
Improving Mobile Search User Experience with SONGO

Emmanouil Koukoumidis†, Dimitrios Lymberopoulos‡, Jie Liu‡, Doug Burger‡

† Electrical Engineering ‡ Microsoft Research
Princeton University One Microsoft Way
Princeton, NJ 08544 Redmond, WA 98052

ABSTRACT
SONGO (Search ON the GO) is a web search caching sys-
tem for mobile devices that allows most of the submitted
queries to be served locally without having to use the 3G
link. Initially, a community-based search cache is generated
by mining the most popular queries and links from the mo-
bile search logs. This cache is updated daily making sure
that the latest popular information is always available lo-
cally on the mobile device. Over time, the community-based
cache is incrementally updated with the queries and links
that the individual user submits and visits respectively. An
analysis of 200 million queries shows that, on average, 66%
of the search queries submitted by an individual user can be
locally served by caching 2,500 links at the expense of 1MB
of flash and 200KB of RAM space. A prototype implemen-
tation of SONGO in Windows Mobile demonstrates that a
cache hit results into 16x faster responses and 23x energy
savings when compared to querying through the 3G link.

1. INTRODUCTION
The wide availability of internet access on mobile devices,

such as phones and personal media players, has allowed users
to search, locate and access web information while on the go.
Currently, there are 54.5 million mobile internet users and
market analysis shows that this number will increase to 95
million by 2013 [12]. By that time, half of the overall search
volume will correspond to queries submitted from mobile
devices. As web search becomes a fundamental service for
mobile devices, the need to design these devices to better
support search services becomes critical.

Currently, mobile web search works in the same way as
desktop web search. For every query that is submitted on a
mobile device a TCP/IP connection to the datacenter is es-
tablished, the query is transmitted over the radio link, and
the results are computed and sent back to the device over
the radio link. Even though this server oriented architecture
provides the necessary information to the end user, it is in-
efficient because it ignores fundamental characteristics and
properties of mobile devices and mobile users.

Conversely to the desktop domain where the TCP/IP ses-
sions are established over very fast internet connections, TCP/IP
sessions on mobile devices are usually established over slow

3G or Edge links. For instance, the overall time it takes to
answer a web search query on a typical high-end smartphone
with a 3G connection will on average vary between 5 and 10
seconds. In addition, when the 3G radio is not connected
or only Edge connectivity is available, the overall time to
serve a search query can be doubled or even tripled. These
delays can become frustrating and create a major bottleneck
for users that need to quickly access web information in or-
der to make informed decisions while on the go. In addi-
tion, mobile devices are usually battery operated and the ra-
dio links used to establish TCP/IP connections are the most
power hungry components. Actively transmitting or receiv-
ing data over the 3G radio can double the power consumed
by the phone and thus, it can significantly reduce its battery
lifetime. Given the rapidly increasing power consumption
of mobile devices and the slow increase in battery capaci-
ties, this power bottleneck is likely to remain in place in the
future.

On the other hand, the traditional memory bottleneck of
mobile devices is rapidly fading away. Phones and personal
music players currently support up to 64GB of flash mem-
ory and future flash technologies promise capacities that can
theoretically reach 2TB in the next two years [1]. The in-
creasingly available memory resources on these devices can
really transform the way specific services are structured. For
instance, in the case of web search, a large part of the web
index could be stored on the phone enabling users to in-
stantly access search results locally without having to reach
the search engine.

In this paper we present a new mobile web search cache
for mobile devices that takes advantage of the continuously
increasing memory resources on mobile devices and the unique
way mobile users search the web to overcome, when possi-
ble, the performance bottleneck introduced by the 3G link.
First, we analyze 200 million queries to understand how mo-
bile users search on their phones. Our data analysis indicates
two major observations: (i) there is a small set of queries that
is frequently submitted across all mobile users and (ii) indi-
vidual users frequently repeat queries they have submitted in
the past. Given these two observations, we design and im-
plement SONGO, a web search cache that lives on the phone
and allows most of the submitted queries to be served locally

1



(a) (b)

Figure 1: (a) Cumulative query volume as a function of the most popular queries (b) Cumulative link volume as a
function of the most popular links.

without having to use the 3G link.
Using a prototype implementation of SONGO and real

search query streams extracted from the search logs of m.
bing.com, we show that SONGO is able to successfully
serve, on average, 66% of the web search queries submitted
by an individual user. In these cases, the search results are
displayed to the user within 400ms which is 16 times faster
and 23 times more energy efficient when compared to query-
ing through the 3G link. The resources used by SONGO are
approximately 200KB of RAM and 1MB of Flash, less than
1% of the memory resources available on most smartphones
today.

Not only does SONGO improve the speed and energy ef-
ficiency of mobile search but it also improves the quality of
the search results by enabling personalized ranking on the
phone. Since SONGO lives on the phone, it is able to mon-
itor what, when and how many times the specific user clicks
on a link after a given query. This information, in association
with the information mined from the search logs, is used by
SONGO to provide personalized ranking of search results.

The rest of the paper is organized as follows: Section 2
presents our findings on how mobile users search the web
based on the analysis of several consecutive months of web
search logs. Section 3 provides an overview of the SONGO
architecture and a detailed description of its different compo-
nents. Section 4 presents the evaluation of SONGO with real
user search query streams extracted from the mobile search
logs. Section 5 provides an overview of the related work and
Section 6 concludes the paper.

