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Minimum Rate Sampling and Reconstruction
of Signals with Arbitrary Frequency Support
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Abstract—We examine the question of reconstruction of signals
from periodic nonuniform samples. This involves discarding sam-
ples from a uniformly sampled signal in some periodic fashion.
We give a characterization of the signals that can be reconstructed
at exactly the minimum rate once a nonuniform sampling pattern
has been fixed. We give an implicit characterization of the
reconstruction system, and a design method by which the ideal
reconstruction filters may be approximated. We demonstrate
that for certain spectral supports the minimum rate can be
approached or achieved using reconstruction schemes of much
lower complexity than those arrived at by using spectral slicing,
as in earlier work.

Previous work on multiband signals have typically been those
for which restrictive assumptions on the sizes and positions of
the bands have been made, or where the minimum rate was
approached asymptotically. We show that the class of multiband
signals which can be reconstructed exactly is shown to be far
larger than previously considered. When approaching the mini-
mum rate, this freedom allows us, in certain cases to have a far
less complex reconstruction system.

Index Terms—Multiband, nonuniform, reconstruction, sam-
pling.

I. INTRODUCTION

T HE idea that a signal which has energy in only a limited
range of frequencies may be represented by its samples

is of fundamental importance in digital communications. Its
formal statement is generally attributed to Shannon [1], E. T.
Whittaker [2], J. M. Whittaker [3], and Kotel’nikov [4]. In
the version given by Shannon it is stated that a real signal
that has energy only in the range of frequencies
can be reconstructed without loss from uniform samples at
rate A variety of generalizations have been reported; the
reader who is interested in the history of the subject might
consult the comprehensive review by Jerri [5] or the articles
and bibliography of [6].

An important class of generalizations are those where,
instead of having a single train of samples at uniform rate,
we have uniform trains at rate If these trains were
identical, obviously this would be no better than having one.
If, however, prior to sampling, the signal is subjected to
different operations such as delay, differentiation, or is passed
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Fig. 1. Signals with various different frequency occupancies. The overall
effective bandwidth is the same in all cases, but the required sampling
differs. (a) Lowpass bandlimited case; uniform sampling at twice the highest
frequency is sufficient. (b) Bandpass bandlimited case; uniform sampling is
a function of the band position. (c) Multiband bandlimited case; uniform
sampling is very redundant. Periodic nonuniform sampling allows minimum
rate.

through different linear systems then it is possible that the
resulting trains are independent (in a sense to be defined)
and that the original signal can be reconstructed without loss.
Thus instead of considering one high rate sample train, we
consider several lower rate trains, the former obviously being
a special case of the latter. Generalizations of this kind are
important for two reasons.

First, the classical sampling theorem [1]–[4] applies to
lowpass bandlimited signals only, such as shown in Fig. 1(a).
For signals that are bandpass, or multiband, such as shown
in Fig. 1(b) and (c), respectively, sampling at entails
considerable waste, since (here is taken to
represent thetotal support of the set of frequencies over which
the spectrum of the signal is nonzero, and is the highest
frequency at which the signal has nonzero energy). Thus while
the effective bandwidth for all of the signals shown in Fig. 1
is the same, the required rate to allow reconstruction from
uniform sampling varies considerably. In such cases having

independent trains at rate can allow reconstruction,
while still requiring the same effective rate as in the lowpass
case. A second reason for the importance of such sampling
schemes is that the availability of several low-rate sampled
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trains rather than one high-rate train is often a consequence
of the sampling mechanism. For example, practical consider-
ations in the design of analog-to-digital converters [7] and
antenna arrays [8] often result in just such a nonuniform
sampling. Certain signals, such as video, are often sampled
in a nonuniform way [9].

