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Minimum Rate Sampling and Reconstruction
of Signals with Arbitrary Frequency Support
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Abstract—We examine the question of reconstruction of signals
from periodic nonuniform samples. This involves discarding sam-
ples from a uniformly sampled signal in some periodic fashion.
We give a characterization of the signals that can be reconstructed f
at exactly the minimum rate once a nonuniform sampling pattern _B B
has been fixed. We give an implicit characterization of the
reconstruction system, and a design method by which the ideal @)
reconstruction filters may be approximated. We demonstrate
that for certain spectral supports the minimum rate can be
approached or achieved using reconstruction schemes of much
lower complexity than those arrived at by using spectral slicing, f
as in earlier work.

Previous work on multiband signals have typically been those -s-B -—s s s+ B
for which restrictive assumptions on the sizes and positions of (b)
the bands have been made, or where the minimum rate was
approached asymptotically. We show that the class of multiband ‘

bo

signals which can be reconstructed exactly is shown to be far
larger than previously considered. When approaching the mini-

mum rate, this freedom allows us, in certain cases to have a far I j
less complex reconstruction system.
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Index Terms—Multiband, nonuniform, reconstruction, sam- (©)
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ping Fig. 1. Signals with various different frequency occupancies. The overall
effective bandwidth is the same in all cases, but the required sampling
differs. (a) Lowpass bandlimited case; uniform sampling at twice the highest
. INTRODUCTION frequency is sufficient. (b) Bandpass bandlimited case; uniform sampling is

; ; ; ; i function of the band position. (c) Multiband bandlimited case; uniform
HE idea that a Slgnal which has energy n Only a IImlt;?ampling is very redundant. Periodic nonuniform sampling allows minimum

range of frequencies may be represented by its samplgs.
is of fundamental importance in digital communications. Its

formal statement is generally attributed to Shannon [1], E. -tliiroughN different linear systems then it is possible that the

Whittaker [2], J. M. Whittaker [3], and Kotel'nikov [4]. In - i . : i
the version given by Shannon it is stated that a real SignrglsultlngN trains are independent (in a sense to be defined)

that has energy only in the range of frequenciesB, B) and that the original signal can be reconstructed without loss.

. . Thus instead of considering one high rate sample train, we

can be reconstructed without loss from uniform samples é%nsider several lower rate trains, the former obviously bein

rate 2B. A variety of generalizations have been reported; thé X IR sy 9
special case of the latter. Generalizations of this kind are

reader who is interested in the history of the subject migﬁ%1 ortant for Wo reasons

consult the comprehensive review by Jerri [5] or the articles i : L .

and bibliography of [6]. First, the classical sampling theorem [1]-[4] applies to
lowpass bandlimited signals only, such as shown in Fig. 1(a).

An important class of generalizations are those wher . .
instead orf) having a sinale trgain of samples at uniform edée Ebr signals that are bandpass, or multiband, such as shown
9 g P in Fig. 1(b) and (c), respectively, sampling &f,,.. entails

we havelN uniform trains at rat@ B/N. If theseN trains were onsiderable waste, SiNG, ., > Buy (here Bug is taken to
identical, obviously this would be no better than having on§’ : max ~ Deft off .
represent théotal support of the set of frequencies over which

If.’ however, pI’I.OI’ to sampling, the §|gnal I.S §ubject§dNo the spectrum of the signal is nonzero, afid, is the highest
different operations such as delay, differentiation, or is passte . . .
requency at which the signal has nonzero energy). Thus while

the effective bandwidth for all of the signals shown in Fig. 1
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trains rather than one high-rate train is often a consequenmeeonstruction scheme that will allow recovery at exactly the
of the sampling mechanism. For example, practical consideninimum average rate. We derive a condition in terms of
ations in the design of analog-to-digital converters [7] anthe band-edge positions to allow exact reconstruction at the
antenna arrays [8] often result in just such a nonuniforminimum average rate; this condition makes clear that a far
sampling. Certain signals, such as video, are often sampieier class than was previously known can be sampled at the
in a nonuniform way [9]. minimum rate. Further, the complexity of the reconstruction
Since nonuniform sampling and multiband signals hawystem can in some cases be much lower than is achievable
been examined by researchers in areas as diverse as Mathelyaprevious methods. We show that the minimum rate may
ics, Signal Processing, Communications, and Circuit Desidve approached for any multiband signal, and sometimes with
and the work is spread over many decades in widely difar lower complexity than previously thought. We examine the
fering notations, it may be useful to summarize briefly anadeoff between the oversampling factor and complexity in the
explain where our work fits in.N-channel sampling, as design of sampling and reconstruction systems. A preliminary
we shall term it, involves passing the signal through version of this work was presented in [27].
distinct transformations before sampling. The case where
those transformations are delays was treated in [10]-[15], and Il. PERIODIC NONUNIFORM SAMPLING
making them differentiation operators of various orders was _ _ .
examined in [16] and [17]. A generalization that encompass sThe_ problem that we wish to solve is to f!nd some strategy
both was introduced by Papoulis [18] and developed by Broﬁﬁat wil a_lHQW us to sample reql-valued multiband signefts
[19]. This shows that a function may be reconstructed froﬁﬁt the minimum rate. By multiband we mean that t.he set of
N sample trains derived by passing the function throigh requenciesP over which the power spectral densiy(f)