2. MOTIVATION
Caching search results on mobile devices offers the ob-

vious advantage of serving search queries extremely fast.
However, the real impact of such a caching system depends
on the fraction of the query volume that can be successfully
served locally on the device. A small fraction would sug-

gest that the value of such a cache is negligible. Of course,
how small or large this fraction is depends on how mobile
internet users search the web.

To answer these questions we analyzed 200 million queries,
submitted to m.bing.com, over a period of several consec-
utive months in 2009. The query volume consisted of web
search queries submitted from mobile devices such as phones
and personal music players. Every entry in the search logs
we analyze contains the raw query string that was submitted
by the mobile user as well as the link1 that was selected as a
result of the submitted query. No personal information (i.e.
location, carrier, phone model etc.) is included in the logs.

Our current analysis and the proposed cache focus on web
search queries only. Local search queries where users try to
find information about businesses around them are not taken
into account in this work. The reason is that the vast majority
of mobile search queries today (approximately 70%) are web
search queries. Our future work will focus on the smaller but
still important part of local search queries.

2.1 The Mobile Community Effect
First, we look at the community of mobile users as a whole.

From the web search logs, we extract the most popular queries
submitted and the most popular links clicked by the mobile
users as a result of any query submission. Figures 1(a) and
1(b) show the cumulative query and link volume as a func-
tion of the number of most popular queries and links respec-
tively. When looking across all data, it turns out that the
6000 most popular queries and the 4000 most popular links
are responsible for approximately 60% of the query and link
volumes respectively. In other words, there is a small set of
queries and links that is extremely popular across all mobile
users. This suggests that if we store these 6000 queries and
1A link uniquely identifies a search result that also contains a brief
summery of the web page. In this paper, we consider the terms link
and search result interchangeable.

2



Figure 2: Repeatability of mobile search queries. For
every unique user, a 1-month long search query stream
was extracted from the search logs and used to compute
the repeatability of queries.

4000 links locally on the phone we could theoretically an-
swer 60% of the overall queries submitted by mobile users
without having to use the radio link.

We further divide the queries in two different categories,
navigational (e.g. ”youtube” or ”facebook”) and no-navigational
(e.g. ”michael jackson”) and we study the same trends in
isolation. As Figure 1 shows, both query types follow the
same trends but navigational queries are significantly more
concentrated compared to no-navigational queries. For in-
stance, the first 5000 navigational queries are responsible for
90% of the navigational query volume while the same num-
ber of no-navigational queries accounts for less than 30% of
the no-navigational query volume.

Another interesting observation comes from comparing
the results between Figures 1(a) and 1(b). Note that in order
to achieve a cumulative volume of 60%, 50% more queries
are required compared to the number of links (6000 queries
vs 4000 links). By a more careful investigation and manual
inspection of the search logs, we concluded that this is due
to the fact that users search for the same web page in many
different ways. For instance, it turns out that mobile users
tend to very often either misspell their queries because of
the small and inaccurate keyboards they have to interact with
(i.e. ”yotube” instead of ”youtube”) or purposely change the
query term so that they can still get to the result they want
without having to type a lot of characters (i.e. ”utube” in-
stead of ”youtube”). However, even though a misspelled or
altered query is submitted, the search engine is intelligent
enough to provide the user with the correct search result and
thus a successful click trough is recorded. Because of this,
a popular webpage is, in general, reached through multiple
search queries.

Figures 1(a) and 1(b) also show the same information when
considering the queries and links that were submitted by

feature-phone2 and smartphone users in isolation. Even though
the exact same observations hold in both cases, queries and
links that are accessed over feature-phones are in general
about 10% more concentrated when compared to smartphones.
Of course, this is an artifact of the limited user interfaces
found on these devices. The lack of a full browser makes ac-
cessing the web a challenging task, limiting user interaction
with the phone.

2.2 The Individual Mobile User Effect
Figure 1 shows that there is a very small set of queries and

links that is popular across all users and it is responsible for
approximately 60% of the cumulative mobile query volume.
However, there is another 40% of the mobile query volume
that seems to be spread across a very large number of queries
and links. Even though queries in this 40% might not be
statistically significant for all mobile users, they might be
extremely important for individual users.

To find out how we can possibly achieve this, we studied
how often individual users repeat queries. We call a query a
repeated query only if the user submits the same query and
clicks on the exact same link. Figure 2 shows the percent-
age of individual mobile users as a function of the proba-
bility of submitting a new query within a month. Approxi-
mately 50% of mobile users will submit a new query at most
30% of the time. In other words, at least 70% of the queries
submitted by half of the mobile users are repeated queries.
Figure 2 also shows this trend for both navigational and no-
navigational queries. Approximately 80% of mobile users
repeat a navigational query at least 65% of the time. In the
case of no-navigational queries, 20% of the users repeat the
same query at least 40% of the time.

Consequently, knowing what the user searched in the past
provides a very good indication of what the user will search
for in the future. In essence, users consider the search box
as the most natural interface for accessing the web. Cur-
rent techniques for providing quick access to web pages on
mobile devices, such as the browser address bar and book-
marks, are not used by mobile users. The search box to-
day is replacing those interfaces. By simply monitoring the
queries submitted on a phone, one can automatically popu-
late the bookmarks of the mobile user and instantly display
these bookmarks while the user is entering a search query.

3. SONGO ARCHITECTURE
Given the mobile search trends that the analysis of the

web search logs highlighted, we designed and implemented
SONGO, a mobile search cache that lives on the phone and
it is able to answer queries locally without having to use
the 3G link. SONGO consists of two discrete but strongly
interrelated components (Figure 3). First, the community-
2Feature-phones are devices with limited internet access capabili-
ties in the sense that they don’t have a fully capable web browser
such as smart-phones like iphone, android and windows mobile de-
vices.

