
Powering the Static Driver Verifier using Corral

Akash Lal
Microsoft Research, India

akashl@microsoft.com

Shaz Qadeer
Microsoft Research, USA

qadeer@microsoft.com

ABSTRACT
The application of software-verification technology towards
building realistic bug-finding tools requires working through
several precision-scalability tradeoffs. For instance, a critical
aspect while dealing with C programs is to formally define
the treatment of pointers and the heap. A machine-level
modeling is often intractable, whereas one that leverages high-
level information (such as types) can be inaccurate. Another
tradeoff is modeling integer arithmetic. Ideally, all arithmetic
should be performed over bitvector representations whereas
the current practice in most tools is to use mathematical
integers for scalability. A third tradeoff, in the context of
bounded program exploration, is to choose a bound that
ensures high coverage without overwhelming the analysis.

This paper works through these three tradeoffs when we
applied Corral, an SMT-based verifier, inside Microsoft’s
Static Driver Verifier (SDV). Our decisions were guided by
experimentation on a large set of drivers; the total verification
time exceeded well over a month. We justify that each of
our decisions were crucial in getting value out of Corral and
led to Corral being accepted as the engine that powers SDV
in the Windows 8.1 release, replacing the SLAM engine that
had been used inside SDV for the past decade.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Reliability, Testing, Verification

Keywords
Software Verification, SMT, Device Drivers, Bitvector Rea-
soning, Language Semantics, Loop Coverage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
Work on software verification usually focusses on the tech-

niques and algorithms behind the verifiers and their evalua-
tion in a controlled environment. However, when the verifier
is applied in practice, it is exposed to several sources of
complexity and imprecision, at which point it is important
to consider the end-to-end verification system instead of just
the exploration algorithms.

We experienced the challenges of a production environ-
ment when we applied the Corral verifier inside the Static
Driver Verifier (SDV) [16]. SDV is a commercial offering by
Microsoft that ships with the Windows Driver Development
Kit. Its purpose is to help driver developers find defects ear-
lier in the development cycle and improve the reliability of
Windows device drivers. Internally, SDV has used SLAM [1]
for statically exploring behaviors of programs. The SDV/S-
LAM system is one of the major success stories of verification
technology [2].

Corral accepts programs in an intermediate verification
language called Boogie [3]. In addition to the usual answers
of “verified” or “bug found”, Corral can also give up when it
hits a user-supplied bound on the number of loop iterations
(and procedural recursion) to be explored. The original
Corral publication [14] showed promise in out-performing
SLAM. However, when we applied SDV-Corral combination
in a production environment, the number of false defects and
missed defects were both at an unacceptable level.

One challenge was defining a memory model for C, i.e., a
formal treatment of pointers and the heap in C programs.
A bit-precise memory model of C is often intractable. The
common trend in many verification tools (such as SLAM
[1], SMACK [17], CBMC [5, 7]) is to use a pointer analysis
for disambiguating pointer dereferences to different memory
locations. This has the disadvantage that the semantics of the
pointer analysis get imposed on the subsequent verification.
For instance, most pointer analyses assume that environment
pointers (pointers allocated outside the scope of the program
under test) never alias. This was not a reasonable assumption
in our setting. In fact, we were able to find many more defects
than SDV/SLAM simply by relaxing this assumption.

One option is to design the memory model based on a
pointer analysis that will agree with the verification semantics.
However, we do not attempt to go that route. Instead we
present a simple pointer disambiguation based on syntactic
rules, leaving the semantic heavy lifting to the verifier. Our
memory model does not force environment pointers to be
distinct.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2635894

202

Figure 1: Workflow of the SDV/Q system. This paper’s contributions are about the three colored boxes.

The second challenge was modeling of the int type in
C. On a 32-bit machine (which is assumed to be the case
throughout this paper, for simplicity), an int is really a
32-bit value. Arithmetic operations such as addition and
subtraction are really bitvector operations implemented by
circuits inside the hardware. While bitvector-level reasoning
is possible—most SMT solvers support a bitvector theory—it
is often more expensive than reasoning over mathematical
integers. Consistently using bitvector operations in our set-
ting turned out to be too expensive. Instead, we present a
novel type-constraint-based analysis that focuses the preci-
sion of bitvector reasoning to only where it is needed, whereas
the rest of the program computes over mathematical inte-
gers. Our experiments validate that we were as precise as
full-bitvector reasoning while being almost as efficient as
full-integer reasoning.

The third challenge was to ensure coverage and avoid
missing defects when present. When Corral is unable to
find a proof or defect even after fully exploring a bounded
set of behaviors, it terminates search with the verdict “no
bugs found”. Corral accepts a user-defined bound on the
number of loop iterations, as is common in many bounded
verifiers. Typically, this bound is chosen upfront. For in-
stance, in the Software Verification Competition SVCOMP
[4], many bounded-exploration tools chose a fixed bound of
10—perhaps because it was sufficient to cross all loops in
the SVCOMP benchmarks—and this bound is applied to
all loops in the program. However, most programs in our
test suite had long-running loops. Choosing a bound large
enough to cross such loops, and applying it to all loops in
the program turned out to be too expensive. We instead
apply a different bound to each loop based on a lightweight
analysis of the program. Interestingly, in our experiments we
found that SLAM, even though it does not do bounded ex-
ploration, would time out when the defect required crossing
a long-running loop, indicating that our technique is more
widely applicable than for bounded-reachability verifiers.

The integration of Corral with the improvements described
in this paper is called Q. We show that Q retained much of
the speedup that Corral provided in a previous experiment
[14], but now it also finds more defects and reports fewer
false defects than SLAM. Our evaluation convinced the SDV
product team to adopt Q in place of SLAM. The contributions
of this paper can be summarized as follows:

1. We present a new memory model for C by defining a
translation to Boogie (Section 3).

2. We present a novel type-constraint-based analysis that
selectively decides where bitvector reasoning is impor-
tant (Section 4).

3. We give heuristics that improve coverage across long-
running loops (Section 5).

4. We carried out extensive experiments to validate that
all of our techniques were necessary for Q to out-
perform SLAM (Section 6). Our test suite consists
of over 5000 verification checks on real drivers that
cumulatively take more than 350 hours to execute se-
quentially.

2. OVERVIEW OF Q
The operation of SDV integrated with Q is shown in Fig. 1.

SDV comes packaged with a formal description of a driver’s
environment and properties in the form of harnesses, OS
models, and rules. The harness is like a main method that
describes how a driver can be invoked. The OS models
are stubs for each external call that the driver can make
to the kernel, and the rules are properties that the drivers
must satisfy [15]. SDV takes the source code of a driver as
input and compiles it (using a compiler called slamcl) to
produce a single file instance.li, where the driver is closed
using the harness and stubs, and the rule is instrumented as
assertions in the program. The format of this file (called li)
is a simplified C syntax. In this paper, we do not distinguish
between li and C. This instance file is called a verification
instance. Each rule results in a different verification instance,
thus, a driver produces as many verification instances as the
number of rules.