Since nonuniform sampling and multiband signals have
been examined by researchers in areas as diverse as Mathemat-
ics, Signal Processing, Communications, and Circuit Design,
and the work is spread over many decades in widely dif-
fering notations, it may be useful to summarize briefly and
explain where our work fits in. -channel sampling, as
we shall term it, involves passing the signal through
distinct transformations before sampling. The case where
those transformations are delays was treated in [10]–[15], and
making them differentiation operators of various orders was
examined in [16] and [17]. A generalization that encompasses
both was introduced by Papoulis [18] and developed by Brown
[19]. This shows that a function may be reconstructed from

sample trains derived by passing the function through
different linear filters. The reconstruction filters are found by
solving an matrix system, where the elements of the
matrix are filters. An important exception is the work of Yen
[13] which gives a closed form for the case of channels
of samples of alowpass signal with various delays. This
form does not extend easily to the case of multiband signals,
and appears to be an isolated case of a closed form for an

-channel sampling system.
Recent treatments of nonuniform sampling are by Marvasti

[20], Feichtinger and Gröchenig [21], and by Feng and Bresler
[22]. Reconstruction from arbitrary sampling has been also
considered [23]. Several interesting applications of nonuniform
sampling are covered in [24]. A very interesting multidimen-
sional construction by Cheung and Marks [25], [26] shows
how nonuniform sampling may be used to exploit the spectral
gaps that occur when sampling multidimensional signals. Their
approach is to slice the spectrum into narrow bands, and
handle separately those bands which contain signal energy
and those which do not. A similar approach can be applied
to multiband signals. One can show that asymptotically this
achieves the minimum rate. However, while the sampling
efficiency increases as the slices become narrower, so too does
the complexity of the sampling and reconstruction scheme.
The scheme that we present is not restricted to slicing the
signal bands, and this means that, in some cases, much simpler
sampling strategies can be found to achieve the same rate.

An outline of the paper is as follows. In the next section
we present preliminaries, and discuss periodic nonuniform
sampling schemes which are derived by deleting samples
periodically from some uniform train. In Section III we give
a characterization of the class of signals which can be exactly
reconstructed at the minimum rate, once a sampling scheme
has been chosen; this turns out to be a rediscovery of a result
by Kahn and Liu [12]. It leads, however, in Section IV to an
algorithm to design the filters of the reconstruction system,
which is distinctly different from other design approaches. In
Section V we examine the case where the spectral support
of the signal is fixed and we wish to design a sampling and

reconstruction scheme that will allow recovery at exactly the
minimum average rate. We derive a condition in terms of
the band-edge positions to allow exact reconstruction at the
minimum average rate; this condition makes clear that a far
wider class than was previously known can be sampled at the
minimum rate. Further, the complexity of the reconstruction
system can in some cases be much lower than is achievable
by previous methods. We show that the minimum rate may
be approached for any multiband signal, and sometimes with
far lower complexity than previously thought. We examine the
tradeoff between the oversampling factor and complexity in the
design of sampling and reconstruction systems. A preliminary
version of this work was presented in [27].

II. PERIODIC NONUNIFORM SAMPLING

The problem that we wish to solve is to find some strategy
that will allow us to sample real-valued multiband signals
at the minimum rate. By multiband we mean that the set of
frequencies over which the power spectral density
is nonzero is a finite union of arbitrary nonoverlapping open
intervals

where the and are any real numbers. For convenience, we
will define as thecharacteristic functionof the set

otherwise.

Fig. 1(c) shows an example of the characteristic function for
a simple multiband signal. We also assume thathas some
maximum frequency, Following the notation of
[28] we will refer to the set of all signals which have energy
only at frequencies in by and the effective bandwidth
of this set as

where denotes the Lebesgue measure of a set.
We know that reconstruction from uniform sampling at

the rate or higher is always possible, but this entails
waste of bandwidth since The effective Band-
width is generally regarded as the minimum possible
(or Nyquist–Landau) rate [28], although special cases of
reconstruction schemes below this rate have been reported
[29]. Between these two extremes there may exist some rate
at which uniform sampling becomes possible. An approach
to finding out if this is the case is developed in [30], but
the algorithm to find the lowest possible uniform rate is
complicated, there is no guarantee that a rate lower than
will be found, and only in very special cases is an average rate

achievable. Of course it would be possible to explicitly
bandpass filter for each of the bands, modulate to baseband,
and uniformly sample at a rate appropriate for that band.
Reconstruction would then involve lowpass filtering and
demodulation operations, and we would have to deal with
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Fig. 2. Equivalent sampling and reconstruction structures for signals that
have no energy at frequencies higher thanfmax,L(f) is an ideal lowpass filter
with cutoff fmax: (a) Uniform sampling at the Nyquist rate. (b) Oversampling
at a rateMf0> 2fmax: (c) Splitting the rateMf0 train intoM trains at rate
f0:

sample trains at different rates. The complexity of such an
approach clearly becomes forbidding as the number of bands

increases. Instead, we take the approach of reconstructing
from periodic nonuniform sampling.