different linear filters. The reconstruction filters are found by "O"#€0 1S @ finite union of arbitrary nonoverlapping open

solving anN x N matrix system, where the elements of th tervals

matrix are filters. An important exception is the work of Yen L1

[13] which gives a closed form for the case &f channels P = U {(ai, b;) U (=bi, —a;)}
of samples of alowpasssignal with various delays. This i=0

form does not extend easily to the case of multiband signalghere thes; andb; are any real numbers. For convenience, we
and appears to be an isolated case of a closed form for\gil define C»(f) as thecharacteristic functiorof the setP
N-channel sampling system.

Recent treatments of nonuniform sampling are by Marvasti Op(f) 2 { L S(H#0
[20], Feichtinger and Girchenig [21], and by Feng and Bresler 0, otherwise.

[22]. .Reconstruction from arbitr.ary samplipg has been.aliqg_ 1(c) shows an example of the characteristic function for
considered [23]. Several interesting applications of nonunlforgwsimple multiband signal. We also assume tRabas some
sgmpling are coyered in [24]. A very interesting mUItidimenr'naximum frequencyfym = bz_1. Following the notation of
sional construction by Cheung and Marks [25], [26] sho 8] we will refer to the set of all signals which have energy

how nonuniform sampling may be used to exploit the spect ly at frequencies if by B(7) and the effective bandwidth
gaps that occur when sampling multidimensional signals. Th%ilr this set as

approach is to slice the spectrum into narrow bands, and
handle separately those bands which contain signal energy
and those which do not. A similar approach can be applied
to multiband signals. One can show that asymptotically this
achieves the minimum rate. However, while the samplinghere AM(-) denotes the Lebesgue measure of a set.
efficiency increases as the slices become narrower, so too doe#/e know that reconstruction from uniform sampling at
the complexity of the sampling and reconstruction schem@e rate2f,,.. or higher is always possible, but this entails
The scheme that we present is not restricted to slicing theste of bandwidth sincgf,... > B.g. The effective Band-
signal bands, and this means that, in some cases, much simpifeith B.; is generally regarded as the minimum possible
sampling strategies can be found to achieve the same rate(or Nyquist-Landau) rate [28], although special cases of
An outline of the paper is as follows. In the next sectioreconstruction schemes below this rate have been reported
we present preliminaries, and discuss periodic nonunifori29]. Between these two extremes there may exist some rate
sampling schemes which are derived by deleting sampkeiswhich uniform sampling becomes possible. An approach
periodically from some uniform train. In Section Il we giveto finding out if this is the case is developed in [30], but
a characterization of the class of signals which can be exadifye algorithm to find the lowest possible uniform rate is
reconstructed at the minimum rate, once a sampling scheomnplicated, there is no guarantee that a rate lower2lan,
has been chosen; this turns out to be a rediscovery of a resuilt be found, and only in very special cases is an average rate
by Kahn and Liu [12]. It leads, however, in Section IV to arB.g achievable. Of course it would be possible to explicitly
algorithm to design the filters of the reconstruction systerhandpass filter for each of the bands, modulate to baseband,
which is distinctly different from other design approaches. land uniformly sample at a rate appropriate for that band.
Section V we examine the case where the spectral suppRgconstruction would then involvé lowpass filtering and
of the signal is fixed and we wish to design a sampling arttmodulation operations, and we would have to deal \ith

L—1
Ber =M(P)=2-Y_ (bi—a:)

=0
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2fmas We will refer to X;(2*) as theith M-phase component of
N X(z). This involves delaying the signal bysamples, and then
L) p——— passing it through the combination of afi-fold downsampler
followed by an AM-fold upsampler. A downsampler is an
@ operator that retains only evefdth sample from a sequence,
Mo an upsampler insert8/ — 1 zero samples between adjacent
samples. The effect of the combination of a downsampler
AN sy P followed by an upsampler is that evelyth sample is retained,
while all others are set to zero. Up and downsamplers are
(b) commonly used in the multirate and filter bank literatures, but
the reader should not require any familiarity with this work
— 1 OO 1 for the rest of this paper. The essential point, the action of
M M a downsampler followed by an upsampler, is illustrated in
Fig. 3. There we see that the decomposition in (2) is carried
— ' OO+ ¢ out by the structure shown in Fig. 2(c), where the signal is first
My M M sampled at raté/ fo, M trains are delayed by differing delays
_2 ) ) k€ {0,1,---, M — 1} and passed through the combination
¢ —O-®— ¢ of a downsampler and upsampler. When added together the
MM various components in Fig. 3 reproduce the original sampled
signal. Thus the three sampling structures shown in Fig. 2 are
equivalent for all signals if3(P).
Suppose now it were possible to reconstrugt) exactly
— =M= M using only N of the M components in (2) (i.e., reconstruct
M M X(z) from X;(z) wherei € A and A is a set that contains
(©) only N of the indices{0,1,---,M — 1}). Since we can in