The responsibility of the engine is to find an execution of
instance.li that ends in an assertion violation. Q works
by first compiling C to Boogie (extension bpl). The utility
li2bpl is responsible for encoding the program’s C semantics
in the more logical language Boogie. The output of li2bpl

is fed to another utility called BVencoder that performs
a Boogie-to-Boogie transformation and decides where to
introduce bitvector precision. The resulting Boogie file is
fed to Corral to find assertion violations. In addition to the
Boogie file, Corral also accepts loop bounds as input. This is
supplied as a map R from loops to positive integers. Corral
then covers at least all executions in which a loop L executes
for R(L) number of iterations. Corral additionally accepts
a bound on the number of recursive calls (not shown in the
figure). However, recursion is not common in drivers and we
ignore discussing about it in this paper.

The initial version of SDV/Corral [14] used HAVOC [8]
for li2bpl, did not support bitvector operations (i.e., over-
approximated them as uninterpreted functions), and used
a consistent small loop bound for all loops. While the raw
performance of this tool compared favorably to SDV/SLAM,

203

its accuracy in terms of false negatives (missed defects) and
false positives (false defects) was far from satisfactory. A
more detailed discussion can be found in Section 6.

The rest of the paper is organized as follows. In Section 3,
we improve on HAVOC’s memory model (in li2bpl) by
adding support for common programming idioms found in
low-level systems code. In Section 4, we describe the design
of BVencoder. In Section 5, we show how to compute relevant
loop bounds. In Section 6, we empirically show why each of
these techniques were necessary for Q to outperform SLAM.
Section 7 discusses related work and Section 8 concludes.

3. TRANSLATING C TO BOOGIE
Fig. 2 shows a simplified C syntax for expressions and

commands. We introduce a bool type in C for convenience,
and assume that a pre-processing step rewrites expressions in-
volved in a Boolean decision, say if(e), to if(e!=0). Further,
we do not allow stack-allocated structures. Instead, they
must be allocated on the heap. Constants are represented as
32-bit bitvectors (bv32). Pointer dereferencing, address-of
operator (&) and field indexing is standard. Expressions can
be composed of operators. We allow the usual Boolean and
arithmetic operators as well as bitwise-and (&), bitwise-or
(|) and bitwise-negation (∼). We use ⊗ to represent other
non-linear operators in C, such as multiplication, division,
bit-shifting, etc. Commands can include assignments as well
as assume and assert statements. We leave out the treat-
ment of control flow and other commands such as procedure
calls; their translation is straightforward. Other types like
float and union are either modeled using existing types, or
left uninterpreted. Array indexing is modeled using pointer
arithmetic. We deliberately do not discuss issues of dealing
with the entire C syntax due to space constraints.

Boogie is an imperative language with the usual control-
flow constructs of C, however, it does not have a notion of a
heap or pointers. The semantics of Boogie is based in logic.
The operational semantics of the subset of Boogie that we
consider here can be encoded in SMT. The base constructs
of Boogie come from standard SMT theories, such as linear
arithmetic, bit-vector operations, uninterpreted functions
and the theory of arrays.

A Boogie program can only have a finite number of global
variables, as well as a finite number of local variables per
procedure. Its expression and command syntax is shown in
Fig. 3. It has three basic types: bool is the usual Boolean
type, int represents mathematical integers and bv32 rep-
resents 32-bit C integers. Boogie also supports map types.
For instance, a variable of type [int]int represents an (un-
bounded) map from int to int. Such map-type variables are
crucial for encoding the (unbounded) heap of C programs.

For a map m, select(m, e) indexes the map at loca-
tion e, and update(m, e1, e2) is a map that is identical to
m except that its value at location e1 is e2. We some-
times shorthand select(m, e) as m[e], and the assignment
m := update(m, e1, e2) as m[e1] := e2.

For each C operator op, other than the Boolean opera-
tors (&&, ||, !) and equality (==), we assume the existence
of two operators bvop and intop in Boogie, where the in and
out parameters of bvop have type bv32, and the in and out
parameters of intop have type int. For the purpose of analy-
sis, only some of these Boogie operators can be interpreted
precisely by the underlying SMT solver (in our case, Z3 [9]).
Others are treated as uninterpreted functions. For instance,

Types τ ::= bool | int | void* | τ∗ |
struct S{τ1 f1, · · · τn fn}∗

Variables x ∈ Var

Declarations d ::= τ x
Constants c ∈ {true, false} ∪ bv32
L-expressions l ::= x | ∗e | l.f
Expressions e ::= c | x | &l | l |

op2(e1, e2) | op1(e) | (τ)e
Operators op2 ::= && | || | == | + | − | ⊗ | & | | |

>

op1 ::= ! | ∼
Commands cmd ::= l = e | assume e | assert e

Figure 2: C expression and command language

Types δbase ::= bool | int | bv32
δ ::= δbase | [δbase]δbase

Variables x ∈ Var

Declarations d ::= x : δ
Constants c ∈ {true, false} ∪ Z ∪ bv32
Expressions e ::= c | x | op2(e1, e2) | op1(e) |

select(x, e) | update(x, e1, e2)
Operators op2 ::= ∧ | ∨ |==| bvop2 | intop2

op1 ::= ¬ | bvop1 | intop1
Commands cmd ::= x := e | assume e | assert e

Figure 3: Boogie expression and command language

for an arithmetic operator op ∈ {+, -, >}, both intop and bvop
are interpreted, by the theory of linear arithmetic and the
theory of bit-vectors, respectively. Both int⊗ and bv⊗ are
uninterpreted. For bitwise-operations op ∈ {&, |,∼}, bvop
is interpreted but intop is uninterpreted. For simplicity, we
sometimes use op in place of bvop or intop whenever the type
of the operator is clear from the context.

The translation of C expressions to Boogie is shown in
Fig. 4 using three mutually-recursive routines D (for declara-
tions), E (for expressions) and L (for l -values). The function
typeof returns the static type of an expression. The func-
tion offset(t, f) returns the offset of field f in the structure
type t. The function AddrTaken takes a C variable as input
and returns false if the address of the variable was never
taken. The translation is parameterized using the functions
HM (Heap Map), OM (Operator Map) and TM (Type Map)
that we describe next. The translation of C commands to
Boogie commands is straightforward: the command l = e
is translated to E(l) := E(e), assume e is translated to
assume E(e), and assert e is translated to assert E(e).