3



Figure 3: Overview of the SONGO web search cache.

based part of the cache is responsible for storing the small
set of queries and links that are very popular across all mo-
bile users. This information is automatically extracted from
the search logs and is updated overnight every time the mo-
bile device is recharging, making sure that the latest popular
information is available on the mobile device. The person-
alization part of the cache monitors the queries entered as
well as the links clicked by the user and performs two dis-
crete tasks. First, it expands the cache to include all those
queries and links accessed by the user that do not initially
exist in the community part of the cache. In that way, the
cache can take advantage of the repeatability of the queries
submitted by the mobile users to serve as many queries as
possible locally on the mobile device. Second, it collects
information about user clicks, such as when and how many
times the user clicks on a link after a query is submitted, to
customize ranking of search results to user’s click history.

When a query is submitted, SONGO will first perform a
lookup in the cache to find out if there are locally available
search results for the given query. In the case of a cache hit,
the search results are fetched from the local storage, ranked
based on the past user access patterns recorded by the per-
sonalization part of the cache, and immediately displayed to
the user. In the case of a cache miss, the query is submitted
to the search engine over the 3G radio link.

Realizing the architecture shown in Figure 3 on an actual
mobile device poses several challenges:

Content Generation: A methodology is required to de-
cide which and how many queries as well as which and how
many search results for every query should be included in
the cache. Ideally, we would like to maximize the number of
queries that can be served by the cache while minimizing its
impact on the memory resources of the mobile device.

Storage Architecture: An efficient way to store and quickly
retrieve the search results on the mobile device is needed.
Memory overhead, in terms of both RAM and flash, should
be minimized to prevent performance degradation on the de-
vice and provide ample storage space for user’s personal
files. At the same time, SONGO should be able to quickly
locate and retrieve the search results to minimize user re-
sponse time.

Cache Management: A scalable mechanism for regu-
larly updating the cache contents is required. The set of pop-

Query Link Volume
myspace http://mobile.myspace.com 1,000,000
myspace http://www.myspace.com 950,000
facebook http://m.facebook.com 900,000

... ... ...
youtube http://m.youtube.com 500,000
yotube http://m.youtube.com 300,000

... ... ...
weather http://m.weather.com 200,000

... ... ...
Total Volume 100,000,000

Table 1: A list of query-link pairs sorted by their vol-
ume is generated by processing the mobile web search
logs over a time window(i.e. a month). The volume num-
bers used in this table are hypothetical.
ular queries and links that appear in the search logs changes
over time. Having available the most up-to-date set of popu-
lar queries and links on the phone is necessary for maximiz-
ing the number of queries that can be served by SONGO.

Personalized Ranking: The user’s access patterns can
provide important information about the individual user and
its interests. Initially, the cache contains search results ob-
tained by mining the web search logs. Over time, individual
users will access a portion of this information and of course
add more search results in the cache based on the specific
queries they submit. Recording and leveraging this informa-
tion over time to personalize the search experience provides
a great opportunity and challenge.

In the next sections we describe how SONGO addresses
these challenges in detail.

3.1 Cache Content Generation
The search results stored in our cache are extracted di-

rectly from the mobile search logs in a data-driven way. The
goal of this process is to identify the most popular queries
and search results that are of interest to the whole mobile
community.

Table 1 shows an example of the type of information ex-
tracted from the search logs. A set of triplets of the form:
< query, link, volume > is generated and sorted based
on volume. The term query corresponds to the exact query
string submitted to the search engine, the term link corre-
sponds to the search result that was selected after entering
the particular query, and the term volume represents the num-
ber of times in the search logs that the specific link was se-
lected after entering the query string query. For instance, the
first row in Table 1 can be interpreted as follows:

In the last month, there were 1 million searches where the
link http://mobile.myspace.com was selected

after the query ”myspace” was submitted.

Ideally, we would like to use all the triplets in Table 1
to generate our cache contents. This approach would max-
imize the query volume that can be served locally on the
phone. However, the unique query-link pairs in the mobile
web search logs can be in the order of tens or even hundreds
of millions. Storing all of them would require significant

4



Figure 4: Cumulative query-link volume as a function of
the most popular query-link pairs.

memory resources that a phone might not be able to provide
or a user might not be willing to sacrifice. Thus, we have to
carefully decide which and how many entries in Table 1 will
be cached on the phone.

Deciding which entries to store is straightforward. To
maximize the query volume that can be served by our cache,
we should always store the most popular query-link pairs or,
in other words, the top entries of Table 1. The higher the
volume of a query-link pair the higher the probability that a
given user will try to access this query-link pair on his phone.

Deciding how many of the most popular query-link pairs
to store is a more complicated process. We select the number
of query-link pairs to cache based on either a memory or
cache saturation threshold.

Memory (Flash or RAM) Threshold: Starting from the
top entry in Table 1, we run down though its entries and con-
tinuously add query-link pairs until a specific flash or RAM
memory thresholdMth is reached. This threshold represents
the maximum memory that can be allocated to our cache and
it can be set by either the phone itself based on its avail-
able memory resources or by the user, depending on how
much storage space and memory he is willing to sacrifice
for SONGO. The memory and storage requirements can be
easily computed for a given set of entries in Table 1 based
on the number of unique queries and links they contain (see
Section 3.2).