Fig. 2. Equivalent sampling and reconstruction structures for signals tfa'n reconstruct(t) from x(n) this would mean that we could

have no energy at frequencies higher tifanx, L(f) is an ideal lowpass filter recovers(t) from an average ofV f samples per unit time.
with cutoff finax. (@) Uniform sampling at the Nyquist rate. (b) Oversamplings¢ ; P
at a rateM fy > 2 fmax- (€) Splitting the rateV! f; train into M trains at rate 9f in addition we could have

Jo. NfOIBeH (3)

sample trains at different rates. The complexity of such .
. en the average number of samples required to reconstruct
approach clearly becomes forbidding as the number of bangs : ;
e analog signak(¢) would be the same as the effective

L increases. Instead, we take the approach of reconstructin .
from periodic nonuniform sampling. %%dW'dth'
If we choose some integeM and frequencyf, then

samplings(t) € B(P) at M f, is sufficient provided fo > lll. RECONSTRUCTION OF ADISCRETETIME

2 fmax. Thus the sampling alternatives shown in Fig. 2(a) and SIGNAL FROM V' SAMPLES OUT OF M

(b) are equivalent for all signals i(7). Denote byxz(n) the In the last section we gave a brief decription of our attack

discrete sequence which equals the rat¢y sampled signal on the problem. We now demonstrate under what conditions a

at the sample points sampled signal may be reconstructed frdfsamples out of
z(n) = s(8)|tmny (M fo)- 1) M. This material was presented in an earlier form by Foster

and Herley [31] and is a development of an idea in [32].
Modifications of the structure in Fig. 2(c) will be key to

our derivation. Consider two branchésand & of Fig. 2(c);

we have redrawn them in Fig. 4(a), wiffi(z) as input. Here

we illustrate the effect of the combination of downsampler and

We can obviously split a sample train at ratéf, into M
sample trains at ratg,. Thus if we use the-transform of the
discrete-time signal we can write

X(z) = Z a(n)z” upsampler. Observe that the outputs of the two channels are
;\7:100 2 X;(z™) and 2* X}, (™), which can be interpreted as two
_ Z Z 2(nM — i)z_("M_i) of the terms in the sum (2). Now consider the modification

shown in Fig. 4(b), where we have changed the “filter” on the
left-hand side of branch from

1=0 n=—o0
M-1 )
= Z 2 Xi(2"). 2 270 t0 27— 2 Re(M)
=0
Clearly, (2) represents a decomposition iftb sample trains and the “filter” on the right-hand side of branéhfrom
at ratefo. The M lower rate trainsX;(z) are calculated as & oto 2P ZipM).
Xi(zM)= 3" a(M-i)z"M, i€ {0,1,---,M—1}.  We first point out that the factop(z"') can be placed
n=-—00 on either side of the downsampler/upsampler combination.
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z(n)

zo(nM) I T 1 ] I I

oy (nM — 1) ! . 1 T ] I I

e (nM — M 4+1) e r 1 I I I

Fig. 3. Breaking a train at rat®/ f into M trains at ratef,. The top line represents the original signal sampled{at,. Below it we show the components
X;(2M) in the sum (2) for the case d¥f = 5. The ith train can be found by delaying the original bysamples, using the combination of al = 5
downsampler followed by an upsampler, and advancing the signaldaynples. Such a decomposition is carried out in Fig. 2(c).

2X(zM)
z—i _< H : }__ 2
X(2) M M
Z_k —‘ : H : >—— Zk
Zka(zM)
M M
(@)
_ 2 Xi(2M)—
- _z—k¢(zM/ ( ) ( ) 2 z'¢(zM)Xk(zM)
X(2) M M
27k _®_®_ z* + 29 (zM)
25 X (eM)+
M M Z;(ﬁ(zM)Xk(zM)
(b)