If we choose some integer and frequency then
sampling at is sufficient provided

Thus the sampling alternatives shown in Fig. 2(a) and
(b) are equivalent for all signals in Denote by the
discrete sequence which equals the rate- sampled signal
at the sample points

(1)

We can obviously split a sample train at rate into
sample trains at rate Thus if we use the -transform of the
discrete-time signal we can write

(2)

Clearly, (2) represents a decomposition intosample trains
at rate The lower rate trains are calculated as

We will refer to as the th -phase component of
This involves delaying the signal bysamples, and then

passing it through the combination of an-fold downsampler
followed by an -fold upsampler. A downsampler is an
operator that retains only every th sample from a sequence,
an upsampler inserts zero samples between adjacent
samples. The effect of the combination of a downsampler
followed by an upsampler is that everyth sample is retained,
while all others are set to zero. Up and downsamplers are
commonly used in the multirate and filter bank literatures, but
the reader should not require any familiarity with this work
for the rest of this paper. The essential point, the action of
a downsampler followed by an upsampler, is illustrated in
Fig. 3. There we see that the decomposition in (2) is carried
out by the structure shown in Fig. 2(c), where the signal is first
sampled at rate , trains are delayed by differing delays

and passed through the combination
of a downsampler and upsampler. When added together the
various components in Fig. 3 reproduce the original sampled
signal. Thus the three sampling structures shown in Fig. 2 are
equivalent for all signals in

Suppose now it were possible to reconstruct exactly
using only of the components in (2) (i.e., reconstruct

from where and is a set that contains
only of the indices ). Since we can in
turn reconstruct from this would mean that we could
recover from an average of samples per unit time.
If in addition we could have

(3)

then the average number of samples required to reconstruct
the analog signal would be the same as the effective
bandwidth.

III. RECONSTRUCTION OF ADISCRETE-TIME

SIGNAL FROM SAMPLES OUT OF

In the last section we gave a brief decription of our attack
on the problem. We now demonstrate under what conditions a
sampled signal may be reconstructed fromsamples out of

This material was presented in an earlier form by Foster
and Herley [31] and is a development of an idea in [32].

Modifications of the structure in Fig. 2(c) will be key to
our derivation. Consider two branchesand of Fig. 2(c);
we have redrawn them in Fig. 4(a), with as input. Here
we illustrate the effect of the combination of downsampler and
upsampler. Observe that the outputs of the two channels are

and , which can be interpreted as two
of the terms in the sum (2). Now consider the modification
shown in Fig. 4(b), where we have changed the “filter” on the
left-hand side of branch from

to

and the “filter” on the right-hand side of branchfrom

to

We first point out that the factor can be placed
on either side of the downsampler/upsampler combination.
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Fig. 3. Breaking a train at rateMf0 into M trains at ratef0: The top line represents the original signal sampled atMf0: Below it we show the components
Xi(zM ) in the sum (2) for the case ofM = 5: The ith train can be found by delaying the original byi samples, using the combination of anM = 5
downsampler followed by an upsampler, and advancing the signal byi samples. Such a decomposition is carried out in Fig. 2(c).

(a)

(b)

Fig. 4. Modification of two channels of the structure shown in Fig. 2(c). Observe that after the modification the summed output is unchanged. (a) Two
channels of the structure. (b) Modification by adding to the right and subtracting from the left so that the overall output is unchanged.
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To see that this is so, recall that the downsampler/upsampler
combination retains only every th sample of a signal, so
that if

is input to the combination, then is the output. Placing
a filter before the downsampler/upsampler combination
causes

to be input to the combination and to be
output. Since the same result, , is obtained by
filtering by , we can move this filter to either
side of the downsampler/upsampler combination.