Fig. 5 shows various options of defining HM, OM and TM.
Picking functions subscripted with int leads to an int-only
encoding, whereas picking functions subscripted with bv leads
to a more precise encoding where C integers are kept as 32-bit
bitvectors, and computation is done via bitvector operations.
In this section, we only focus on the int-encoding; bitvector
modeling is discussed in Section 4.

The function HM is responsible for encoding memory ac-
cesses. Using functions OMint, TMint and HM

unified
int lead to

HAVOC’s unified memory model (UMM) [6]. The entire
heap is represented using one map Memint. (We assume that
maps subscripted with int have type [int]int and maps
subscripted with bv have type [bv32]bv32. The subscripts
are dropped when they are clear from the context.)

204

D(τ x) = x : TM(τ)
E(c) = c
E(&l) = L(l)

E(x) =

{
HM(typeof(x))[x] AddrTaken(x)
x o/w

E(∗e) = HM(typeof(∗e))[E(e)]
E(l.f) = HM(typeof(l), f)[L(l) OM(+)

offset(typeof(l), f)]
E(op1(e)) = OM(op1)(E(e))
E(op2(e1, e2)) = OM(op2)(E(e1), E(e2))
E((τ)e) = E(e)
L(x) = x
L(∗e) = E(e)
L(l.f) = L(l) OM(+)offset(typeof(l), f)

Figure 4: Translation of C to Boogie, parameterized
using the underlined functions HM, OM and TM

TMint(bool) = bool

TMint() = int

OMint(&&) = ∧
OMint(||) = ∨
OMint(!) = ¬
OMint(==) = ==
OMint(op) = intop
HM

unified
int () = Memint

HM
unified
int (,) = Memint

HM
split
int (t) = Mem.tint

HM
split
int (t, f) = Mem.f tint

TMbv(bool) = bool

TMbv() = bv32

OMbv(&&) = ∧
OMbv(||) = ∨
OMbv(!) = ¬
OMbv(==) = ==
OMbv(op) = bvop
HM

unified
bv () = Membv

HM
unified
bv (,) = Membv

HM
split
bv (t) = Mem.tbv

HM
split
bv (t, f) = Mem.f tbv

Figure 5: Different translations to Boogie

An alternative is the split memory model (SMM) defined

by selecting HM
split
int instead of HMunified

int . This memory model
uses a distinct map for each type and field.1

Our standard way of modeling memory allocation is via
the procedure malloc in Boogie shown in Fig. 6. It returns
a strict monotonically increasing integer. This ensures, for
instance, that two allocated addresses are distinct.

An example of SMM translation is shown in Fig. 6. Ad-

drTaken(x) is false, thus x is translated to a scalar variable
in Boogie. AddrTaken(y) holds, thus, y is translated to a
Boogie variable that actually represents its address. We use
the identifier name addr_y in Boogie to highlight this fact.

Suppose S1 is a structure type with field f at offset of ,
and S2 is a different structure type with field g at off-
set og. Then a write to x->f translates to a write to
Mem.f_S1[x + of] in Boogie. A read of y->g translates
to a read of Mem.g_S2[y + og]. Thus, irrespective of the
values of x, y, of , and og, an assignment to x->f cannot
change the value of y->g in the translated Boogie program.
In other words, an assignment via one field cannot change
the value read from another field. This splitting of the
memory map statically enforces certain non-aliasing in the
program. However, it can also lead to imprecision because
even well-behaved C programs can violate this property. Our
experiments (Section 6) show that UMM is not scalable
whereas SMM results in many false defects.

Refined Memory Model. Our refined memory model
(RMM) is derived from SMM by selectively merging some
of its maps into the same map. In the worst-case, RMM

1While writing types inside identifiers, we replace “*” with
“P”, for example, HMsplit

l (int∗) is Mem.PINTl for l ∈ {bv, int}.

1 struct S {
2 int *f;
3 }
4

5 void main() {
6 int x, y;
7 S *z;
8 z = malloc (4);
9 z->f = &y;

10 y = x;
11 }

1 var alloc: int;
2 var Mem.f_S: [int]int;
3 var Mem.INT: [int]int;
4 procedure malloc(size: int)
5 returns (ret: int) {
6 ret := alloc;
7 alloc := alloc + size;
8 return ret;
9 }

10 procedure main() {
11 var x, addr_y , z: int;
12 call addr_y := malloc (4);
13 call z := malloc (4);
14 Mem.f_S[z+0] = addr_y;
15 Mem.INT[addr_y] := x;
16 }

Figure 6: Memory allocation and the split memory
model over int

1 typedef struct {
2 int g;
3 int f;
4 } S;
5 void main() {
6 S *x =
7 malloc(sizeof(S));
8 x->f = 1;
9 inc(&x->f);

10 assert(x->f == 2);
11 }
12 void inc(int *a) {
13 (*a)++;
14 }

1 var Mem.f_S: [int]int;
2 var Mem.INT: [int]int;
3 procedure main() {
4 var x: int;
5 call x := malloc (8);
6 Mem.f_S[x+4] := 1;
7 inc(x+4);
8 assert
9 Mem.f_S[x+4] == 2;

10 }
11 procedure inc(a: int) {
12 Mem.INT[a] :=
13 Mem.INT[a] + 1;
14 }

Figure 7: The need for merging fields with types

may end up merging all maps into the same map, effectively
resulting in UMM. In this sense, the RMM sits between SMM
and UMM. It tries to get the scalability of SMM and the
precision of UMM.

We merge by defining an equivalence ≡ over the map vari-
ables of SMM. Let [.]≡ be a function that takes a map m as
input and returns a unique representative in the equivalence
class of m under ≡. We define HM

refined
l (t, f) = [HMsplit

l (t, f)]≡
and HM

refined
l (t) = [HMsplit

l (t)]≡ for all t and f , and l ∈ {bv, int}.
The merging equivalence is decided by the following two rules.

Rule 1, taking the address of an expression. Fig. 7 shows
a C program and its translation under SMM. The assertion
in the C program holds, but not in the Boogie program.
The problem is that inc updates the map Mem.INT, whereas
main uses Mem.f_S. To fix this, whenever the address of
a field is taken (&x->f), we merge the map for the field
with that for the type of the field (Mem.f_S ≡ Mem.INT).
Passing fields by reference is very common in C programs,
including drivers. For similar reasons, whenever the address
of a variable is taken via the assignment y = &x then we say
Mem.typeof(x) ≡ Mem.typeof(*y).

Rule 2, structural subtyping. Fig. 8 shows a C program and
its translation under the split-memory model. It illustrates
a common idiom in C programs, namely that of structural
subtyping. If one type S1 is a prefix of another type S2

when they are laid out in memory, then S2 can be used as
a subtype of S1. For instance, in Fig. 8, the procedure inc

is expecting a pointer to S1, but main is instead passing a
pointer to S2.

