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Abstract
Transactions with strong consistency and high availability simplify building and reason-
ing about distributed systems. However, previous implementations performed poorly. This
forced system designers to avoid transactions completely, to weaken consistency guaran-
tees, or to provide single-machine transactions that require programmers to partition their
data. In this paper, we show that there is no need to compromise in modern data centers.
We show that a main memory distributed computing platform called FaRM can provide
distributed transactions with strict serializability, high performance, durability, and high
availability. FaRM achieves a peak throughput of 140 million TATP transactions per sec-
ond on 90 machines with a 4.9 TB database, and it recovers from a failure in less than
50ms. Key to achieving these results was the design of new transaction, replication, and
recovery protocols from first principles to leverage commodity networks with RDMA and
a new, inexpensive approach to providing non-volatile DRAM.

1. Introduction
Transactions with high availability and strict serializability [35] simplify programming and
reasoning about distributed systems by providing a simple, powerful abstraction: a single
machine that never fails and that executes one transaction at a time in an order consistent
with real time. However, prior attempts to implement this abstraction in a distributed system
resulted in poor performance. Therefore, systems such as Dynamo [13] or Memcached [1]
improve performance by either not supporting transactions or by implementing weak
consistency guarantees. Others (e.g., [3–6, 9, 28]), provide transactions only when all
the data resides within a single machine, forcing programmers to partition their data and
complicating reasoning about correctness.
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This paper demonstrates that new software in modern data centers can eliminate the
need to compromise. It describes the transaction, replication, and recovery protocols in
FaRM [16], a main memory distributed computing platform. FaRM provides distributed
ACID transactions with strict serializability, high availability, high throughput and low la-
tency. These protocols were designed from first principles to leverage two hardware trends
appearing in data centers: fast commodity networks with RDMA and an inexpensive ap-
proach to providing non-volatile DRAM. Non-volatility is achieved by attaching batteries
to power supply units and writing the contents of DRAM to SSD when the power fails.
These trends eliminate storage and network bottlenecks, but they also expose CPU bot-
tlenecks that limit their performance benefit. FaRM’s protocols follow three principles to
address these CPU bottlenecks: reducing message counts, using one-sided RDMA reads
and writes instead of messages, and exploiting parallelism effectively.

FaRM scales out by distributing objects across the machines in a data center while
allowing transactions to span any number of machines. Rather than replicate coordinators
and data partitions using Paxos (e.g., as in [11]), FaRM reduces message counts by using
vertical Paxos [25] with primary-backup replication, and unreplicated coordinators that
communicate directly with primaries and backups. FaRM uses optimistic concurrency
control with a four phase commit protocol (lock, validation, commit backup, and commit
primary) [16] but we improved the original protocol by eliminating the messages to
backups in the lock phase.

FaRM further reduces CPU overhead by using one-sided RDMA operations. One-sided
RDMA uses no remote CPU and it avoids most local CPU overhead. FaRM transactions
use one-sided RDMA reads during transaction execution and validation. Therefore, they
use no CPU at remote read-only participants. Additionally, coordinators use one-sided
RDMA when logging records to non-volatile write-ahead logs at the replicas of objects
modified in a transaction. For example, the coordinator uses a single one-sided RDMA to
write a commit record to a remote backup. Hence, transactions use no foreground CPU at
backups. CPU is used later in the background when lazily truncating logs to update objects
in-place.

Using one-sided RDMA requires new failure-recovery protocols. For example, FaRM
cannot rely on servers to reject incoming requests when their leases [18] expire because
requests are served by the NICs, which do not support leases. We solve this problem by
using precise membership [10] to ensure that machines agree on the current configuration
membership and send one-sided operations only to machines that are members. FaRM also
cannot rely on traditional mechanisms that ensure participants have the resources necessary
to commit a transaction during the prepare phase because transaction records are written
to participant logs without involving the remote CPU. Instead, FaRM uses reservations
to ensure there is space in the logs for all the records needed to commit and truncate a
transaction before starting the commit.

The failure recovery protocol in FaRM is fast because it leverages parallelism effec-
tively. It distributes recovery of every bit of state evenly across the cluster and it parallelizes
recovery across cores in each machine. In addition, it uses two optimizations to allow trans-
action execution to proceed in parallel with recovery. First, transactions begin accessing
data affected by a failure after a lock recovery phase that takes only tens of milliseconds
to complete rather than wait several seconds for the rest of recovery. Second, transactions
that are unaffected by a failure continue executing without blocking. FaRM also provides
fast failure detection by leveraging the fast network to exchange frequent heart-beats, and
it uses priorities and pre-allocation to avoid false positives.



Our experimental results show that you can have it all: consistency, high availability,
and performance. FaRM recovers from single machine failures in less than 50ms and
it outperforms state-of-the-art single-machine in-memory transactional systems with just
a few machines. For example, it achieves better throughput than Hekaton [14, 26] when
running on just three machines and it has both better throughput and latency than Silo [39,
40].

2. Hardware trends
FaRM’s design is motivated by the availability of plentiful, cheap DRAM in data center
machines. A typical data center configuration has 128–512 GB of DRAM per 2-socket
machine [29], and DRAM costs less than $12/GB1. This means that a petabyte of DRAM
requires only 2000 machines, and this is sufficient to hold the data sets of many interesting
applications. In addition, FaRM exploits two hardware trends to eliminate storage and
network bottlenecks: non-volatile DRAM, and fast commodity networks with RDMA.

2.1 Non-volatile DRAM
A “distributed uninterruptible power supply (UPS)” exploits the wide availability of
Lithium-ion batteries to lower the cost of a data center UPS over a traditional, central-
ized approach that uses lead-acid batteries. For example, Microsoft’s Open CloudServer
(OCS) specification includes Local Energy Storage (LES) [30, 36], which integrates Li-ion
batteries with the power supply units in each 24-machine chassis within a rack. The esti-
mated LES UPS cost is less than $0.005 per Joule.2 This approach is more reliable than a
traditional UPS: Li-ion batteries are overprovisioned with multiple independent cells, and
any battery failure impacts only a portion of a rack.

A distributed UPS effectively makes DRAM durable. When a power failure occurs, the
distributed UPS saves the contents of memory to a commodity SSD using the energy from
the battery. This not only improves common-case performance by avoiding synchronous
writes to SSD, it also preserves the lifetime of the SSD by writing to it only when
failures occur. An alternative approach is to use non-volatile DIMMs (NVDIMMs), which
contain their own private flash, controller and supercapacitor (e.g., [2]). Unfortunately,
these devices are specialized, expensive, and bulky. In contrast, a distributed UPS uses
commodity DIMMs and leverages commodity SSDs. The only additional cost is the
reserved capacity on the SSD and the UPS batteries themselves.

Battery provisioning costs depend on the energy required to save memory to SSDs. We
measured an unoptimized prototype on a standard 2-socket machine. On failure, it turns off
the HDDs and NIC and saves in-memory data to a single M.2 (PCIe) SSD, and it consumes
110 Joules per GB of data saved. Roughly 90 Joules is used to power the two CPU sockets
on the machine during the save. Additional SSDs reduce the time to save data and therefore
the energy consumed (Figure 1). Optimizations, like putting the CPUs into a low-power
state, will further reduce energy consumption.

