
17th ACM Symposium on Operating Systems Principles (SOSP’99)
Published as Operating Systems Review 34(5): 247–260, Dec. 1999

247

Progress-based regulation of low-importance processes
 John R. Douceur and William J. Bolosky

Microsoft Research
Redmond, WA 98007

{johndo, bolosky}@microsoft.com

Abstract

MS Manners is a mechanism that employs progress-based
regulation to prevent resource contention with low-
importance processes from degrading the performance of
high-importance processes. The mechanism assumes that
resource contention that degrades the performance of a
high-importance process will also retard the progress of
the low-importance process. MS Manners detects this
contention by monitoring the progress of the low-
importance process and inferring resource contention from
a drop in the progress rate. This technique recognizes
contention over any system resource, as long as the
performance impact on contending processes is roughly
symmetric. MS Manners employs statistical mechanisms to
deal with stochastic progress measurements; it
automatically calibrates a target progress rate, so no
manual tuning is required; it supports multiple progress
metrics from applications that perform several distinct
tasks; and it orchestrates multiple low-importance
processes to prevent measurement interference.
Experiments with two low-importance applications show
that MS Manners can reduce the degradation of high-
importance processes by up to an order of magnitude.

Categories and subject descriptors: D.4.1 [Operating sys-
tems]: Process management – scheduling; G.3 [Probability
and statistics]; G.4 [Mathematical software]

General terms: Algorithms, Measurement, Performance

Additional key words and phrases: progress-based feed-
back, symmetric resource contention, process priority

1. Introduction
We have developed a method that prevents low-importance
processes from interfering with the performance of high-
importance processes. Such interference is generally
caused by contention over shared resources, so our method
relieves this contention by suspending the low-importance
process whenever it detects resource contention. Our
method detects resource contention by means of progress-
based feedback: A control system monitors the progress of

the low-importance application and regards a drop in the
progress rate as an indication of resource contention. We
refer to this control system as MS Manners, because it
determines when a low-importance process should politely
defer to a high-importance process.

The need for such a method arose in the development of
the SIS Groveler, a Microsoft® Windows® 2000 system
utility that finds and merges duplicate files on a file system.
We needed a mechanism that would allow our low-
importance utility to use idle resources without degrading
other processes. The Groveler is I/O-bound, so CPU
priority is insufficient to control its resource usage. The
Windows 2000 kernel does not support priority for other
resources, and we did not wish to modify the kernel. The
Groveler runs in server environments with continuously
running applications and unpredictable workload schedules,
which disqualifies all prior solutions of which we are aware.

We found that this method worked well for the
Groveler, so we expected it might work well for other long-
running, low-importance applications, such as a backup
system, a disk defragmenter, a file archiver, a virus scanner,
or other housekeeping utilities. Therefore, we re-packaged
our method as a general application in two different forms:
a library that can be called by low-importance applications,
and an executable program that externally monitors and
regulates low-importance applications that report progress
through a standard Windows NT® mechanism.

Performance measurements indicate that MS Manners is
very effective at reducing the impact of low-importance
processes on high-importance processes. In two example
low-importance applications, MS Manners reduced the
performance hit on high-importance applications by as
much as an order of magnitude: Running a low-importance
process increased the execution time of a concurrent high-
importance process by 90%; applying MS Manners reduced
this increase to 7 – 12%.

In the following sections, we review previous
approaches to low-importance process regulation, we
explain the assumptions and limitations of our approach, we
describe our technique in detail, and we present
experimental results on its effectiveness.

2. Previous approaches
Many approaches to low-importance process regulation
have been proposed and implemented, such as scheduling
for specific times, running as a screen saver, scanning the



Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP-17 12/1999 Kiawah Island, SC

© 1999 ACM 1-58113-140-2/99/0012…$5.00



Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

248

system process queue, and various resource-specific
methods. These approaches vary considerably in their
generality, complexity, and invasiveness. Our approach is
not strictly better than any of the others; it is merely another
design point in the overall problem space.

If system activity is at least coarsely predictable, one
simple approach is to schedule a low-importance process to
run during expected periods of little or no system activity,
such as the middle of the night. This technique fails to
exploit unanticipated idle times, and it fails to regulate
during periods of unanticipated activity. Moreover, if
system activity is not predictably periodic, this technique
does not work at all, and a mechanism to dynamically
determine idle periods is needed.

One method for determining idle periods is to use the
approach of a screen saver: activate the low-importance
process in the absence of keyboard or mouse activity. This
approach relies on the assumption that a lack of user input
indicates that the system is unused. This assumption may
be reasonable for a desktop workstation, but it is not valid
for a server, which is often busy but which rarely receives
direct user input.

Another approach is to run low-importance processes
only when no high-importance processes are in the system
process queue [26]. However, a high-importance process
may be in the process queue without consuming significant
resources. For example, a database-server application
might run continuously but only require resources when
given a workload. In such a scenario, this approach would
never allow a low-importance process to run.

A time-honored method [12] is to use CPU priority.
When assigned a low CPU priority, a low-importance
process is prevented from using the CPU when any normal
priority process is using it. This works well if the CPU is
the limiting resource. If another resource – such as disk or
memory – is the limiting factor, the CPU is uncontended, so
CPU priority is ineffective.

Priority can be extended to other resources besides the
CPU. In general, this requires modifying the OS kernel.
For example, Stealth [11] is a process scheduler that
prioritizes CPU, virtual memory, and file system cache.
This extension is still limited to a few specific resources,
and the techniques are resource-specific.

A similar but more general approach is performance
isolation [27], which supports various allocation and
sharing policies for multiple resources. If a low-importance
process is entitled to zero resources, it can only use shares
of resources that are unused by other processes. Although
the performance isolation framework is general, each
resource requires a specific isolation technique.

Another resource-specific approach comes from the
domain of real-time systems. Resource kernels [19]
schedule multiple system resources among concurrent
processes. All processes must make explicit reservations
for resources, and actual resource usage is monitored and
enforced by the kernel.

Our approach is resource-independent, and it requires
no kernel modifications. It works in server environments in

which high-importance applications run continuously and
receive workloads at unpredictable times. These features
differentiate it from previous approaches.

3. Assumptions and limitations
Like the earlier approaches described above, MS Manners
relies on several assumptions, primarily the symmetry of
performance impact from resource contention and the
accessibility of progress measures that accurately reflect
resource consumption.

Our driving assumption is that the performance impact
from resource contention is roughly symmetric. If a low-
importance process is substantially degrading a high-
importance process, then the low-importance process will
also be substantially degraded, so our method will observe
the effect and appropriately suspend the low-importance
process. On the other hand, if the degradation of the low-
importance process is too small to observe, then the impact
on the high-importance process is likely to be small as well,
so the low-importance process can continue.

This assumption of symmetry can be violated if the
operating system does not aim for fairness in sharing
resources among processes. For example, a disk scheduler
might favor small transfers over large ones, so a low-
importance process making small disk transfers will
degrade the performance of a high-importance process
making large disk transfers, without itself experiencing any
reciprocal degradation.

One noteworthy example of resource asymmetry is
physical memory. If the combined memory requirement of
two processes exceeds the available physical memory,
operating systems tend to drastically favor one process over
another [23], in order to avoid page thrashing. This is
reasonable behavior, but it invalidates our key assumption
for this important resource.

For the general case, we have no solution to the
problem of resource asymmetry. For resources with user-
settable priority, the problem can be averted by lowering
the resource priority of the low-importance process.

A second critical assumption is that the regulator has
access to some progress metric for the low-importance
process. This means either that the application must export
one or more progress metrics via a standard interface, or
that the application can be modified to indicate its progress
via a library call.