205

1 typedef struct {
2 int g;
3 } S1;
4 typedef struct {
5 int g; int f;
6 } S2;
7 void main() {
8 S2 *x =
9 malloc(sizeof(S2));

10 x->g = 0;
11 inc(x);
12 assert(x->g == 1);
13 }
14 void inc(S1 *a) {
15 a->g = a->g + 1;
16 }

1 var Mem.g_S1: [int]int;
2 var Mem.f_S2: [int]int;
3 var Mem.g_S2: [int]int;
4
5 procedure main() {
6 var x: int;
7 call x := malloc (8);
8
9 Mem.g_S2[x+0] := 1;

10 inc(x);
11 assert
12 Mem.g_S2[x+0] == 1;
13 }
14 procedure inc(a: int) {
15 Mem.g_S1[a] :=
16 Mem.g_S1[a] + 1;
17 }

Figure 8: The need for merging fields with other
fields

The assertion in the Boogie program of Fig. 8 can fail be-
cause main uses Mem.g_S2 whereas inc uses Mem.g_S1. Alg. 1
solves this problem by merging structures with their super-
types. The procedure GetFieldIndex decorates a field with
its type and its offset in the containing structure. We view
a structure S as an unordered set [[S]] of its fields decorated
using GetFieldIndex. For example, structure S2 of Fig. 8
is the set {g::int::0, f::int::4}. Then, the structure A is
structurally a subtype of B if and only if [[B]] ⊆ [[A]].

A näıve algorithm is to simply check [[A]] ⊆ [[B]] for all
structures A and B. If n is the total number of structures
and m is the maximum number of fields per structure, then
this algorithm is O(n2m) if the set operations are O(m).
Alg. 1 does slightly better. It first constructs a dictionary
field2StructSet that maps a field to all structures that
have that field; then the loop on line 7 finds all subtypes of a
given structure. Once the subtypes are calculated, we merge
field f of structure S with field f of structure S’ whenever S

is a subtype of S’ (line 18).
If a field appears in at most p structures, the complexity

of Alg. 1 is O(nmp). This is better than the näıve algorithm
because p is usually much smaller than n.

Structural subtyping is used commonly in drivers. For
instance, drivers have an extension object for storing driver-
specific state. This extension object is sometimes designed to
mirror the driver stack. An example from a parport driver
is shown in Fig. 9. The declarations of the types make the
subtyping intent clear. The COMMON_EXTENSION structure dec-
laration is inlined into the declarations of the other structure
using a C-preprocessor trick. We also verified that the code
of the driver uses this subtyping: methods that expect a
PCOMMON_EXTENSION are sometimes passed PFDO_EXTENSION

or PPDO_EXTENSION. Our algorithm infers such subtyping re-
lationships. We also note that in our experiments we inferred
subtyping relationships that were perhaps never intended or
used. Such extra relationships can only have a performance
implication, but RMM still retained much of the performance
of SMM.

4. BITVECTOR OPERATIONS
The previous section refined the memory model to better

model the heap, but it still used int as the basic type.

Algorithm 1 Detecting structural sub-typing

Procedure GetFieldIndex(f,S)

1: return f + “::” + typeof(f, S) + “::” + offset(f, S)

Procedure StructuralSubtyping()

1: struct2Subtypes = field2StructSet = ∅
2: for all Struct S ∈ AllStructs do
3: for all Field f in S do
4: field2StructSet[GetFieldIndex(f, S)].Add(S)
5: end for
6: end for
7: for all Struct S ∈ AllStructs do
8: c = AllStructs
9: for all Field f in S do

10: if c = ∅ then break
11: c = c ∩ field2StructSet[GetFieldIndex(f,S)]
12: end for
13: struct2Subtypes[S] = c
14: end for
15: for all Struct S ∈ AllStructs do
16: for all Fields f in S do
17: for all Structs S′ ∈ struct2Subtypes[S] do
18: Mem.f_S ≡ Mem.f_S’
19: end for
20: end for
21: end for

1 typedef struct _COMMON_EXTENSION {
2 ...
3 } COMMON_EXTENSION , *PCOMMON_EXTENSION;
4

5 typedef struct _FDO_EXTENSION {
6 COMMON_EXTENSION;
7 ...
8 } FDO_EXTENSION , *PFDO_EXTENSION;
9

10 typedef struct _PDO_EXTENSION {
11 COMMON_EXTENSION;
12 ...
13 } PDO_EXTENSION , *PPDO_EXTENSION;

Figure 9: Example of structural subtyping

This can be imprecise because all bitwise operations are left
uninterpreted. One option is to convert every type to bv32

by selecting functions in Fig. 5 with subscript bv. As we show
in Section 6, this option is not scalable. Bitvector reasoning
in SMT solvers tends to be much more expensive than integer
reasoning.

Our insight is that only some of the computation in a
program requires bitvector precision. Most arithmetic (in-
cluding pointer arithmetic) can be adequately handled using
integer operations. We manually inspected the code of some
drivers and found that setting and removing of flags as bits
of an integer to be an important idiom. Further, these flags
maintain important status information about the driver.2

Such flags are manipulated via bitwise and (&), or (|), and
negation (∼), and are sometimes involved in arithmetic com-
parisons. The procedure foo1 in Fig. 12 shows an example of

2This idiom is common to almost all drivers. See
the description of the Flags field of a DEVICE_OBJECT
structure: http://msdn.microsoft.com/en-us/library/
windows/hardware/ff543147(v=vs.85).aspx

206

P ` x := e Γ ` x : tx Γ ` e : te

tx = te
(Assign)

Γ ` select(x, e) : t1 Γ ` x : t2 → t3 Γ ` e : t4

t2 = I t1 = t3
(Read)

Γ ` e1 == e2 : bool Γ ` ei : ti

t1 = t2
(Equality)

Γ ` intop(~ei) : t Γ ` ei : ti op ∈ {&, |,∼}
ti ≤ B t ≤ ti

(BvOp)

Γ ` update(x, e1, e2) : t1 → t2 Γ ` x : t3 → t4 Γ ` e1 : t5 Γ ` e2 : t6

t1 = t3 = I t2 = t4 t4 = t6
(Write)

Γ ` intop(~ei) : t op 6∈ {&, |,∼}
t = I

(IntOp)

Figure 10: Generating type constraints for a Boogie program.