In the worst-case configuration, (single SSD, no optimization) at $0.005 per Joule, the
energy cost of non-volatility is $0.55/GB and the storage cost of reserving SSD capacity is

1 16 GB DDR4 DIMMs on newegg.com, 21 March 2015.
2 Li-ion is 5x cheaper than traditional lead-acid based UPS, which costs $31 million per 25 MW data center.
A 25 MW data center can house 100,000 machines, and hence the Li-ion UPS cost per machine is $62. A 24-
machine chassis has 6 PSUs, each with an LES that is provisioned for at least 1600 W for 5 seconds and 1425 W
for a further 30 seconds, i.e. a total of 50 kJ per PSU or 12.5 kJ per machine, giving a cost per Joule of $0.0048.
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Figure 1. Energy to copy one GB from DRAM to SSD

$0.90/GB3. The combined additional cost is less than 15% of the base DRAM cost, which is
a significant improvement over NVDIMMs that cost 3–5x as much as DRAM. Therefore, it
is feasible and cost-effective to treat all machine memory as non-volatile RAM (NVRAM).
FaRM stores all data in memory, and considers it durable when it has been written to
NVRAM on multiple replicas.

2.2 RDMA networking
FaRM uses one-sided RDMA operations where possible because they do not use the remote
CPU. We based this decision both on our prior work and on additional measurements.
In [16], we showed that on a 20-machine RoCE [22] cluster, RDMA reads performed 2x
better than a reliable RPC over RDMA when all machines read randomly chosen small
objects from the other machines in the cluster. The bottleneck was the NIC message rate
and our implementation of RPC requires twice as many messages as one-sided reads.
We replicated this experiment on a 90-machine cluster where each machine has two
Infiniband FDR (56 Gbps) NICs. This more than doubles the message rate per machine
when compared with [16] and eliminates the NIC message rate bottleneck. Both RDMA
and RPC are now CPU bound and the performance gap increases to 4x, as seen in
Figure 2.This illustrates the importance of reducing CPU overhead to realize the potential
of the new hardware.

3. Programming model and architecture
FaRM provides applications with the abstraction of a global address space that spans
machines in a cluster. Each machine runs application threads and stores objects in the
address space. The FaRM API [16] provides transparent access to local and remote objects
within transactions. An application thread can start a transaction at any time and it becomes
the transaction’s coordinator. During a transaction’s execution, the thread can execute
arbitrary logic as well as read, write, allocate, and free objects. At the end of the execution,
the thread invokes FaRM to commit the transaction.

FaRM transactions use optimistic concurrency control. Updates are buffered locally
during execution and only made visible to other transactions on a successful commit.
Commits can fail due to conflicts with concurrent transactions or failures. FaRM provides
strict serializability [35] of all successfully committed transactions. During transaction

3 Samsung M.2 256 GB MLC, newegg.com on 25 March 2015
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execution, FaRM guarantees that individual object reads are atomic, that they read only
committed data, that successive reads of the same object return the same data, and that reads
of objects written by the transaction return the latest value written. It does not guarantee
atomicity across reads of different objects but, in this case, it guarantees that the transaction
does not commit ensuring committed transactions are strictly serializable. This allows us
to defer consistency checks until commit time instead of re-checking consistency on each
object read. However, it adds some programming complexity: FaRM applications must
handle these temporary inconsistencies during execution [20]. It is possible to deal with
these inconsistencies automatically [12].

The FaRM API also provides lock-free reads, which are optimized single-object read
only transactions, and locality hints, which enable programmers to co-locate related objects
on the same set of machines. These can be used by applications to improve performance as
described in [16].

Figure 3 shows a FaRM instance with four machines. The figure also shows the internal
components of machine A. Each machine runs FaRM in a user process with a kernel



thread pinned to each hardware thread. Each kernel thread runs an event loop that executes
application code and polls the RDMA completion queues.

A FaRM instance moves through a sequence of configurations over time as machines
fail or new machines are added. A configuration is a tuple 〈i, S,F ,CM〉 where i is a
unique, monotonically increasing 64-bit configuration identifier, S is the set of machines
in the configuration, F is a mapping from machines to failure domains that are expected
to fail independently (e.g., different racks), and CM ∈ S is the configuration manager.
FaRM uses a Zookeeper [21] coordination service to ensure machines agree on the current
configuration and to store it, as in Vertical Paxos [25]. But it does not rely on Zookeeper
to manage leases, detect failures, or coordinate recovery, as is usually done. The CM does
these using an efficient implementation that leverages RDMA to recover fast. Zookeeper is
invoked by the CM once per configuration change to update the configuration.

The global address space in FaRM consists of 2 GB regions, each replicated on one
primary and f backups, where f is the desired fault tolerance. Each machine stores several
regions in non-volatile DRAM that can be read by other machines using RDMA. Objects
are always read from the primary copy of the containing region, using local memory
accesses if the region is on the local machine and using one-sided RDMA reads if remote.
Each object has a 64-bit version that is used for concurrency control and replication. The
mapping of a region identifier to its primary and backups is maintained by the CM and
replicated with the region. These mappings are fetched on demand by other machines and
cached by threads together with the RDMA references needed to issue one-sided RDMA
reads to the primary.

Machines contact the CM to allocate a new region. The CM assigns a region identifier
from a monotonically increasing counter and selects replicas for the region. Replica se-
lection balances the number of regions stored on each machine subject to the constraints
that there is enough capacity, each replica is in a different failure domain, and the region is
co-located with a target region when the application specifies a locality constraint. It then
sends a prepare message to the selected replicas with the region identifier. If all replicas
report success in allocating the region, the CM sends a commit message to all of them.
This two-phase protocol ensures a mapping is valid and replicated at all the region replicas
before it is used.

This centralized approach provides more flexibility to satisfy failure independence and
locality constraints than our previous approach based on consistent hashing [16]. It also
makes it easier to balance load across machines and to operate close to capacity. With 2 GB
regions, we expect up to 250 regions on a typical machine and hence that a single CM could
handle region allocation for thousands of machines.

Each machine also stores ring buffers that implement FIFO queues [16]. They are used
either as transaction logs or message queues. Each sender-receiver pair has its own log and
message queue, which are physically located on the receiver. The sender appends records
to the log using one-sided RDMA writes to its tail. These writes are acknowledged by the
NIC without involving the receiver’s CPU. The receiver periodically polls the head of the
log to process records. It lazily updates the sender when it truncates the log, allowing the
sender to reuse space in the ring buffer.

4. Distributed transactions and replication
FaRM integrates the transaction and replication protocols to improve performance. It uses
fewer messages than traditional protocols, and exploits one-sided RDMA reads and writes
for CPU efficiency and low latency. FaRM uses primary-backup replication in non-volatile



Log record type Contents
LOCK transaction ID, IDs of all regions with objects written by the transac-

tion, and addresses, versions, and values of all objects written by the
transaction that the destination is primary for

COMMIT-BACKUP contents are the same as lock record
COMMIT-PRIMARY transaction ID to commit
ABORT transaction ID to abort
TRUNCATE low bound transaction ID for non-truncated transactions and transaction

IDs to truncate

Table 1. Log record types used in the transaction protocol. The low bound on transaction
identifiers that have not been truncated and a transaction identifier for truncation are
piggybacked on each record.