A malicious application might provide false progress
information in order to avoid being regulated. Our method
assumes that progress information is correct and reasonably
accurate, and it makes no attempt to detect or suspend
malicious processes.

Beyond these assumptions, MS Manners has several
limitations that follow from its premises. Since it
automatically calibrates its tuning parameters (see section
4.3), it requires significant periods of resource idleness. If
resources are continually busy, the calibrator cannot
determine correct parameter values. Even given significant
idle periods, calibration can require many hours or even
days if execution begins on a heavily loaded system. If the

249

calibration is started on a relatively idle system, this time
can be shortened to a few minutes. This limitation
generally restricts progress-based regulation to processes
that are long-running.

Since MS Manners is completely resource-independent,
it does not discriminate between various classes of
resources, such as those internal and external to a machine.
For example, a web crawler’s progress rate will degrade
when the network is loaded, triggering MS Manners to
suspend the process, which may not be as desired. Solving
this problem requires either making MS Manners resource-
aware or modifying the application to adjust its progress
metrics for external delays. These fixes oppose our goals of
resource independence and noninvasiveness.

Since MS Manners can regulate unmodified
applications (see section 7.2), it may suspend a process that
is holding a shared system resource, such as a lock or an
exclusive file handle. This resource will remain unavailable
to any high-importance process that requires it, causing a
priority inversion. For applications that are modified to use
MS Manners directly, suspension occurs only at well
defined points in the application code, so this problem can
be avoided by not holding a resource at such a point.
However, for unmodified applications, we have no solution.

4. Architectural components
Figure 1 illustrates the application environment of a
standard operating system, in which multiple applications
may run concurrently. Some system resources may be used
exclusively by a single application, whereas others may be
shared by more than one application. If a shared resource is
limited, then use of that resource by one process will
degrade the performance of other processes that use that
same resource.

If a user explicitly designates one or more applications
as having low importance, then the MS Manners control
system prevents the process from using resources that are in
use by any normal, high-importance application. The
control system monitors the progress of the low-importance
application. When the control system sees a drop in the
rate of progress, it infers that the application is experiencing
resource contention, so it suspends its execution.

Figure 2 illustrates the main architectural components
of MS Manners. Periodically, a low-importance process
provides an indication of its progress, through either a
library call or a standard reporting interface. A rate
calculator combines this progress indication with temporal
information from a system clock to determine the process’s

progress rate. This progress rate is used for two purposes:
First, it is fed into a target calibrator, which analyzes many
progress rate measurements to determine a target rate for
the process. Second, the progress rate is fed into a rate
comparator, which compares it against the target rate from
the target calibrator. The rate comparator judges whether
the current progress rate is less than the target progress rate.
This judgment is used for two purposes: First, it is fed into
a suspension time calculator, which maintains a suspension
time value; the calculator increases this value when the
progress is judged to be below target, and it decreases this
value when the progress is judged to be at or above target.
Second, the judgment is fed into an execution regulator; if
the progress is below target, the regulator suspends the
process for the suspension time.

The following sections describe these components in
the abstract. For implementation details, see section 7.

4.1 Core components
MS Manners’ core components are measuring the
application’s rate of progress, comparing this rate against a
target rate, and suspending the process when the rate falls
below target. This section describes these components in
their simplest form; more sophisticated versions are
described in subsequent sections.

Periodically, at times known as testpoints, the control
system acquires metrics of the application’s progress. (For
the moment, we ignore the mechanism by which progress
metrics are conveyed from the application to the control
system. Two such mechanisms are described in section 7.)
These progress metrics can be expressed in virtually any
unit that is meaningful to and easily tracked by the
application. For example, a file compressor might indicate
quantity of data compressed, whereas a content indexer
might indicate the number of directory entries scanned.
Section 5 discusses properties of good progress metrics.

Testpoints should be made fairly frequently, at least
once per few hundred milliseconds, so the process can be
suspended promptly when necessary. At each testpoint, MS
Manners calculates the elapsed time and the progress made

low-importance
application

resource

high-importance
application

control
system

resource resource resource

execution control

progress feedback

Figure 1. Application environment

low-importance
application

progress

rate
calculator

target
calibrator

suspension time
calculator

execution
regulator

rate
com

parator

clock

progress rate

time

execution control

target
rate

judgm
ent

suspension
tim

e

Figure 2. System architecture

250

since the previous testpoint. It then calculates the progress
rate as the ratio of these two values.

MS Manners compares this progress rate to a target
progress rate. The target rate is the progress rate expected
when the application is not contending for any resources
(see section 4.3). If the actual progress rate is at least as
good as the target, MS Manners judges the progress rate to
be good; otherwise, it judges it to be poor.

If the progress rate is good, the control system allows
the process to continue immediately. If the progress rate is
poor, the control system suspends the process for a period
of time before allowing it to continue. The execution is not
stopped entirely, or else there would be no way to
determine when it is okay to continue.

The time a process is suspended depends on how many
successive testpoints indicate poor progress. On each
testpoint that indicates poor progress, the suspension time is
doubled, up to a set limit. Once a testpoint indicates good
progress, the process is allowed to continue, and the
suspension time is restored to its initial value.

The exponential increase makes the low-importance
process adjust to the time scale of other processes’
execution patterns. Following short periods of activity by a
high-importance process, the low-importance process will
resume promptly, but during long periods of high-
importance activity, the low-importance process makes only
infrequent execution probes. The limit on suspension time
places a bound on the worst-case resumption time.

These components are necessary for progress-based
regulation, but they are not always sufficient. For example,
if progress measurements are stochastic, directly comparing
them to the target rate may yield an incorrect judgment of
the progress rate. Also, these components do not include a
method for determining a target progress rate. The rate
calculation cannot cope with an application whose progress
is naturally measured along two or more dimensions.
Finally, if multiple low-importance threads execute at the
same time, they can interfere with each other’s progress
measurements if they use any common resources. The
following sections describe additional components that deal
with each of these complications.

4.2 Statistical rate comparison
Progress rate can fluctuate due to several factors, such as
variable I/O timing [29], coarse progress measures, and
clock granularity. If the control system directly compares
progress rate to target rate, it may frequently make incorrect
progress-rate judgments, causing inappropriate suspension
or execution of the process.

MS Manners copes with noisy measurements by using a
statistical rate comparator. Rather than making an
immediate judgment about the progress rate, the comparator
continues to collect progress-rate measurements until it has
enough data to confidently make a judgment.

The comparator feeds each progress-rate measurement
into a statistical hypothesis test (see section 6.1). The test
determines whether the progress rate is below the target
rate, whether it is at or above the target rate, or whether

there is not enough data to make such a judgment. In the
latter case, the process is allowed to continue until its next
testpoint, but the current value of the suspension time is
preserved. In this manner, the process is repeatedly
allowed to continue, and the progress rate is repeatedly
measured, until the hypothesis test determines that there is
enough data to make a judgment. At that point, a good
judgment will reset the suspension time, or a poor judgment
will double the suspension time and suspend the process.

This technique assumes that the variability in an
application’s measured progress rate is not serially
correlated. For example, a disk-bound application may,
even on an unloaded system, encounter some very lengthy
seeks. As long as these lengthy seeks are interspersed with
short seeks, the statistical comparator will correctly
recognize that the progress rate is good. However, a
correlated series of long seeks will inappropriately trigger
suspension.