Cache Saturation Threshold: Starting from the top entry
in Table 1, we run down though its entries and continuously
add query-link pairs until we reach a query-link pair with
a normalized volume lower than a predetermined threshold
Vth. The normalized volume of a query-link pair is gener-
ated by dividing this pair’s volume by the total volume of all
query-link pairs in the search logs. For instance, the normal-
ized volume of the first query-link pair in Table 1 is equal
to: 106/108 = 0.01. Since the entries in Table 1 are sorted
based on their volume, the normalized volume of query-link
pairs is monotonically decreasing.

The value of the cache saturation threshold is illustrated

Figure 5: Memory and flash overhead introduced by
SONGO for different query-link aggregate volumes.

in Figure 4. From the empirical CDF of the volume of all
query-link pairs in the search logs, it is apparent that the
value of adding query-link pairs to our cache quickly di-
minishes. In particular, after having cached approximately
20000 query-link pairs, even marginally increasing the ag-
gregate volume requires a large number of query-link pairs.
For instance, slightly increasing the aggregate volume from
58% to 62% requires to double the amount of query-link
pairs from 20000 to 40000.

In practice, our mobile web search logs analysis has shown
that the cache saturation threshold will be quickly reached
before SONGO stretches the memory or storage resources
available on the phone. This can be clearly seen in Figure
5 that shows the size of main memory and flash required
by SONGO as a function of the aggregate query-link vol-
ume represented by the query-link pairs stored in the cache.
It is clear that the saturation point of the cache is quickly
reached when the most popular query-link pairs that corre-
spond to approximately 55% of the cumulative query-link
volume have been cached. At this point, our cache requires
approximately 1MB of flash and 200KB of main memory,
which accounts for less than 1% of the available memory
and storage resources on a typical smartphone.

Independently of which threshold is used (memory or cache
saturation), this methodology identifies the n top entries in
Table 1. Before using these entries to build the SONGO
cache, we use the volume information for every query-link
pair to produce its ranking score. In essence, the score for
each query-link pair is produced by normalizing the vol-
ume across all links that correspond to the query. For in-
stance, in the case of query ”myspace” in Table 1, the rank-
ing score for the link http://mobile.myspace.com
is equal to 106/1.95 ∗ 106 = 0.513 and the score for http:
//www.myspace.com is 95 ∗ 104/1.95 ∗ 106 = 0.487.

5



The generated < query, link, score > triplets can now be
used to build the cache on the phone.

3.1.1 Advantages of the approach
Extracting SONGO’s cache contents directly from the mo-

bile search logs provides several advantages.
First, not only do we store the most popular queries across

all mobile users, but we also store only the most popular
search results for every query. Even though there might
be tens or even hundreds of search results available for a
given query, we only cache these search results that are pop-
ular across all mobile users. This approach constraints the
amount of memory resources required. For instance, for a
typical cache (Section 4) we store on average 1.5 search re-
sults per query. This can result into 3 to 5 times lower mem-
ory overhead when compared to simpler approaches where
the top 5 or 10 search results for every popular query are
cached.

Second, each query and search result pair extracted from
the search logs is associated to a volume. By caching the vol-
ume (or the normalized volume across all pairs in the cache)
of every query-link pair, we enable the phone to rank search
results for a given query locally without the need to reach
the search engine over the 3G link.

Third, by processing the mobile search logs we automat-
ically discover the most common misspellings of popular
queries. Given the cumbersome text input interfaces on phones,
mobile users tend to frequently misspell their queries. These
frequent misspellings appear in the search logs as popular
queries, enabling SONGO to cache search results for all these
query misspellings. As a result, queries such as ”yotube”,
”facebok”, ”utube”, and ”yaho” can now be served locally
on the phone.

3.2 Storage Architecture
The set of < query, link, score > triplets identified with

the methodology described in the previous section must be
efficiently stored on the phone. Storage efficiency is defined
in two ways. First, the main memory and flash resources re-
quired to store the search results should be minimal. Second,
the time it takes to retrieve, rank and display search results
after the user enters a query should be as low as possible.

Figure 6 provides an overview of SONGO’s storage ar-
chitecture. It consists of two components, a hash table and
a custom database of search results. The hash table lives in
main memory and its role is to link queries to search results.
This is done in three steps. First, given a submitted query the
hash table can quickly identify if there are cached search re-
sults for the query and thus, if we have a cache hit or a cache
miss. Second, in the case of a cache hit, the hash table pro-
vides pointers to the database where the search results for the
submitted query are located. Third, along with each search
result pointer, the hash table provides its ranking score, en-
abling SONGO to properly rank search results on the phone
before displaying them to the user.

Figure 6: Overview of SONGO’s storage architecture.
The hash table lives on the memory and it links queries to
search results. The search results are stored in a custom
database stored in flash.

The custom database of search results lives in flash and
its role is to store all the available search results so that
they occupy the least possible space and they can be quickly
retrieved. The information stored in the database for each
search result includes all the necessary information for gen-
erating the same search user experience with the search en-
gine: the actual web address, a short description of the web-
site and the human readable form of the web address.

Over time and as the user submits queries and clicks on
search results, SONGO updates both the hash table and the
database of search results. First, every time the user clicks
on a search result, its ranking score is properly updated in
the hash table. In addition, if a new query or a new search
result is selected that does not exist in the cache, both the
hash table and the database are properly updated so that this
query and search result can be retrieved form the cache in
the future.

