and symptom

onset of its secondary cases.

Collecting the necessary data for computing SAR and SI

entails the tracking of relatively large populations or

identification of cases and follow-up of their contacts and

is compounded by the fact that the majority of people

suffering from influenza do not seek medical attention. For

example, only 17% of laboratory-confirmed cases in a large

community cohort in England sought medical attention.2

Thus, periodic surveys are sometimes employed for data

collection,2 although these require a large effort by research-

ers or health authorities and the public completing them.

Public health bodies monitor influenza based on those

who seek medical attention, but this surveillance provides no

direct information on transmissibility. Some countries also

plan more detailed ascertainment of cases and their contacts

during pandemics but even these studies may have difficulty

in estimating secondary attack rates within households

because identified cases and their contacts are likely to

receive antivirals.3 Selection bias is inherent in outbreak

investigations which may also overestimate transmissibility.4

A mechanism to routinely monitor an indicator of influenza

transmissibility, such as the SAR, and of SI using standard-

ized methodology that could be used on an international

scale would therefore be an important tool to guide

pandemic response.5

Behavioral data from the Internet in general, and social

media in particular, are known to correlate well with various

health behaviors. The severity of influenza was tracked using

search engines,6 advertisements7 and social media.8 Although

the accuracy of the first of these has been criticized,9 partially

for its sensitivity to media attention to seasonal flu, it remains
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an inexpensive and near-real-time tool for monitoring

influenza load across multiple geographies.

Tracking influenza load through Internet activities pro-

vides a more sensitive sensor than that afforded by hospi-

talizations and doctor visits because it serves as a window

into people’s health concerns even when these do not

warrant a visit to medical facilities. They are also advanta-

geous over surveys because they can be collected with a much

smaller effort. The drawbacks of these data are that they

cannot be directly verified (e.g., using genetic testing for the

specific strain of the virus from which a person is suffering),

use ambiguous language, and that people sometimes over-

diagnose themselves.10 Here, we study a specific type of SAR

known as the familial or household secondary attack rate

(fSAR). fSAR is defined as the probability that at least one

household contact becomes a secondary case given that one

of the family members was infected.5 We estimate fSAR by

observing reports of influenza-like illness and its symptoms

in social media, and whether they pertain to the reporting

user themselves or to their immediate family members.

Methods

Data

Twitter data
We collected all messages from the Twitter social network,

also known as tweets, originating from England during two

periods: October 1, 2012, to April 30, 2013, and October 1,

2013, to April 30, 2014. We refer to these datasets as the

2012 and 2013 flu seasons, respectively. Tweets were

identified as originating in England if they had GPS

coordinates embedded in them, and these coordinates were

within England. A total of 80 950 393 tweets from 883 342

users were found in tweets posted during the 2012 season,

and 133 569 081 tweets from 1 230 678 users were found

for the 2013 season.

Survey data
We conducted a survey among 93 self-reported Twitter users,

recruited through the CrowdFlower crowdsourcing platform.

Self-reported age of 94% of the participants was between 18

and 44 years, and 83% were males. These data were used to

validate our hypotheses, as detailed in the Results.

Identifying illness tweets
Twitter content was filtered to identify tweets related to ILI

in a two-step process. First, we found tweets which contained

highly indicative terms. Then, we applied a predictor to

assess the probability that these tweets mentioned that a

specific person (either the account owner or a family

member) was suffering from ILI. In the following, we

describe both stages.

To identify Twitter messages that were likely related to ILI,

we constructed a large set of ILI-related terms and then

narrowed them to contain only the most informative of these

terms. We began by manually crafting a list of 36 textual

markers (or n-grams) related to or expressing symptoms of

ILI by browsing through related Web pages (on Wikipedia

and health-oriented Web sites). Then, using those markers as

a seed, we extracted a set of frequent n-grams (with n ≤ 4)

that co-occurred with them in a Twitter corpus containing

approximately 30 million Tweets published in February and

March 2014 and geo-located in the UK. Consequently, the

list of markers was expanded to a set of M = 217 n-grams.

