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Abstract 

MS Manners is a mechanism that employs progress-based 
regulation to prevent resource contention with low-
importance processes from degrading the performance of 
high-importance processes.  The mechanism assumes that 
resource contention that degrades the performance of a 
high-importance process will also retard the progress of 
the low-importance process.  MS Manners detects this 
contention by monitoring the progress of the low-
importance process and inferring resource contention from 
a drop in the progress rate.  This technique recognizes 
contention over any system resource, as long as the 
performance impact on contending processes is roughly 
symmetric.  MS Manners employs statistical mechanisms to 
deal with stochastic progress measurements; it 
automatically calibrates a target progress rate, so no 
manual tuning is required; it supports multiple progress 
metrics from applications that perform several distinct 
tasks; and it orchestrates multiple low-importance 
processes to prevent measurement interference.  
Experiments with two low-importance applications show 
that MS Manners can reduce the degradation of high-
importance processes by up to an order of magnitude. 

Categories and subject descriptors:  D.4.1 [Operating sys-
tems]: Process management – scheduling; G.3 [Probability 
and statistics]; G.4 [Mathematical software] 

General terms:  Algorithms, Measurement, Performance 

Additional key words and phrases:  progress-based feed-
back, symmetric resource contention, process priority 

1. Introduction 
We have developed a method that prevents low-importance 
processes from interfering with the performance of high-
importance processes.  Such interference is generally 
caused by contention over shared resources, so our method 
relieves this contention by suspending the low-importance 
process whenever it detects resource contention.  Our 
method detects resource contention by means of progress-
based feedback:  A control system monitors the progress of 

the low-importance application and regards a drop in the 
progress rate as an indication of resource contention.  We 
refer to this control system as MS Manners, because it 
determines when a low-importance process should politely 
defer to a high-importance process. 

The need for such a method arose in the development of 
the SIS Groveler, a Microsoft® Windows® 2000 system 
utility that finds and merges duplicate files on a file system.  
We needed a mechanism that would allow our low-
importance utility to use idle resources without degrading 
other processes.  The Groveler is I/O-bound, so CPU 
priority is insufficient to control its resource usage.  The 
Windows 2000 kernel does not support priority for other 
resources, and we did not wish to modify the kernel.  The 
Groveler runs in server environments with continuously 
running applications and unpredictable workload schedules, 
which disqualifies all prior solutions of which we are aware. 

We found that this method worked well for the 
Groveler, so we expected it might work well for other long-
running, low-importance applications, such as a backup 
system, a disk defragmenter, a file archiver, a virus scanner, 
or other housekeeping utilities.  Therefore, we re-packaged 
our method as a general application in two different forms: 
a library that can be called by low-importance applications, 
and an executable program that externally monitors and 
regulates low-importance applications that report progress 
through a standard Windows NT® mechanism. 

Performance measurements indicate that MS Manners is 
very effective at reducing the impact of low-importance 
processes on high-importance processes.  In two example 
low-importance applications, MS Manners reduced the 
performance hit on high-importance applications by as 
much as an order of magnitude:  Running a low-importance 
process increased the execution time of a concurrent high-
importance process by 90%; applying MS Manners reduced 
this increase to 7 – 12%. 

In the following sections, we review previous 
approaches to low-importance process regulation, we 
explain the assumptions and limitations of our approach, we 
describe our technique in detail, and we present 
experimental results on its effectiveness. 

2. Previous approaches 
Many approaches to low-importance process regulation 
have been proposed and implemented, such as scheduling 
for specific times, running as a screen saver, scanning the 
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system process queue, and various resource-specific 
methods.  These approaches vary considerably in their 
generality, complexity, and invasiveness.  Our approach is 
not strictly better than any of the others; it is merely another 
design point in the overall problem space. 

If system activity is at least coarsely predictable, one 
simple approach is to schedule a low-importance process to 
run during expected periods of little or no system activity, 
such as the middle of the night.  This technique fails to 
exploit unanticipated idle times, and it fails to regulate 
during periods of unanticipated activity.  Moreover, if 
system activity is not predictably periodic, this technique 
does not work at all, and a mechanism to dynamically 
determine idle periods is needed. 

One method for determining idle periods is to use the 
approach of a screen saver: activate the low-importance 
process in the absence of keyboard or mouse activity.  This 
approach relies on the assumption that a lack of user input 
indicates that the system is unused.  This assumption may 
be reasonable for a desktop workstation, but it is not valid 
for a server, which is often busy but which rarely receives 
direct user input. 

Another approach is to run low-importance processes 
only when no high-importance processes are in the system 
process queue [26].  However, a high-importance process 
may be in the process queue without consuming significant 
resources.  For example, a database-server application 
might run continuously but only require resources when 
given a workload.  In such a scenario, this approach would 
never allow a low-importance process to run. 

A time-honored method [12] is to use CPU priority.  
When assigned a low CPU priority, a low-importance 
process is prevented from using the CPU when any normal 
priority process is using it.  This works well if the CPU is 
the limiting resource.  If another resource – such as disk or 
memory – is the limiting factor, the CPU is uncontended, so 
CPU priority is ineffective. 

Priority can be extended to other resources besides the 
CPU.  In general, this requires modifying the OS kernel.  
For example, Stealth [11] is a process scheduler that 
prioritizes CPU, virtual memory, and file system cache.  
This extension is still limited to a few specific resources, 
and the techniques are resource-specific. 

A similar but more general approach is performance 
isolation [27], which supports various allocation and 
sharing policies for multiple resources.  If a low-importance 
process is entitled to zero resources, it can only use shares 
of resources that are unused by other processes.  Although 
the performance isolation framework is general, each 
resource requires a specific isolation technique. 

Another resource-specific approach comes from the 
domain of real-time systems.  Resource kernels [19] 
schedule multiple system resources among concurrent 
processes.  All processes must make explicit reservations 
for resources, and actual resource usage is monitored and 
enforced by the kernel. 

Our approach is resource-independent, and it requires 
no kernel modifications.  It works in server environments in 

which high-importance applications run continuously and 
receive workloads at unpredictable times.  These features 
differentiate it from previous approaches. 

3. Assumptions and limitations 
Like the earlier approaches described above, MS Manners 
relies on several assumptions, primarily the symmetry of 
performance impact from resource contention and the 
accessibility of progress measures that accurately reflect 
resource consumption. 

Our driving assumption is that the performance impact 
from resource contention is roughly symmetric.  If a low-
importance process is substantially degrading a high-
importance process, then the low-importance process will 
also be substantially degraded, so our method will observe 
the effect and appropriately suspend the low-importance 
process.  On the other hand, if the degradation of the low-
importance process is too small to observe, then the impact 
on the high-importance process is likely to be small as well, 
so the low-importance process can continue. 

This assumption of symmetry can be violated if the 
operating system does not aim for fairness in sharing 
resources among processes.  For example, a disk scheduler 
might favor small transfers over large ones, so a low-
importance process making small disk transfers will 
degrade the performance of a high-importance process 
making large disk transfers, without itself experiencing any 
reciprocal degradation. 