Message type Contents
LOCK-REPLY transaction ID, result indicating whether locking succeeded
VALIDATE addresses and versions of objects read from destination (not sent when

validation is done over RDMA reads)
NEED-RECOVERY configuration ID, region ID, and transaction IDs to be recovered (sent

by backup to primary)
FETCH-TX-STATE configuration ID, region ID, and transaction IDs whose state is re-

quested (sent by primary to backup)
SEND-TX-STATE configuration ID, region ID, transaction ID, and contents of lock record

for transaction requested by fetch
REPLICATE-TX-STATE configuration ID, region ID, transaction ID, and contents of lock record

(sent by primary to backup)
RECOVERY-VOTE configuration ID, region ID, transaction ID, region IDs for regions

modified by the transaction, and vote
REQUEST-VOTE configuration ID, transaction ID, and region ID
COMMIT-RECOVERY configuration ID, and transaction ID
ABORT-RECOVERY configuration ID, and transaction ID
TRUNCATE-RECOVERY configuration ID, and transaction ID

Table 2. Message types used in the transaction protocol. All but the first two are used only
during recovery.

DRAM for both data and transaction logs, and uses unreplicated transaction coordinators
that communicate directly with primaries and backups. It uses optimistic concurrency
control with read validation, as in some software transactional memory systems (e.g.,
TL2 [15]).

Figure 4 shows the timeline for a FaRM transaction and tables 1 and 2 list all log
record and message types used in the transaction protocol. During the execution phase,
transactions use one-sided RDMA to read objects and they buffer writes locally. The
coordinator also records the addresses and versions of all objects accessed. For primaries
and backups on the same machine as the coordinator, object reads and writes to the log use
local memory accesses rather than RDMA. At the end of the execution, FaRM attempts to
commit the transaction by executing the following steps:

1. Lock. The coordinator writes a LOCK record to the log on each machine that is a
primary for any written object. This contains the versions and new values of all written
objects on that primary, as well as the list of all regions with written objects. Primaries
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process these records by attempting to lock the objects at the specified versions using
compare-and-swap, and send back a message reporting whether all locks were successfully
taken. Locking can fail if any object version changed since it was read by the transaction,
or if the object is currently locked by another transaction. In this case, the coordinator
aborts the transaction. It writes an abort record to all primaries and returns an error to the
application.

2. Validate. The coordinator performs read validation by reading, from their primaries,
the versions of all objects that were read but not written by the transaction. If any object has
changed, validation fails and the transaction is aborted. Validation uses one-sided RDMA
reads by default. For primaries that hold more than tr objects, validation is done over RPC.
The threshold tr (currently 4) reflects the CPU cost of an RPC relative to an RDMA read.

3. Commit backups. The coordinator writes a COMMIT-BACKUP record to the non-
volatile logs at each backup and then waits for an ack from the NIC hardware without
interrupting the backup’s CPU. The COMMIT-BACKUP log record has the same payload as
a LOCK record.

4. Commit primaries. After all COMMIT-BACKUP writes have been acked, the coordina-
tor writes a COMMIT-PRIMARY record to the logs at each primary. It reports completion to
the application on receiving at least one hardware ack for such a record, or if it wrote one
locally. Primaries process these records by updating the objects in place, incrementing their
versions, and unlocking them, which exposes the writes committed by the transaction.

5. Truncate. Backups and primaries keep the records in their logs until they are truncated.
The coordinator truncates logs at primaries and backups lazily after receiving acks from all
primaries. It does this by piggybacking identifiers of truncated transactions in other log
records. Backups apply the updates to their copies of the objects at truncation time.

Correctness. Committed read-write transactions are serializable at the point where all the
write locks were acquired, and committed read-only transactions at the point of their last



read. This is because the versions of all read and written objects at the serialization point
are the same as the versions seen during execution. Locking ensures this for objects that
were written and validation ensures this for objects that were only read. In the absence
of failures this is equivalent to executing and committing the entire transaction atomically
at the serialization point. Serializability in FaRM is also strict: the serialization point is
always between the start of execution and the completion being reported to the application.

To ensure serializability across failures, it is necessary to wait for hardware acks from all
backups before writing COMMIT-PRIMARY. Assume that the coordinator does not receive
an ack from some backup b for a region r. Then a primary could expose transaction
modifications and later fail together with the coordinator and the other replicas of r without
b ever receiving the COMMIT-BACKUP record. This would result in losing the updates to r.

Since the read set is stored only at the coordinator, a transaction is aborted if the
coordinator fails and no commit record survives to attest to the success of validation.
So it is necessary for the coordinator to wait for a successful commit at one of the
primaries before reporting a successful commit to the application. This ensures that at
least one commit record survives any f failures for transactions reported committed to
the application. Otherwise, such a transaction could still abort if the coordinator and all
the backups failed before any COMMIT-PRIMARY record was written, because only LOCK
records would survive and there would be no record that validation had succeeded.

In traditional two-phase commit protocols, participants can reserve resources to commit
the transaction when they process the prepare message, or refuse to prepare the transaction
if they do not have enough resources. However, as our protocol avoids involving the back-
ups’ CPUs during the commit, the coordinator must reserve log space at all participants
to guarantee progress. Coordinators reserve space for all commit protocol records includ-
ing truncate records in primary and backup logs before starting the commit protocol. Log
reservations are a local operation at the coordinator because the coordinator writes records
to the log it owns at each participant. The reservation is released when the corresponding
record is written. Truncation record reservations are also released if the truncation is piggy-
backed on another message. If the log becomes full, the coordinator uses the reservations to
write explicit truncate records to free up space in the log. This is rare but needed to ensure
liveness.

Performance. For our target hardware, this protocol has several advantages over tradi-
tional distributed commit protocols. Consider a two-phase commit protocol with replication
such as Spanner’s [11]. Spanner uses Paxos [24] to replicate the transaction coordinator and
its participants, which are the machines that store data read or written by the transaction.
Each Paxos state machine takes the role of an individual machine in a traditional two-phase
commit protocol [19]. This requires 2f + 1 replicas to tolerate f failures and, since each
state machine operation requires at least 2f+1 round trip messages, it requires 4P (2f+1)
messages (where P is the number of participants in the transaction).

FaRM uses primary-backup replication instead of Paxos state machine replication. This
reduces the number of copies of data to f + 1, and also reduces the number of messages
transmitted during a transaction. Coordinator state is not replicated and coordinators com-
municate directly with primaries and backups, further reducing latency and message counts.
FaRM’s overhead due to replication is minimal: a single RDMA write to each remote ma-
chine having a backup of any written object. Backups of read-only participants are not
involved in the protocol at all. Additionally, read validation over RDMA ensures that pri-
maries of read-only participants do no CPU work, and using one-way RDMA writes for



COMMIT-PRIMARY and COMMIT-BACKUP records reduces waiting for remote CPUs and
also allows the remote CPU work to be lazy and batched.

The FaRM commit phase uses Pw(f + 3) one-sided RDMA writes where Pw is the
number of machines that are primaries for objects written by the transaction, and Pr one-
sided RDMA reads where Pr is the number of objects read from remote primaries but not
written. Read validation adds two one-sided RDMA latencies to the critical path but this
is a good trade-off: the added latency is only a few microseconds without load and the
reduction in CPU overhead results in higher throughput and lower latency under load.