4.3 Automatic target calibration
Progress-based regulation requires a target progress rate for
the regulated process. Ideally, this target rate represents the
expected progress rate when the process is not contending
for resources. This ideal target rate may change over time
as properties of the resources change; for example, file
fragmentation [24] may reduce the ideal target rate for a
process that reads files. Therefore, it is necessary to track
changes in the ideal target rate over time.

To determine the ideal target rate, the process must run
for a while without resource contention. We could require
the user of a low-importance application to perform a
calibration procedure, during which no other process runs
on the system. However, this is a burden for the user,
especially since the calibration would have to be re-run
periodically to track changes in resource characteristics.

Instead, MS Manners automatically establishes a target
rate as the exponential average of the measured progress
rate at each testpoint (see section 6.2). Clearly, this
approach tracks changes over time, but it is not clear that it
reflects uncontended progress. The key insight is that the
averaging procedure gives equal weight to each testpoint’s
progress-rate measurement. Since the process is usually
suspended when the progress rate is poor, few testpoints
reflect poor progress. Since the process is usually
executing when the progress rate is good, many testpoints
reflect good progress. Thus, the average tends to converge
to the rate of good progress.

This procedure is self-perpetuating, but it requires some
way to get started. Our method begins by allowing the
process to execute briefly with no true regulation. During
this time, the calibrator averages the progress rate
measurements to bootstrap the calibration procedure.

If this initial execution is performed on a relatively idle
system, the initial value for target rate will be close to the
ideal target rate, so correct regulation will immediately
commence. However, if the process experiences resource
contention during its initial execution, the target progress
rate will be set too low. Eventually, once the low-

251

importance process executes without resource contention,
the calibrator will increase the target rate, but in the mean
time, the control system will not prevent the low-
importance process from running when it should not. To
deal with this problem, MS Manners limits the maximum
execution rate for a probationary period, reducing the
impact on other processes.

A major weakness of this approach is that there may
never be a significant length of time when resources are
uncontended, so the target rate may never be set correctly.
This weakness is inherent in any approach that does not
require the user to establish an idle system.

This calibration procedure relies on the suspension
behavior of a regulated process. However, if a process
becomes critical, it might choose to ignore regulation. For
example, a utility that archives old files might, when disk
space becomes scarce, choose to execute even if it contends
with a high-importance process. When a process runs more
aggressively than the regulator dictates, the calibrator
subsamples the progress data, ignoring measurements from
testpoints that would not have executed if the thread were
following regulation strictly.

To preserve target values across restarts, calibration
data is maintained persistently (see section 7.1).

4.4 Multiple progress metrics
The progress of some applications is not easily measured
along a single dimension. Some applications execute in
sequential phases with a different type of progress in each
phase. For example, a garbage collector’s progress might
be measured by its mark rate during its mark phase and by
its sweep rate during its sweep phase. Furthermore, some
applications progress along multiple dimensions
concurrently. For example, a content indexer might
measure progress in both bytes of content scanned and the
count of indices added to its database. Over a long term,
separate metrics may be positively correlated, because one
type of progress may be a precursor to another, as scanning
is to indexing for a content indexer. However, over a short
term, separate metrics may be negatively correlated,
because time spent progressing along one axis is time not
spent progressing along another. For such applications,
there is no single scalar value that accurately reflects the
progress rate.

Our method includes two ways of dealing with multiple
progress metrics. For applications that execute in discrete
phases, any given testpoint will occur during some specific
phase. If the phase is known, our method compares the
progress rate measured at each testpoint with a target rate
specific to the phase in which the testpoint occurs. For the
garbage collector example, when a testpoint occurs during
the mark phase, the measured mark rate is compared to a
target mark rate, and when a testpoint occurs during the
sweep phase, the measured sweep rate is compared to a
target sweep rate. Each target rate is calibrated separately.

If the number of testpoints in each phase is very small,
the statistical rate comparator may not accrue sufficient data
within a phase to make a judgment. If the comparator were

unable to combine measurements from separate phases, the
control system would never be able to judge the progress
rate, and the process could not be regulated. However, the
hypothesis test described in section 6.1 compares each
sample against a separate target and combines these
separate comparisons into a single judgment. This enables
the rate comparison to span multiple phases, permitting
regulation even when the execution phases are very brief.

The second way of dealing with multiple progress
metrics is used for applications that progress along multiple
dimensions concurrently, or whose phases are not available
to the control system. To accommodate this situation, we
must change the way progress rates are compared. Section
4.1 stated that the control system calculates the progress
rate from the measured progress and the measured duration
since the previous testpoint, and it compares this calculated
rate to a target rate. The modification is to calculate a
target duration based on the measured progress and the
target rate, and to compare this calculated duration to the
measured duration since the last testpoint. For a single
progress metric, these formulations produce equivalent
results, but the latter allows an extension to support
multiple progress metrics.

For multiple progress metrics, the control system
calculates a target duration as follows: Each progress
metric is combined with its corresponding target rate to
yield a target duration for the progress along that metric.
These separate target durations are added together to
produce an overall target duration, and this is compared
against the measured duration since the last testpoint.

As an example, consider a content indexer that scans
data at a target rate of 750 kB/sec and adds indices to its
database at a target rate of 120 indices/sec. If a testpoint
indicates that it scanned 60 kB of data and added 5 indices
to its database in 120 milliseconds, then its target durations
are 80 msec for scanning and 42 msec for indexing. The
sum of these durations, 122 milliseconds, is the overall
target duration. When the rate comparator compares this
value against the actual duration of 120 milliseconds, it
determines that the progress rate is good.

This method assumes that the time to make progress
along multiple dimensions is equal to the sum of the times
to make progress along each separate dimension. This
assumption can be rendered incorrect by overlapping
operations.

The calibrator establishes a target rate for each progress
metric. For phased execution, this is straightforward, since
each testpoint reports progress for a single metric. For
multiple concurrent progress, the calibrator uses linear
regression to infer the contribution of each metric to the
overall duration between testpoints (see section 6.3); in
particular, it uses a technique called “ridge regression” that
is not thwarted by even highly correlated metrics. Rather
than exponentially averaging the progress rate over time,
the system exponentially averages the state information
needed for the linear regression.

252

4.5 Multiple threads and processes
When multiple threads or processes run concurrently, every
low-importance process should defer to any high-
importance process. If no high-importance process is
contending for system resources, the low-importance
processes should share the resources fairly.

If multiple low-importance processes or threads were to
execute concurrently, they might contend with each other
over resources, reducing each other’s progress rates and
causing the control system to suspend them. Mutually
induced suspension with binary exponential back-off can
lead to unfairness [20] or instability [5, 21], fully
suspending the processes even on an idle system.

To address this problem, MS Manners allows only one
low-importance process or thread to execute at a time. If
multiple low-importance processes or threads run
concurrently, the control system multiplexes among them,
allowing each to execute until its next testpoint before
suspending it and executing another. This “time-multiplex
isolation” is somewhat inefficient, since it prevents low-
importance processes from overlapping usage of different
resources with each other. However, since these processes
are not critical, we consider this an acceptable cost.

Each thread is regulated separately. There is one
progress-rate comparator per thread, so threads that use
different system resources will not be implicitly coupled.
For example, if only one disk on a computer is being used
by a high-importance process, a low-importance thread that
is using that disk will be suspended, but another low-
importance thread using another disk may not be.

A subset of an application’s threads can be designated
as low-importance. Any unregulated threads in a process
will not be time-multiplex isolated, so they will reduce the
progress rate of the regulated threads if they contend for
resources. However, because this contention is always
present, it will also reduce the target rate and thus not
interfere with progress-based regulation.