One noteworthy example of resource asymmetry is 
physical memory.  If the combined memory requirement of 
two processes exceeds the available physical memory, 
operating systems tend to drastically favor one process over 
another [23], in order to avoid page thrashing.  This is 
reasonable behavior, but it invalidates our key assumption 
for this important resource. 

For the general case, we have no solution to the 
problem of resource asymmetry.  For resources with user-
settable priority, the problem can be averted by lowering 
the resource priority of the low-importance process. 

A second critical assumption is that the regulator has 
access to some progress metric for the low-importance 
process.  This means either that the application must export 
one or more progress metrics via a standard interface, or 
that the application can be modified to indicate its progress 
via a library call. 

A malicious application might provide false progress 
information in order to avoid being regulated.  Our method 
assumes that progress information is correct and reasonably 
accurate, and it makes no attempt to detect or suspend 
malicious processes. 

Beyond these assumptions, MS Manners has several 
limitations that follow from its premises.  Since it 
automatically calibrates its tuning parameters (see section 
4.3), it requires significant periods of resource idleness.  If 
resources are continually busy, the calibrator cannot 
determine correct parameter values.  Even given significant 
idle periods, calibration can require many hours or even 
days if execution begins on a heavily loaded system.  If the 
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calibration is started on a relatively idle system, this time 
can be shortened to a few minutes.  This limitation 
generally restricts progress-based regulation to processes 
that are long-running. 

Since MS Manners is completely resource-independent, 
it does not discriminate between various classes of 
resources, such as those internal and external to a machine.  
For example, a web crawler’s progress rate will degrade 
when the network is loaded, triggering MS Manners to 
suspend the process, which may not be as desired.  Solving 
this problem requires either making MS Manners resource-
aware or modifying the application to adjust its progress 
metrics for external delays.  These fixes oppose our goals of 
resource independence and noninvasiveness. 

Since MS Manners can regulate unmodified 
applications (see section 7.2), it may suspend a process that 
is holding a shared system resource, such as a lock or an 
exclusive file handle.  This resource will remain unavailable 
to any high-importance process that requires it, causing a 
priority inversion.  For applications that are modified to use 
MS Manners directly, suspension occurs only at well 
defined points in the application code, so this problem can 
be avoided by not holding a resource at such a point.  
However, for unmodified applications, we have no solution. 

4. Architectural components 
Figure 1 illustrates the application environment of a 
standard operating system, in which multiple applications 
may run concurrently.  Some system resources may be used 
exclusively by a single application, whereas others may be 
shared by more than one application.  If a shared resource is 
limited, then use of that resource by one process will 
degrade the performance of other processes that use that 
same resource. 

If a user explicitly designates one or more applications 
as having low importance, then the MS Manners control 
system prevents the process from using resources that are in 
use by any normal, high-importance application.  The 
control system monitors the progress of the low-importance 
application.  When the control system sees a drop in the 
rate of progress, it infers that the application is experiencing 
resource contention, so it suspends its execution. 

Figure 2 illustrates the main architectural components 
of MS Manners.  Periodically, a low-importance process 
provides an indication of its progress, through either a 
library call or a standard reporting interface.  A rate 
calculator combines this progress indication with temporal 
information from a system clock to determine the process’s 

progress rate.  This progress rate is used for two purposes:  
First, it is fed into a target calibrator, which analyzes many 
progress rate measurements to determine a target rate for 
the process.  Second, the progress rate is fed into a rate 
comparator, which compares it against the target rate from 
the target calibrator.  The rate comparator judges whether 
the current progress rate is less than the target progress rate.  
This judgment is used for two purposes:  First, it is fed into 
a suspension time calculator, which maintains a suspension 
time value; the calculator increases this value when the 
progress is judged to be below target, and it decreases this 
value when the progress is judged to be at or above target.  
Second, the judgment is fed into an execution regulator; if 
the progress is below target, the regulator suspends the 
process for the suspension time. 

The following sections describe these components in 
the abstract.  For implementation details, see section 7. 

4.1 Core components 
MS Manners’ core components are measuring the 
application’s rate of progress, comparing this rate against a 
target rate, and suspending the process when the rate falls 
below target.  This section describes these components in 
their simplest form; more sophisticated versions are 
described in subsequent sections. 

Periodically, at times known as testpoints, the control 
system acquires metrics of the application’s progress.  (For 
the moment, we ignore the mechanism by which progress 
metrics are conveyed from the application to the control 
system.  Two such mechanisms are described in section 7.)  
These progress metrics can be expressed in virtually any 
unit that is meaningful to and easily tracked by the 
application.  For example, a file compressor might indicate 
quantity of data compressed, whereas a content indexer 
might indicate the number of directory entries scanned.  
Section 5 discusses properties of good progress metrics. 

Testpoints should be made fairly frequently, at least 
once per few hundred milliseconds, so the process can be 
suspended promptly when necessary.  At each testpoint, MS 
Manners calculates the elapsed time and the progress made 
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since the previous testpoint.  It then calculates the progress 
rate as the ratio of these two values. 

MS Manners compares this progress rate to a target 
progress rate.  The target rate is the progress rate expected 
when the application is not contending for any resources 
(see section 4.3).  If the actual progress rate is at least as 
good as the target, MS Manners judges the progress rate to 
be good; otherwise, it judges it to be poor. 

If the progress rate is good, the control system allows 
the process to continue immediately.  If the progress rate is 
poor, the control system suspends the process for a period 
of time before allowing it to continue.  The execution is not 
stopped entirely, or else there would be no way to 
determine when it is okay to continue. 

The time a process is suspended depends on how many 
successive testpoints indicate poor progress.  On each 
testpoint that indicates poor progress, the suspension time is 
doubled, up to a set limit.  Once a testpoint indicates good 
progress, the process is allowed to continue, and the 
suspension time is restored to its initial value. 

The exponential increase makes the low-importance 
process adjust to the time scale of other processes’ 
execution patterns.  Following short periods of activity by a 
high-importance process, the low-importance process will 
resume promptly, but during long periods of high-
importance activity, the low-importance process makes only 
infrequent execution probes.  The limit on suspension time 
places a bound on the worst-case resumption time. 

These components are necessary for progress-based 
regulation, but they are not always sufficient.  For example, 
if progress measurements are stochastic, directly comparing 
them to the target rate may yield an incorrect judgment of 
the progress rate.  Also, these components do not include a 
method for determining a target progress rate.  The rate 
calculation cannot cope with an application whose progress 
is naturally measured along two or more dimensions.  
Finally, if multiple low-importance threads execute at the 
same time, they can interfere with each other’s progress 
measurements if they use any common resources.  The 
following sections describe additional components that deal 
with each of these complications. 

4.2 Statistical rate comparison 
Progress rate can fluctuate due to several factors, such as 
variable I/O timing [29], coarse progress measures, and 
clock granularity.  If the control system directly compares 
progress rate to target rate, it may frequently make incorrect 
progress-rate judgments, causing inappropriate suspension 
or execution of the process. 