Fig. 4. Modification of two channels of the structure shown in Fig. 2(c). Observe that after the modification the summed output is unchanged. (a) Two
channels of the structure. (b) Modification by adding to the right and subtracting from the left so that the overall output is unchanged.
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To see that this is so, recall that the downsampler/upsampler
combination retains only every/th sample of a signal, so — Ho(z) HO-BD— Gol2) |—
that if M M
M-1
X(2) = Z SX (M) — Hi(z) _(g_@ﬁ;_ Gi(z)
i=0 M fo
is input to the combination, thel(z*) is the output. Placing Ha2) (DD &212) un =
a filter (") before the downsampler/upsampler combination MM
causes
M-1
X(z)-p(z") = Y 2 X(ZM) - p(zM)
i=0 ——Hp (= _®_®_GM—1(Z —

M M
to be input to the combination anfl(z) - ¢(z™) to be

output. Since the same resulfy(z*) - ¢(z*), is obtained by
filtering Xo(2™) by ¢(»™), we can move this filter to either
side of the downsampler/upsampler combination.
Returning to the output of Fig. 4(b), we observe that thEhus the system in Fig. 5 with filters as in (4) and (5) is
summed output is still equivalent to all of the systems in Fig. 2 for any signal
4 ‘ in B(P). Readers familiar with multirate filter banks will
AX(M) = oD X (2] + 2 X (M) recog(;ni)ze this structure as afi-channel perfect reconstruction
+ 2 (M) Xy (M) filter bank, although the filters are very constrained. The
=2 X (z") + 2 X (2M). technigue used for modifying the filters was used in the context
of filter banks in [33].
Thus the outputs of Fig. 4(a) and (b) are the saimdepen-  Opserve from (4) that the analysis filteF5(z),i € A are
dently of the choice of(z). simply delay elements, and thus the input to ttlesynthesis
Repeated application of this procedure allows us to changgsr G,(z),i € Ais theith componentX,(z*). The goal
the form of the filters used in Fig. 2(c). We already denoted to reconstructX (=) from these components alone. The key

by A the sizedN subset of the indice$0,1,2,---,M — 1}  opservation in [31] is that if the channelsc A suffice for
that we are going to use for reconstruction. For each brangtonstruction

¢ ¢ A change the filter on the left-hand side from

Fig. 5. Choice of filters as in (4) and (5) makes this structure equivalent to
those shown in Fig. 2.

4 4 ‘ X(z) = X;(zM)Gi(2) (6)
z " to zﬂ—z ain(zM)z 7", ; ‘ ‘
kCA
then the other channels, ¢ A contribute nothing to the
solution. For these channels to contribute nothing it is clearly

sufficient that

Thus we havesubtractedN terms from that filter, wherev
is the number of indices in the sgt We can compensate for
the terma;x(2*)2~* by addinga;,(2™)~* to the filter on the
right-hand side of theith channel. Thus we change thgh Hi (™)X (%) =0, i¢ A Vo 7)
filter on the right

& to A+ Z aik(zM)zi, ke A
igA

This means thaH;(c’*) = 0 when X (e¢’“) # 0. This leads
directly to [31], [27] the following theorem.

Thus in subtractingV terms from one channel¢ A on the Theorem 3.1:1f no more than¥' elements in the set
left-hand side we compensate by adding one term ead¥ to R(w) = {X(J@H2m /M)y p = 0,1,... .M — 1}
channelsk € A on the right-hand side. After we have carried

out these changes for all of the channelg A we end up are nonzero for anyw € [0,27 /M), then X(¢/*) can be

with the following filters on the left: exactly reconstructed from some sétof N of its M-phase
i ic A components
Hi(z) = z7i7— aip(zM) 27k, 1 ¢ A 4)
{ &) ? X =Y X6 () ®
=

and the compensating filters on the right.
i MK . where theG,(z) are determined by (5) and the(z) are
Gi(z) = S kgAa’”(z )2 ieA (5) fixed by the requirement (7).
2, i¢ A Proof: We need to solve (7) for ¢ A which implies

The important point is that this choice of filters, (4) and (5), ,—jwi _ Z aip(e?M eIk, Vw s.t. X (/) £ 0.
produces an output that is equivalent to that of Fig. 2(c), oA
irrespective of the choices of thg,,,(z) and of the set4. 9)
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Finding thea;; such that this holds solves (7) and hence (8) Note: we need not restrict ourselves to linear filters. The
is true. But thea;;(c’“M) are 2r /M periodic and cannot be modifications made to Fig. 2(c) hinged on the fact that a filter

specified independently at all frequencies. that affects only every//th sample could be moved to either
Thus for a particulatw € [0, 27 /M) and side of the downsampler/upsampler combination. This is true
2 even if the filters action on the samples is nonlinear. For
wp = w + R p=01,---M-1 example, suppose that the operatoy [z(n)] acts on every