5. Progress metrics
In the abstract, progress-based regulation can be based on
any unit of progress that is meaningful to the application
being regulated. However, since our method assumes that a
drop in progress rate indicates resource contention, any
progress metric that is used for regulation should have an
approximately constant target rate over the life of the
application. For example, in a numerical solver, estimated
solution accuracy is a poor metric, because its rate of
change decreases as the solution converges. A better metric
for this example is the count of iterated solution steps,
because its expected rate of change is constant, barring
interference due to resource contention.

It is also important to use metrics that provide sufficient
coverage of all progress that the application might make.
For example, consider a file archive utility that scans
through files and only archives those older than a certain
date. It is not sufficient to regulate based on count of files
scanned, because this rate will drop when scanning old

files, since time will be consumed archiving them.
Similarly, it is not sufficient to regulate based on count of
files archived, because this rate will drop when scanning
new files, since time will be consumed scanning but not
archiving them.

To help convey good choices of progress metrics for
various applications, we present a representative but non-
exhaustive list of low-importance applications that could
profitably use progress-based regulation, along with a
suggested set of progress metrics for each:
• A file compressor might indicate the quantity of data it

compresses. This would account for resources
consumed reading data, writing data, and compressing
data. It could also indicate the count of files it
compresses, if the overhead in opening and closing a
file is significant relative to reading, writing, and
compressing.

• A content indexer might indicate both the quantity of
content it scans and the count of indices it adds to its
database.

• A file archive utility, as mentioned above, might
indicate the count of files it scans and the count of files
it archives; it should also indicate quantity of data it
archives, since there is likely some resource cost per
byte as well as some resource cost per file.

• The SETI@home [2] program, which downloads and
analyzes radio telescope data, currently runs under a
screen saver. It could instead use progress-based
regulation by indicating the quantity of data it transfers
and the number of computation steps it performs.

• A backup system might indicate the quantity of data it
uploads. This would account for both disk and
network resources.

• A virus scanner might indicate the count of files and
the quantity of data it scans.

• A synchronization engine for a distributed file system,
such as Coda [9], scans files and uploads copies of
those that have been modified since a certain date. It
might indicate the count of files it scans, the count of
files it uploads, and the quantity of data it uploads.

• The disk defragmenter described in section 8 indicates
the count of file blocks it moves and the count of move
operations it performs.

• The Single Instance Store Groveler, as described in
section 8, finds and merges duplicate files. It reports
the count of read operations it performs and the
quantity of data it reads.

6. Mathematical details
The following sections provide mathematical details of the
statistical hypothesis test used by the statistical comparator,
the exponential averaging technique used by the automatic
calibration procedure, and the linear regression technique
used by the automatic calibration procedure for multiple
progress metrics.

253

6.1 Statistical hypothesis test
The statistical comparator described in section 4.2 makes
use of a statistical hypothesis test to determine whether the
progress rate is below the target rate, whether it is at or
above the target rate, or whether there is not enough data to
make such a judgment.

The comparator uses a paired-sample sign test [4],
which is a non-parametric hypothesis test. A non-
parametric test makes no assumptions about the distribution
of the data and is therefore very robust. The test depends
on n, the sample size, and r, the count of sample rates that
are below their corresponding target values (or the count of
sample durations that are above their target values). If r is
greater than a threshold value that is a function of both n
and a control parameter α, the progress rate is judged to be
poor. If r is less than a different threshold value that is a
function of both n and another control parameter β, the
progress rate is judged to be good. If r falls between the
two threshold values, the progress rate is indeterminate
given the current data.

The control parameters α and β determine the
sensitivity of the comparator. The parameter α is the
probability of making a type-I error, judging the progress
rate to be poor when it is actually good. The parameter β is
the probability of making a type-II error, judging the
progress rate to be good when it is actually poor.
Increasing α improves the system’s responsiveness,
decreasing β improves the system’s efficacy, and increasing
β relative to α improves the system’s efficiency, as follows:

Increasing α allows faster reaction to poor progress,
because α is negatively related to m, the minimum number
of samples for the sign test to recognize poor progress:
  α2log−=m (1)

Decreasing β reduces the performance impact on high-
importance processes, because β is – by definition – the
probability that a marginally poor progress rate will be
judged incorrectly to be good.

Increasing β relative to α improves the stability of
process execution, because when progress is good, the
process suspension state is a birth-death system that is
isomorphic to a bulk service queue [10] of infinite group
size with an arrival rate of α and a bulk service rate of β.
Thus, the steady-state probability that k judgments of poor
progress have occurred since the last judgment of good
progress is given by:
 k

kp 





++

=
βα

α
βα

β (2)

With a probability of α, the next judgment will yield poor
progress. m testpoints are required for such a judgment,
and the suspension time will be 2k. Thus, the mean steady-
state fraction of time suspended is:

()αβαβ
αβα

−+
=





 +−=

−∞

=

−∑
m

pmq
k

k
k

1

0

1211 (3)

This system is unstable unless α < β. Increasing β relative
to α increases the duty cycle of the background process
when its progress rate is good.

We have selected values of α = 0.05 and β = 0.2 for our
experiments. Theoretically, with a testpoint every few
hundred milliseconds, these values yield a reaction time of
a few seconds and a 1% performance degradation on the
low-importance process. Empirically (see section 9), these
values demonstrate a prompt reaction to high-importance
activity, a very stable suspension state, and a fairly low
impact on a high-importance process.

6.2 Exponential averaging
The automatic calibration procedure described in section
4.3 uses exponential averaging to track changes in the target
progress rate over time. Each time a testpoint occurs, the
duration d since the previous testpoint and the amount of
progress ∆p since the previous testpoint are used to update
the target progress rate r according to the following rule:
 r ← ξ r + (1 – ξ) ∆p / d (4)

The value of ξ is determined by the following equation:
 ξ = (n – 1) / n (5)

where n is selected by its effect on the following values:
 τs = n × expected time between testpoints (6)

 τl = n / m × maximum suspension time (7)

τs is the time constant for smoothing out short-term
variations in progress, so it should be large enough to
maintain a steady target rate. τl is the time constant for
tracking long-term changes in the target progress rate, so it
should be small enough to respond to changes in resource
performance characteristics.

For our performance experiments, we have set n to
10,000. Given our other parameters, this will smooth out
short-term variation with a time constant of 20 – 30 minutes
and track long-term changes with a time constant of 7 days.

6.3 Linear regression and averaging
The method for dealing with multiple progress metrics
described in section 4.4 uses linear regression to infer the
contributions of separate progress metrics to the duration
between testpoints. To track changes in target progress
rates over time, it exponentially averages the state
information needed for linear regression.

The multiple-metric calibration procedure determines
target rate values rk for each progress metric k. It assumes
that the duration d since the last testpoint equals the sum of
the times to make each type of progress, where each of
these times is the inverse of the target progress rate rk times
the measured progress ∆pk:

∑ ∆=
k

k
k

p
r

d
1

(8)

The calibration procedure performs least-squares linear
regression [4] on Equation 8 to estimate the regression
coefficients 1/rk. Since Equation 8 has a zero offset, the
regression is constrained to have no bias term. The

254

minimum data needed to solve the regression are known as
the “sufficient statistics,” which in this case are the matrix x
and the vector y, defined as follows:

jiji ppxji ∆∆=∀ ∑,:, (9)

 ii pdyi ∆=∀ ∑: (10)

To track changes in resource performance
characteristics over time, the calibrator exponentially
averages these sufficient statistics. At each testpoint after
the initialization phase, the sufficient statistics are updated
according to the following rules:
 ∀i,j: xi,j ← ξ xi,j + ∆pi ∆pj (11)

 ∀i: yi ← ξ yi + d ∆pi (12)

If progress metrics are correlated, they may exhibit
linear dependence, which causes singularity or numerical
instability in regression. To deal with this, the calibrator
uses ridge regression [3], which adds a small linear offset to
the main diagonal of the normal equation matrix before
solving the normal equations:





≠
=Ω+

=′∀
jix

jix
xji

ji

ji
ji �

�

,

,
,:,

ν (13)

 ∑=Ω
k

kkx ,
 (14)

The parameter ν controls the trade-off between solution
accuracy and numerical stability. From empirical testing, ν
= 10–11 perturbs the solution with an equal order-of-
magnitude error from floating-point round-off and from the
ridge-regression offset.