MS Manners copes with noisy measurements by using a 
statistical rate comparator.  Rather than making an 
immediate judgment about the progress rate, the comparator 
continues to collect progress-rate measurements until it has 
enough data to confidently make a judgment. 

The comparator feeds each progress-rate measurement 
into a statistical hypothesis test (see section 6.1).  The test 
determines whether the progress rate is below the target 
rate, whether it is at or above the target rate, or whether 

there is not enough data to make such a judgment.  In the 
latter case, the process is allowed to continue until its next 
testpoint, but the current value of the suspension time is 
preserved.  In this manner, the process is repeatedly 
allowed to continue, and the progress rate is repeatedly 
measured, until the hypothesis test determines that there is 
enough data to make a judgment.  At that point, a good 
judgment will reset the suspension time, or a poor judgment 
will double the suspension time and suspend the process. 

This technique assumes that the variability in an 
application’s measured progress rate is not serially 
correlated.  For example, a disk-bound application may, 
even on an unloaded system, encounter some very lengthy 
seeks.  As long as these lengthy seeks are interspersed with 
short seeks, the statistical comparator will correctly 
recognize that the progress rate is good.  However, a 
correlated series of long seeks will inappropriately trigger 
suspension. 

4.3 Automatic target calibration 
Progress-based regulation requires a target progress rate for 
the regulated process.  Ideally, this target rate represents the 
expected progress rate when the process is not contending 
for resources.  This ideal target rate may change over time 
as properties of the resources change; for example, file 
fragmentation [24] may reduce the ideal target rate for a 
process that reads files.  Therefore, it is necessary to track 
changes in the ideal target rate over time. 

To determine the ideal target rate, the process must run 
for a while without resource contention.  We could require 
the user of a low-importance application to perform a 
calibration procedure, during which no other process runs 
on the system.  However, this is a burden for the user, 
especially since the calibration would have to be re-run 
periodically to track changes in resource characteristics. 

Instead, MS Manners automatically establishes a target 
rate as the exponential average of the measured progress 
rate at each testpoint (see section 6.2).  Clearly, this 
approach tracks changes over time, but it is not clear that it 
reflects uncontended progress.  The key insight is that the 
averaging procedure gives equal weight to each testpoint’s 
progress-rate measurement.  Since the process is usually 
suspended when the progress rate is poor, few testpoints 
reflect poor progress.  Since the process is usually 
executing when the progress rate is good, many testpoints 
reflect good progress.  Thus, the average tends to converge 
to the rate of good progress. 

This procedure is self-perpetuating, but it requires some 
way to get started.  Our method begins by allowing the 
process to execute briefly with no true regulation.  During 
this time, the calibrator averages the progress rate 
measurements to bootstrap the calibration procedure. 

If this initial execution is performed on a relatively idle 
system, the initial value for target rate will be close to the 
ideal target rate, so correct regulation will immediately 
commence.  However, if the process experiences resource 
contention during its initial execution, the target progress 
rate will be set too low.  Eventually, once the low-
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importance process executes without resource contention, 
the calibrator will increase the target rate, but in the mean 
time, the control system will not prevent the low-
importance process from running when it should not.  To 
deal with this problem, MS Manners limits the maximum 
execution rate for a probationary period, reducing the 
impact on other processes. 

A major weakness of this approach is that there may 
never be a significant length of time when resources are 
uncontended, so the target rate may never be set correctly.  
This weakness is inherent in any approach that does not 
require the user to establish an idle system. 

This calibration procedure relies on the suspension 
behavior of a regulated process.  However, if a process 
becomes critical, it might choose to ignore regulation.  For 
example, a utility that archives old files might, when disk 
space becomes scarce, choose to execute even if it contends 
with a high-importance process.  When a process runs more 
aggressively than the regulator dictates, the calibrator 
subsamples the progress data, ignoring measurements from 
testpoints that would not have executed if the thread were 
following regulation strictly. 

To preserve target values across restarts, calibration 
data is maintained persistently (see section 7.1). 

4.4 Multiple progress metrics 
The progress of some applications is not easily measured 
along a single dimension.  Some applications execute in 
sequential phases with a different type of progress in each 
phase.  For example, a garbage collector’s progress might 
be measured by its mark rate during its mark phase and by 
its sweep rate during its sweep phase.  Furthermore, some 
applications progress along multiple dimensions 
concurrently.  For example, a content indexer might 
measure progress in both bytes of content scanned and the 
count of indices added to its database.  Over a long term, 
separate metrics may be positively correlated, because one 
type of progress may be a precursor to another, as scanning 
is to indexing for a content indexer.  However, over a short 
term, separate metrics may be negatively correlated, 
because time spent progressing along one axis is time not 
spent progressing along another.  For such applications, 
there is no single scalar value that accurately reflects the 
progress rate. 

Our method includes two ways of dealing with multiple 
progress metrics.  For applications that execute in discrete 
phases, any given testpoint will occur during some specific 
phase.  If the phase is known, our method compares the 
progress rate measured at each testpoint with a target rate 
specific to the phase in which the testpoint occurs.  For the 
garbage collector example, when a testpoint occurs during 
the mark phase, the measured mark rate is compared to a 
target mark rate, and when a testpoint occurs during the 
sweep phase, the measured sweep rate is compared to a 
target sweep rate.  Each target rate is calibrated separately. 

If the number of testpoints in each phase is very small, 
the statistical rate comparator may not accrue sufficient data 
within a phase to make a judgment.  If the comparator were 

unable to combine measurements from separate phases, the 
control system would never be able to judge the progress 
rate, and the process could not be regulated.  However, the 
hypothesis test described in section 6.1 compares each 
sample against a separate target and combines these 
separate comparisons into a single judgment.  This enables 
the rate comparison to span multiple phases, permitting 
regulation even when the execution phases are very brief. 

The second way of dealing with multiple progress 
metrics is used for applications that progress along multiple 
dimensions concurrently, or whose phases are not available 
to the control system.  To accommodate this situation, we 
must change the way progress rates are compared.  Section 
4.1 stated that the control system calculates the progress 
rate from the measured progress and the measured duration 
since the previous testpoint, and it compares this calculated 
rate to a target rate.  The modification is to calculate a 
target duration based on the measured progress and the 
target rate, and to compare this calculated duration to the 
measured duration since the last testpoint.  For a single 
progress metric, these formulations produce equivalent 
results, but the latter allows an extension to support 
multiple progress metrics. 

For multiple progress metrics, the control system 
calculates a target duration as follows:  Each progress 
metric is combined with its corresponding target rate to 
yield a target duration for the progress along that metric.  
These separate target durations are added together to 
produce an overall target duration, and this is compared 
against the measured duration since the last testpoint. 

As an example, consider a content indexer that scans 
data at a target rate of 750 kB/sec and adds indices to its 
database at a target rate of 120 indices/sec.  If a testpoint 
indicates that it scanned 60 kB of data and added 5 indices 
to its database in 120 milliseconds, then its target durations 
are 80 msec for scanning and 42 msec for indexing.  The 
sum of these durations, 122 milliseconds, is the overall 
target duration.  When the rate comparator compares this 
value against the actual duration of 120 milliseconds, it 
determines that the progress rate is good. 