Mth sample ofz(n) in a nonlinear fashion, but leaves all

(9) becomes other samples alone. Placing such an operator at the input to

e dwrt — Z aik(ejwl\l)e—jwpk7 p=01,2--- M—1. & downsampler/upsampler combination will give as input
ke A M-1
Since R(w) contains no more thatV nonzero elements we P [Z zi(nM — i)]
1=0

need to satisfy no more tha¥ linear equations corresponding
to the frequencies wher& (c/“») # 0. We wish to solve for
the unknownsa,(e’“M) at each frequency € [0, 2r/M).
Thus for each ¢ .A we must solve theéV equations

and as outputys[zo(nM)]. Placing such an operator at
the output of the downsampler/upsampler combination with
x(n) as input will producey,[zo(nM)] as output. Just as
o~ et — Z aik(ejwj\l)e—jwpk’ pecC in the linear case it can be seen that an ope_rator that acts
on only everyMth sample can be moved to either side of
the downsampler/upsampler combination. Just as in the linear
case, nonlinear operatoss,,,[-] can be constructed that yield
identity systems much as ws done in (4) and (5). Design
of nonlinear filter banks has been examined by de Queiroz,
Florencio, and Schafer in [34], although not from a sampling
point of view.

ke A

where C is the subset of theN indices from the set
{0,1,- -+, M — 1} for which X(e’*») # 0. In other words,
p € C = X(e/“») # 0. We have freedom in choosing; for
example, if we choosel = {0,1,2,---, N — 1} then this is
a Vandermonde system which is always invertible. O

Note that the choiced = {0,1,2,---, N — 1} guarantees
that the system of equations can always be solved, any other IV. FILTER DESIGN UsING POCS

choice of A that g_ua_ra_mtees invertibility is also accept_able. Observe that the filtersH;(»),i ¢ A satisfy a spectral
Also, note that while it is not central to our concerns, a simple

linear independence argument gives that (7) is necessC(r)nStraim’ given by (7), and also a structural constraint, given
pende 9 9 ; B)y (4). We point out that the set of filters that satisfies each
as well as sufficient. Theorem 3.1 says that whén) is

subsampled by, to reconstruct fromV components, there of these constraints is a subspace of the set of all filters. To

. find a filter that satisfies both, i.e., a point of the intersection,

should be no more thaiW — 1 overlaps in the spectrum of the . T
. S . ; . we can use the algorithm of Projection On Convex Sets
subsampled signal. This is equivalent a discrete-time versi CS) [35], provided we can find a way of carrying out the
of the result by Kahn and Liu [12]. One of the strengths o P y ying

the result lies in the characterization of the reconstructio(r){thogonalI projection onto each of these spaces. The algorithm

. . . . IS guaranteed to converge provided that the intersection is not
For example, given a sampling strategy (i.e., the 4gt it S ) : .
C ; : empty, which in turn requires that we satisfy the conditions of
is difficult to characterize the space of signals that can

econsicted. Observe that n ig S the lowpass ) | 0l S e S0 1 e Shosone bl ol e
acts as an inverse for th&/F, sampler (at least for all b » Y 9 q

) . . of H;(¢’*) where X(¢/*) # 0 (ideal multiband filtering).
signals bandlimited t& f,,,.x), and the system of filter&,;(z) .
comprise the inverse of the system of filte¥s(z) (since the We can carry out the orthogonal projection onto the space

back-to-back system is an identity). This back-to-back systeor;l filters that satisfy (4) by zeroing out thie ¢ A M-phase

consists of M channels; denote by the channels € A components of the filter (i.e., imposing the form implied by

and by S the channels ¢ A so thatR + § = I. Of course (4)), and setting théth component t&(n»), the discrete delta.

we are not interested in reconstructing the signals bandlimit-tla—gus POCS provides a method of satisfying both constraints

t0 2fmax, but the smaller seB(P), and we will not use the :gghie;|gj;ngstr}(ca)ngl\t,\(lasrﬂi(z),z ¢ A. The procedure is (for
whole back-to-back systemlR + S but only the systemR. '

The actual sampling and reconstruction system used will thenl) SetH;(c’*) = 0V w where X(¢/*) # 0.

consist of the raté/ f, sampler, theV-channel systenR, and 2 seth, (k+nM) =0, k ¢ A,Vn, h;(i + nM) = 6,.

the lowpass filterL(f). We found it difficult to characterize
the span of the reconstruction system, i.e., the rangespace
R. Instead, we characterized the nullspace of its complementVe can start the algorithm with any guess féy(z). Once

8§ using (7), which turned out to be a far simpler task. WhiltheseH,(z) have been designed, as before, we substitute the
the channel$ ¢ A play no role in our sampling reconstructiornvalues of thez,....(#) into (5) to get the filters?;(z),7 € A. Of
system, characterizing the nullspace of that subset of tbeurse, just as in the case of bandlimited reconstruction, the
channels was the key ingredient in characterizing the ranfijeers are ideal and nonrealizable. In particular, no realizable
of the reconstruction system. The set of signals that can fileer can ever satisfy condition 1). In practice, of course, just
reconstructed using (6) is the same as the set that satisfies8).in the bandlimited reconstruction case, we will have to