7. Implementation
We have developed two implementations of progress-based
regulation for Windows NT. The MS Manners library
requires only a single function call to perform all testpoint
processing. The BeNice program externally regulates an
unmodified program that reports its progress through a
standard interface.

7.1 Internal process regulation
We have packaged MS Manners as a library with a very
simple interface. A single function call performs all
testpoint processing. The calling interface of the testpoint
function is as follows:
Testpoint(int index,int count,int *metrics);

An application calls the testpoint function with one or
more progress metrics and an index value for the set of
metrics. Each time the function is called, it returns only
when it is okay for the application thread to proceed,
meanwhile blocking if necessary. If the function is called in
rapid succession, a lightweight test causes it to return
immediately, until sufficient time has passed to justify the
expense of testpoint processing.

An application that executes in sequential phases can
call the testpoint function with a different metric set from
each phase of its code. An application that progresses on
multiple dimensions concurrently can pass more than one

progress metric to the testpoint function on each call. Each
time the testpoint function is called with a new metric set, it
allocates and initializes an internal data structure for the set,
so no explicit initialization function need be called by the
application.

When using the MS Manners library, no special actions
need to be taken by a multi-threaded application. The
library controls the time-multiplex isolation of the threads
(see section 4.5). By calling the testpoint function with a
distinct metric index, each thread isolates its progress from
other threads.

The first call to the testpoint function spins up a
supervisor thread. Then, this call and all subsequent
testpoint calls record the index and progress metrics in
thread local storage [16], alert the supervisor thread, and
wait for the supervisor to signal the thread to proceed. If
the thread is judged to be progressing poorly, it is not
eligible to continue until its suspension time has elapsed.
The supervisor selects an eligible thread to proceed, using
decay usage scheduling [7] to share execution time among
regulated threads. If no threads are eligible to continue, the
supervisor sleeps.

The MS Manners library provides a function call by
which each thread can set its priority relative to other
threads. The supervisor favors high-priority threads over
low-priority threads.

The first supervisor thread that spins up in any process
spawns a superintendent process. The superintendent
communicates with each process’s supervisor thread via
shared memory. Before releasing a thread, a supervisor
waits for permission from the superintendent, which shares
execution time among the processes.

The MS Manners library sets a threshold on the
duration between successive testpoints. If a regulated
thread does not call testpoint within this threshold, the
thread is presumed hung, and another thread is selected to
execute. If and when the hung thread again calls testpoint,
MS Manners discards the progress rate information from
that testpoint. This time threshold deals with large external
delays, such as dialogue with the user or a failed network
connection. Such external delays should neither be factored
into the progress rate nor cause the process to suspend
indefinitely.

The library persistently maintains target rates for the
regulated application. The first time the testpoint function
is called, it scans the directory of the running program’s
executable file. If it finds a matching initialization file, it
initializes its target rates from that file. Periodically and at
termination, target rate information is written to this same
file to preserve targets for future executions.

7.2 External process regulation
We have built a program, called BeNice, that externally
regulates an unmodified application. BeNice monitors an
application’s progress via Windows NT performance
counters [15], a standard means for programs to export
measurements that aid performance tuning. Performance

255

counters are often exported by housekeeping programs and
long-running system utilities.

BeNice suspends an application by suspending its
threads. To obtain handles to the application’s threads,
BeNice uses the Windows program debugging interface
[14], a back-door access to internal application state. This
interface is primarily used by debuggers during program
development, but it is present even on optimized programs.

BeNice periodically suspends a process’s threads, polls
its performance counters, calls the MS Manners testpoint
function, and resumes the threads. There is no real need to
suspend the process for each poll, but experiments (see
section 9.3) show that these periodic interruptions cause
little performance reduction.

BeNice automatically adjusts the polling frequency to
track the rate of performance-counter updates. If the
fraction of polling intervals with no change in progress
exceeds a threshold, BeNice increases the polling interval.
If this fraction falls below a threshold, BeNice decreases
the interval, subject to a lower limit.

8. Example applications
We have used MS Manners to regulate two application
programs: a disk defragmenter and a Windows 2000 system
utility called the SIS Groveler.

The disk defragmenter progressively refines the disk
layout by a series of passes, each of which examines the
layout and rearranges the blocks of one or more files to
improve their physical locality on the disk. After each
relocation operation, the defragmenter calls the MS
Manners testpoint function with two non-orthogonal
measures of progress: the count of file blocks moved and
the count of move operations. The defragmenter creates a
separate execution thread for each disk partition, and each
thread calls the testpoint function with a pair of metrics
specific to that partition.

The SIS Groveler is a component of the Windows 2000
Remote Install Server (RIS). RIS allows a system
administrator to define a set of standard Windows 2000
installations and store images of these installations on a
server. A client machine can then be set up by
downloading an installation image from the RIS server.
Since each installation may have many files in common
with other installations, a Single Instance Store (SIS)
component eliminates duplicates by replacing each original
file with a link to a common-store file that holds the
contents of the original files. Duplicate files are discovered
by the SIS Groveler. The Groveler maintains a database of
information about all files on the disk, including a signature
of the file contents. Periodically, it scans the file system
change journal, a log that records all changes to the
contents of the file system. For any new or modified files,
the Groveler reads the file contents, computes a new
signature, searches its database for matching files, and
merges any duplicates it finds.

For each disk partition, the Groveler creates two
threads, a lightweight thread for scanning the file system
change journal, and a main thread for reading and

comparing file contents. The former thread is not
regulated, in order to prevent the change journal from
overflowing. The latter thread periodically testpoints with
two non-orthogonal progress measures: the count of read
operations performed and the volume of data read. The
Groveler tells MS Manners to give highest priority to the
thread working on the disk with the least free space.

9. Performance results
The results in the following sections show that, when a
high-importance process is degraded due to resource
contention with a low-importance process, MS Manners can
reduce this degradation by up to an order of magnitude,
albeit at the expense of some performance loss in the low-
importance process. When a low-importance process is
running on an otherwise-idle system, MS Manners has a
negligible effect on its performance. An analysis of
dynamic application behavior illustrates the necessity of a
statistical comparator for judging the progress rate. An
experiment with a multi-threaded low-importance process
demonstrates the efficacy of time-multiplex isolation.
Finally, a test shows that the automatic calibration
mechanism converges to a target value that is close to ideal,
even if the initial calibration is performed on a heavily
loaded system.

9.1 Experimental setup
Our test machine is a Pentium II 266-MHz personal
computer with 64 MB of RAM, a PCI bus, and an Adaptec
2940UW SCSI controller connected to two Seagate
ST34371W disk drives and a Plextor PX-12TS CD-ROM
drive. The operating system is the beta 3 release of
Microsoft Windows 2000.