This method assumes that the time to make progress 
along multiple dimensions is equal to the sum of the times 
to make progress along each separate dimension.  This 
assumption can be rendered incorrect by overlapping 
operations. 

The calibrator establishes a target rate for each progress 
metric.  For phased execution, this is straightforward, since 
each testpoint reports progress for a single metric.  For 
multiple concurrent progress, the calibrator uses linear 
regression to infer the contribution of each metric to the 
overall duration between testpoints (see section 6.3); in 
particular, it uses a technique called “ridge regression” that 
is not thwarted by even highly correlated metrics.  Rather 
than exponentially averaging the progress rate over time, 
the system exponentially averages the state information 
needed for the linear regression. 
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4.5 Multiple threads and processes 
When multiple threads or processes run concurrently, every 
low-importance process should defer to any high-
importance process.  If no high-importance process is 
contending for system resources, the low-importance 
processes should share the resources fairly. 

If multiple low-importance processes or threads were to 
execute concurrently, they might contend with each other 
over resources, reducing each other’s progress rates and 
causing the control system to suspend them.  Mutually 
induced suspension with binary exponential back-off can 
lead to unfairness [20] or instability [5, 21], fully 
suspending the processes even on an idle system. 

To address this problem, MS Manners allows only one 
low-importance process or thread to execute at a time.  If 
multiple low-importance processes or threads run 
concurrently, the control system multiplexes among them, 
allowing each to execute until its next testpoint before 
suspending it and executing another.  This “time-multiplex 
isolation” is somewhat inefficient, since it prevents low-
importance processes from overlapping usage of different 
resources with each other.  However, since these processes 
are not critical, we consider this an acceptable cost. 

Each thread is regulated separately.  There is one 
progress-rate comparator per thread, so threads that use 
different system resources will not be implicitly coupled.  
For example, if only one disk on a computer is being used 
by a high-importance process, a low-importance thread that 
is using that disk will be suspended, but another low-
importance thread using another disk may not be. 

A subset of an application’s threads can be designated 
as low-importance.  Any unregulated threads in a process 
will not be time-multiplex isolated, so they will reduce the 
progress rate of the regulated threads if they contend for 
resources.  However, because this contention is always 
present, it will also reduce the target rate and thus not 
interfere with progress-based regulation. 

5. Progress metrics 
In the abstract, progress-based regulation can be based on 
any unit of progress that is meaningful to the application 
being regulated.  However, since our method assumes that a 
drop in progress rate indicates resource contention, any 
progress metric that is used for regulation should have an 
approximately constant target rate over the life of the 
application.  For example, in a numerical solver, estimated 
solution accuracy is a poor metric, because its rate of 
change decreases as the solution converges.  A better metric 
for this example is the count of iterated solution steps, 
because its expected rate of change is constant, barring 
interference due to resource contention. 

It is also important to use metrics that provide sufficient 
coverage of all progress that the application might make.  
For example, consider a file archive utility that scans 
through files and only archives those older than a certain 
date.  It is not sufficient to regulate based on count of files 
scanned, because this rate will drop when scanning old 

files, since time will be consumed archiving them.  
Similarly, it is not sufficient to regulate based on count of 
files archived, because this rate will drop when scanning 
new files, since time will be consumed scanning but not 
archiving them. 

To help convey good choices of progress metrics for 
various applications, we present a representative but non-
exhaustive list of low-importance applications that could 
profitably use progress-based regulation, along with a 
suggested set of progress metrics for each: 
• A file compressor might indicate the quantity of data it 

compresses.  This would account for resources 
consumed reading data, writing data, and compressing 
data.  It could also indicate the count of files it 
compresses, if the overhead in opening and closing a 
file is significant relative to reading, writing, and 
compressing. 

• A content indexer might indicate both the quantity of 
content it scans and the count of indices it adds to its 
database. 

• A file archive utility, as mentioned above, might 
indicate the count of files it scans and the count of files 
it archives; it should also indicate quantity of data it 
archives, since there is likely some resource cost per 
byte as well as some resource cost per file. 

• The SETI@home [2] program, which downloads and 
analyzes radio telescope data, currently runs under a 
screen saver.  It could instead use progress-based 
regulation by indicating the quantity of data it transfers 
and the number of computation steps it performs. 

• A backup system might indicate the quantity of data it 
uploads.  This would account for both disk and 
network resources. 

• A virus scanner might indicate the count of files and 
the quantity of data it scans. 

• A synchronization engine for a distributed file system, 
such as Coda [9], scans files and uploads copies of 
those that have been modified since a certain date.  It 
might indicate the count of files it scans, the count of 
files it uploads, and the quantity of data it uploads. 

• The disk defragmenter described in section 8 indicates 
the count of file blocks it moves and the count of move 
operations it performs. 

• The Single Instance Store Groveler, as described in 
section 8, finds and merges duplicate files.  It reports 
the count of read operations it performs and the 
quantity of data it reads. 

6. Mathematical details 
The following sections provide mathematical details of the 
statistical hypothesis test used by the statistical comparator, 
the exponential averaging technique used by the automatic 
calibration procedure, and the linear regression technique 
used by the automatic calibration procedure for multiple 
progress metrics. 
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6.1 Statistical hypothesis test 
The statistical comparator described in section 4.2 makes 
use of a statistical hypothesis test to determine whether the 
progress rate is below the target rate, whether it is at or 
above the target rate, or whether there is not enough data to 
make such a judgment. 

The comparator uses a paired-sample sign test [4], 
which is a non-parametric hypothesis test.  A non-
parametric test makes no assumptions about the distribution 
of the data and is therefore very robust.  The test depends 
on n, the sample size, and r, the count of sample rates that 
are below their corresponding target values (or the count of 
sample durations that are above their target values).  If r is 
greater than a threshold value that is a function of both n 
and a control parameter α, the progress rate is judged to be 
poor.  If r is less than a different threshold value that is a 
function of both n and another control parameter β, the 
progress rate is judged to be good.  If r falls between the 
two threshold values, the progress rate is indeterminate 
given the current data. 

The control parameters α and β determine the 
sensitivity of the comparator.  The parameter α is the 
probability of making a type-I error, judging the progress 
rate to be poor when it is actually good.  The parameter β is 
the probability of making a type-II error, judging the 
progress rate to be good when it is actually poor.  
Increasing α improves the system’s responsiveness, 
decreasing β improves the system’s efficacy, and increasing 
β relative to α improves the system’s efficiency, as follows: 

Increasing α allows faster reaction to poor progress, 
because α is negatively related to m, the minimum number 
of samples for the sign test to recognize poor progress: 
  α2log−=m  (1)

Decreasing β reduces the performance impact on high-
importance processes, because β is – by definition – the 
probability that a marginally poor progress rate will be 
judged incorrectly to be good. 