Returning to the output of Fig. 4(b), we observe that the
summed output is

Thus the outputs of Fig. 4(a) and (b) are the same,indepen-
dently of the choice of

Repeated application of this procedure allows us to change
the form of the filters used in Fig. 2(c). We already denoted
by the sized- subset of the indices
that we are going to use for reconstruction. For each branch

change the filter on the left-hand side from

to

Thus we havesubtracted terms from that filter, where
is the number of indices in the set We can compensate for
the term by adding to the filter on the
right-hand side of the th channel. Thus we change theth
filter on the right

to

Thus in subtracting terms from one channel on the
left-hand side we compensate by adding one term each to
channels on the right-hand side. After we have carried
out these changes for all of the channels we end up
with the following filters on the left:

(4)

and the compensating filters on the right.

(5)

The important point is that this choice of filters, (4) and (5),
produces an output that is equivalent to that of Fig. 2(c),
irrespective of the choices of the and of the set

Fig. 5. Choice of filters as in (4) and (5) makes this structure equivalent to
those shown in Fig. 2.

Thus the system in Fig. 5 with filters as in (4) and (5) is
still equivalent to all of the systems in Fig. 2 for any signal
in Readers familiar with multirate filter banks will
recognize this structure as an-channel perfect reconstruction
filter bank, although the filters are very constrained. The
technique used for modifying the filters was used in the context
of filter banks in [33].

Observe from (4) that the analysis filters are
simply delay elements, and thus the input to theth synthesis
filter is the th component The goal
is to reconstruct from these components alone. The key
observation in [31] is that if the channels suffice for
reconstruction

(6)

then the other channels, contribute nothing to the
solution. For these channels to contribute nothing it is clearly
sufficient that

(7)

This means that when This leads
directly to [31], [27] the following theorem.

Theorem 3.1:If no more than elements in the set

are nonzero for any , then can be
exactly reconstructed from some setof of its -phase
components

(8)

where the are determined by (5) and the are
fixed by the requirement (7).

Proof: We need to solve (7) for which implies

s.t.

(9)
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Finding the such that this holds solves (7) and hence (8)
is true. But the are periodic and cannot be
specified independently at all frequencies.

Thus for a particular and

(9) becomes

Since contains no more than nonzero elements we
need to satisfy no more than linear equations corresponding
to the frequencies where We wish to solve for
the unknowns at each frequency
Thus for each we must solve the equations

where is the subset of the indices from the set
for which In other words,

We have freedom in choosing; for
example, if we choose then this is
a Vandermonde system which is always invertible.

Note that the choice guarantees
that the system of equations can always be solved, any other
choice of that guarantees invertibility is also acceptable.
Also, note that while it is not central to our concerns, a simple
linear independence argument gives that (7) is necessary
as well as sufficient. Theorem 3.1 says that when is
subsampled by , to reconstruct from components, there
should be no more than overlaps in the spectrum of the
subsampled signal. This is equivalent a discrete-time version
of the result by Kahn and Liu [12]. One of the strengths of
the result lies in the characterization of the reconstruction.
For example, given a sampling strategy (i.e., the set), it
is difficult to characterize the space of signals that can be
reconstructed. Observe that in Fig. 5 the lowpass filter
acts as an inverse for the sampler (at least for all
signals bandlimited to ), and the system of filters
comprise the inverse of the system of filters (since the
back-to-back system is an identity). This back-to-back system
consists of channels; denote by the channels
and by the channels so that Of course
we are not interested in reconstructing the signals bandlimited
to , but the smaller set , and we will not use the
whole back-to-back system but only the system
The actual sampling and reconstruction system used will then
consist of the rate sampler, the -channel system , and
the lowpass filter We found it difficult to characterize
the span of the reconstruction system, i.e., the rangespace of

. Instead, we characterized the nullspace of its complement
using (7), which turned out to be a far simpler task. While

the channels play no role in our sampling reconstruction
system, characterizing the nullspace of that subset of the
channels was the key ingredient in characterizing the range
of the reconstruction system. The set of signals that can be
reconstructed using (6) is the same as the set that satisfies (7).