Using the large set of terms, we constructed a linear

prediction model (using the ridge regression algorithm11) to

obtain the best correlation between the ILI rates gathered by

the Royal College of General Practitioners (RCGP) and

published by Public Health England (PHE)a and the number

of times each term was mentioned in tweets during the same

time period. We then selected the 20 phrases which had the

largest weight in the model, and retained only those tweets

which contained one or more of these terms. The terms are

listed in Table 1. The correlation between the ILI rate and the

predicted ILI rate was computed using 10-fold cross-

validation12: the data were separated into 10 random

partitions of the same size. A model was built using 9 of

the partitions, and the correlation was measured for samples

in the 10th partition. This was repeated 10 times, so that the

correlation was measured once for each of the partitions.

This procedure was used so as to reduce the bias of the

estimated correlation. The average correlation (over the 10-

fold) between the ILI rate and the predicted ILI rate using

these 20 terms was 0�685.
The resulting tweets could describe a specific person who

is suffering from ILI or could be related to more general

aspects of the flu, such as general observations on the fact

that some people are ill, or calls to vaccinate. Therefore, we

employed a second filter, which was aimed at identifying

tweets that stated that the person posting them or one of

their family members was suffering from ILI.

Table 1. Terms used for the first stage of tweet filtering

Bad cough Bed flu Chest infection

Chesty cough Cold flu Cough

Cough syrup Coughing Feel sick

Flu Food feel sick Headache night

Illness Man flu Shivering

Throat cough Vomit Vomiting

Waking headache Worst cough

ahttps://www.gov.uk/government/publications/annual-flu-

reports
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We constructed a training set for this classifier by randomly

selecting 1500 tweets after the first stage of filtering. These

tweets were labeled by five human assessors as to whether they

refer to the poster of the tweet, their immediate family

members, or none of the former. The assessors were recruited

from the crowdsourcing Web site CrowdFlower.

Tweets were represented through four families of attributes:

1. A vector-space model with words, word pairs, and lexical

affinities: Each phrase (word, word pair or lexical affinity)

was represented as a single attribute, and the value of that

attribute was the number of times that the phrase

appeared in the tweet. Lexical affinities13 are word pairs

within the same sentence separated by no more than five

words.

2. Whether tweets contained one of six “emoticons,” that is,

sequences of characters used to represent a smiling or a

sad face, etc.

3. Whether tweets were a reply to another tweet.

4. Whether tweets contained a hashtag.

A linear support vector machine (SVM)12 classifier with

probabilistic outputs was then trained to these data (lib-

SVM14 with default settings). The SVM algorithm finds the

best weights to give to each attribute so that a weighted sum

over the attributes will give the probability that a tweet is

referring to the poster of the tweet or their immediate family

members. The classifier was applied to all tweets after the first

stage of the filtering. The resulting probability estimates that

a tweet contains a statement on the poster of the tweet or

their family members were used as a weight in subsequent

processing (see below). The performance of the classifier is

analyzed in the Results.

Identifying family-related tweets
In order to determine the secondary attack rate, we need to

determine the probability that a user will tweet about a

family member (see Section “Changes in fSAR over the

influenza season” for details). To do so, we need to identify

tweets that refer to family members.

Some Twitter users regularly report on a variety of aspects

of life. Others use their account for specific purposes, for

example, work-related topics. To distinguish between users

who mention their immediate family members in their

tweets from those who did not, we computed how frequently

(if at all) family members were mentioned in each user’s

tweets. Tweets were identified as referring to family members

if they contained one or more of the following keywords:

“wife,” “husband,” “partner,” “hubby,” “girlfriend,” “boy-

friend,” “son,” “daughter,” or “child.”

The demographic profile of Twitter users indicates fewer

than 10% of users are under 18 years of age.b Therefore, we

did not include words related to parents in the list of family-

related keywords.

In a random sample of 200 tweets, 67% of the tweets

which contained one or more of these keywords referred to

people’s own family members.