5. Failure recovery
FaRM provides durability and high availability using replication. We assume that machines
can fail by crashing but can recover without losing the contents of non-volatile DRAM.
We rely on bounded clock drift for safety and on eventually bounded message delays for
liveness.

We provide durability for all committed transactions even if the entire cluster fails or
loses power: all committed state can be recovered from regions and logs stored in non-
volatile DRAM. We ensure durability even if at most f replicas per object lose the contents
of non-volatile DRAM. FaRM can also maintain availability with failures and network
partitions provided a partition exists that contains a majority of the machines which remain
connected to each other and to a majority of replicas in the Zookeeper service, and the
partition contains at least one replica of each object.

Failure recovery in FaRM has five phases described below: failure detection, reconfigu-
ration, transaction state recovery, bulk data recovery, and allocator state recovery.

5.1 Failure detection
FaRM uses leases [18] to detect failures. Every machine (other than the CM) holds a lease
at the CM and the CM holds a lease at every other machine. Expiry of any lease triggers
failure recovery. Leases are granted using a 3-way handshake. Each machine sends a lease
request to the CM and it responds with a message that acts as both a lease grant to the
machine and a lease request from the CM. Then, the machine replies with a lease grant to
the CM.

FaRM leases are extremely short, which is key to high availability. Under heavy load,
FaRM can use 5 ms leases for a 90-machine cluster with no false positives. Significantly
larger clusters may require a two-level hierarchy, which in the worst case would double
failure detection time.

Achieving short leases under load required careful implementation. FaRM uses ded-
icated queue pairs for leases to avoid having lease messages delayed in a shared queue
behind other message types. Using a reliable transport would require an additional queue
pair at the CM for each machine. This would result in poor performance due to capacity
misses in the NIC’s queue pair cache [16]. Instead the lease manager uses Infiniband send
and receive verbs with the connectionless unreliable datagram transport, which requires
space for only one additional queue pair on the NIC. By default, lease renewal is attempted
every 1/5 of the lease expiry period to account for potential message loss.

Lease renewal must also be scheduled on the CPU in a timely way. FaRM uses a ded-
icated lease manager thread that runs at the highest user-space priority (31 on Windows).
The lease manager thread is not pinned to any hardware thread and it uses interrupts instead
of polling to avoid starving critical OS tasks that must run periodically on every hardware
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Figure 5. Reconfiguration

thread. This increases message latency by a few microseconds, which is not problematic
for leases.

In addition, we do not assign FaRM threads to two hardware threads on each machine,
leaving them for the lease manager. Our measurements show that the lease manager usually
runs on these hardware threads without impacting other FaRM threads, but sometimes it
is preempted by higher priority tasks that cause it to run on other hardware threads. So
pinning the lease manager to a hardware thread would likely result in false positives when
using short leases.

Finally, we preallocate all memory used by the lease manager during initialization and
we page in and pin all the code it uses to avoid delays due to memory management.

5.2 Reconfiguration
The reconfiguration protocol moves a FaRM instance from one configuration to the next.
Using one-sided RDMA operations is important to achieve good performance but it im-
poses new requirements on the reconfiguration protocol. For example, a common technique
to achieve consistency is to use leases [18]: servers check if they hold a lease for an object
before replying to requests to access the object. If a server is evicted from the configura-
tion, the system guarantees that the objects it stores cannot be mutated until after its lease
expires (e.g., [7]). FaRM uses this technique when servicing requests from external clients
that communicate with the system using messages. But since machines in the FaRM con-
figuration read objects using RDMA reads without involving the remote CPU, the server’s
CPU cannot check if it holds the lease. Current NIC hardware does not support leases and
it is unclear if it will in the future.

We solve this problem by implementing precise membership [10]. After a failure, all
machines in a new configuration must agree on its membership before allowing object
mutations. This allows FaRM to perform the check at the client rather than at the server.
Machines in the configuration do not issue RDMA requests to machines that are not in it,
and replies to RDMA reads and acks for RDMA writes from machines no longer in the
configuration are ignored.

Figure 5 shows an example reconfiguration timeline that consists of the following steps:
1. Suspect. When a lease for a machine expires at the CM, it suspects that machine

of failure and initiates reconfiguration. At this point it starts blocking all external client



requests. If a non-CM machine suspects the CM of failure due to a lease expiry, it first
asks one of a small number of “backup CMs” to initiate reconfiguration (the k successors
of the CM using consistent hashing). If the configuration is unchanged after a timeout
period then it attempts the reconfiguration itself. This design avoids a large number of
simultaneous reconfiguration attempts if the CM fails. In all cases, the machine initiating
the reconfiguration will try to become the new CM as part of the reconfiguration.

2. Probe. The new CM issues an RDMA read to all the machines in the configuration ex-
cept the machine that is suspected. Any machine for which the read fails is also suspected.
These read probes allow handling of correlated failures that affect several machines, e.g.,
power and switch failures, by a single reconfiguration. The new CM proceeds with the re-
configuration only if it obtains responses for a majority of the probes. This ensures that if
the network is partitioned, the CM will not be in the smaller partition.

3. Update configuration. After receiving replies to the probes, the new CM attempts to
update the configuration data stored in Zookeeper to 〈c + 1, S,F ,CMid〉, where c is the
current configuration identifier, S is the set of machines that replied to the probes, F is the
mapping of machines to failure domains, and CMid is its own identifier. We use Zookeeper
znode sequence numbers to implement an atomic compare-and-swap that succeeds only if
the current configuration is still c. This ensures that only one machine can successfully
move the system to the configuration with identifier c + 1 (and become CM) even if
multiple machines simultaneously attempt a configuration change from the configuration
with identifier c.

4. Remap regions. The new CM then reassigns regions previously mapped to failed
machines to restore the number of replicas to f + 1. It tries to balance load and satisfy
application-specified locality hints subject to capacity and failure independence constraints.
For failed primaries, it always promotes a surviving backup to be the new primary to reduce
the time to recover. If it detects regions that lost all their replicas or there is no space to re-
replicate regions, it signals an error.

5. Send new configuration. After remapping regions, the CM sends a NEW-CONFIG
message to all the machines in the configuration with the configuration identifier, its
own identifier, the identifiers of the other machines in the configuration, and all the new
mappings of regions to machines. NEW-CONFIG also resets the lease protocol if the CM
has changed: it acts as a lease request from the new CM to each machine. If the CM is
unchanged, lease exchange continues during reconfiguration to detect additional failures
quickly.

6. Apply new configuration. When a machine receives a NEW-CONFIG with a configura-
tion identifier that is greater than its own, it updates its current configuration identifier and
its cached copy of the region mappings, and allocates space to hold any new region replicas
assigned to it. From this point, it does not issue new requests to machines that are not in the
configuration and it rejects read responses and write acks from those machines. It also starts
blocking requests from external clients. Machines reply to the CM with a NEW-CONFIG-
ACK message. If the CM has changed, this both grants a lease to the CM and requests a
lease.