3.2.1 Query Hash Table
Figure 7 shows the structure of the hash table used to link

queries to search results. Every entry in the hash table cor-
responds to one and only one query and has 4 fields. The
first field of every entry contains the hash value of the query
string that this entry corresponds to. The next two fields are
of identical type and represent two search results associated
to the query (Link #1 and Link #2 in Figure 7). Each search
result in the hash table is represented by a pair of numbers.
The first number corresponds to the hash value of the web
address of the search result. This value is used to uniquely
identify a search result and, as it will be described in the next
section, is used as a pointer to retrieve the information asso-
ciated to the search result (short description, web address
etc.) from the database. The second number corresponds to

6



Figure 7: The hash table data structure used to link
queries to search results.

the ranking score of the search result. The ranking score of
every query-link pair is represented by its normalized vol-
ume. The last field of each entry in the hash table is a 64-bit
number that is used to log information about the two search
results in this entry(the 32 most significantly bits correspond
to the first search result while the 32 least significant bits
correspond to the second search result). Currently, we use
only one bit to indicate if the user has ever accessed the spe-
cific query-link pair. The rest of the flag bits are reserved for
future purposes.

For instance, consider the first entry in the example hash
table shown in Figure 7. This entry corresponds to the query
”youtube” and thus, its first field contains the hash value of
the string ”youtube”. The most popular search result for this
query points to the web address http://www.youtube.
com and therefore the second field of this entry contains the
hash value of this web address along with its ranking score.
Similarly the third field contains the same information for
the next most popular search result for this query. From the
value of the bit flags, it is also clear that the user has already
submitted the query ”youtube” on his phone and he has only
clicked on the first search result immediately after.

In general, given a set of < query, link, score > triplets
the hash table is generated as follows. For every unique
query in the set of triplets we identify all the links asso-
ciated to this query. An entry is created in the hash table
for the query and search results are added in descending or-
der of score. If more than two links are associated to the
same query, additional entries are created in the hash table
by properly setting the second argument of the hash function
(i.e. ”youtube” query in Figure 7).

This approach of linking queries to search results high-
lights two important design decisions that were influenced
by the properties of the < query, link, score > triplets ex-
tracted from the mobile web search logs. First, the num-
ber of search results linked to a query in a given hash table
entry is critical. If most of the queries are associated to a
large number of search results, then using a small number
of search results per hash table entry could lead to a large

Figure 8: The memory footprint of the hash table as a
function of the number of search results per hash table
entry. For all data points we used exactly the same <
query, link, score > triplets that correspond to 60% of
the cumulative query-link volume (Figure 4).

number of hash table entries and thus to higher memory re-
quirements. On the other hand, choosing a hash table en-
try size that can support a large number of search results
when most of the queries are associated to a few search re-
sults, could also lead to wasting memory resources. These
trends are illustrated in Figure 8 that shows the memory foot-
print of the hash table for different numbers of search results
stored per hash table entry. Note that the smallest mem-
ory footprint is achieved when two search results are stored
per hash table entry. The reason is that every query in the
< query, link, score > triplets corresponds, on average, to
1.5 links.

Second, the way queries are linked to search results can
impact the storage requirements of the database of search
results. The simplest and fastest approach to retrieving and
displaying search results to the user would be to store them
in a single HTML file. Even though this approach would
simplify the structure of our hash table, it would significantly
increase the flash memory required to store them.

The reason is that most of the search results are shared
across a large number of queries. For instance, in the exam-
ple hash table shown in Figure 7, the search result that cor-
responds to the web address https://www.youtube.
com is linked to three different queries. In general, our anal-
ysis indicates that only 60% of the search results that appear
in the < query, link, score > triplets are unique. If a sin-
gle search result page were to be stored for every query, then
40% of the search results would have to be stored at least
twice. To avoid wasting flash resources, we opted to store
each search result once and then link individual queries to
each search result independently. The overhead of this ap-
proach is that the search result web page for every query has
to be constructed on the fly after parsing the hash table to
retrieve all the search results for the query. However, as it
will be shown in Section 4, the overhead introduced by this
approach is in the order of tens of milliseconds and thus does
not impact the overall user experience.

7



Figure 9: Search result database structure and illustra-
tion of the process of retrieving a search result when
N = 32 files are used.

3.2.2 Search Results Organization
The custom database of search results lives in flash and

stores all the links that appear in the< query, link, score >
triplets extracted from the mobile web search logs. For every
search result, we store its title that serves as the link to the
landing page, a short description of the landing page and
the human readable form of the link (Figure 9). This allows
SONGO to display a search result in exactly the same way
as the search engine would and thus, to provide a transparent
user experience.

The amount of memory required to store this information
for a search result is on average 500 bytes. However, the
actual memory space required might be significantly higher
due to the internal structure of flash chips. Flash memories
are organized in blocks of fixed size that are usually equal to
2KB, 4KB or 8KB depending on the size of the chip. This
means that even small files with size less than the size of a
flash block, will appear to occupy a full block. For instance,
if we store a 500 bytes file containing a single search result
in flash memory, then this file will occupy 4, 8 or 16 times
more flash space (when 2KB, 4KB or 8KB of block size is
used respectively) than its actual size.

In order to avoid flash fragmentation, multiple search re-
sults should be aggregated and stored into as few files as
possible. However, storing a large number of search results
into a single file could increase the time it takes SONGO to
locate and retrieve a search result and, thus it could hurt the

Figure 10: Average time to retrieve two search results
from the database as a function of the number of files
used to store the search results. The vertical bars repre-
sent the deviation of the access time over 10 consecutive
experiments.

response time of our cache. As a result, the way search re-
sults are aggregated into files and organized within a file is
critical for minimizing both, flash fragmentation and cache
response time.