Estimating the familial secondary attack rate
We make the following basic assumptions: First, a Twitter

user who has ILI may tweet about it. If she does, and if one of

her immediate families also develops ILI, there is some

probability that she will tweet about this fact as well. This

assumption is supported by previous work,15,16 which found

that it is possible to estimate influenza load from Twitter

messages about influenza.

Formally, we denote the familial SAR by PSAR, and the

probability that a user will report on a family member via her

Twitter feed by P(R). Given that a Twitter user has reported

suffering from ILI, the probability that he will report on a

family member suffering from ILI is given by:

PðReport [ Family member illÞ ¼ PSAR � PðRjILIÞ;

where P(R|ILI) is the probability of reporting on the health

of a family member conditioned on them suffering from ILI.

Our second assumption is that P(R|ILI) � P(R); that is,

the probability of reporting about ILI in a family member is

approximately the same as reporting on other aspects related

to the family member. We estimate P(R) for each user as the

ratio of their tweets mentioning a family member to the

number of all tweets they made, regardless of influenza.

A third assumption is that when both aTwitter user and their

family member have experienced ILI within a few days, it is

significantlymore likely that one of themhas infected the other,

than the likelihood that they were both infected independently.

Cases of the latter type may skew our estimate of fSAR.

Finally, we assume that if an ILI has been passed within a

household, it can take no more than several days to develop.

Here, we use a maximum of 7 days, as in Carcione et al. 5. If

a Twitter user and a family member are reported suffering

from ILI, but more than 7 days have passed between the two

reports, we will assume that the source for contagion was

different for the two individuals.

Under these assumptions, we can compute PSAR from a

population of users who reported suffering from ILI. We

denote whether user i from the population reporting ILI also

reported a family member suffering from ILI by Ti, where

Ti ¼ 1 if family member was reported with ILI
0 otherwise

n
:

From the above, we note that Ti~Bernoulli(PSAR � Pi(R)) for
each user. Given the population of users, the maximum

likelihood value ofPSAR can be estimated using linear regression

bhttp://royal.pingdom.com/2012/08/21/report-social-net-

work-demographics-in-2012/
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in the followingmannerc : LetTi andPi(R) be the corresponding

values for the ith user, where i = 1, 2, . . . N. We construct two

column vectors T = [Ti]i = 1. . .N and PR = [Pi(R)]i = 1. . .N.

Using the Moore-Penrose pseudo-inverse, the maximum

likelihood estimation of PSAR is given by:

PSAR ¼ ðPT
R � PRÞ�1 � PT

R � T:

In this work, we employ weighted linear regression,

weighting the data from each user according to the

probabilities found by the above-mentioned classifier. In

cases where users made several tweets referring to ILI

symptoms in themselves, we compute the maximum of the

probabilities assigned to these tweets. Similarly, we compute

the maximum of the probabilities in ILI tweets referring to

immediate family members. We used the maximum because

a single, highly explicit, tweet mentioning specific ILI could

indicate the fact that a person was ill (other methods for

determining the user weightings are also possible, but were

not investigated further). Then, we compute a confidence

score in the tweets of each user by averaging these two

probabilities (or take one, in cases where a user referred only

to themselves or their family members). We denote this

confidence by wi for the ith user and use it to weight the data

of each user. In a similar notation to the above, we construct

W, a diagonal matrix of size N9N, where the ith element of

the diagonal is equal to wi, then:

PSAR ¼ ðPT
R �W � PRÞ�1 � PT

R �W � T:

Estimating the familial serial interval
We measured the interval between the report of when a

Twitter user complained of ILI and when they reported that

their family member had ILI, for those users who reported on

both them and their family member suffering from ILI.

The familial serial interval (fSI) is the average of these

intervals.

Results

Performance of the classifier used to identify
specific ILI statements
The agreement between the labelers of the 1500 tweets

labeled using crowdsourcing was such that in 97�5% of

tweets, a majority of labelers agreed on the label. In 79�5%,

there was an agreement of 4 or more of the labelers.

We estimated the performance of the classifier using

50-fold cross-validation. The resulting receiver operating

curve (ROC) is shown in Figure 1. The area under the ROC

is 0�84, implying that classification of the tweets can be

considered relatively accurate. As noted above, we use the

classifier to weight the examples in the estimation of the

fSAR.