Note: we need not restrict ourselves to linear filters. The
modifications made to Fig. 2(c) hinged on the fact that a filter
that affects only every th sample could be moved to either
side of the downsampler/upsampler combination. This is true
even if the filters action on the samples is nonlinear. For
example, suppose that the operator acts on every

th sample of in a nonlinear fashion, but leaves all
other samples alone. Placing such an operator at the input to
a downsampler/upsampler combination will give as input

and as output Placing such an operator at
the output of the downsampler/upsampler combination with

as input will produce as output. Just as
in the linear case it can be seen that an operator that acts
on only every th sample can be moved to either side of
the downsampler/upsampler combination. Just as in the linear
case, nonlinear operators can be constructed that yield
identity systems much as ws done in (4) and (5). Design
of nonlinear filter banks has been examined by de Queiroz,
Florencio, and Schafer in [34], although not from a sampling
point of view.

IV. FILTER DESIGN USING POCS

Observe that the filters satisfy a spectral
constraint, given by (7), and also a structural constraint, given
by (4). We point out that the set of filters that satisfies each
of these constraints is a subspace of the set of all filters. To
find a filter that satisfies both, i.e., a point of the intersection,
we can use the algorithm of Projection On Convex Sets
(POCS) [35], provided we can find a way of carrying out the
orthogonal projection onto each of these spaces. The algorithm
is guaranteed to converge provided that the intersection is not
empty, which in turn requires that we satisfy the conditions of
Theorem 3.1. We can find the orthogonal projection onto the
space of filters that satisfy (7), by zeroing out the frequencies
of where (ideal multiband filtering).
We can carry out the orthogonal projection onto the space
of filters that satisfy (4) by zeroing out the -phase
components of the filter (i.e., imposing the form implied by
(4)), and setting theth component to , the discrete delta.
Thus POCS provides a method of satisfying both constraints
and designing the filters The procedure is (for
each as follows.

1) Set where

2) Set

3) GOTO 1) unless convergence.

We can start the algorithm with any guess for Once
these have been designed, as before, we substitute the
values of the into (5) to get the filters Of
course, just as in the case of bandlimited reconstruction, the
filters are ideal and nonrealizable. In particular, no realizable
filter can ever satisfy condition 1). In practice, of course, just
as in the bandlimited reconstruction case, we will have to
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approximate the ideal response with a finite impulse response
(FIR) or realizable infinite impulse response (IIR) filter. Em-
pirically we observe that when we constrain the filter to have a
finite impulse response the POCS design approach converges
very well in most cases, even with a random initial guess
for In this case, POCS will converge to the filter that
satisfies condition 2), and most closely approximates condition
1). It should be noted that there are no simple bounds on the
rate of convergence to be expected; we have observed that
cases where the sampling structure is bunched tend to converge
more slowly than those which have well-spaced samples. If the
reconstruction is very ill-conditioned (e.g., when the-phase
components are bunched together) it is important to choose a
good initial guess, since the convergence in this case can be
slow and the computational noise incurred at each iteration
can have a cumulative detrimental affect on the quality of
the approximation to condition 1). A good initial guess can be
found by solving (9) for at some set of frequencies,
and using these to assist our first guess. This condition can also
be included in the POCS iteration to speed convergence.

The computational effort required to design the filters is
small, since (using either the approach here or alternative
approaches such as in [22]) the filters are designed once.
As we pointed out, exactly satisfying the constraints is not
possible with realizable filters; the reader should not expect
that good approximation of the constraints will be achieved
with low-order filters.

V. MINIMUM RATE SAMPLING OF MULTIBAND SIGNALS

We have shown how the -channel reconstruction system
is characterized, and have demonstrated a simple procedure for
its design. We are now ready to use it to tackle the problem
of minimum rate sampling of multiband signals. Recall that

was derived from the rate- sampled signal, and
that is the characteristic function of the of set
over which the spectrum is nonzero; we denote its inverse
Fourier transform as In addition, we will use the rate

sampled version of This is related to the spectrum
of the continuous time signal by

The requirement of Theorem 3.1, that no more than
elements of the set be nonzero at any frequency in

is equivalent to requiring that when is sam-
pled at rate no frequency of the spectrum of the subsampled
signal have nonzero contribution from more than alias
copies

(10)

When this condition is satisfied we can sample at an
average rate The effective bandwidth is, of course,

(11)

Subject to (10), clearly we can satisfy (3) if and only if

(12)

This requires that exactly elements of the set are
nonzero at every frequency in At no frequency are
more than elements nonzero, and at no frequency are fewer
elements nonzero. This is the natural generalization of the
uniform sampling case, where to have minimum rate sampling
without aliasing, at no frequency can we have more than one
aliased copy of the soectrum, and at no frequency can we
have less than one.