For now, assume that the number of database files used in
SONGO is N . Figure 9 shows how search results are orga-
nized within a database file. Each search result is assigned to
one of theN files based on the hash value of its web address.
In particular, the remainder of the division of the hash value
with the number of files in our database (a number between
0 and N − 1) is used to identify the file where the search
result should be stored (Figure 9).

The first line in each of theN database files contains pairs
of the form (hash value, offset). The offset represents the
actual offset from the beginning of the file where the infor-
mation for the search result represented by the hash value
is located. By parsing the first line of a database file we
can identify where each search result stored in this file is lo-
cated. Note that search results within a database file are not
sorted based on their hash value or ranking score. Instead,
whenever the user clicks on a search result that is not already
cached, SONGO will add the search result at the end of the
database file and the header of this file is augmented with
the (hash value, offset) pair for this search result. This
allows SONGO to easily update the search results database
over time.

To determine the best number N of database files that can
efficiently balance cache’s response time and flash fragmen-
tation, we measured the performance of our database archi-
tecture for different number of files on a cache that stores
approximately 6000 search results. Figure 10 shows the av-
erage time it takes to retrieve two search results from the
database when different number of files is used. In general,
the smaller the number of files used, the lower the impact of
flash fragmentation will be. Note, that when the number of
files is anywhere between 32 and 256 the cache’s response
time is low and almost identical. However, when less than

8



32 files are used, the average time to fetch two search results
and its deviation seems to increase exponentially. This in-
dicates that 32 files is the smallest number of files that can
be used to store search results without increasing the over-
all user response time. When using 32 files, the amount of
memory that can be wasted due to flash fragmentation can
never exceed 64KB, 128KB, or 256KB depending on the
flash block size used (2KB, 4KB and 8KB respectively).

3.3 Cache Management
The contents of the personalization and community parts

of the cache are updated over time. First, the personalization
part monitors user clicks over time and adjusts the ranking
score of individual search results to reflect the history of user
clicks. Second, the community part of the cache periodi-
cally connects to the server to obtain the latest set of popular
queries and links in the mobile search logs, making sure that
the most up-to-date information is always available locally.

3.3.1 Personalized Ranking
By monitoring user clicks over time, the personalization

part of the cache is aware of when and how many times the
user selects a link after a given query is submitted. SONGO
uses this information to incrementally update the ranking
score of the cached search results to offer a personalized
search experience.

Assume that for a query Q there are two search results R1

and R2 available in the cache. Every time the user submits
the query Q and clicks on the search result R1, SONGO
updates the scores S1 and S2 for the two search results R1

and R2 respectively, as follows:

S1 = S1 + 1 (1)

S2 = S2 ∗ e−λ (2)

The ranking score of the selected search result is increased
by 1, the maximum possible score of a search result ex-
tracted from the mobile search logs, (Equation (1)). In that
way, we always favor search results that the user has se-
lected. Note that if this search result did not initially exist in
the cache (selected after a cache miss), then a new entry in
the hash table is created that links the submitted query to the
selected search result and its score becomes equal to 1. At
the same time, the ranking score for the unselected search re-
sult is exponentially decreased 3 (Equation (2)). This enables
SONGO to take into account the freshness of user clicks.
For instance, if search result R1 was clicked 100 times one
month ago and search result R2 was clicked 100 times dur-
ing last week, then the ranking score for R2 will be higher.

Using Equations (1) and (2), the ranking score of the search
results, at any given time, reflects both the number and fresh-
ness of past user clicks. In practice, any personalization
ranking algorithm could be used [19],[18] with the proposed
cache.
3The parameter λ is used to control how fast the ranking score is
decayed.

Figure 11: The community part of the cache is periodi-
cally updated with the latest set of popular queries and
links in the mobile search logs.

3.3.2 Cache Updates
Figure 11 provides an overview of the mechanism used to

update the community part of the cache. The phone trans-
mits to the server its current version of the hash table along
with the headers of the 32 files in the database of search
results. The server first runs through the hash table and re-
moves all the query-link pairs that have not been accessed by
the user in the past. This can be easily done by examining
the flags column in the hash table (Figure 7). The query-link
pairs that have been accessed by the user in the past are never
removed from the cache because of the high repeatability of
mobile queries.

At the same time, the server periodically (e.g. daily or ev-
ery several hours) extracts the most popular queries and links
from the mobile search logs as described in Section 3.1, and
adds them to the hash table 4. During this process, conflicts
might arise in the sense that a query-link pair that already ex-
ists in the hash table (previously accessed by the user) might
re-appear in the popular set of queries and links extracted
on the server. The conflict is caused when the ranking score
stored in the hash table is different from the new ranking
score computed on the server based on the search log analy-
sis. SONGO resolves these conflicts by always adopting the
maximum ranking score.

After the hash table has been updated, the server uses the
32 header files to create the necessary patch files for the
database files that live on the phone. The new hash table and
the 32 patch files are transmitted to the phone and the new
cache becomes available to the user. Note that the amount of
data exchanged between the phone and the server will usu-
ally be less than 2.5MB given that SONGO requires, on av-
4The community part of the cache is generated on the server once
for all users. Conversely, the merging phase in Figure 11 is repeated
for every user.