User survey
As noted above, we conducted a survey among Twitter users

and requested they report on whether they tweet about

family members, and, separately, whether, if one of their

family members is suspected of having the flu, would they

tweet about it. Among users who tweeted about family

matters, 83% reported they would tweet about a family

member having the flu.

This suggests our assumption that P(R|ILI) � P(R) is

likely correct, as the vast majority of users who tweet about

their family report their likelihood to tweet about a family

member with ILI.

Seasonal fSAR
Table 2 shows the number of users who mentioned ILI

symptoms. This table also shows the fSAR estimated for both

seasons. The fSAR for the 2013 season is approximately 23%

lower than that of the 2012 season. The 2013 season is known

to have been less severe than the 2012 season: Doctor visits

for ILI symptoms in England during the 2013 season were

lower than the 2012 season, peaking at 8�7 per 100 000,

compared to 32�7 for the 2012 season.17

Changes in fSAR over the influenza season
In the previous section, we reported the fSAR computed

from tweets collected over the entire influenza season. Here,
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Figure 1. Receiver operating curve (ROC) of the classifier to distinguish

personal from general tweets. The area under the ROC is 0�84.

cAn alternative estimation is to maximize the log-likeli-

hood of the product of two Bernoulli variables. Details are

provided in the Appendix A. Here, we use the linear

estimator which gives similar values, but allows the natural

addition of a weighting function, as detailed below.
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we report the fSAR computed from tweets reported during

2-week intervals over the influenza season. We compare these

to ILI rates reported by PHEd in each of these intervals. The

graphs for the two seasons are shown in Figure 2. In the 2012

season, fSAR clearly begins to increase in advance to ILI rates

do and appears simultaneous in the 2013 season, suggesting

that higher transmissibility causes an uptick in ILI rates.

Figure 3 compares estimated fSAR over time to virolog-

ically confirmed rates of influenza, as reported in the PHE

DataMart system,e a laboratory-based respiratory virus

surveillance system.18 The 2012 season was unusual in terms

of having an early wave of influenza B activity peaking at the

beginning of January 2013, and a later wave of influenza A

activity (mainly A(H3N2) but also some A(H1N1pdm2009))

peaking at the end of February. As the Figure shows, in the

2012 season, we observe a peak in fSAR closely timed with a

peak of influenza B in January, and a later peak in fSAR

overlapping a peak of influenza A activity in February. Peaks

in fSAR seem to be correlated with the initial rise in influenza

activities of each strain. Thus, the wave that peaks in

December is likely driven by the wave of influenza B activity,

and second peak is likely related to the influenza A wave. In

the 2013 season, there were low levels of ILI. A

(H1N1pdm2009) was the dominant strain which increased

from the end of 2013 to peak at the end of February 2014.

This likely relates to the peak of fSAR in January and

February 2014. Once more, this indicates that influenza A

had lower fSAR than that of influenza B.

These effects can be quantified using a regression model

where the independent variables are the changes (derivatives)

of the virological profiles and the dependent variable is fSAR.

We have empirically determined that a stronger correlation

appears for a quadratic form of fSAR, and these results are

reported here.

Table 3 shows the model parameters for each of the two

seasons. First, we note the high R2 values of both models,

which show that the models explain 34% and 45% of the

variance. Second, the dominant strain (influenza B in 2012

and influenza A in 2013) in each season is statistically

significantly correlated with fSAR. While only two seasons

are represented here, this suggests increased fSAR is corre-

lated with the beginning of a wave of influenza.

Familial serial interval
Familial SI, the average difference in time between reports of

ILI symptoms of a Twitter user and their family members (or

vice versa), was 2�41 days during the 2012 season, and 2�48
during the 2013 season (not statistically significant, rank sum

test). Thus, although fSAR differed significantly between

seasons, the time to infection did not.