We tested MS Manners using two representative pairs
of low- and high-importance processes. The two low-
importance processes are the disk defragmenter and the SIS
Groveler described in section 8, and the corresponding
high-importance processes are Microsoft SQL Server and
Microsoft Office 97 Professional Setup, respectively. We
chose these application sets as typical examples of realistic
server environments: A disk defragmenter is a reasonable
low-importance application to run on a database server, and
installation of a large application such as Office 97
Professional is a typical operation performed on a Remote
Install Server that is running the SIS Groveler.

We established fixed workloads for each application.
We configured the disk defragmenter to halt after one pass
through the file system, starting from a fixed disk layout.
We provided the Groveler with two identical directory trees
to scan. We configured Office 97 Setup for a complete
installation from CD except for the Find Fast component,
which would have interfered with our performance
measurements. We drove SQL Server with the initial load-
up sequence from the TPC-C database benchmark*.

* Our performance results should not be interpreted as claims

about the OLTP performance of SQL Server.

256

For all experiments except the calibration test, we
established a target progress rate by running the low-
importance application on an idle system until the initial
calibration phase completed. We zeroed the probation
period, so that normal regulated operation would
immediately commence.

We illustrate our results using box plots [6], which are a
more precise and robust means of displaying result
variances than deviation-based error bars. Figure 3 is an
example. The “waist” in each box indicates the median
value, the “shoulders” indicate the upper quartile, and the
“hips” indicate the lower quartile. The vertical line from
the top of the box extends to a horizontal bar indicating the
maximum data value less than the upper cutoff, which is the
upper quartile plus 3/2 the height of the box. Similarly, the
line from the bottom of the box extends to a bar indicating
the minimum data value greater than the lower cutoff,
which is the lower quartile minus 3/2 the height of the box.
Data outside the cutoffs is represented as points.

9.2 Contending processes
Our first experiment tested the impact on SQL Server’s
performance from running the disk defragmenter. With
SQL Server running, we started the defragmenter, waited
30 seconds, and then applied the database workload. We
measured the time for the defragmenter to complete one
file-system pass and the time for SQL Server to execute its
workload. We performed this test with and without
progress-based regulation of the defragmenter. As a
control, we also measured the time for SQL server to
complete its workload when the defragmenter was not
running. We repeated each test 50 times.

Figure 3 illustrates the impact of the disk defragmenter
on SQL Server. When no other non-system process is
executing, SQL Server takes a median time of 300 seconds
to complete its workload. When the disk defragmenter runs
concurrently as an unregulated process, resource contention
increases the median completion time by about 90%.
Reducing the defragmenter’s CPU priority makes no
appreciable difference. However, when the defragmenter
employs MS Manners either directly or via the BeNice
program, SQL Server’s median completion time is merely

7% greater than when the defragmenter is not running at all.
In other words, MS Manners reduces the performance
degradation by an order of magnitude.

Our second experiment tested the impact on Office 97
Setup’s performance from running the SIS Groveler. We
started the Groveler, waited 30 seconds, and then clicked
the “Continue” button on the final Office 97 Setup
configuration box. We measured the time for the Groveler
to execute its workload and the time for Office 97 Setup to
complete installation. We performed this test with and
without progress-based regulation of the Groveler. As a
control, we also measured the time for Office 97 Setup to
complete its workload when the Groveler was not running.
Since this experiment was not automated, we repeated each
test only five times.

Figure 4 illustrates the performance impact of the SIS
Groveler on Office 97 Setup. When no other non-system
process is executing, Office 97 Setup takes a median time
of 250 seconds to complete its workload. When the
Groveler runs concurrently as an unregulated process,
resource contention increases the median completion time
by about 90%. Reducing the Groveler’s CPU priority
makes no appreciable difference. However, when the
Groveler employs MS Manners, Office 97 Setup’s median
completion time is merely 12% greater than when the
Groveler is not running. As in the previous experiment, MS
Manners reduces the performance degradation by nearly an
order of magnitude.

9.3 Low-importance process
Our next experiment tested the impact of MS Manners on
the disk defragmenter on an otherwise-idle system. With no
high-importance process running, we started the
defragmenter and measured the time for it to complete one
file-system pass. We performed this test with and without
progress-based regulation of the defragmenter, and we
repeated each test 50 times.

Figure 5 illustrates the impact of progress-based
regulation on the defragmenter. Note that the y-axis origin
is not zero; on a zero-based scale, all execution times are
indistinguishable. When no high-importance process is
running, the median execution time for the defragmenter is

100

200

300

400

500

600

700

unregulated CPU priority MS Manners BeNice not running

da
ta

ba
se

 w
or

kl
oa

d
ru

n
ti

m
e

(s
ec

on
ds

)

0

status of disk defragmenter

Figure 3. Database workload run time

w

unregulated CPU priority MS Manners not running
0

O
ff

ic
e

97
 S

et
up

 t
im

e
(s

ec
on

ds
)

100

200

300

400

500

status of SIS Groveler

Figure 4. Office 97 Setup time

257

410 seconds, irrespective of whether it is running normally,
or with low CPU priority, or employing MS Manners.
When running under the control of BeNice, the median
execution time increases by about 1.5%, due to suspension
and resumption of the process’s threads at every testpoint.

Figure 6 illustrates another result from the first
experiment of section 9.2. Since the uncontended database
workload runs for 300 seconds, running it in parallel with
the defragmenter should increase the defragmenter’s run
time by 300 seconds due to resource sharing. However, this
increase in run time is actually 460 seconds, 50% greater
due to the inefficiency of resource contention. When the
defragmenter is run with MS Manners, its run time
increases by 550 seconds, 80% greater due to suspension
while SQL Server is running, plus suspension overshoot as
described in the next section.

9.4 Dynamic behavior
To explain how MS Manners improves the performance of
a high-importance application, Figure 7 illustrates the
dynamic execution behavior of the disk defragmenter when
employing MS Manners. This trace was taken from an
arbitrary sample run in the first experiment described in
section 9.2. The x-axis is run time from the beginning of
the defragmenter’s execution. The y-axis value is a one if
the defragmenter is executing and a zero if it is blocked in
the testpoint function. The two vertical dotted lines

indicate the start and completion of the SQL Server
workload for this test.

As Figure 7 shows, initially SQL Server has no
workload, so the defragmenter runs normally. At 30
seconds, SQL Server begins executing, consuming
resources and retarding the defragmenter’s progress. MS
Manners senses this reduction in progress rate and suspends
the defragmenter for exponentially increasing intervals.

MS Manners makes an execution probe shortly before
SQL Server completes its workload, and the exponential
back-off then keeps the defragmenter suspended for 220
seconds longer than necessary. This shows a nearly worst
case. If the execution probe had occurred just after the
completion of SQL Server’s workload rather than just
before it, this suspension overshoot would have been
avoided. The few outliers in the “MS Manners” column of
Figure 6 suggest that these overshoots may have been thus
avoided occasionally.

To show the necessity for a statistical comparator,
Figure 8 illustrates the progress of the disk defragmenter
under MS Manners. This trace was taken from the same
sample run as that of Figure 7. The x-axis is run time. The
y-axis indicates the defragmenter’s progress rate, expressed
in the normalized target duration between testpoints,
calculated over two-second intervals. Values greater than
one indicate progress above the target rate; values less than
one indicate progress below the target rate.