OSf) GOTO 1) unless convergence.
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approximate the ideal response with a finite impulse resporBas requires that exactlyv elements of the seR(w) are
(FIR) or realizable infinite impulse response (lIR) filter. Emnonzero at every frequency [, 27 /M ). At no frequency are
pirically we observe that when we constrain the filter to haveraore thanV elements nonzero, and at no frequency are fewer
finite impulse response the POCS design approach convergksnents nonzero. This is the natural generalization of the
very well in most cases, even with a random initial gueamiform sampling case, where to have minimum rate sampling
for H;(c’*). In this case, POCS will converge to the filter thawithout aliasing, at no frequency can we have more than one
satisfies condition 2), and most closely approximates conditiaiased copy of the soectrum, and at no frequency can we
1). It should be noted that there are no simple bounds on thave less than one.
rate of convergence to be expected; we have observed thatve have seen that wheWf f, > 2f,,,.x We can recoves(t)
cases where the sampling structure is bunched tend to convdrgen the sequence(n). Further, when (12) is satisfied we can
more slowly than those which have well-spaced samples. If trecoverz(n) from only N of its A/-phase components. Since
reconstruction is very ill-conditioned (e.g., when thephase (3) holds we have minimum rate sampling. If we can find an
components are bunched together) it is important to choos¢pathat satisfies (12), we can then choose afythat satisifes
good initial guess, since the convergence in this case canMey > 2f,..x. It is not yet obvious whether finding such an
slow and the computational noise incurred at each iteratigp is possible in general. The following theorem helps.
can have a cumulative detrimental affect on the quality of
the approximation to condition 1). A good initial guess can be
found by solving (9) for;; (¢’ ) at some set of frequencies, Cp(f/fo)=N, Vf (13)
and using these to assist our first guess. This condition can also o
be included in the POCS iteration to speed convergence. It IS necessary and sufficient that

The computational effort required to design the filters isz—1
small, since (using either the approach here or alternativg le(g+bi)—e(g+a;)—e(g—bi)+e(g—a;)] =0, Vg (14)
approaches such as in [22]) the filters are designed once=o
As we pointed out, exactly satisfying the constraints is NAhere
possible with realizable filters; the reader should not expect 1
that good approximation of the constraints will be achieved e(f) 2 Z (_1)4.‘700 eI2min/ fo_ (15)
with low-order filters. =0 Zmn

Theorem 5.1:To satisfy

V. MINIMUM RATE SAMPLING OF MULTIBAND SIGNALS Proof: Observe that in the time domain (12) gives

We have shown how thé&/-channel reconstruction system cp(n/fo) =0,  Yn#0. (16)
is characterized, and have demonstrated a simple procedure for . . .
its design. We are now ready to use it to tackle the proble ince a function that is zero everywhere has all-zero Fourier
of minimum rate sampling of multiband signals. Recall thactoeﬁ'C'ents’ (16) is equivalent to
xz(n) was derived from the ratdf f, sampled signal, and Z (=1)"ep(n/fo) 29/ fo = 0, Yg. (17)
that Cp(f) is the characteristic function of the of s& i
over which the spectrum is nonzero; we denote its inverse ) )

Fourier transform agp(¢). In addition, we will use the rate Evaluating the integral foer (n/ fo)
fo sampled version ofp(t). This is related to the spectrum o
of the continuous time signal by ep(n/fo) = / Cp(f)e*™ I/ P df

= j2mwn 0 b; —a;
cp(n/ fo) =/ Cp(f)e?*m I/ 1o df. / 2w fn/ o df+/ 2w fn/ o df]
i a —b

The requirement of Theorem 3.1, that no more th&n B 7 7
elements of the seR(w) be nonzero at any frequency in _ Z Jo |:e(j27rnb7-/f0) _ i2mnas/ fo)
[0,27/M) is equivalent to requiring that whemp () is sam- — j2mn

pled at ratefy no frequency of the spectrum of the subsampled

signal have nonzero contribution from more thah alias
copies

oo

L—1

(]

I8

h
— O

1 (—i2mnai/fo) _ e(—jQﬂ'nbi/fo):| _

Substituting into (17) we get (14). O

<
Cpf/fo) < N. (10) The reason that this theorem is helpful is thdff) is

the Fourier series expansion of the periodic piecewise-linear
function shown in Fig. 6. Observe from the figure, or by
; o2 substituting into (15), that for ang and 3 whose difference
Y R Y is an integer timeg,, we havee(«) = e(3). This allows us
Bet = /_fmx Cr(f) df = )2 Co(f/fo)df- (A1) see more clearly how solutions to (14) may be found. For
. . . . example, suppose that we had- a; = &; fo for some integer
Subject to (10), clearly we can satisfy (3) if and only if ks, Vi. This would givee(g + b;) = e(g + a;),¥g, and then