Increasing β relative to α improves the stability of 
process execution, because when progress is good, the 
process suspension state is a birth-death system that is 
isomorphic to a bulk service queue [10] of infinite group 
size with an arrival rate of α and a bulk service rate of β.  
Thus, the steady-state probability that k judgments of poor 
progress have occurred since the last judgment of good 
progress is given by: 
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With a probability of α, the next judgment will yield poor 
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This system is unstable unless α < β.  Increasing β relative 
to α increases the duty cycle of the background process 
when its progress rate is good. 

We have selected values of α = 0.05 and β = 0.2 for our 
experiments.  Theoretically, with a testpoint every few 
hundred milliseconds, these values yield a reaction time of 
a few seconds and a 1% performance degradation on the 
low-importance process.  Empirically (see section 9), these 
values demonstrate a prompt reaction to high-importance 
activity, a very stable suspension state, and a fairly low 
impact on a high-importance process. 

6.2 Exponential averaging 
The automatic calibration procedure described in section 
4.3 uses exponential averaging to track changes in the target 
progress rate over time.  Each time a testpoint occurs, the 
duration d since the previous testpoint and the amount of 
progress ∆p since the previous testpoint are used to update 
the target progress rate r according to the following rule: 
 r   ←   ξ r  +  (1 – ξ) ∆p / d (4)

The value of ξ is determined by the following equation: 
 ξ  =  (n – 1) / n (5)

where n is selected by its effect on the following values: 
 τs  =  n × expected time between testpoints (6)

 τl  =  n / m × maximum suspension time (7)

τs is the time constant for smoothing out short-term 
variations in progress, so it should be large enough to 
maintain a steady target rate.  τl is the time constant for 
tracking long-term changes in the target progress rate, so it 
should be small enough to respond to changes in resource 
performance characteristics. 

For our performance experiments, we have set n to 
10,000.  Given our other parameters, this will smooth out 
short-term variation with a time constant of 20 – 30 minutes 
and track long-term changes with a time constant of 7 days. 

6.3 Linear regression and averaging 
The method for dealing with multiple progress metrics 
described in section 4.4 uses linear regression to infer the 
contributions of separate progress metrics to the duration 
between testpoints.  To track changes in target progress 
rates over time, it exponentially averages the state 
information needed for linear regression. 

The multiple-metric calibration procedure determines 
target rate values rk for each progress metric k.  It assumes 
that the duration d since the last testpoint equals the sum of 
the times to make each type of progress, where each of 
these times is the inverse of the target progress rate rk times 
the measured progress ∆pk: 
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The calibration procedure performs least-squares linear 
regression [4] on Equation 8 to estimate the regression 
coefficients 1/rk.  Since Equation 8 has a zero offset, the 
regression is constrained to have no bias term.  The 



 

254 

minimum data needed to solve the regression are known as 
the “sufficient statistics,” which in this case are the matrix x 
and the vector y, defined as follows: 
 

jiji ppxji ∆∆=∀ ∑,:,  (9)

 ii pdyi ∆=∀ ∑:  (10)

To track changes in resource performance 
characteristics over time, the calibrator exponentially 
averages these sufficient statistics.  At each testpoint after 
the initialization phase, the sufficient statistics are updated 
according to the following rules: 
 ∀i,j:     xi,j   ←   ξ xi,j  +  ∆pi ∆pj (11)

 ∀i:     yi   ←   ξ yi  +  d ∆pi (12)

If progress metrics are correlated, they may exhibit 
linear dependence, which causes singularity or numerical 
instability in regression.  To deal with this, the calibrator 
uses ridge regression [3], which adds a small linear offset to 
the main diagonal of the normal equation matrix before 
solving the normal equations: 
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The parameter ν controls the trade-off between solution 
accuracy and numerical stability.  From empirical testing, ν 
= 10–11 perturbs the solution with an equal order-of-
magnitude error from floating-point round-off and from the 
ridge-regression offset. 

7. Implementation 
We have developed two implementations of progress-based 
regulation for Windows NT.  The MS Manners library 
requires only a single function call to perform all testpoint 
processing.  The BeNice program externally regulates an 
unmodified program that reports its progress through a 
standard interface. 

7.1 Internal process regulation 
We have packaged MS Manners as a library with a very 
simple interface.  A single function call performs all 
testpoint processing.  The calling interface of the testpoint 
function is as follows: 
Testpoint(int index,int count,int *metrics); 

An application calls the testpoint function with one or 
more progress metrics and an index value for the set of 
metrics.  Each time the function is called, it returns only 
when it is okay for the application thread to proceed, 
meanwhile blocking if necessary.  If the function is called in 
rapid succession, a lightweight test causes it to return 
immediately, until sufficient time has passed to justify the 
expense of testpoint processing. 

An application that executes in sequential phases can 
call the testpoint function with a different metric set from 
each phase of its code.  An application that progresses on 
multiple dimensions concurrently can pass more than one 

progress metric to the testpoint function on each call.  Each 
time the testpoint function is called with a new metric set, it 
allocates and initializes an internal data structure for the set, 
so no explicit initialization function need be called by the 
application. 

When using the MS Manners library, no special actions 
need to be taken by a multi-threaded application.  The 
library controls the time-multiplex isolation of the threads 
(see section 4.5).  By calling the testpoint function with a 
distinct metric index, each thread isolates its progress from 
other threads. 

The first call to the testpoint function spins up a 
supervisor thread.  Then, this call and all subsequent 
testpoint calls record the index and progress metrics in 
thread local storage [16], alert the supervisor thread, and 
wait for the supervisor to signal the thread to proceed.  If 
the thread is judged to be progressing poorly, it is not 
eligible to continue until its suspension time has elapsed.  
The supervisor selects an eligible thread to proceed, using 
decay usage scheduling [7] to share execution time among 
regulated threads.  If no threads are eligible to continue, the 
supervisor sleeps. 

The MS Manners library provides a function call by 
which each thread can set its priority relative to other 
threads.  The supervisor favors high-priority threads over 
low-priority threads. 

The first supervisor thread that spins up in any process 
spawns a superintendent process.  The superintendent 
communicates with each process’s supervisor thread via 
shared memory.  Before releasing a thread, a supervisor 
waits for permission from the superintendent, which shares 
execution time among the processes. 

The MS Manners library sets a threshold on the 
duration between successive testpoints.  If a regulated 
thread does not call testpoint within this threshold, the 
thread is presumed hung, and another thread is selected to 
execute.  If and when the hung thread again calls testpoint, 
MS Manners discards the progress rate information from 
that testpoint.  This time threshold deals with large external 
delays, such as dialogue with the user or a failed network 
connection.  Such external delays should neither be factored 
into the progress rate nor cause the process to suspend 
indefinitely. 

The library persistently maintains target rates for the 
regulated application.  The first time the testpoint function 
is called, it scans the directory of the running program’s 
executable file.  If it finds a matching initialization file, it 
initializes its target rates from that file.  Periodically and at 
termination, target rate information is written to this same 
file to preserve targets for future executions. 