9



Figure 12: The graphical user interface of our prototype
implementation. In this example, cached search results
for the query ”facebook” were displayed in 369ms.

erage, approximately 200KB for storing the hash table and
1MB for storing the search results (Figure 5). This amount
can be further reduced by leveraging data compression tech-
niques.

4. EVALUATION
Our evaluation focuses on answering two major questions

about the proposed mobile web search cache: (i) How fast
and energy efficiently can SONGO serve search queries?
and (ii) What fraction of the query volume that a typical user
submits can be served by SONGO?

First, we use our prototype implementation to quantify the
amount of time and energy required to serve a search query
through SONGO and compare its performance to that of the
different radio links available on the phone. Second, we ex-
tract anonymized search query streams from the mobile web
search logs and run them against the SONGO cache to quan-
tify what fraction of the query volume of an actual user can
be served locally on the phone.

4.1 Cache Hit Performance
All of the measurements presented in this section were

acquired using our prototype SONGO implementation on a
Sony Ericsson Experia X1a cell phone [17] running Win-
dows Mobile 6.1 (Figure 12). An embedded internet ex-
plorer object allows us to display search results provided
by either the phone (cache hit) or the search engine (cache
miss). Also, since the internet explorer object is managed by
the SONGO application, it allows us to intercept user clicks
after a query is submitted and thus, properly personalize the
web search cache on the phone.

To measure how fast and energy efficiently search queries
are served using our cache and the different radios available
on the phone, we randomly selected 100 different queries
for which cached search results were available. In every ex-
periment, each of the 100 queries was submitted 100 times
through a lightweight test script we embedded in our SONGO

application. For every query submission the user response
time and the overall energy dissipation of the phone during
that time were recorded.

User response time is defined as the elapsed time from the
moment that the query is submitted (search button is clicked
in Figure 12) to the moment that the embedded internet ex-
plorer object in our application has completed rendering the
search results web page. User response time was measured
using the sub-millisecond timing mechanisms available in
Windows Mobile. The energy consumed due to every query
submission was measured by connecting the phone to a Mon-
soon power monitor device [13].

The same experiment was repeated once for every radio
available on the phone (Edge, 3G and 802.11g) and of course
for the SONGO cache. In each experiment all the queries
were served in one and only one way (SONGO cache, 3G,
Edge or 802.11g). In the experiments where a radio was used
to serve search queries, we made sure that this radio was al-
ways properly associated to a cell tower or an access point,
so that no additional delays were introduced by radio con-
nection times. In the experiments where the SONGO cache
was used to serve queries, a cache containing all the query-
link pairs that account for 55% of the cumulative query-link
volume over a period of several months was used (Figures 4
and 5). This cache included approximately 2500 search re-
sults occupying 1MB of flash space as described in Section
3.2.2.

4.1.1 User Response Time
Figure 13 shows the average user response time per query

when the SONGO cache or one of the radios on the phone is
used. On average, SONGO is able to serve a query 16 times
faster than 3G, 25 times faster than Edge and 7 times faster
than 802.11g. Note that even though 802.11g can provide a
low user response time that is slightly higher than 2 seconds,
it has a major drawback. Due to its high power consump-
tion, 802.11g will be rarely turned on and connected to an
access point on a continuous basis. As a result, in practice,
802.11g is not immediately available and extra steps that in-
troduce significant delay and unnecessary user interaction
are required.

Table 2 shows the breakdown of SONGO’s user response
time in the case of a cache hit. From the 378ms it takes
SONGO to serve a query, 96.7% of the time is spent at the
browser while rendering the search results web page. The
time it takes our cache to locate and retrieve search results is
less than 20ms and it accounts for only 3.3% of the overall
user response time.

Furthermore, the time it takes SONGO to look up its hash
table and determine if a query is a cache hit or a cache miss is
only 10µs (Table 2). As a result, in the case of a cache miss,
the overall user response time will be increased by 10µs.
This is an infinitesimal increase given that any radio on the
phone requires several seconds to serve a search query.

4.1.2 Energy Consumption

10



Figure 13: Average user response time per query when
SONGO and different radio links are used to serve
search queries.

Operation Average Time Percentage
(ms)

Hash Table Lookup 0.01 ≈ 0%
Fetch Search Results 10 2.7%
Browser Rendering 361 96.7%

Miscellaneous 7 1.7%
(function calls etc.)

Total 378 100%

Table 2: SONGO’s user response time breakdown

Figure 14 shows the average energy consumed by thep-
hone per query when the SONGO cache or one of the ra-
dios on the phone is used. SONGO is on average 23 times
more energy efficient than 3G, 41 times more energy efficient
than Edge and 11 times more energy efficient that 802.11g.
Note that the gap in the energy efficiency between SONGO
and the different radios on the phone is larger than the cor-
responding gap in the user response time shown in Figure
13. This is because SONGO conserves energy in two ways.
First, no data is being transmitted or received in the case of
a cache hit, and thus the overall power consumption of the
phone remains low. Second, since SONGO achieves a user
response time that is an order of magnitude lower compared
to when the radios on the phone are used, the per query en-
ergy dissipation is significantly lower for SONGO.

4.2 Cache Hit Rate Performance
To quantify the cache hit rate achieved by SONGO for

a typical user, we used anonymized search query streams
from the mobile web search logs. To ensure a representative
and unbiased selection of search query streams, we classi-
fied users in 4 different classes based on their monthly query
volume. Table 3 shows the different user classes and the
percentage of users in the mobile search logs that belongs
to each class. Note that we ignore users that submit less
than 20 queries per month. This is done for two reasons.
First, SONGO is targeting users that frequently access the
internet and search the web. Second, as higher-end smart-
phones with advanced browsing capabilities become more
and more available, the average monthly query volume sub-
mitted by individual users will increase beyond the threshold
of 20 queries per month.