7. Commit new configuration. Once the CM receives NEW-CONFIG-ACK messages from
all machines in the configuration, it waits to ensure that any leases granted in previous
configurations to machines no longer in the configuration have expired. The CM then sends
a NEW-CONFIG-COMMIT to all the configuration members that also acts as a lease grant. All
members now unblock previously blocked external client requests and initiate transaction
recovery.
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5.3 Transaction state recovery
FaRM recovers transaction state after a configuration change using the logs distributed
across the replicas of objects modified by a transaction. This involves recovering the state
both at the replicas of objects modified by the transaction and at the coordinator to decide on
the outcome of the transaction. Figure 6 shows an example transaction recovery timeline.
FaRM achieves fast recovery by distributing work across threads and machines in the
cluster. Draining (step 2) is done for all message logs in parallel. Step 1 and steps 3–5
are done for all regions in parallel. Steps 6–7 are done for all recovering transactions in
parallel.

1. Block access to recovering regions. When the primary of a region fails, one of the
backups is promoted to be the new primary during reconfiguration. We cannot allow access
to the region until all transactions that updated it have been reflected at the new primary.
We do this by blocking requests for local pointers and RDMA references to the region until
step 4 when all write locks have been acquired for all recovering transactions that updated
the region.

2. Drain logs. One-sided RDMA writes also impact transaction recovery. A general
approach to consistency across configurations is to reject messages from old configura-
tions. FaRM cannot use this approach because NICs acknowledge COMMIT-BACKUP and
COMMIT-PRIMARY records written to transaction logs regardless of the configuration in
which they were issued. Since coordinators only wait for these acks before exposing the
updates and reporting success to the application, machines cannot always reject records
from previous configurations when they process them. We solve this problem by draining
logs to ensure that all relevant records are processed during recovery: all machines process
all the records in their logs when they receive a NEW-CONFIG-COMMIT message. They
record the configuration identifier in a variable LastDrained when they are done.

FaRM transactions have unique identifiers 〈c,m, t, l〉 assigned at the start of commit
that encode the configuration c in which the commit started, the machine identifierm of the
coordinator, the thread identifier t of the coordinator, and a thread-local unique identifier l.



Log records for transactions with configuration identifiers less than or equal to LastDrained
are rejected.

3. Find recovering transactions. A recovering transaction is one whose commit phase
spans configuration changes, and for which some replica of a written object, some primary
of a read object, or the coordinator has changed due to reconfiguration. During log draining,
the transaction identifier and list of updated region identifiers in each log record in each log
is examined to determine the set of recovering transactions. Only recovering transactions
go through transaction recovery at primaries and backups, and coordinators reject hardware
acks only for recovering transactions.

All machines must agree on whether a given transaction is a recovering transaction or
not. We achieve this by piggybacking some extra metadata on the communication during
the reconfiguration phase. The CM reads the LastDrained variable at each machine as
part of the probe read. For each region r whose mapping has changed since LastDrained,
the CM sends two configuration identifiers in the NEW-CONFIG message to that machine.
These are LastPrimaryChange[r], the last configuration identifier when the primary of r
changed, and LastReplicaChange[r], the last configuration identifier when any replica of
r changed. A transaction that started committing in configuration c − 1 is recovering in
configuration c unless: for all regions r containing objects modified by the transaction
LastReplicaChange[r] < c, for all regions r′ containing objects read by the transaction
LastPrimaryChange[r′] < c, and the coordinator has not been removed from configuration
c.

Records for a recovering transaction may be distributed over the logs of different
primaries and backups updated by the transaction. Each backup of a region sends a NEED-
RECOVERY message to the primary with the configuration identifier, the region identifier,
and the identifiers of recovering transactions that updated the region.

4. Lock recovery. The primary of each region waits until the local machine logs have
been drained and NEED-RECOVERY messages have been received from each backup, to
build the complete set of recovering transactions that affect the region. It then shards the
transactions by identifier across its threads such that each thread t recovers the state of
transactions with coordinator thread identifier t. In parallel, the threads in the primary fetch
any transaction log records from backups that are not already stored locally and then lock
any objects modified by recovering transactions.

When lock recovery is complete for a region, the region is active and local and remote
coordinators can obtain local pointers and RDMA references, which allows them to read
objects and commit updates to this region in parallel with subsequent recovery steps.

5. Replicate log records. The threads in the primary replicate log records by sending
backups the REPLICATE-TX-STATE message for any transactions that they are missing. The
message contains the region identifier, the current configuration identifier, and the same
data as the LOCK record.

6. Vote. The coordinator for a recovering transaction decides whether to commit or abort
the transaction based on votes from each region updated by the transaction. These votes
are sent by the primaries of each region. FaRM uses consistent hashing to determine the
coordinator for a transaction, ensuring that all the primaries independently agree on the
identity of the coordinator for a recovering transaction. The coordinator does not change if
the machine it is running on is still in the configuration, but when a coordinator fails the
responsibility for coordinating its recovering transactions is spread across the machines in
the cluster.



The threads in the primary send RECOVERY-VOTE messages to their peer threads in
the coordinator for each recovering transaction that modified the region. The vote is
commit-primary if any replica saw COMMIT-PRIMARY or COMMIT-RECOVERY. Otherwise,
it votes commit-backup if any replica saw COMMIT-BACKUP and did not see ABORT-
RECOVERY. Otherwise, it votes lock if any replica saw a LOCK record and no ABORT-
RECOVERY. Otherwise, it votes abort. Vote messages include the configuration identifier,
the region identifier, the transaction identifier, and the list of region identifiers modified by
the transaction.

Some primaries may not initiate voting for a transaction because either they never
received a log record for the transaction or they already truncated the log records for the
transaction. The coordinator sends explicit vote requests to primaries that have not already
voted within a timeout period (set to 250 µs). The REQUEST-VOTE message includes the
configuration identifier, the region identifier, and the transaction identifier. Primaries that
do have log records for the transaction vote as before after first waiting for log replication
for that transaction to complete.

Primaries that do not have any log records for the transaction vote truncated if the
transaction has already been truncated and unknown if it has not. To determine if a
transaction has already been truncated, each thread maintains the set of identifiers of
transactions whose records have been truncated from its logs. This set is kept compact by
using a lower bound on non-truncated transaction identifiers. The lower bound is updated
based on the lower bounds at each coordinator, which are piggybacked on coordinator
messages and during reconfiguration.

7. Decide. The coordinator decides to commit a transaction if it receives a commit-
primary vote from any region. Otherwise, it waits for all regions to vote and commits if at
least one region voted commit-backup and all other regions modified by the transaction
voted lock, commit-backup, or truncated. Otherwise it decides to abort. It then sends
COMMIT-RECOVERY or ABORT-RECOVERY to all participant replicas. Both messages
include the configuration identifier and the transaction identifier. COMMIT-RECOVERY is
processed similarly to COMMIT-PRIMARY if received at a primary and to COMMIT-BACKUP
if received at a backup. ABORT-RECOVERY is processed similarly to ABORT. After the
coordinator receives back acks from all primaries and backups, it sends a TRUNCATE-
RECOVERY message.

Correctness. Next we provide some intuition on how the different steps of transaction
recovery ensure strict serializability. The key idea is that recovery preserves the outcome
for transactions that were previously committed or aborted. We say that a transaction is
committed when either a primary exposes transaction modifications, or the coordinator
notifies the application that the transaction committed. A transaction is aborted when the
coordinator sends an abort message or notifies the application that the transaction has
aborted. For transactions whose outcome has not yet been decided, recovery may commit
or abort the transaction but it ensures that any recovery from additional failures preserves
the outcome.

The outcome of transactions that are not recovering (step 3) is decided using the normal
case protocol (Section 4). So we will not discuss them further.