Γ ` x : B

var x : int 7→ var x : bv32
(DeclScalar)

Γ ` x : I→ B

var x : [int]int 7→ var x : [int]bv32
(DeclMap)

Γ ` e : t

select(x, e) 7→ select(x,Coerce(e, t))
(Read)

Γ ` e1 : t

update(x, e1, e2) 7→ update(x,Coerce(e1, t), e2)
(Write)

Γ ` intop(~ei) : t Γ ` ei : ti op ∈ {&, |,∼} ∀i : ti = B

intop(~ei) 7→ Coerce(bvop(~ei), t)
(BvOpSuccess)

Γ ` intop(~ei) : t Γ ` ei : ti op ∈ {&, |,∼} ∃i : ti = I

intop(~ei) 7→ intop(Coerce(~ei, ~ti))
(BvOpFail)

Γ ` ei : ti op 6∈ {&, |,∼}
intop(~ei) 7→ intop(Coerce(~ei, ~ti))

(IntOp)

Figure 11: Rewriting the Boogie program

1 void foo1(T *x) {
2 ...
3 x->Flags |= F2;
4 ...
5 assert(x->Flags & F3);
6 assert(x->Flags < F4);
7 }
8

9 void foo2(R *y) {
10 g = g + 5;
11 ...
12 y->Data |= F2;
13 ...
14 y->Data = g;
15 }

1 var Mem.Flags_T: [int]bv32;
2 var Mem.Data_R: [int]int;
3
4 procedure foo1(x: int) {
5 ...
6 Mem.Flags_T[x] := bv|(
7 Mem.Flags_T[x], F2);
8 ...
9 assert bv&(

10 Mem.Flags_T[x], F3)
11 != 0;
12 assert bv2int(
13 Mem.Flags_T[x]) < F4;
14 }
15
16 procedure foo2(y: int) {
17 g := g + 5;
18 ...
19 Mem.Data_R[y] := int|(
20 Mem.Data_R[y], F2);
21 ...
22 Mem.Data_R[y] := g;
23 }

Figure 12: Converting types to bitvector

manipulating flags. Each of the Fi in the figure are constants
(powers of 2).

This section presents BVencoder, a Boogie-to-Boogie trans-
formation that takes an int-only program and selectively
lifts some types to bv32 when the precision is needed. The
result is a mixed int and bv32 typed program, which may
additionally use a function bv2int that converts a bitvector
value to an integer value. Such an operation can be sup-
ported precisely; we implement it by a power-of-2 expansion

of the bitvector. BVencoder does not rely on any conversion
from integer to bitvector value.
BVencoder works on the following idea. Whenever it sees

a bitwise operation, say int&(e1, e2), it tries to change the
type of e1 and e2 to bv32 so that the operator can become
bv&. However, it does not perform the conversion if, say, e1
is the result of an arithmetic computation. We now make
the analysis more formal.

We introduce three new base types for the purpose of our
analysis: {N,B, I}. BVencoder, which takes an int-only
program, erases the int and then re-types the program using
these new types. Intuitively, N stands for “no preference”, B
stands for “preferably bv32” and I stands for “must be int”.
These base types satisfy a subtyping relationship N > B > I.
We say that t1 ≤ t2 if t1 = t2 or t1 < t2. For map-types,
t1 → t2 ≤ t3 → t4 only if t3 ≤ t1 and t2 ≤ t4. We make use
of a type-coercion method bv2int from B to I.

Every variable and expression in the program is associated
with a type variable that can take values from {N,B, I}
or map-types constructed from these base types. We write
Γ ` e : t when the expression e is associated with type
variable t. Type constraints are generated by applying the
rules from Fig. 10 on all commands and expressions in the
Boogie program. The rule Assign equates the types of
right-hand and left-hand sides of an assignment. The rule
Equality is similar. Read enforces that the domain types
of maps must be I. This is because only pointers can flow in
to domains of maps; we wish to keep pointers in the integer
domain. Note that Read does not generate a constraint for
t4. Even if the index expression e is typed as B, we can
still coerce it to I using bv2int. The rule Write is similar
to Read. The rule IntOp forces the result of arithmetic

207

1 var a,b,c: int;
2 var x,y,z,w: int;
3 var m: [int]int;
4
5 a := int&(x, y);
6 b := int+(y, z);
7 c := int&(b, w);
8 m := update(m, x, a);

ta = tint&(x,y) tint&(x,y) ≤ tx tint&(x,y) ≤ ty
tx ≤ B ty ≤ B
tb = tint+(y,z) tint+(y,z) = I

tc = tint&(b,w) tint&(b,w) ≤ tb tint&(b,w) ≤ tw
tb ≤ B tw ≤ B
tm = targm → tresm targm = I tresm = ta
N = tz
B = tx = ty = ta = tw = tresm
I = tb = tc = targm

1 var b,c,z: int;
2 var a,x,y,w: bv32;
3 var m: [int]bv32;
4
5 a := bv&(x, y);
6 b := int+(bv2int(y), z);
7 c := int&(b, bv2int(w));
8 m := update(m, bv2int(x), a);

Figure 13: Example showing a Boogie program snippet (left), the type-conversion constraints generated for
it (center top), their optimal solution (center bottom), and the converted Boogie program (right).

operations to be I. This prevents the need for doing linear
arithmetic over bitvector values. The rule BvOp enforces
that the arguments of bitwise operators must be at least B.
If the arguments get typed to be I (because, say, they are
the result of arithmetic operations) then we cannot convert
this operator to its bitvector counterpart. Fig. 13 presents a
running example for BVencoder.

Once the type constraints are generated, we find the least
solution of the constraints. Solving such constraints is stan-
dard and very efficient. Note that a solution to the type
constraints always exists because forcing all type variables
to be I is always a valid solution. Once an assignment of
the type variables is generated, we re-write the input Boogie
program back to use int and bv32 types, using the rewrite
rules shown in Fig. 11. Let Coerce(e, t) be e if t 6= B and
bv2int(e) otherwise. Thus, the type of Coerce(e, t) is always
int. Further, for convenience, we say Coerce((e1, e2), (t1, t2))
= (Coerce(e1, t1),Coerce(e2, t2)).

Fig. 12 shows a C program and its translated Boogie
program after li2bpl and BVencoder. The resulting Boogie
program captures precisely the setting and reading of flags
in foo1 but over-approximates in foo2.

Our experiments (Section 6) indicate that this strategy of
lifting int to bv32 is precise enough for SDV, and in fact
improves the running time.

5. IMPROVING LOOP COVERAGE
Consider the program shown in Fig. 14. The main proce-

dure has a failing assertion but constructing a path to the
assert requires iterating through the loop 28 times. If Corral
is given a bound K < 28 for this loop, it would not be able to
find this defect. Such loops occur commonly in drivers; our
experiments show that Q would miss more than 100 defects
with a small loop-iteration bound. The loop shown in Fig. 14
is a real example: driver objects have a field MajorFunction

that is an array of function pointers consisting of the dis-
patch routines that the driver supports for servicing different
operations.3 It is common for drivers to initialize such arrays
by iterating through them.

On the other hand, using a consistently large bound for all
loops is not scalable. Our solution is to preferentially assign
a larger bound to some loops, while using a default small
bound for other loops.