As Figure 8 shows, during the brief period before 30

410

420

430

440

450

de
fr

ag
m

en
te

r
ru

n
ti

m
e

(s
ec

on
ds

)

unregulated CPU priority MS Manners BeNice
400

status of disk defragmenter
Figure 5: Defragment time when not contended

200

400

600

800

1000

unregulated CPU priority MS Manners BeNice
0

de
fr

ag
m

en
te

r
ru

n
ti

m
e

(s
ec

on
ds

)

status of disk defragmenter

Figure 6. Defragment time with database workload

0

1

0 200 400 600 800 1000 1200
run time (seconds)

p
ro

c
e

ss
 e

xe
c

ut
io

n
(b

in
a

ry
)

Figure 7. Defragmenter duty with database workload

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200
run time (seconds)

p
ro

g
re

ss
 (

no
rm

a
liz

e
d

 ta
rg

e
t d

ur
a

tio
n)

Figure 8. Defragger progress with database workload

258

seconds and the long period from 575 to 965 seconds, the
defragmenter is progressing mostly at or above its target
rate. However, many of these individual progress rate
measurements fall below the target rate. If MS Manners
were to suspend the process for each measurement below
target, its execution would be overreactive and highly
erratic. The statistical comparator correctly ignores
measurements of low progress rate if they are properly
balanced with measurements of high progress rate, thereby
providing the relatively smooth execution pattern shown in
Figure 7.

9.5 Thread isolation
Our next experiment tested the time-multiplex isolation of
multiple low-importance threads. We provided the SIS
Groveler with workloads on two separate disk drives,
labeled C and D, that shared a common SCSI controller.
The C drive had less free space available, so the Groveler
set its thread priority higher using a MS Manners library
call. We used dummy applications to generate intensive
disk and CPU loads.

Figure 9 illustrates the dynamic execution behavior of
two threads of the SIS Groveler. The x-axis is run time.
The y-axis is divided into five sections, each indicating a
high value if a corresponding task is executing and a low
value if it is not. The top two curves indicate the two
dummy loads on the C and D drives. The middle curve
indicates the dummy CPU load. The bottom two curves
indicate the two Groveler threads for the C and D drives.

As Figure 9 shows, MS Manners favors execution of the
C-drive thread because it has a higher priority. When the
dummy load runs on the C drive, MS Manners shifts
execution to the D-drive thread. When the CPU or both
drives are loaded, both threads are exponentially
suspended. The Groveler’s CPU priority is set low, so it is
very responsive to CPU load. There is some noticeable
perturbation of the execution patterns, in part due to
exponential back-off, and in part due to incomplete
isolation between the two drives, since they use a common
SCSI controller.

9.6 Target calibration
Our final experiment tested the behavior of the automatic
calibration mechanism. With no prior calibration of target
progress rate, we started the disk defragmenter and allowed
it to operate for 48 hours. We set the probation period (see
section 4.3) to 24 hours. In the absence of real data
regarding the daily load on a typical server I/O system, we
generated a time-varying, bursty disk load using a dummy
application. The burst times fluctuated between 10 seconds
and 15 minutes, separated by similarly fluctuating idle
periods. The mean load varied in a sinusoidal pattern to
simulate a diurnally cyclical pattern of system activity. To
illustrate a worst case, we started the defragmenter during a
continuous burst of disk activity, so the calibrator initially
computes a target rate that is far too low.

Figure 10 illustrates the results of the calibration test.
The x-axis is run time. The faint solid line shows the mean
value of the bursty disk load, plotted against the left y-axis,
and the dark solid line shows the calibrating target, plotted
against the right y-axis. Since the disk defragmenter has
two progress metrics, the dark solid line aggregates these
into a single value that reflects the target duration between
testpoints, as calculated by equation 8, based on the mean
progress between testpoints over the entire run.

The ideal target duration is about 480 msec. Figure 8
shows that the target duration is initially calculated at nearly
1600 msec, due to contention with the dummy process.
After 12 hours, the target has dropped to 620 msec, and
after 24, it has dropped to 500 msec. Thereafter, it slowly
approaches its ideal value.

The dotted line in Figure 10 shows the defragmenter’s
activity, plotted against the left y-axis. For the first 24
hours, the process is on probation, so its activity level is
constrained. For the second 24 hours, the defragmenter
could theoretically be active 50% of the time, since the
dummy process is idle 50% of the overall time. However,
the defragmenter is actually active only 19% of the time,
due to suspension overshoot (see section 9.4). Although the
suspension causes the defragmenter to execute inefficiently,
it does a good job of preventing interference with the

0 100 200 300 400 500 600

el apsed t i me (seconds)

disk C

disk D

CPU

grovel C

grovel D

Figure 9. Groveler thread duty

0%

25%

50%

75%

100%

0 6 12 18 24 30 36 42 48
run time (hours)

0

400

800

1200

1600

mean disk load defragmenter activity
target duration between testpoints

m
e

a
n

d
is

k
lo

a
d

 /

d
e

fra
g

m
e

nt
e

r a
c

tiv
ity

ta
rg

e
t d

ur
a

tio
n

b
e

tw
e

e
n

te
st

p
o

in
ts

 (
m

se
c

)

Figure 10. Defragmenter Target Calibration

259

dummy process: 94% of the defragmenter’s execution
occurs while the dummy is idle, and only 6% of it while the
dummy is active.

10. Related work
Our basic idea for progress-based regulation of low-
importance processes was inspired by the feedback
regulation used to control congestion in TCP [8]. TCP
regards packet losses as an indication of congestion, and it
responds by reducing its transmission rate. This is closely
analogous to regarding a reduction in progress rate as an
indication of contention, and responding by suspending
process execution. However, TCP has a goal that is quite
different from ours: TCP uses exponential suspension and
linear resumption on all senders so that they will share
network bandwidth more-or-less fairly. MS Manners uses
exponential suspension and instantaneous resumption only
on the low-importance process, so that it will adjust to the
time scale of other processes' execution patterns, with the
goal of utterly deferring to the other processes.

One of the primary strengths of MS Manners is its
ability to automatically calibrate a target rate, which not
only frees the application designer from the tedious process
of manual tuning but also enables the target to dynamically
track sustained changes in system performance over time.
A number of researchers have explored automatic tuning
and calibration mechanisms, in areas of CPU scheduling,
database tuning, and operating system policies:

Andersen [1] investigated the automatic tuning of CPU
scheduling algorithms using optimization by simulated
evolution, although he concluded that this tuning was too
computationally intensive to be performed in real time.

The COMFORT project [28] investigated automatically
tuning the configuration and operational parameters of a
database system to improve performance. They
implemented a control system that dynamically adjusts the
multi-programming level to avoid lock thrashing, and they
implemented a self-tuning memory manager to exploit
inter-transaction locality of reference.

VINO [22] is an extensible operating system that
employs self-monitoring, data correlation, and in situ
simulation to estimate the effects of policy changes. The
changes are proposed by heuristics that attempt to minimize
the performance degradation from such causes as paging,
disk wait, poor code layout, interrupt latency, and lock
contention.

MS Manners employs exponential averaging of
sufficient statistics in its target calibration. This is a
common technique in the discipline of artificial
intelligence, used in various contexts by, for example,
Spiegelhalter and Lauritzen [25] and Nowlan [18].

11. Future work
Future work should focus on addressing the limitations

of progress-based regulation, such as the assumption of
symmetric performance impact from resource contention.
Since this is the primary assumption of the technique, it
seems an especially hard requirement to remove.

Another significant limitation is the need for the
application’s cooperation in measuring progress. Although
our method is resource-independent, it is application-
specific, insofar as the progress measures depend on the
high-level task the application performs. If we had a
complete list of all resources an application might use, we
could attempt to measure the application’s resource
consumption and use it as an indication of the application’s
progress. However, resource usage is likely to be a poor
indicator of progress, because resource consumption and
application progress can be either positively or negatively
correlated. For example, if a low-importance application
starts contending with a high-importance application for
CPU cycles, its CPU usage will decrease. By contrast, if it
is contending for cache lines, its CPU usage will increase.