Cp(f/fo) =N, V. (12) (17), and hence (14), would be satisfied. Thus if we could find

max
fel—fo/2,f0/2)
When this condition is satisfied we can samplg) at an
average rateéV fy. The effective bandwidth is, of course,



1562 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

[ o(1)

T fo/2
/ / / / f
_5f0/'2/ —3fo/‘2/ —fo/2 fo// 3fo}2/ 5fo/.2 -

—fof2

J

Fig. 6. Periodic piecewise-linear functios(f).

fo such that each pal; — a; had f; as an integer factor we Define the set

would have a solution. This is sufficient, but not necessary.

In fact, we could paib; with a; or —b; for any j, and still Q= U{
satisfy (14) provided that each pair hasas an integer factor.

Compare with the description in [36] of the signals knowfbserve that(b;) = e(a;)¥i, and hence (12) is satisfied for
to be reconstructable from samples at an average of t@e Thus signals bandlimited to the s& can be sampled at
Nyquist-Landau rate: “This means that the band$’dfiave the minimum rate.
lengths that are all integer multiples of some basic length,Clearly, we have
and the same is true of the gaps between them.” This is ,__

32 07) U (=, —ai) ).

Z?Z

the class of multiband signals considered in [36]-[39]. In thz/ |Co(f) — ) df = Z W, — a — (b — a;)
notation that we have been using it is equivalent to requirin

b;—a; = k‘zfo for ¢ = 0,1,-- -,L—]. and anchi_l—bi = lzfo <2L- fO-

fori =0,1,---,L — 2, and2ag = Iy fo for some integers;

and ;. We have just seen that something far less restrictiféence if we choosg, < ¢/(2L) (18) holds. O

is in fact required. To reconstruct at the Nyquist-Landau rate
requires that (14) hold. This does not imply that the bands,Since the effective sampling rate | E ki fo, the sampling
and the gaps between them, be integer multiples of sfme efficiency will be =0

but merely that in some pairing each pair have such a factor. L1 1

Exactly satisfying this condition may be difficult in practice, 2.3 (b — a;) > (b — ai)
since thea; and b; are real numbers, and pairing them such > Beg _ =0 S _ =0
that any other real number is precisely an integer factor of ~ Nfo L=t Tk
all pairs is not possible in general. However, by examining 2 ;) (b; — ai) ;) (bi —ai) +¢

a slightly larger setQ > P we can find a solution easily.
Thus we manipulate the positions of the bands slightly: giv
signals inB(P) we find a strategy to sample at minimum rate Notes:

signals in the larger se#(Q). The oversampling implied can 1) The choice fo <¢/(2L) was taken to simplify the
be made arbitrarily small, a conclusion that had already been = qemonstration of the result. In practice, this might be an

é(}(]hich can be made arbitrarily close to one.

reached in [25], [22], and [40]. undesirable solution, since it will require to be large.
Theorem 5.2:For signals bandlimited t@, where P is a Itis possible to use the freedom in pairing theandb;
finite union of open intervals, and given aay 0 there exists to choose a more reasonable solution. We explore this
a set@Q O P, with in the next section.
oo 2) To recovers(t) then we find a se@, N, M, and f, for
/ |Co(f) — Cp(f)|df <e (18) the givene. We reconstruct(n) from N of its M-phase
—o0 components, and recove(t) from z(n).
such that signals bandlimited t@ can be recovered from 3) The literature on multiband sampling has typically fallen
periodic nonuniform samples at the minimum rate. into two types: the work where a particular structure
Proof: Begin by pairing the band edges in some way; for in the relations between the size of the bands and the
example, we can pair eadh with a;. For any fo, and each gaps was assumed [36], [38], [39], and those where a
pair we can findy; > b; anda} < a; such that slicing approach was taken to asymptotically approach
, the minimum rate [25], [22], [40]. For the first of
by —a; = ki fo 2 bi — a;. these, we have shown in Theorem 5.1 a necessary

and sufficient condition on the band edges to allow
minimum rate reconstruction, and this condition is far
more general than the previous literature had assumed.
b, —al < b; —a; + fo. For the second, we will demonstrate in Section VI,

The worst case bound on the excess bandwidth introduced
for each band isfy since
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@)

o o.= O3 o5 oc.8 1 1.2 1.4 1.6 1.8 =

(b)

Fig. 7. (a) Characteristic function of the signal, the signal has energy wiigf¢ is one and has no energy elsewhere. (b) Magnitude response of the filter
H3(z) for the nulling system. Note that this filter has response close to zero at frequencies where the signal is nonzero, thus approximately satisfying (7).