We use two techniques to improve coverage across loops.
Let K be the default iteration bound (fixed to 3 in our
experiments). Let N be a fixed constant, chosen heuristically
to be 50. The two techniques are as follows.

3http://msdn.microsoft.com/en-us/library/windows/
hardware/ff551985(v=vs.85).aspx

1 #define IRP_MJ_MAXIMUM_FUNCTION 27
2 void main() {
3 ...
4 for (i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) {
5 DriverObject ->MajorFunction[i] = RsPassThrough;
6 }
7 ...
8 assert false;
9 }

Figure 14: Program with a loop

1 procedure foo() {
2 ...
3 Mem.INT[i] := 0;
4 while(Mem.INT[i] < 15) {
5 Mem.INT[i] :=
6 Mem.INT[i] +1;
7 call bar();
8 }
9 ...

10 }
11 procedure bar() {
12 Mem.f[...] := e1;
13 Mem.g[...] := e2;
14 }

1 var t: int;
2 procedure foo ’() {
3 t := 0;
4 ...
5 Mem.INT[i] := 0;
6 while(Mem.INT[i] < 15) {
7 t := 1;
8 Mem.INT[i] :=
9 Mem.INT[i] +1;

10 havoc Mem.f;
11 havoc Mem.g;
12 }
13 assert t == 0;
14 ...
15 }

Figure 15: Estimating minimum loop iterations

1. Increasing bound per loop: if a loop executes for at
least m iterations before exiting then we assign it an
iteration bound of K +min(m,N).

2. Abstracting long-running loops: if a loop requires at
least m iterations and m > N then we abstract its
(N + 1)st iteration to simply havoc the variables (i.e.,
assign them non-deterministic values) in the loop body
and exit the loop.

Ideally, we would have liked to keep N =∞, but in practice
some loops require a very large number of iterations. Instead
of unrolling these loops, we chose to abstract them instead.
This adds the possibility of false defects because we are over-
approximating the loops, but we have not seen any such false
defects in practice.

We estimate the value of m using Corral itself. Let L be a
loop in procedure P . We abstract all procedure calls in P
by replacing them with a summary of the called procedure.
(The default summary is that the call can arbitrarily modify
any variable that it can touch.) Then we run Corral on P
with an iteration bound of N . We ask Corral to find a path
from the beginning of P to an exit of L. If Corral finds a
path with r iterations, then we say m = r.

One example is shown in Fig. 15. We estimate minimum
iterations for the loop in procedure foo by converting it to

208

Table 1: Various configurations of the Q verification engine.

Engine Description
Q Refined memory model, BVencoder, loop bound estimation and loop abstraction
Q-RMM Q but without RMM (uses SMM)
Q-LA Q but without loop abstraction
Q-LA-LB Q but without loop-bound estimation and loop abstraction
Q-BV Q but without BVencoder (uses int-only encoding)
Q-Base Split memory model, int-only encoding, no loop bound estimation, no loop abstraction
QwIntUMM Q with unified memory model and int-only encoding
QwIntSMM Q with split memory model and int-only encoding
QwAllBv Q with bv-only encoding
QwAllOpsBv Q where BVencoder is applied to all operators
QwLb50 Q without loop-bound estimation but with loop iteration bound of 50 for each loop

the procedure foo’ shown on the right of the figure. The
call to bar is abstracted away, and an assertion is added at
the end of the loop. Corral will find a path to the assert in
foo’ only after unrolling the loop 15 times, thus, we will set
the loop iteration bound for this loop to be 15 + 3 = 18.

Abstracting procedure calls limits Corral’s analysis to a
single procedure, making it very efficient. The time spent in
estimating bounds for all loops was negligible (mostly less
than 5 seconds) compared to the time spent analyzing the
original program.

We note that our analysis only provides an estimate of
the minimum number of iterations required. It would not be
precise, for instance, if the number of iterations is bound to
an input parameter of the procedure, and it so happens that
all call-sites pass a fixed constant for the parameter. In this
case, the value of m inferred would be lower than required
and would lead to a loss of coverage. It is possible to perform
an interprocedural analysis to infer more precise value of m,
however, we did not feel the need for a more complicated
analysis in our experiments.

6. EXPERIMENTS
We performed experiments to validate the usefulness of

each of our techniques: the refinement memory model (Sec-
tion 3), BVencoder (Section 4) and loop-bound estimation
and loop abstraction (Section 5). Let Q refer to the inte-
gration of Corral with the various features described in this
paper. Different configurations of Q are listed in Table 1.

It is worth noting that the most important result of SDV
is a valid defect trace. Finding more defects adds directly to
the bottom-line value provided by SDV. Also, reporting a
false defect (i.e., one that doesn’t reveal a bug in the driver)
comes with a high cost because SDV is part of the driver
certification process. This is why we put emphasis on the
number of missed and false defects in our evaluation.

Test suites. We conducted our experiments over two test
suites. The first test suite consists of 4 drivers on which 180
properties were checked. The properties mostly assert that
the driver correctly invokes the kernel API [15]. The number
of verification instances with non-trivial running time is 616
with 127 of them classified as “buggy”. We use this test suite
for quick performance testing.

The second test suite is a set of 59 drivers and 180 proper-
ties, put together by the SDV team as some of the hardest
drivers that SDV comes across in the field. The number of
instances with non-trivial running time is 5166, with 1033
of them classified as “buggy”. We refer to the first test suite

Table 2: Comparison of various memory models us-
ing int-only encoding on subITP.

QwIntUMM QwIntSMM Q-BV
Time (1000 s) 24.1 14.4 14.9
NURs 242 19 18

as subITP and the second as NTP (following internally-used
names).

The NTP suite is fairly exhaustive; the running time of
a single engine on this test suite (excluding compilation) is
around 15 days when run sequentially.

The experiments were run in parallel on 4 identical servers.
Each of the servers had Intel Xeon CPUs 1.8 GHz, 64 GB
RAM and 16 logical processors and ran at most 16 verification
instances in parallel (one per core).

Memory models. We first compare the unified, split and
refined memory models on subITP test suite. The results
are shown in Table 2. NUR stands for “Not Useful Result”,
which is either a timeout or a spaceout of the verification
engine. We consistently use a timeout of 3000 seconds and a
spaceout of 2500MB. Also, we report the running time only
over instances where the engines reported identical results.

Table 2 clearly shows that the unified memory model has
very poor performance, whereas the refined memory model
is comparable to the split memory model in terms of the
running time. Of course, the issue with split memory model
is the inaccuracy in modeling C semantics.

In the evaluation with NTP we also calculated the number
of false and missed defects. The results are shown in Table 3;
compare the columns for Q and Q-RMM. It is clear that
SMM results in many more false defects. Figs. 7 and 8
capture the reasons for these false defects. Moreover, none
of the 7 false defects of Q were because of inaccuracies in the
refined memory model.