A log record for a recovering transaction that committed is guaranteed to be processed
and accepted before or during log draining (step 2). This is true because primaries expose
modifications only after processing the COMMIT-PRIMARY record. If the coordinator noti-
fied the application, it must have received hardware acks for all COMMIT-BACKUP records
and for at least one COMMIT-PRIMARY record before receiving NEW-CONFIG (because it



ignores the acks after changing configuration). Therefore, since the new configuration in-
cludes at least one replica for each region, at least one replica for at least one region will
process COMMIT-PRIMARY or COMMIT-BACKUP records, and at least one replica for each
other region will process COMMIT-PRIMARY, COMMIT-BACKUP, or LOCK records.

Steps 3 and 4 ensure that the primaries for the regions modified by the transaction see
these records (unless they have been truncated). They replicate these records to the backups
(step 5) to guarantee that voting will produce the same results even if there are subsequent
failures. Then the primaries send votes to the coordinator based on the records they have
seen (step 6).

The decision step guarantees that the coordinator decides to commit any transaction that
has previously committed. If any replica truncated the transaction records, all primaries
will vote commit-primary, commit-backup, or truncated. At least one primary will send a
vote other than truncated because otherwise the transaction would not be recovering. If no
replicas truncated the transaction records, at least one primary will vote commit-primary or
commit-backup and the others will vote commit-primary, commit-backup or lock. Similarly,
the coordinator will decide to abort if the transaction was previously aborted because in this
case there will either be no commit-primary or commit-backup records or all replicas will
have received ABORT-RECOVERY.

Blocking access to recovering regions (step 1) and lock recovery (step 4) guarantee
that until a recovering transaction has committed or aborted, no other operation can access
objects it modified.

Performance. FaRM uses several optimizations to achieve fast failure recovery. Identi-
fying recovering transactions limits recovery work to only those transactions and regions
that were affected by the reconfiguration, which could be a small subset of the total when a
single machine in a large cluster fails. Our results indicate that this can reduce the number
of transactions to recover by an order of magnitude. The recovery work itself is parallelized
across regions, machines, and threads. Making regions available immediately after lock re-
covery improves foreground performance as new transactions that access these regions do
not block for long. Specifically, they need not wait while new replicas of these regions are
brought up to date which requires bulk movement of data over the network.

5.4 Recovering data
FaRM must recover (re-replicate) data at new backups for a region to ensure that it can
tolerate f replica failures in the future. Data recovery is not necessary to resume normal
case operation, so we delay it until all regions become active to minimize impact on
latency-critical lock recovery. Each machine sends a REGIONS-ACTIVE message to the
CM when all regions for which it is primary become active. After receiving all REGIONS-
ACTIVE messages, the CM sends a message ALL-REGIONS-ACTIVE to all machines in the
configuration. At this point, FaRM begins data recovery for new backups in parallel with
foreground operations.

A new backup for a region initially has a freshly allocated and zeroed local region
replica. It divides the region across worker threads that recover it in parallel. Each thread
issues one-sided RDMA operations to read a block at a time from the primary. We currently
use 8 KB blocks, which is large enough to use the network efficiently but small enough not
to impact normal case operation. To reduce impact on foreground performance, recovery
is paced by scheduling the next read to start at a random point within an interval after the
start of the previous read (set to 4ms).



Each recovered object must be examined before being copied to the backup. If the object
has a version greater than the local version, the backup locks the local version with a
compare-and-swap, updates the object state, and unlocks it. Otherwise, the object has been
or is being updated by a transaction that created a version greater than or equal to the one
recovered, and the recovered state is not applied.

5.5 Recovering allocator state
The FaRM allocator splits regions into blocks (1 MB) that are used as slabs for allocating
small objects. It keeps two pieces of meta-data: block headers, which contain the object
size, and slab free lists. Block headers are replicated to backups when a new block is
allocated. This ensures they are available on the new primary after a failure. Since block
headers are used in data recovery, the new primary sends them to all backups immediately
after receiving NEW-CONFIG-COMMIT. This avoids any inconsistencies when the old
primary fails while replicating the block header.

The slab free lists are kept only at the primary to reduce the overheads of object
allocation. Each object has a bit in its header that is set by an allocation and cleared by
a free during transaction execution. This change to the object state is replicated during
transaction commit as described in Section 4. After a failure, the free lists are recovered
on the new primary by scanning the objects in the region, which is parallelized across all
threads on the machine. To minimize the impact on transaction lock recovery, allocation
recovery starts after ALL-REGIONS-ACTIVE is received and to minimize the impact on
the foreground work it is paced by scanning 100 objects at a time every 100 µs. Object
deallocations are queued until a slab’s free list is recovered.

6. Evaluation
6.1 Setup
Our experimental testbed consists of 90 machines used for a FaRM cluster and 5 machines
for a replicated Zookeeper instance. Each machine has 256 GB of DRAM and two 8-core
Intel E5-2650 CPUs running Windows Server 2012 R2. We enabled hyper-threading and
used the first 30 threads for the foreground work and the remaining 2 threads for the lease
manager. Machines have two Mellanox ConnectX-3 56 Gbps Infiniband NICs, each used
by threads on a different socket, and are connected by a single Mellanox SX6512 switch
with full bisection bandwidth. FaRM was configured to use 3-way replication (one primary
and two backups) with a lease time of 10ms.

6.2 Benchmarks
We use two transactional benchmarks to measure FaRM’s performance. We implemented
both benchmarks in C++ against the FaRM API. Since FaRM uses a symmetric model to
exploit locality, each machine both runs the benchmark code and stores data. Each machine
runs the benchmark code linked with FaRM’s code on the same process. In the future, we
will compile the application from a safe language like SQL to prevent application bugs
from corrupting data.

Telecommunication Application Transaction Processing (TATP) [32] is a benchmark
for high-performance main-memory databases. Each database table is implemented as a
FaRM hash table [16]. TATP is read dominated. 70% of the operations are single-row
lookups which use FaRM’s lock free reads [16]. They can usually be performed with a
single RDMA read and do not require a commit phase. 10% of the operations read 2–4
rows and require validation during the commit phase. The remaining 20% of the operations
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are updates and require the full commit protocol. Since 70% of the updates only modify a
single object field, we function ship these to the primary of the object as an optimization.
We used a database with 9.2 billion subscribers (except where noted). TATP is partitionable
but we have not partitioned it, so most operations access data on remote machines.

TPC-C [38] is a well-known database benchmark with complex transactions that access
hundreds of rows. Our implementation uses a schema with 16 indexes. Twelve of these only
require unordered (point) queries and updates and are implemented as FaRM hash tables.
Four of the indexes also require range queries. These are implemented using the FaRM B-
tree. The B-Tree caches internal nodes at each machine and hence lookups require a single
FaRM RDMA read in the common case. We reserve 8 GB per machine for the cache. We
use fence keys [17, 27] to ensure traversal consistency, similar to Minuet [37]. We omit a
more detailed description of the B-tree for space reasons.

We use a database with 21,600 warehouses. We co-partition most of the hash table in-
dexes as well as the clients by warehouse, which means that around 10% of all transactions
access remote data. As specified by the benchmark, “new order” transactions are 45% of
the transaction mix. We run the full mix but we report performance as the number of suc-
cessfully committed “new orders”.