Figure 4 compares estimated fSI over time to the number

of virologically confirmed cases of influenza in 2-week

Table 2. Familial secondary attack rate (fSAR) and data volumes for

the 2012 and 2013 seasons

Season

Number of users

reporting influenza-like

illnesses symptoms

Familial secondary

attack rate

2012 65 422 30�5% (SE 1�3%)

2013 93 459 25�7% (SE 0�8%)

Standard errors of fSAR estimate were computed using bootstrap

sampling with replacement.

Figure 2. Influenza-like illnesses (ILI) rates (per 100 000, dotted, left axis)

compared to the familial secondary attack rate probabilities (shown as a

full line, right axis) over the influenza season for the 2012 (top) and 2013

(bottom) seasons.

dhttps://www.gov.uk/government/statistics/weekly-

national-flu-reports
ehttps://www.gov.uk/government/statistics/weekly-

national-flu-reports
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intervals. In the 2012 season, fSI seems to increase around the

peak of the influenza B activity and increase before the peak

of influenza A activity. However, models similar to those

shown in Table 3 do not reach statistical significance,

indicating that additional factors beyond the virological

profiles may be influencing fSI. Further research is required

to understand these interactions and their effect on fSI.

Discussion

The familial secondary attack rate and the SI are important

parameters in understanding pandemic and seasonal influ-

enza. However, collecting data for these estimates can be

difficult, because of the need for continuous, large-scale

tracking of susceptible populations or prospective identifi-

cation and follow-up of cases and their contacts. Here, we

demonstrated the ability to compute fSAR and fSI from

social media.

Our work provides a repeatable method for assessing SAR

and SI of different strains of ILI including seasonal and

pandemic strains. This may be particularly important in

assessing the potential threat of new strains, which could be

identified through a sudden rise in fSAR or fSI. As we have

shown (Figures 2 and 3), such a rise appeared when a

less-familiar strain (Influenza B) appeared in the 2012

season. Understanding these parameters can help to inform

how health authorities need to intervene and is a component

to assessing severity of the threat of a new strain and changes

thereof.

Several previous studies attempted to estimate SAR and

fSAR. Recent examples of pandemic influenza include an

fSAR estimate for H1N1 of 7�6%19 and 11�3%.20 fSAR for the

H5N1 strain was estimated at 29%.21 In the 2009 epidemic of

H1N1, Carcione et al.5 estimated the fSAR of H1N1 in

Western Australia at 27�9%. For seasonal influenza, Carcione

et al.5 report fSAR is in the range of 10–40%, varying by

demography, location and season.5 We note that SAR has

different definitions, where a common one is the number of

secondary cases divided by the number of people other than

the index case (the first infected person in a family). Here, we

report the proportion of households that have at least one

secondary case. The difficulty in estimating the number of

people residing in a household necessitates the use of fSAR as

detailed in the Methods, but may cause the SAR estimation

reported here to be higher than that computed using other

definitions. We do not know of a published estimate for

fSAR in England during the two seasons reported in this

study. However, given past estimates, and the fact that the

average family size in the UK is 2�4,f our results of fSAR are

within the established range for this parameter. Other

evidence supports our estimate. First, the estimated fSAR

for the 2013 season was substantially lower than that of the

Figure 3. Estimated secondary attack rate compared to the number of

confirmed cases influenza A (all strains) and B, from Public Health England

data. The 2012–2013 season is shown on the top, and the 2013–2014
season on the bottom.

Table 3. Regression model between the slope of the virological

profiles and a quadratic familial secondary attack rate

Season

2012 2013

Influenza A coefficient �0�0008 0�0005*
Influenza B coefficient 0�0013* 0�0071
Adjusted model R2 0�45* 0�34*

Stars denote statistically significant results (P < 0�05).

fSee: http://www.ons.gov.uk/ons/rel/family-demography/

families-and-households/2013/stb-families.html If each

household with a secondary case contains one index case,

the ratio of fSAR computed according to our estimate

compared to that computed in Carcione et al., 20115 is 1/1.4.
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2012 season, which fits with clinical findings for these

seasons.