We also note that on an average, RMM produced 14%
fewer maps than SMM, with field referencing and structual
subtyping contributing almost equally to the merging. The
small percentage of map merging is one reason why the
performance of RMM was still closer to SMM than UMM.

Bit-vector Analysis. Table 5 shows a comparison of
various integer/bitvector encodings under the refined memory
model. We also created a version QwAllOpsBv that uses a
variant of BVencoder that also tries to lift arithmetic to be
over bitvector values, but still forces pointer arithmetic and
pointer dereferences to be over integers. We use QwAllOpsBv
to evaluate if the arithmetic really needs to be over integers
or not.

209

Table 3: Performance of various tools on NTP benchmarks. Speedups are relative to the running time of Q.

SLAM Q Q-BV Q-RMM Q-LA Q-LA-LB Q-Base
Speedup over Q 0.56 1 0.88 0.98 1.02 1.03 1.1
False defects 10 7 ≥67 ≥65 8 8 ≥108
Missed defects 181 23 23 23 33 109 110
NURs 430 209 237 218 202 204 203

Table 4: Comparison with different loop bounds on
subITP.

Q-BV Q QwAllOpsBv QwAllBv
Time (1000 s) 16.9 16.6 22.2 50.6
NURs 18 18 80 181

Table 5: Comparison of bitvector encodings using
the refined memory model on subITP.

Q QwLb50
Time (1000 s) 34.0 41.0
NURs 18 43

From Table 5, it is clear that an all-BV encoding is not
scalable. In fact, we noticed that as soon as we allowed maps
with bv32 type domain (i.e., maps of type [bv32]bv32 or
[bv32]int), the performance of Corral (and Z3) decreased
dramatically. This is a topic for separate investigation. Note
that BVencoder never produces maps of such types. The
performance of QwAllOpsBv is much better than QwAllBv,
but still does not compare to the performance of Q.

Surprisingly, Q was slightly faster than Q-BV even though
Q-BV is purely integer-based. This is perhaps because the
less precision of Q-BV forced it to carry out a larger explo-
ration of program behaviors than Q.

The NTP suite reveals that Q-BV results in many false
defects (compare columns for Q and Q-BV). None of the
7 false defects of Q were because of less-precise bitvector
reasoning, meaning that BVencoder was sufficient for dealing
with bitvector operations on the benchmarks. The percentage
of maps whose type was changed by BVencoder was 3.4% on
an average. (For QwAllOpsBV, this number was 28.4%).

Loop coverage. Recall that the limit used for loop-bound
inference was 50, after which loop abstraction (if enabled)
would abstract the loop. Each of Q-LA and Q-LA-LB are
strict under-approximations of Q, i.e., they explore strictly
less amount of the state-space of a program than Q. First,
Table 4 shows that consistently using a bound of 50 is not
scalable. The NTP suite shows that Q-LA-LB has a large
number of missed defects (109). Many of them (except 33)
are found using loop-bound inference. A further 10 were
found using loop abstraction. Interestingly, in all of these 10
cases, SLAM timed out, indicating that the loop abstraction
heuristic could have benefited SLAM as well. Furthermore,
the performance of Q is comparable (within 3%) to the time
taken by Q-LA or Q-LA-LB.

Corral vs. SLAM. Table 3 shows that Q was 1.8 times
faster than SLAM: for verification instances on which SLAM
and Q returned the same (and non-NUR) answer, SLAM took
876000 seconds and Corral took 495000 seconds. Moreover,
Q reported only half as many NURs, had fewer false defects
and reported 158 more true defects. Thus, Q outperforms
SLAM on all metrics. The configuration Q-Base is what
was used for experimentation in an earlier Corral paper [14].
While we retained much of the performance improvement

offered by Corral, Q performs significantly better on other
metrics.

From the 158 new defects found by Q, 88 of them were
found because Q’s memory model (unlike SLAM) does not
assume that environment pointers are distinct. On the flip
side, the 7 false defects of Q were because the aliasing that
it assumed in the environment was indeed unreasonable in
that setting.

To illustrate a real example, consider DispatchRoutine1

of Fig. 16. The intention is to check if the dispatch routine
deletes the device object passed to it (DO is a shorthand
for DeviceObject). Indeed it does; the Self field is always
expected to point back to the containing device object. How-
ever, not all fields (including Self) of the device extension
(shorthand DE) are initialized by the SDV harness (for various
reasons outside the scope of this paper). SLAM believes that
because de->Self is uninitialized, it cannot alias the device
object. As a result, it misses this valid defect.

Consider DispatchRoutine2 in Fig. 16. It checks that the
IRP sent to the dispatch routine is not completed twice. The
two IRPs that are completed come from uninitialized fields
of the device extension object. It is not immediately obvious
if this is a true defect or not. Experts in the SDV team
flag this as a false defect because it is expected that the
FlushIrp and BlockIrp are always distinct IRPs. (We have
shortened the identifier names from their actual names in
the drivers). SLAM does not report this false defect because
of its distinctness assumption but Q reports this defect.

The assertion violation in both DispatchRoutine1 and
DispatchRoutine2 requires aliasing among environment
(uninitialized) pointers. However, the fact that one is a
true defect while the other is false, purely depends on do-
main knowledge. Our experiments reveal that we find 88
new defects, and report only 7 extra false defects. This was
an interesting side-effect of the change from SLAM to Q;
we did not have prior knowledge that SLAM’s environment
non-aliasing was actually too strong in many cases.

In 65 of the new defects found by Corral, SLAM timed
out before returning an answer. The rest (158− 88− 65 = 5)
seem to be because of loss of coverage (or bugs) in SLAM;
we did not investigate this further.

Comparison with Yogi. Yogi [11] is another verification
engine compatible with SDV. Q outperformed Yogi on all
metrics as well, but we avoid going into details due to space
constraints. We also note that the version of Q that shipped
with SDV includes Yogi as backup engine. Yogi is executed
if Corral returns NUR.

Training and Validation. We note that all of our de-
bugging and training of heuristics was performed on the ITP
suite of drivers (superset of subITP). The NTP suite was
reserved for validation.

Threats to Validity and Limitations. The hardest
part of our experiments was classifying defects as true or
false. This is a manual effort and very challenging for a
large test suite like the NTP. The Quality Assurance team

210

1 enum {INIT , DELETED };
2 int t;
3 DO *global_devobj;
4

5 void DispatchRoutine1(DO *devobj) {
6 t = INIT;
7 global_devobj = devobj;
8 DE *de = devobj ->DeviceExtension;
9 ...