7.2 External process regulation 
We have built a program, called BeNice, that externally 
regulates an unmodified application.  BeNice monitors an 
application’s progress via Windows NT performance 
counters [15], a standard means for programs to export 
measurements that aid performance tuning.  Performance 
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counters are often exported by housekeeping programs and 
long-running system utilities. 

BeNice suspends an application by suspending its 
threads.  To obtain handles to the application’s threads, 
BeNice uses the Windows program debugging interface 
[14], a back-door access to internal application state.  This 
interface is primarily used by debuggers during program 
development, but it is present even on optimized programs. 

BeNice periodically suspends a process’s threads, polls 
its performance counters, calls the MS Manners testpoint 
function, and resumes the threads.  There is no real need to 
suspend the process for each poll, but experiments (see 
section 9.3) show that these periodic interruptions cause 
little performance reduction. 

BeNice automatically adjusts the polling frequency to 
track the rate of performance-counter updates.  If the 
fraction of polling intervals with no change in progress 
exceeds a threshold, BeNice increases the polling interval.  
If this fraction falls below a threshold, BeNice decreases 
the interval, subject to a lower limit. 

8. Example applications 
We have used MS Manners to regulate two application 
programs: a disk defragmenter and a Windows 2000 system 
utility called the SIS Groveler. 

The disk defragmenter progressively refines the disk 
layout by a series of passes, each of which examines the 
layout and rearranges the blocks of one or more files to 
improve their physical locality on the disk.  After each 
relocation operation, the defragmenter calls the MS 
Manners testpoint function with two non-orthogonal 
measures of progress: the count of file blocks moved and 
the count of move operations.  The defragmenter creates a 
separate execution thread for each disk partition, and each 
thread calls the testpoint function with a pair of metrics 
specific to that partition. 

The SIS Groveler is a component of the Windows 2000 
Remote Install Server (RIS).  RIS allows a system 
administrator to define a set of standard Windows 2000 
installations and store images of these installations on a 
server.  A client machine can then be set up by 
downloading an installation image from the RIS server.  
Since each installation may have many files in common 
with other installations, a Single Instance Store (SIS) 
component eliminates duplicates by replacing each original 
file with a link to a common-store file that holds the 
contents of the original files.  Duplicate files are discovered 
by the SIS Groveler.  The Groveler maintains a database of 
information about all files on the disk, including a signature 
of the file contents.  Periodically, it scans the file system 
change journal, a log that records all changes to the 
contents of the file system.  For any new or modified files, 
the Groveler reads the file contents, computes a new 
signature, searches its database for matching files, and 
merges any duplicates it finds. 

For each disk partition, the Groveler creates two 
threads, a lightweight thread for scanning the file system 
change journal, and a main thread for reading and 

comparing file contents.  The former thread is not 
regulated, in order to prevent the change journal from 
overflowing.  The latter thread periodically testpoints with 
two non-orthogonal progress measures: the count of read 
operations performed and the volume of data read.  The 
Groveler tells MS Manners to give highest priority to the 
thread working on the disk with the least free space. 

9. Performance results 
The results in the following sections show that, when a 
high-importance process is degraded due to resource 
contention with a low-importance process, MS Manners can 
reduce this degradation by up to an order of magnitude, 
albeit at the expense of some performance loss in the low-
importance process.  When a low-importance process is 
running on an otherwise-idle system, MS Manners has a 
negligible effect on its performance.  An analysis of 
dynamic application behavior illustrates the necessity of a 
statistical comparator for judging the progress rate.  An 
experiment with a multi-threaded low-importance process 
demonstrates the efficacy of time-multiplex isolation.  
Finally, a test shows that the automatic calibration 
mechanism converges to a target value that is close to ideal, 
even if the initial calibration is performed on a heavily 
loaded system. 

9.1 Experimental setup 
Our test machine is a Pentium II 266-MHz personal 
computer with 64 MB of RAM, a PCI bus, and an Adaptec 
2940UW SCSI controller connected to two Seagate 
ST34371W disk drives and a Plextor PX-12TS CD-ROM 
drive.  The operating system is the beta 3 release of 
Microsoft Windows 2000. 

We tested MS Manners using two representative pairs 
of low- and high-importance processes.  The two low-
importance processes are the disk defragmenter and the SIS 
Groveler described in section 8, and the corresponding 
high-importance processes are Microsoft SQL Server and 
Microsoft Office 97 Professional Setup, respectively.  We 
chose these application sets as typical examples of realistic 
server environments:  A disk defragmenter is a reasonable 
low-importance application to run on a database server, and 
installation of a large application such as Office 97 
Professional is a typical operation performed on a Remote 
Install Server that is running the SIS Groveler. 

We established fixed workloads for each application.  
We configured the disk defragmenter to halt after one pass 
through the file system, starting from a fixed disk layout.  
We provided the Groveler with two identical directory trees 
to scan.  We configured Office 97 Setup for a complete 
installation from CD except for the Find Fast component, 
which would have interfered with our performance 
measurements.  We drove SQL Server with the initial load-
up sequence from the TPC-C database benchmark*. 

                                                                 
* Our performance results should not be interpreted as claims 

about the OLTP performance of SQL Server. 
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For all experiments except the calibration test, we 
established a target progress rate by running the low-
importance application on an idle system until the initial 
calibration phase completed.  We zeroed the probation 
period, so that normal regulated operation would 
immediately commence. 

We illustrate our results using box plots [6], which are a 
more precise and robust means of displaying result 
variances than deviation-based error bars.  Figure 3 is an 
example.  The “waist” in each box indicates the median 
value, the “shoulders” indicate the upper quartile, and the 
“hips” indicate the lower quartile.  The vertical line from 
the top of the box extends to a horizontal bar indicating the 
maximum data value less than the upper cutoff, which is the 
upper quartile plus 3/2 the height of the box.  Similarly, the 
line from the bottom of the box extends to a bar indicating 
the minimum data value greater than the lower cutoff, 
which is the lower quartile minus 3/2 the height of the box.  
Data outside the cutoffs is represented as points. 

9.2 Contending processes 
Our first experiment tested the impact on SQL Server’s 
performance from running the disk defragmenter.  With 
SQL Server running, we started the defragmenter, waited 
30 seconds, and then applied the database workload.  We 
measured the time for the defragmenter to complete one 
file-system pass and the time for SQL Server to execute its 
workload.  We performed this test with and without 
progress-based regulation of the defragmenter.  As a 
control, we also measured the time for SQL server to 
complete its workload when the defragmenter was not 
running.  We repeated each test 50 times. 

Figure 3 illustrates the impact of the disk defragmenter 
on SQL Server.  When no other non-system process is 
executing, SQL Server takes a median time of 300 seconds 
to complete its workload.  When the disk defragmenter runs 
concurrently as an unregulated process, resource contention 
increases the median completion time by about 90%.  
Reducing the defragmenter’s CPU priority makes no 
appreciable difference.  However, when the defragmenter 
employs MS Manners either directly or via the BeNice 
program, SQL Server’s median completion time is merely 

7% greater than when the defragmenter is not running at all.  
In other words, MS Manners reduces the performance 
degradation by an order of magnitude. 