We have seen that when we can recover
from the sequence Further, when (12) is satisfied we can
recover from only of its -phase components. Since
(3) holds we have minimum rate sampling. If we can find an

that satisfies (12), we can then choose anythat satisifes
It is not yet obvious whether finding such an

is possible in general. The following theorem helps.

Theorem 5.1:To satisfy

(13)

it is necessary and sufficient that

(14)

where

(15)

Proof: Observe that in the time domain (12) gives

(16)

Since a function that is zero everywhere has all-zero Fourier
coefficients, (16) is equivalent to

(17)

Evaluating the integral for

Substituting into (17) we get (14).

The reason that this theorem is helpful is that is
the Fourier series expansion of the periodic piecewise-linear
function shown in Fig. 6. Observe from the figure, or by
substituting into (15), that for any and whose difference
is an integer times , we have This allows us
to see more clearly how solutions to (14) may be found. For
example, suppose that we had for some integer

This would give and then
(17), and hence (14), would be satisfied. Thus if we could find
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Fig. 6. Periodic piecewise-linear functione(f):

such that each pair had as an integer factor we
would have a solution. This is sufficient, but not necessary.
In fact, we could pair with or for any , and still
satisfy (14) provided that each pair hasas an integer factor.

Compare with the description in [36] of the signals known
to be reconstructable from samples at an average of the
Nyquist–Landau rate: “This means that the bands ofhave
lengths that are all integer multiples of some basic length,
and the same is true of the gaps between them.” This is
the class of multiband signals considered in [36]–[39]. In the
notation that we have been using it is equivalent to requiring

for and and
for and for some integers
and We have just seen that something far less restrictive
is in fact required. To reconstruct at the Nyquist–Landau rate
requires that (14) hold. This does not imply that the bands,
and the gaps between them, be integer multiples of some,
but merely that in some pairing each pair have such a factor.

Exactly satisfying this condition may be difficult in practice,
since the and are real numbers, and pairing them such
that any other real number is precisely an integer factor of
all pairs is not possible in general. However, by examining
a slightly larger set we can find a solution easily.
Thus we manipulate the positions of the bands slightly: given
signals in we find a strategy to sample at minimum rate
signals in the larger set The oversampling implied can
be made arbitrarily small, a conclusion that had already been
reached in [25], [22], and [40].

Theorem 5.2:For signals bandlimited to , where is a
finite union of open intervals, and given any there exists
a set , with

(18)

such that signals bandlimited to can be recovered from
periodic nonuniform samples at the minimum rate.

Proof: Begin by pairing the band edges in some way; for
example, we can pair each with For any , and each
pair we can find and such that

The worst case bound on the excess bandwidth introduced
for each band is since

Define the set

Observe that , and hence (12) is satisfied for
Thus signals bandlimited to the set can be sampled at

the minimum rate.
Clearly, we have

Hence if we choose (18) holds.

Since the effective sampling rate is , the sampling

efficiency will be

which can be made arbitrarily close to one.

Notes:

1) The choice was taken to simplify the
demonstration of the result. In practice, this might be an
undesirable solution, since it will require to be large.
It is possible to use the freedom in pairing theand
to choose a more reasonable solution. We explore this
in the next section.

2) To recover then we find a set and for
the given We reconstruct from of its -phase
components, and recover from

3) The literature on multiband sampling has typically fallen
into two types: the work where a particular structure
in the relations between the size of the bands and the
gaps was assumed [36], [38], [39], and those where a
slicing approach was taken to asymptotically approach
the minimum rate [25], [22], [40]. For the first of
these, we have shown in Theorem 5.1 a necessary
and sufficient condition on the band edges to allow
minimum rate reconstruction, and this condition is far
more general than the previous literature had assumed.
For the second, we will demonstrate in Section VI,
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(a)

(b)

Fig. 7. (a) Characteristic function of the signal, the signal has energy whereC(f) is one and has no energy elsewhere. (b) Magnitude response of the filter
H3(z) for the nulling system. Note that this filter has response close to zero at frequencies where the signal is nonzero, thus approximately satisfying (7).

that far less complex reconstruction systems can often
be designed even in the case where we approach the
minimum rate asymptotically.