Second, as our figures show, the fSAR associated with the

influenza B wave of the 2012 season was much higher than

the peak fSAR relating to influenza A in that year. Variations

in SAR may be driven by intrinsic diversity in viral

transmissibility, as well as variations in population suscep-

tibility. For example, in strains that have been in common

circulation in recent years, including both influenza A

(H1N1pdm2009) and influenza A(H3N2), high levels of

immunity and low corresponding SAR could be expected.

Conversely, population immunity to influenza B, which

rarely causes major outbreaks, may be low and SAR

correspondingly high.

Our findings of distinct peaks of SAR suggest that SAR is

not a constant factor but is a dynamic phenomenon that may

be driven by a combination of factors. For example, a

downward swing in SAR may reflect the accumulation of

immunity within the population through the course of an

outbreak. One of the major advantages of the proposed

method is the ability to rapidly estimate fSAR with a very low

effort and negligible cost. The dynamic nature of fSAR

necessitates this rapid estimation capability.

Our estimates of influenza SI (circa 2�5 days) are consis-

tent with those identified from prospective studies of

contacts of influenza.22 Here too, an additional advantage

of our methods is the ability to provide information on the

change in fSI throughout the season.

One of the causes for the overestimation of influenza rates

by Google Flu trends, an Internet-based surveillance system,

was media interest in influenza, which caused a people to

search more often for influenza-related information, skewing

its estimate for the number of people suffering from ILI.9 We

posit that the methods proposed here for the estimation of

fSAR and fSI are more immune to these errors, because a

heightened awareness and interest in influenza will similarly

affect the likelihood of reporting on both index and

secondary cases, thus leaving the estimates of fSAR and fSI

unaffected.

Future work will utilize other sources of Internet data,

including search engine queries and other social media, to

validate and improve the estimate for fSAR. Additionally,

targeted advertisements could be used to invite people

reporting ILI symptoms to provide samples for virological

testing, thus providing ground-truth data with minimal

delay.

Limitations
One limitation of our method pertains to the demographic

profile of Twitter users. Such users are not, currently,

representative of the population. For example, as noted in

the Methods section, fewer than 10% of users are under

18 years of age. As fSAR is known to vary with demography,

if a specific influenza strain affects, for example, children,

such strains may be underrepresented in the data and hence

bias our estimation. However, the variations in fSAR as a

function of demography are relatively small (e.g., between

12�5 and 16�3, as a function of household size5), these

differences should not, in general, cause a significant bias in

the estimate of fSAR.

Another potential bias of our method stems from the fact

that we do not have an explicit identification of the index case

versus those of the household contacts. Thus, if two members

of a household were independently infected (as can happen

when the infection rate is high), this may count as a secondary

attack, thus skewing our results. Previous researchers implic-

itly distinguished index cases from household cases according

to the timing of infection, for example, by not considering

cases with the same symptom onset.5 However, anecdotal

evidence suggests that some people refer to ILI in both them

and their family members in the same tweet.

Figure 4. Estimated serial interval compared to the number of confirmed

cases influenza A (all strains) and B, from Public Health England data. The

2012–2013 season is shown on the top, and the 2013–2014 season on

the bottom.
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Appendix A: Estimation of SAR using a
solution to the Bernoulli log-likelihood
function

As noted in Section “Changes in fSAR over the influenza

season”, Ti ~ Bernoulli(PSAR � Pi(R)) for each user. In that

section, we estimated using linear regression. An alternative

is to maximize the log-likelihood function of a Bernoulli

distribution, as follows: Let L(P) be the likelihood function

for a product of two Bernoulli variables, PSAR and Pi(R).

LðPÞ ¼
Y
T¼1

PSAR � PiðRÞ
Y
T¼0

ð1� PSAR � PiðRÞÞ:

The log-likelihood of L(P) can be maximized numerically

for a given set of data points.

Although the error criterion for linear regression and this

function differ, the results in practice are similar. Hence, we

opt for the use of linear regression, where weights of different

data points can be included naturally.

Yom-Tov et al.
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Appendix B: Changes in tweets related to
ILI over time

The figures show the percentage (over the season) of ILI-

related tweets referring to the posting user (self) or to family

members.
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