Our second experiment tested the impact on Office 97 
Setup’s performance from running the SIS Groveler.  We 
started the Groveler, waited 30 seconds, and then clicked 
the “Continue” button on the final Office 97 Setup 
configuration box.  We measured the time for the Groveler 
to execute its workload and the time for Office 97 Setup to 
complete installation.  We performed this test with and 
without progress-based regulation of the Groveler.  As a 
control, we also measured the time for Office 97 Setup to 
complete its workload when the Groveler was not running.  
Since this experiment was not automated, we repeated each 
test only five times. 

Figure 4 illustrates the performance impact of the SIS 
Groveler on Office 97 Setup.  When no other non-system 
process is executing, Office 97 Setup takes a median time 
of 250 seconds to complete its workload.  When the 
Groveler runs concurrently as an unregulated process, 
resource contention increases the median completion time 
by about 90%.  Reducing the Groveler’s CPU priority 
makes no appreciable difference.  However, when the 
Groveler employs MS Manners, Office 97 Setup’s median 
completion time is merely 12% greater than when the 
Groveler is not running.  As in the previous experiment, MS 
Manners reduces the performance degradation by nearly an 
order of magnitude. 

9.3 Low-importance process 
Our next experiment tested the impact of MS Manners on 
the disk defragmenter on an otherwise-idle system.  With no 
high-importance process running, we started the 
defragmenter and measured the time for it to complete one 
file-system pass.  We performed this test with and without 
progress-based regulation of the defragmenter, and we 
repeated each test 50 times. 

Figure 5 illustrates the impact of progress-based 
regulation on the defragmenter.  Note that the y-axis origin 
is not zero; on a zero-based scale, all execution times are 
indistinguishable.  When no high-importance process is 
running, the median execution time for the defragmenter is 
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410 seconds, irrespective of whether it is running normally, 
or with low CPU priority, or employing MS Manners.  
When running under the control of BeNice, the median 
execution time increases by about 1.5%, due to suspension 
and resumption of the process’s threads at every testpoint. 

Figure 6 illustrates another result from the first 
experiment of section 9.2.  Since the uncontended database 
workload runs for 300 seconds, running it in parallel with 
the defragmenter should increase the defragmenter’s run 
time by 300 seconds due to resource sharing.  However, this 
increase in run time is actually 460 seconds, 50% greater 
due to the inefficiency of resource contention.  When the 
defragmenter is run with MS Manners, its run time 
increases by 550 seconds, 80% greater due to suspension 
while SQL Server is running, plus suspension overshoot as 
described in the next section. 

9.4 Dynamic behavior 
To explain how MS Manners improves the performance of 
a high-importance application, Figure 7 illustrates the 
dynamic execution behavior of the disk defragmenter when 
employing MS Manners.  This trace was taken from an 
arbitrary sample run in the first experiment described in 
section 9.2.  The x-axis is run time from the beginning of 
the defragmenter’s execution.  The y-axis value is a one if 
the defragmenter is executing and a zero if it is blocked in 
the testpoint function.  The two vertical dotted lines 

indicate the start and completion of the SQL Server 
workload for this test. 

As Figure 7 shows, initially SQL Server has no 
workload, so the defragmenter runs normally.  At 30 
seconds, SQL Server begins executing, consuming 
resources and retarding the defragmenter’s progress.  MS 
Manners senses this reduction in progress rate and suspends 
the defragmenter for exponentially increasing intervals. 

MS Manners makes an execution probe shortly before 
SQL Server completes its workload, and the exponential 
back-off then keeps the defragmenter suspended for 220 
seconds longer than necessary.  This shows a nearly worst 
case.  If the execution probe had occurred just after the 
completion of SQL Server’s workload rather than just 
before it, this suspension overshoot would have been 
avoided.  The few outliers in the “MS Manners” column of 
Figure 6 suggest that these overshoots may have been thus 
avoided occasionally. 

To show the necessity for a statistical comparator, 
Figure 8 illustrates the progress of the disk defragmenter 
under MS Manners.  This trace was taken from the same 
sample run as that of Figure 7.  The x-axis is run time.  The 
y-axis indicates the defragmenter’s progress rate, expressed 
in the normalized target duration between testpoints, 
calculated over two-second intervals.  Values greater than 
one indicate progress above the target rate; values less than 
one indicate progress below the target rate. 

As Figure 8 shows, during the brief period before 30 
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seconds and the long period from 575 to 965 seconds, the 
defragmenter is progressing mostly at or above its target 
rate.  However, many of these individual progress rate 
measurements fall below the target rate.  If MS Manners 
were to suspend the process for each measurement below 
target, its execution would be overreactive and highly 
erratic.  The statistical comparator correctly ignores 
measurements of low progress rate if they are properly 
balanced with measurements of high progress rate, thereby 
providing the relatively smooth execution pattern shown in 
Figure 7. 

9.5 Thread isolation 
Our next experiment tested the time-multiplex isolation of 
multiple low-importance threads.  We provided the SIS 
Groveler with workloads on two separate disk drives, 
labeled C and D, that shared a common SCSI controller.  
The C drive had less free space available, so the Groveler 
set its thread priority higher using a MS Manners library 
call.  We used dummy applications to generate intensive 
disk and CPU loads. 

Figure 9 illustrates the dynamic execution behavior of 
two threads of the SIS Groveler.  The x-axis is run time.  
The y-axis is divided into five sections, each indicating a 
high value if a corresponding task is executing and a low 
value if it is not.  The top two curves indicate the two 
dummy loads on the C and D drives.  The middle curve 
indicates the dummy CPU load.  The bottom two curves 
indicate the two Groveler threads for the C and D drives. 

As Figure 9 shows, MS Manners favors execution of the 
C-drive thread because it has a higher priority.  When the 
dummy load runs on the C drive, MS Manners shifts 
execution to the D-drive thread.  When the CPU or both 
drives are loaded, both threads  are exponentially 
suspended.  The Groveler’s CPU priority is set low, so it is 
very responsive to CPU load.  There is some noticeable 
perturbation of the execution patterns, in part due to 
exponential back-off, and in part due to incomplete 
isolation between the two drives, since they use a common 
SCSI controller. 

9.6 Target calibration 
Our final experiment tested the behavior of the automatic 
calibration mechanism.  With no prior calibration of target 
progress rate, we started the disk defragmenter and allowed 
it to operate for 48 hours.  We set the probation period (see 
section 4.3) to 24 hours.  In the absence of real data 
regarding the daily load on a typical server I/O system, we 
generated a time-varying, bursty disk load using a dummy 
application.  The burst times fluctuated between 10 seconds 
and 15 minutes, separated by similarly fluctuating idle 
periods.  The mean load varied in a sinusoidal pattern to 
simulate a diurnally cyclical pattern of system activity.  To 
illustrate a worst case, we started the defragmenter during a 
continuous burst of disk activity, so the calibrator initially 
computes a target rate that is far too low. 