that far less complex reconstruction systems can oftéon the positive frequency axis only) is shown in Fig. 7(a).
be designed even in the case where we approach bserve that the minimum uniform rate to allow reconstruction

minimum rate asymptotically. would be2-(2—+/3/5), giving an efficiency ofl /(2—+/3/5) ~
0.6047.
VI. EXAMPLES AND APPLICATIONS Next try the approach of slicing the spectrum [25], [22],

We have seen that reconstruction of multiband sign
with arbitrary spectral support is possible at an average r X ) o
arbitrarily close to the Nyquist-Landau rate. Similar resul Solution with &' = 32 and M = 63. The efficiency

have previously been reported in [25], [22], and [40]. W&en/N fo ~ 0.9846 and can be improved only at the cost

wish to make clear the distinction between our approaincreased complexity. For example, if we majesmaller
and earlier works. In the proof of Theorem 5.2 we mereiji€ €fficiency improves but/ and N become larger. Alterna-

paired the band edges in the most obvious fashion (edtffly, We can exploit the fact that to satisfy (14) we can pair
a; paired with the corresponding;), and tried to force Pand edges in any fashion we wish. For example, paibing
b; — a; = k; - fo for some integetk;. This solution actually @nd—b1 andao and —a, we can find a solution witlfy = 1
resembles the approach of [25] for multidimensional signaldz- We indeed then haviy + b, = 2fo andag + a1 = fo.
and [22], [40] for multiband signals, in that we slice thdhus (14) is solved withV = 2 and M = 4. The minimum
spectrum into narrow bands and derive a sampling bag@ie is actually achieved in this case, so the efficiency is one.
on the number of bands which contain signal and whichis serves to illustrate the important distinction between our
do not. As we decrease the size of the slices, the specf@proach and those derived from the slicing of bands used in
efficiency improves, but the complexity of the sampling ank?3]. [22], and [40]. It also shows that the minimum average
reconstruction system becomes greater. By complexity W&f€ is attainable for classes of multiband signals that do not
mean the number of filters that will be involved in theddhere to the band structure studied in [36], [38], and [39].
reconstruction system (i.ely in the notation we have beenThis example shows that greater spectral efficiency, and much
using). We now demonstrate that this approach is far frosimpler sampling structures\/M = 2/4 instead 0f32/63)
optimal, and that a careful examination of the condition (14ye possible by carefully exploiting the properties of (14).
shows that our solutions are less constrained than those folmudther, the filters are more easily designed in the case where
by slicing the spectrum, and that the additional freedon cahandM are small. Choosingl = {0, 1} we design the filters
be exploited to find less complex reconstruction systems Hu(z) and Hy(z), using the procedure of Section IV, and
certain cases. hence we design the reconstruction filtéks =) andG (). In
Consider a simple two-band signal, i.e, = 2, with Fig. 7(b) the magnitude response of the filt&(z) is shown.
a0 =v2/5,bo =3/5, a1 =1—+/2/5,andb; = 2—+/3/5. As required by (7) the filter is almost zero everywhere when
The effective bandwidth is 2 Hz, and the characteristic functiaghe signal is nonzero.

0]. Clearly, the efficiency will be dominated by the smallest
the signal bands. Choosinfy small enough we can find
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The question of how to pair the band edges in generab]
to solve (14), and how to choosf, N, and M for best
performance is an open one. Recall that to solve (14) Wey
must pair eacld; with one of thea; or one of the—b;, and

each pair must be an integer timgg. Asymptotically, we
can acheieve any desired efficiency by makifsggsmall. In

[14]

[15]

practice, however, we probably wish to minimize the spectral
waste, but we might also want to constrahand M to be

moderate as well. The largé¥ and A/ the more complex the

[16]

reconstruction and the more difficult the filters are to design7)
in general. Examining all possible band pairings becomes
prohibitive for a large number of bands. We have foun

the

optimality.

following scheme to work well, but make no claims of19]

[20]
Pair a; with —ay_;_; andb; with —b;_;_; for i = 0,
17"',L/2_1. [21]
Let d; = a; +ar—i—1 anddpjoq; = b +bri1
i=0,1,---,L/2 — 1. 22]
Order and reindex thé; so that:dy < d; < --- <dp_;.
Try fo =dr—1/p for p=1,2,3, - until [23]
> Tdiffol —di <e. [24]
[25]

VII. CONCLUSION

We have examined in some detail the problem of period[ge]
nonuniform sampling. The strength of our approach is that
it allows very simple characterization of the range of the

reconstruction system and design of the filters. We have giv,
a characterization of the set of signals that can be reconstructed

from particular sampling structures, and have shown that this

is wider than had been considered in the existing literatur@®

We have shown for multiband signals that minimum rate can

be approached, or even acheived, with reconstruction systda®
which are far less complex than attainable by slicing.
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