6.3 Normal-case performance
We present the normal case (failure-free) performance of FaRM as throughput-latency
curves. For each benchmark, we varied the load by first increasing the number of active
threads per machine from 2 to 30 and then increasing the concurrency per thread, until
the throughput saturated. Note that the left end of each graph still shows significant
concurrency and hence throughput. It does not show the minimum latency that can be
achieved by FaRM.

TATP. Figure 7 shows that FaRM performs 140 million TATP transactions per second
with 58 µs median latency and 645 µs 99th percentile latency. On the left hand side of the
graph, the median latency is only 9 µs, the 99th percentile latency drops to 112 µs, and
FaRM performs 2 million operations per second. The multi-object distributed transactions
used by TATP commit in tens of microseconds, with a mean commit latency of 19 µs at the
lowest throughput and 138 µs at the highest.

FaRM outperforms published TATP results for Hekaton [14, 26], a single-machine in-
memory transactional engine, by a factor of 33. The Hekaton results were obtained using
different hardware but we expect a factor of 20 improvement when running Hekaton on one
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of our testbed machines. In a smaller-scale experiment, FaRM outperformed Hekaton with
just three machines. In addition, FaRM supports much larger data sets because it scales out
and it provides high availability unlike single machine systems.

TPC-C. We ran TPC-C for 60 s and we report latency and average throughput over that
period in Figure 8. FaRM performs up to 4.5 million TPC-C “new order” transactions per
second with median latency of 808 µs and 99th percentile latency of 1.9ms. The latency can
be halved with a small 10% impact in throughput. The best published TPC-C performance
we know of is from Silo [39, 40] which is a single-machine in-memory system with logging
to FusionIO SSDs. FaRM’s throughput is 17x higher than Silo without logging, and its
latency at this throughput level is 128x better than Silo with logging.4

Read performance. Although the focus of this paper is on transactional performance and
failure recovery, we were also able to improve read-only performance relative to [16]. We
ran a key-value lookup-only workload with 16-byte keys and 32-byte values and a uniform
access pattern. We achieved a throughput of 790 million lookups/s with median latency
of 23 µs and 99th percentile latency of 73 µs. This improves on previously reported per-
machine throughput for the same benchmark by 20% [16]. We do not double performance
despite doubling the number of NICs because the benchmark becomes CPU bound.

6.4 Failures
To evaluate performance with failures, we ran the same benchmarks and we killed the
FaRM process on one of the machines 35 s into the experiment. We show timelines with
the throughput of the 89 surviving machines aggregated at 1ms intervals. The timelines are
synchronized at experiment start using RDMA messaging.

Figures 9 and 10 show a typical run of each benchmark on different time scales.
Both show throughput as a solid line. The “time to full throughput” is a zoomed-in
view around the failure. It shows the time at which the failed machine’s lease expired
on the CM (“suspect”); the time at which all read probes completed (“probe”); the time
at which the CM successfully updated Zookeeper (“zookeeper”); the time at which the
new configuration was committed at all surviving machines (“config-commit”); the time at
which all regions are active (“all-active”); and the time at which background data recovery
begins (“data-rec-start”). The “time to full data recovery” shows a zoomed-out view that

4 Silo reports total transaction counts which we multiplied by 45% to get the “new order” count.



(a) Time to full throughput (b) Time to full data recovery

Figure 9. TATP performance timeline with failure

(a) Time to full throughput (b) Time to full data recovery

Figure 10. TPC-C performance timeline with failure

includes the time when all data is recovered at backups (”done”). A dashed line shows the
cumulative number of backup regions recovered over time by data recovery.

TATP. The timelines for a typical TATP run are shown in Figure 9. We configured it for
maximum throughput: each machine runs 30 threads with 8 concurrent transactions per
thread. Figure 9(a) shows that throughput drops sharply at the failure but recovers rapidly.
The system is back to peak throughput in less than 40 ms. All regions become active in
39ms. Figure 9(b) shows that data recovery, which is paced, does not impact foreground
throughput. The failed machine hosted 84 2 GB regions. Each thread fetches 8 KB blocks
every 2ms, which means that it takes around 17 s to recover a 2 GB region on a single
machine. Machines recover one region at a time in parallel with each other and at roughly
the same pace, hence the number of regions recovered moves in large steps. The recovery
load (i.e., the number of regions per-machine that had a replica on the failed machine) is
well balanced across the cluster: 64 machines recover one region and 10 machines recover
two. This explains why re-replication of most regions completes in around 17 s and why
all regions are fully re-replicated in less than 35 s. Some regions are not fully allocated, so



Figure 11. TATP performance timeline with CM failure

their recovery takes less time. This is why re-replication of some regions completes in less
than 17 s.

The figure also shows that TATP has some dips in throughput even when there are no
failures. We believe that this is because of skewed access in the benchmark; the throughput
drops when many transactions conflict and back off on hot keys at the same time.

TPC-C. Figure 10 shows the timelines for TPC-C. Figure 10(a) shows that the system
regains most of the throughput in less than 50 ms and that all regions become active
shortly after that. It takes the system slightly more time to recover transaction locks
than with TATP because TPC-C has more complex transactions. The main difference is
that recovery of data takes longer (Figure 10(b)) even though TPC-C recovers only 63
regions in the experiment. This is because TPC-C co-partitions its hash tables to exploit
locality and improve performance, which results in reduced recovery parallelism because
multiple regions are replicated on the same set of machines to satisfy the locality constraints
specified by the application. In the experiment, two machines recover 17 regions each,
which leads to data recovery taking over 4 minutes. Note that TPC-C throughput degrades
gradually over time in Figure 10(b) because the size of the database increases very quickly.

Failing the CM. Figure 11 shows TATP throughput over time when the CM process fails.
Recovery is slower than when a non-CM process fails. It takes about 110 ms for throughput
to get back to the same level as before the failure. The main reason for the increase in
recovery time is an increase in the reconfiguration time: from 20 ms in Figure 9(a) to 97 ms.
Most of this time is spent by the new CM building data structures that are only maintained
at the CM. It should be possible to eliminate this delay by having all the machines maintain
these data structures incrementally as they learn region mappings from the CM.

Distribution of recovery times. We repeated the TATP recovery experiment (without CM
failures) 40 times to obtain a distribution of recovery times. The experiments were run with
a smaller data set (3.5 billion subscribers) to shorten experiment times, but we confirmed
that the time to regain throughput after a failure was the same as for the larger data sets.
This is because this time is dominated by recovering transaction state, and the number of
concurrently executing transactions is the same for both data set sizes. Figure 12 shows
the distribution of recovery times. We measured recovery time from the point where the
failed machine is suspected by the CM until throughput recovers to 80% of the average
throughput before the failure. The median recovery time is around 50 ms and in more than
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Figure 12. Distribution of recovery times for TATP

Figure 13. TATP throughput when failing 18 out of 90 machines at the same time

70% of the executions the recovery time is less than 100 ms. In the remaining cases, the
recovery took more than 100 ms, but always less than 200 ms.

Correlated failures. Some failures affect more than one machine at the same time, e.g.,
power or switch failures. To deal with such coordinated failures, FaRM allows specifying
a failure domain for each machine and the CM places each replica of a region in a
different failure domain. We group machines in our cluster into five failure domains with 18
machines each. This corresponds to the number of ports in each leaf module in our switch.
We fail all the processes in one of these failure domains at the same time to simulate the
failure of a top-of-rack switch.