Figure 10 illustrates the results of the calibration test.  
The x-axis is run time.  The faint solid line shows the mean 
value of the bursty disk load, plotted against the left y-axis, 
and the dark solid line shows the calibrating target, plotted 
against the right y-axis.  Since the disk defragmenter has 
two progress metrics, the dark solid line aggregates these 
into a single value that reflects the target duration between 
testpoints, as calculated by equation 8, based on the mean 
progress between testpoints over the entire run. 

The ideal target duration is about 480 msec.  Figure 8 
shows that the target duration is initially calculated at nearly 
1600 msec, due to contention with the dummy process.  
After 12 hours, the target has dropped to 620 msec, and 
after 24, it has dropped to 500 msec.  Thereafter, it slowly 
approaches its ideal value. 

The dotted line in Figure 10 shows the defragmenter’s 
activity, plotted against the left y-axis.  For the first 24 
hours, the process is on probation, so its activity level is 
constrained.  For the second 24 hours, the defragmenter 
could theoretically be active 50% of the time, since the 
dummy process is idle 50% of the overall time.  However, 
the defragmenter is actually active only 19% of the time, 
due to suspension overshoot (see section 9.4).  Although the 
suspension causes the defragmenter to execute inefficiently, 
it does a good job of preventing interference with the 
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dummy process: 94% of the defragmenter’s execution 
occurs while the dummy is idle, and only 6% of it while the 
dummy is active. 

10. Related work 
Our basic idea for progress-based regulation of low-
importance processes was inspired by the feedback 
regulation used to control congestion in TCP [8].  TCP 
regards packet losses as an indication of congestion, and it 
responds by reducing its transmission rate.  This is closely 
analogous to regarding a reduction in progress rate as an 
indication of contention, and responding by suspending 
process execution.  However, TCP has a goal that is quite 
different from ours:  TCP uses exponential suspension and 
linear resumption on all senders so that they will share 
network bandwidth more-or-less fairly.  MS Manners uses 
exponential suspension and instantaneous resumption only 
on the low-importance process, so that it will adjust to the 
time scale of other processes' execution patterns, with the 
goal of utterly deferring to the other processes. 

One of the primary strengths of MS Manners is its 
ability to automatically calibrate a target rate, which not 
only frees the application designer from the tedious process 
of manual tuning but also enables the target to dynamically 
track sustained changes in system performance over time.  
A number of researchers have explored automatic tuning 
and calibration mechanisms, in areas of CPU scheduling, 
database tuning, and operating system policies: 

Andersen [1] investigated the automatic tuning of CPU 
scheduling algorithms using optimization by simulated 
evolution, although he concluded that this tuning was too 
computationally intensive to be performed in real time. 

The COMFORT project [28] investigated automatically 
tuning the configuration and operational parameters of a 
database system to improve performance.  They 
implemented a control system that dynamically adjusts the 
multi-programming level to avoid lock thrashing, and they 
implemented a self-tuning memory manager to exploit 
inter-transaction locality of reference. 

VINO [22] is an extensible operating system that 
employs self-monitoring, data correlation, and in situ 
simulation to estimate the effects of policy changes.  The 
changes are proposed by heuristics that attempt to minimize 
the performance degradation from such causes as paging, 
disk wait, poor code layout, interrupt latency, and lock 
contention. 

MS Manners employs exponential averaging of 
sufficient statistics in its target calibration.  This is a 
common technique in the discipline of artificial 
intelligence, used in various contexts by, for example, 
Spiegelhalter and Lauritzen [25] and Nowlan [18]. 

11. Future work 
Future work should focus on addressing the limitations 

of progress-based regulation, such as the assumption of 
symmetric performance impact from resource contention.  
Since this is the primary assumption of the technique, it 
seems an especially hard requirement to remove. 

Another significant limitation is the need for the 
application’s cooperation in measuring progress.  Although 
our method is resource-independent, it is application-
specific, insofar as the progress measures depend on the 
high-level task the application performs.  If we had a 
complete list of all resources an application might use, we 
could attempt to measure the application’s resource 
consumption and use it as an indication of the application’s 
progress.  However, resource usage is likely to be a poor 
indicator of progress, because resource consumption and 
application progress can be either positively or negatively 
correlated.  For example, if a low-importance application 
starts contending with a high-importance application for 
CPU cycles, its CPU usage will decrease.  By contrast, if it 
is contending for cache lines, its CPU usage will increase. 

The BeNice program monitors an application’s progress 
via Windows NT performance counters.  An alternate 
method of obtaining progress information about an 
application is to tap into the progress bar [13], a visual 
meter on the computer monitor that denotes the progress of 
a lengthy operation.  The progress bar is a common control 
[17], usable by any application, so its code could be 
modified to relay the progress updates it receives from the 
application.  However, anecdotal evidence suggests that the 
progress bar is a very poor metric of the actual progress that 
a program makes.  We suspect this is in part due to the need 
to aggregate progress along multiple dimensions into a 
single metric. 

Our method can be thwarted by a malicious program 
that provides false progress information.  We could 
possibly detect this in some instances by performing sanity 
checks on the progress metrics relative to measurable 
system resource usage. 

Our automatic calibration procedure requires some 
significant time periods of uncontended resource use.  
Future work could develop a new calibration technique that 
determines target rates from fewer measurements. 

Our method fails to discriminate between resources that 
are internal and external to a machine.  Perhaps there are 
strategies for determining the physical location of a 
resource without sacrificing the main benefits of resource 
independence. 

We need a solution to priority inversion.  Perhaps there 
are techniques – presumably specific to an operating system 
– that can automatically detect when an application is 
holding a shared resource. 

There may be value in investigating alternate schemes 
for suspension and resumption.  From our tests, exponential 
suspension and instantaneous resumption appear to work 
well, but perhaps other strategies would be more efficient or 
more robust. 

The non-parametric hypothesis test used by the 
statistical comparator requires a minimum number of 
samples to make a judgment.  A parametric test could be 
more responsive, but it would require modeling the 
progress rate distribution for each progress metric of an 
application. 
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12. Conclusions 
Progress-based regulation is a demonstrably effective 
technique for preventing low-importance processes from 
interfering with the performance of high-importance 
processes.  It is resource-independent, it requires no kernel 
modifications, and it works in server environments with 
continuously running applications and unpredictable 
workload schedules. 

Progress-based regulation requires a fair amount of 
computational machinery, including statistical apparatus to 
deal with stochastic progress measurements, a calibration 
mechanism to establish a target progress rate, mathematical 
inferencing to separate the effects of multiple progress 
metrics, and an orchestration infrastructure to prevent 
measurement interference among multiple low-importance 
processes and threads. 

However, with appropriate packaging, incorporating 
progress-based regulation into an application can be very 
straightforward.  The MS Manners library requires adding 
only a single function call to a low-importance program.  
The BeNice program monitors and suspends a process 
externally, so no program modifications at all are required, 
as long as the process reports its progress through a 
standard mechanism.  Neither the control system nor the 
application needs to know what system resources are used. 
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