The BeNice program monitors an application’s progress
via Windows NT performance counters. An alternate
method of obtaining progress information about an
application is to tap into the progress bar [13], a visual
meter on the computer monitor that denotes the progress of
a lengthy operation. The progress bar is a common control
[17], usable by any application, so its code could be
modified to relay the progress updates it receives from the
application. However, anecdotal evidence suggests that the
progress bar is a very poor metric of the actual progress that
a program makes. We suspect this is in part due to the need
to aggregate progress along multiple dimensions into a
single metric.

Our method can be thwarted by a malicious program
that provides false progress information. We could
possibly detect this in some instances by performing sanity
checks on the progress metrics relative to measurable
system resource usage.

Our automatic calibration procedure requires some
significant time periods of uncontended resource use.
Future work could develop a new calibration technique that
determines target rates from fewer measurements.

Our method fails to discriminate between resources that
are internal and external to a machine. Perhaps there are
strategies for determining the physical location of a
resource without sacrificing the main benefits of resource
independence.

We need a solution to priority inversion. Perhaps there
are techniques – presumably specific to an operating system
– that can automatically detect when an application is
holding a shared resource.

There may be value in investigating alternate schemes
for suspension and resumption. From our tests, exponential
suspension and instantaneous resumption appear to work
well, but perhaps other strategies would be more efficient or
more robust.

The non-parametric hypothesis test used by the
statistical comparator requires a minimum number of
samples to make a judgment. A parametric test could be
more responsive, but it would require modeling the
progress rate distribution for each progress metric of an
application.

260

12. Conclusions
Progress-based regulation is a demonstrably effective
technique for preventing low-importance processes from
interfering with the performance of high-importance
processes. It is resource-independent, it requires no kernel
modifications, and it works in server environments with
continuously running applications and unpredictable
workload schedules.

Progress-based regulation requires a fair amount of
computational machinery, including statistical apparatus to
deal with stochastic progress measurements, a calibration
mechanism to establish a target progress rate, mathematical
inferencing to separate the effects of multiple progress
metrics, and an orchestration infrastructure to prevent
measurement interference among multiple low-importance
processes and threads.

However, with appropriate packaging, incorporating
progress-based regulation into an application can be very
straightforward. The MS Manners library requires adding
only a single function call to a low-importance program.
The BeNice program monitors and suspends a process
externally, so no program modifications at all are required,
as long as the process reports its progress through a
standard mechanism. Neither the control system nor the
application needs to know what system resources are used.

Acknowledgements
We owe thanks to Scott Cutshall and Cedric Krumbein for
their assistance with the SIS Groveler, to Charles Levine for
his assistance with MS SQL Server, to John Platt for his
help with ridge regression, to Laura Bain, K. C. Rich, and
Anna Little for their invaluable research assistance, and to
Rick Rashid, Richard Draves, Marvin Theimer, Venkat
Padmanabhan, Galen Hunt, Brian Zill, the SOSP program
committee, and especially our shepherd, Jeff Mogul, for
their suggestions on improving our presentation.

References
[1] B. Andersen. “Tuning computer CPU scheduling

algorithms using evolutionary programming,” 3rd
Conf. Evolutionary Prog., World Scientific, Singapore,
p. 316-323, Feb 1994.

[2] D. P. Anderson & D. Wertheimer. “The search for
extraterrestrial intelligence at home,”
http://setiathome.ssl.berkeley.edu/, 1999.

[3] C. M. Bishop. Neural Networks for Pattern
Recognition. Oxford Press, 1995.

[4] J. E. Freund. Mathematical Statistics, 5th ed. Prentice
Hall, 1992.

[5] J. Goodman, A. G. Greenberg, N. Madras, P. March.
“Stability of binary exponential backoff,” J. ACM 35
(3), p. 579-602, July 1988.

[6] D. M. Harrison. Mathematica Experimental Data
Analyst. Wolfram Research, Champaign, IL, 1996.

[7] J. L. Hellerstein. “Achieving service rate objectives
with decay usage scheduling,” IEEE Trans. SW Eng.
19 (8), p. 813-825, Aug 1993.

[8] V. Jacobson. “Congestion avoidance and control.” 88
SIGCOMM, p. 314-329, Aug 1988.

[9] J. J. Kistler & M. Satyanarayanan. “Disconnected
operation in the Coda file system.” TOCS 10 (1), p. 3-
25, Feb 1992.

[10] L. Kleinrock. Queueing Systems, Volume I: Theory,
John Wiley & Sons, 1975.

[11] P. Krueger & R. Chawla. “The Stealth distributed
scheduler.” 11th Intl. Distr. Comp. Sys., p. 336-343,
1991.

[12] B. W. Lampson. “Hints for computer system design,”
IEEE Software 1 (1), p. 11-28, Jan 84.

[13] Microsoft. “CProgressCtrl.” Microsoft Developer
Network (MSDN) Library, Jul 1998.

[14] Microsoft. “Debugging.” MSDN, Jul 1998.
[15] Microsoft. “Performance data helper.” MSDN, Jul 1998.
[16] Microsoft. “Thread local storage.” MSDN, Jul 1998.
[17] Microsoft. “Using common controls.” MSDN, Jul 1998.
[18] S. J. Nowlan. Soft competitive adaptation: neural

network learning algorithms based on fitting statistical
mixtures, Ph.D. thesis, Carnegie Mellon University.
CS-91-126, 1991.

[19] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa.
“Resource kernels: a resource-centric approach to real-
time and multimedia systems,” SPIE 3310, p. 150-164,
Jan 1998.

[20] K. K. Ramakrishnan & H. Yang. “The Ethernet capture
effect: analysis and solution,” 19th Conf. Local
Computer Networks, p. 228-240, Oct 1994.

[21] W. A. Rosenkrantz. “Some theorems on the instability
of the exponential back-off protocol,” 10th Models of
Computer System Performance, p. 199-205, Dec 1984.

[22] M. Seltzer & C. Small. “Self-monitoring and self-
adapting operating systems,” 6th HotOS, p. 124-129,
May 1997.

[23] A. Silberschatz & P. B. Galvin. Operating System
Concepts, 4th ed. Addison-Wesley, 1994.

[24] K. A. Smith & M. I. Seltzer. “File system aging –
increasing the relevance of file system benchmarks.”
97 SIGMETRICS, p. 203-213, Jun 1997.

[25] D. J. Spiegelhalter & S. L. Lauritzen. “Sequential
updating of conditional probabilities on directed
graphical structures,” Networks 20, p. 579-605, 1990.

[26] K. Tadamura & E. Nakamae. “Dynamic process
management for avoiding the confliction between the
development of a program and a job for producing
animation frames.” 5th Pacific Conf. on Computer
Graphics and Applications, IEEE Computer Soc., p.
23-29, Oct 1997.

[27] B. Verghese, A. Gupta, M. Rosenblum. “Performance
isolation: sharing and isolation in shared-memory
multiprocessors.” 8th ASPLOS, p. 181-192, Oct 1998.

[28] G. Weikum, C. Hasse, A. Mönkeberg, P. Zabback.
“The COMFORT automatic tuning project,”
Information Systems 19 (5), p. 381-432, Jul 1994.

[29] B. L. Worthington, G. R. Ganger, Y. N. Patt, J. Wilkes.
“On-line extraction of SCSI disk drive parameters.” 95
SIGMETRICS, p. 146-156, May 1995.