Figure 13 shows TATP throughput over time for the 72 machines that do not fail. TATP
was configured to use around 55 regions on each machine (6.9 billion subscribers across
the cluster) to allow enough space to re-replicate failed regions after the failure. FaRM
regains peak throughput less than 400 ms after the failure. We repeated the experiment
20 times and this time was the median of all experiments. Most of this time is spent
recovering transactions. We need to recover all in-flight transactions that modified any
region with a replica in a failed machine, that read a region with the primary in a failed
machine, or that had the coordinator on one of the failed machines. This results in roughly
130,000 transactions that need to be recovered, compared to 7500 with a single failure.
Re-replication of data takes 4 minutes because there are 1025 regions to re-replicate. As in
previous experiments, this does not impact throughput during recovery because of pacing.



Figure 14. TATP throughput when optimizing for re-replication delay

Figure 15. TPC-C throughput with more aggressive data recovery

Note that during this time each region still has two available replicas, so there is no need to
re-replicate more aggressively.

Data recovery pacing. FaRM paces data recovery to reduce its impact on throughput.
This increases the time to complete re-replication of regions at new backups. Figure 14
shows throughput over time for TATP with very aggressive data recovery: each thread
fetches four 32 KB blocks concurrently. The system only recovers peak throughput after
the majority of regions are re-replicated 800ms after the failure. However, data recovery
completes much faster: recovering 83 region replicas (166 GB) takes just 1.1 s. We use
this aggressive recovery setting only when regions lose all but one replica. The aggressive
recovery rate compares favorably with RAMCloud [33] which recovers 35 GB on 80
machines in 1.6 s.

TPC-C is less sensitive to interference from background recovery traffic than TATP
because only a small fraction of accesses are to objects on remote machines. This means
that, in settings in which application-specific tuning is possible, we could re-replicate data
more aggressively without impacting performance. Figure 15 shows TPC-C throughput
over time during recovery when threads fetch 32 KB blocks every 2ms. Re-replication
completes in 65 s, which is four times faster than with the default settings, without any
impact on throughput.

6.5 Lease times
To evaluate our lease manager optimizations (Section 5.1), we ran an experiment where all
threads in all machines repeatedly issue RDMA reads to the CM for 10min. We disabled
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Figure 16. False positives with different lease managers

recovery and counted the number of (false positive) lease expiry events across the cluster
for different lease manager implementations and different lease durations. This benchmark
is a good stress test because it generates more traffic at the CM than any of the benchmarks
we described.

Figure 16 compares four lease manager implementations. The first uses FaRM’s RPC
(RPC). The others use unreliable datagrams: on a shared thread (UD), on a dedicated
thread at normal priority (UD+thread), and with high-priority, interrupts and no pinning
(UD+thread+pri).

The results show that all the optimizations are necessary to enable using lease times of
10ms or less without false positives. With shared queue pairs, even 100ms leases expire
very often. The number of false positives is reduced by using unreliable datagrams but it
is not eliminated due to contention for the CPU. Using a dedicated thread allows us to use
100ms leases with no false positives, but 10ms leases still expire due to CPU contention
from background processes running on the FaRM machines. With the interrupt-driven lease
manager running at high priority, we can use 5ms leases for 10min with no false positives.
With shorter leases, we still sometimes have false positives. We are limited by the network
round trip time, which was up to 1ms with load, and by the resolution of the system timer,
which is 0.5ms. The limited resolution of the system timer explains why the interrupt-
driven lease manager has more false positives than the polling-based one with 1ms leases.

We conservatively set the leases to 10ms in all our experiments and have not observed
any false positives during their execution.

7. Related work
To our knowledge, FaRM is the first system to simultaneously provide high availability,
high throughput, low latency, and strict serializability. In prior work [16], we provided an
overview of an early version of FaRM that logged to SSDs for durability and availability
but we did not describe recovery from failures. This paper describes a new fast recovery
protocol and an optimized transaction and replication protocol that sends significantly
fewer messages and leverages NVRAM to avoid logging to SSDs. The optimized protocol
sends up to 44% fewer messages than the transaction protocol described in [16] and also
replaces messages by one-sided RDMA reads during the validation phase. The work in [16]
only evaluated the performance of single-key transactions in the absence of failures using
the YCSB benchmark. Here we evaluate the performance of transactions with and without
failures using the TATP and TPC-C benchmarks.



RAMCloud [33, 34] is a key-value store that stores a single copy of data in memory
and uses a distributed log for durability. It does not support multi-object transactions. On a
failure, it recovers in parallel on multiple machines, and during this period, which can take
seconds, the data on failed machines is unavailable. FaRM supports transactions, makes
data available within tens of milliseconds of a failure, and has an order of magnitude higher
throughput per machine.

Spanner [11] was discussed in Section 4. It provides strict serializability but is not
optimized for performance over RDMA. It uses 2f+1 replicas compared to FaRM’s f+1,
and sends more messages to commit than FaRM. Sinfonia [8] offers a shared address space
with serializable transactions implemented using 2-phase commit and piggybacking reads
into the 2-phase commit in specialized cases. FaRM offers general distributed transactions
optimized to take advantage of RDMA.

HERD [23] is an in-memory RDMA-based key-value store that delivers high perfor-
mance per server in an asymmetric setting where clients run on different machines from
servers. It uses RDMA writes and send/receive verbs for messaging but does not use
RDMA reads. The authors of [23] show that one-sided RDMA reads perform worse than
a specialized RPC implementation without reliability in an asymmetric setting. Our results
use reliable communication in a symmetric setting where every machine is both a client
and a server. This allows us to exploit locality, which is important because accessing local
DRAM is significantly faster than using RDMA to access remote DRAM [16]. Pilaf [31]
is a key-value store that uses RDMA reads. Neither Pilaf nor HERD support transactions.
HERD is not fault tolerant whereas Pilaf gets durability but not availability by logging to a
local disk.

Silo [39, 40] is a single-machine main-memory database that achieves durability by
logging to persistent storage. It writes committed transactions to storage in batches to
achieve high throughput. Failure recovery involves reading checkpoints and log records
from storage. The storage in Silo is local and thus availability is lost when the machine
fails. In contrast, FaRM is distributed and uses replication in NVRAM for durability
and high availability. FaRM can regain peak throughput after a failure more than two
orders of magnitude faster than Silo for a much larger database. By scaling out and using
replication in NVRAM, FaRM also achieves higher throughput and lower latency than Silo.
Hekaton [14, 26] is also a single-machine main-memory database without support for scale-
out or distributed transactions. FaRM with 3 machines matches Hekaton’s performance and
with 90 machines has 33x the throughput.

8. Conclusion
Transactions make it easier to program distributed systems but many systems avoid them
or weaken their consistency to improve availability and performance. FaRM is a distributed
main memory computing platform for modern data centers that provides strictly serializable
transactions with high throughput, low latency, and high availability. Key to achieving this
are new transaction, replication, and recovery protocols designed from first principles to
leverage commodity networks with RDMA and a new, inexpensive approach to providing
non-volatile DRAM. The experimental results show that FaRM provides significantly
higher throughput and lower latency than state of the art in-memory databases. FaRM can
also recover from a machine failure back to providing peak throughput in less than 50ms,
making failures transparent to applications.
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