10 IoDeleteDevice(de->Self);
11 ...
12 assert t != DELETED;
13 }
14

15 void IoDeleteDevice(DO *d) {
16 if(d == global_devobj)
17 t = DELETED;
18 ...
19 }
20

21 // Aliasing among environment pointers:
22 // devobj ->DeviceExtension ->Self == devobj

1 int completed;
2 IRP *global_irp;
3

4 void DispatchRoutine2(DO *devobj , IRP *irp) {
5 completed = 0;
6 global_irp = irp;
7 DE *de = devobj ->DeviceExtension;
8 ...
9 IoCompleteRequest(de->FlushIrp);

10 ...
11 IoCompleteRequest(de->BlockIrp);
12 ...
13 }
14 void IoCompleteRequest(IRP *p) {
15 if(p == global_irp) {
16 assert completed != 1;
17 completed = 1;
18 }
19 }
20 // Aliasing among environment pointers:
21 // devobj ->DeviceExtension ->FlushIrp == irp AND
22 // devobj ->DeviceExtension ->BlockIrp == irp

Figure 16: Examples demonstrating environment aliasing

of SDV put in this manual effort to provide us with the
defect classification of SLAM and Q. Classification for other
configurations of Q was carried out by us. It is possible
that we may have missed classifying some defects as false.
However, note that such false defects would only make Q
look better.

All of the techniques presented in this paper were inspired
by looking at device drivers. While we believe that the
fundamentals behind these techniques will generalize to other
settings, it is possible that the specific details might not apply
to other programs. For instance, the choice of which bitvector
operations to support in the BVencoder or choosing N = 50
before we abstract loops might be specific to drivers. In
other settings, these choices may be made differently, but
the techniques can still be useful.

7. RELATED WORK
Memory model. The translation of C to Boogie in

HAVOC [8], SMACK [17], and now SDV/Q, encodes the
heap using one or more map variables. HAVOC uses the
split memory model, whereas SMACK uses a pointer analysis
for the splitting (and borrows the semantics of the pointer-
analysis on environment pointers). Both of these were in-
adequate in our setting, prompting us to design the refined
memory model.

There are other tools that encode C’s operational semantics
without using maps. For instance, CBMC [7] uses a pointer-
analysis to identify the set of all possible targets of a pointer
and replaces the dereferences of that pointer with an if-then-
else that writes directly to the target locations. In this way,
CBMC ends up with a program with only scalar variables.
Because of the heavy use of pointer analysis, CBMC has
been most successful in the context of embedded systems
(that are usually not heap intensive) and doesn’t scale as
much on the drivers in our test suite.

Bitvector analysis. Our design of BVencoder is a novel
way of using type-constraint-based analysis to mix integer
and bitvector reasoning. Type-constraint-based analyses,
and type inference has a rich history of proving program
properties. For instance, CQual [10] refines C types with
qualifiers, such as non-null. Then proving the absence of null
dereferences reduces to a type-inference problem.

Loop coverage. Unrolling a loop for a fixed number
of times has been the most common approach used with
bounded model checkers. There has been recent work to ad-
dress loss of coverage. In [13], the authors under-approximate
a loop using a quantified constraint that captures the muta-
tions performed on the loop, and then replace the loop with
this constraint. However, in their case, the target solver was
a SAT solver, and quantification of Boolean formulas is still
decidable. In Corral, adding quantifiers in the presence of
maps and arithmetic leads to undecidability. Nonetheless, it
would be interesting to try their approach in our setting.

Work on estimating worst-case complexity of a program
[18, 12] also infers bounds on the number of loop iterations.
However, that work mostly focusses on finding the maximum
number of iterations for a loop in an execution, whereas we
are interested in finding the minimum number of iterations
before the loop can exit. In other words, worst-case complex-
ity infers the big-O complexity, whereas we want the small-o
complexity. In that sense, our heuristic on loop-bound infer-
ence is unique.

8. CONCLUSION
This paper gives a thorough walkthrough of the SDV/Q

verification system. The act of replacing SLAM with Corral
led to many interesting challenges that had to be solved before
SDV/Q reached production quality. We used a large set of
SDV benchmarks to experiment and learn ways of solving
the challenges. Traditionally, the verification community has
focussed on the core algorithms while the end-to-end details
of the verification system as a whole get ignored. We believe
that it is very important to present and understand such
details for wider deployment of verification tools.

9. REFERENCES
[1] T. Ball, E. Bounimova, R. Kumar, and V. Levin.

SLAM2: Static driver verification with under 4% false
alarms. In Formal Methods in Computer Aided Design,
pages 35–42, 2010.

[2] T. Ball, V. Levin, and S. K. Rajamani. A decade of
software model checking with SLAM. Commun. ACM,
54(7):68–76, 2011.

211

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Formal Methods for
Components and Objects, pages 364–387, 2005.

[4] D. Beyer, editor. 1st International Competition on
Software Verification, co-located with TACAS 2012,
Tallinn, Estonia, 2012.

[5] CBMC: Bounded Model Checking for ANSI-C.
http://www.cprover.org/cbmc/.

[6] S. Chatterjee, S. K. Lahiri, S. Qadeer, and
Z. Rakamaric. A reachability predicate for analyzing
low-level software. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 19–33,
2007.

[7] E. M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems, pages
168–176, 2004.

[8] J. Condit, B. Hackett, S. Lahiri, and S. Qadeer.
Unifying type checking and property checking for
low-level code. In Principles of Programming
Languages, 2009.

[9] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, 2008.

[10] J. S. Foster. Type Qualifiers: Lightweight Specifications
to Improve Software Quality. PhD thesis, University of
California, Berkeley, Dec. 2002.

[11] P. Godefroid, A. V. Nori, S. K. Rajamani, and
S. Tetali. Compositional may-must program analysis:

unleashing the power of alternation. In Principles of
Programming Languages, pages 43–56, 2010.

[12] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed:
precise and efficient static estimation of program
computational complexity. In Principles of
Programming Languages, pages 127–139, 2009.

[13] D. Kroening, M. Lewis, and G. Weissenbacher.
Under-approximating loops in c programs for fast
counterexample detection. In Computer Aided
Verification, pages 381–396, 2013.

[14] A. Lal, S. Qadeer, and S. Lahiri. Corral: A solver for
reachability modulo theories. In Computer Aided
Verification, 2012.

[15] Microsoft. DDI compliance rules.
http://msdn.microsoft.com/en-us/library/

windows/hardware/ff552840(v=vs.85).aspx.

[16] Microsoft. Static driver verifier.
http://msdn.microsoft.com/en-us/library/

windows/hardware/ff552808(v=vs.85).aspx.

[17] Z. Rakamaric and M. Emmi. SMACK: Static Modular
Assertion ChecKer.
http://smackers.github.io/smack.

[18] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem: overview of
methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3):36:1–36:53, May 2008.

212