VI. EXAMPLES AND APPLICATIONS

We have seen that reconstruction of multiband signals
with arbitrary spectral support is possible at an average rate
arbitrarily close to the Nyquist–Landau rate. Similar results
have previously been reported in [25], [22], and [40]. We
wish to make clear the distinction between our approach
and earlier works. In the proof of Theorem 5.2 we merely
paired the band edges in the most obvious fashion (each

paired with the corresponding ), and tried to force
for some integer This solution actually

resembles the approach of [25] for multidimensional signals,
and [22], [40] for multiband signals, in that we slice the
spectrum into narrow bands and derive a sampling based
on the number of bands which contain signal and which
do not. As we decrease the size of the slices, the spectral
efficiency improves, but the complexity of the sampling and
reconstruction system becomes greater. By complexity we
mean the number of filters that will be involved in the
reconstruction system (i.e., in the notation we have been
using). We now demonstrate that this approach is far from
optimal, and that a careful examination of the condition (14)
shows that our solutions are less constrained than those found
by slicing the spectrum, and that the additional freedon can
be exploited to find less complex reconstruction systems in
certain cases.

Consider a simple two-band signal, i.e., , with
and

The effective bandwidth is 2 Hz, and the characteristic function

(on the positive frequency axis only) is shown in Fig. 7(a).
Observe that the minimum uniform rate to allow reconstruction
would be , giving an efficiency of

Next try the approach of slicing the spectrum [25], [22],
[40]. Clearly, the efficiency will be dominated by the smallest
of the signal bands. Choosing small enough we can find
a solution with and The efficiency

and can be improved only at the cost
of increased complexity. For example, if we makesmaller
the efficiency improves but and become larger. Alterna-
tively, we can exploit the fact that to satisfy (14) we can pair
band edges in any fashion we wish. For example, pairing
and and and we can find a solution with 1
Hz. We indeed then have and
Thus (14) is solved with and The minimum
rate is actually achieved in this case, so the efficiency is one.
This serves to illustrate the important distinction between our
approach and those derived from the slicing of bands used in
[25], [22], and [40]. It also shows that the minimum average
rate is attainable for classes of multiband signals that do not
adhere to the band structure studied in [36], [38], and [39].
This example shows that greater spectral efficiency, and much
simpler sampling structures ( instead of )
are possible by carefully exploiting the properties of (14).
Further, the filters are more easily designed in the case where

and are small. Choosing we design the filters
and , using the procedure of Section IV, and

hence we design the reconstruction filters and In
Fig. 7(b) the magnitude response of the filter is shown.
As required by (7) the filter is almost zero everywhere when
the signal is nonzero.



1564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

The question of how to pair the band edges in general
to solve (14), and how to choose , , and for best
performance is an open one. Recall that to solve (14) we
must pair each with one of the or one of the , and
each pair must be an integer times Asymptotically, we
can acheieve any desired efficiency by makingsmall. In
practice, however, we probably wish to minimize the spectral
waste, but we might also want to constrain and to be
moderate as well. The larger and the more complex the
reconstruction and the more difficult the filters are to design
in general. Examining all possible band pairings becomes
prohibitive for a large number of bands. We have found
the following scheme to work well, but make no claims of
optimality.

• Pair with and with for

• Let and

• Order and reindex the so that:

• Try for until

VII. CONCLUSION

We have examined in some detail the problem of periodic
nonuniform sampling. The strength of our approach is that
it allows very simple characterization of the range of the
reconstruction system and design of the filters. We have given
a characterization of the set of signals that can be reconstructed
from particular sampling structures, and have shown that this
is wider than had been considered in the existing literature.
We have shown for multiband signals that minimum rate can
be approached, or even acheived, with reconstruction systems
which are far less complex than attainable by slicing.
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