For the experiments described in this section, we randomly

Figure 14: Average energy per query when SONGO and
different radio links are used to serve search queries.

User Class Monthly % of Users
Query Volume

Low Volume [20,40) 55%
Medium Volume [40,140) 36%

High Volume [140,460) 8%
Extreme Volume [460,∞) 1%

Table 3: Classes of users and their characteristics. 100
anonymized search query streams from each class of
users were used to quantify the cache hit rate achieved
by SONGO.
selected 100 anonymized users from each class shown in Ta-
ble 3 and extracted their search query streams from the mo-
bile web search logs over a period of one month. Each of the
400 search query streams was replayed against the SONGO
cache that was generated using the mobile search logs over
the preceding month 5. The resulting cache contained ap-
proximately 2500 links that corresponded to 55% of the cu-
mulative query-link volume in the search logs.

4.2.1 Hit Rate Results
Figure 15 shows the average hit rate for each user class

described in Table 3. On average, 65% of the queries that an
individual user submits are cache hits. As a result, 65% of a
user’s query volume can be served 16 times faster. By com-
paring the cache hit rate across the 4 user classes, it is appar-
ent that the cache hit rate seems to increase with the monthly
query volume of the user. SONGO achieves a cache hit rate
of approximately 60% for the low volume class which im-
mediately jumps to 70% for the medium volume class and
to 75% for the high and extreme volume user classes.

To better understand how the community and personaliza-
tion components of the SONGO cache contribute to the over-
all cache hit rate, Figure 15 also shows the average cache hit
rate for every user class in the cases where SONGO is us-
ing only either the community or personalization part of the
cache. When SONGO uses only the community-based part
of the cache, new queries and search results selected by the
user are not cached over time and therefore, the cache cannot
take advantage of the repeatability of mobile queries. When
SONGO uses only the personalization part of the cache, the
5Note that no data from the one month period from which the 400
query streams were extracted was used when building the SONGO
cache.

11



(a) (b)

Figure 16: SONGO’s average cache hit rate across the 4 different classes of users for (a) the first week and (b) the first
two weeks of the month.

Figure 15: SONGO’s average cache hit rate across the 4
different classes of users.

cache is initially empty and therefore cache hits are achieved
only from repeated queries.

As Figure 15 illustrates, when only the community part of
the cache is used, the average hit rate across all user classes
is reduced from 65% to 55%. What is even more interesting
is the fact that the hit rate seems to increase monotonically
with the monthly query volume. Even though the exact same
cache is used across all classes (since personalization is not
used), the users that submit more queries seem to also expe-
rience higher hit rates.

When only the personalization part of the cache is used,
the average hit rate across all user classes is reduced from
65% to 56.5%. Note, that for every user class, the person-
alization part of the cache achieves the same or higher hit
rate compared to the case where only the community part
of the cache is used. This is another indication of the high
repeatability of mobile queries (demonstrated by our search
log analysis in Section 2) that the personalization part of our
cache is able to capture. In addition, the fact that the cache
hit rates due to the personalized part of the cache increase for
users with higher query volumes, indicates that users with
higher query volumes tend to repeat the same queries more
often.

Even though users repeat mobile queries frequently, the
community part of the cache is still very important for the

overall user experience. Figure 16 shows the average hit rate
for the different user classes during the first week (Figure
16(a)) and first two weeks (Figure 16(b)) of the one-month
long query streams. Note, that after the first week, the hit
rate of the personalization part of the cache remains lower
than that of the community part of the cache. In particular,
in the case of the low and medium volume classes, the hit
rate for the personalization part of the cache is significantly
low. The less queries a user submits, the more time it takes
the personalization part to warm up and be able to take ad-
vantage of the repeated queries. However, even during the
first week, SONGO cache is able to provide the same hit
rate with the one achieved in Figure 16 after a month. This
is due to the community part of the cache that provides a
warm start for SONGO and the best possible out of the box
search user experience.

The breakdown of the queries that result into a cache hit
can be seen in Figure 17. On average and across all user
classes, 70% of the cache hits are navigational queries (i.e.
facebook, youtube, hi5, etc.) and the rest 30% are no-navigational
queries (i.e. michael jackson etc.). Even though navigational
queries are dominant, note that for both the high and extreme
volume classes the no-navigational hit rates are significantly
increased or even doubled when compared to the medium
volume class. This trend indicates that higher volume users
tend to submit more diversified queries. However, even for
this type of users SONGO is able to achieve high hit rates by
taking advantage of the repeatability of mobile queries with
its personalization-based part.

4.2.2 Daily Cache Updates
To understand how much the set of popular queries and

links changes over time and to study how these changes af-
fect SONGO’s cache hit rate, we repeated the same exper-
iments while updating the SONGO cache on a daily basis.
In particular, we replayed the 400 monthly query streams
extracted from the search logs, but at the end of every day,
we updated the cache using the mechanism described in Sec-
tion 3.3. Note that during the update process, the queries and
links in the cache that have been accessed by the user at least

12



Figure 17: Breakdown of SONGO’s cache hits into
navigational and no-navigational across the 4 different
classes of users.

once are not removed. As a result, the daily cache updates
can only impact the hit rate that comes from the community
part the cache.

Figure 18 shows the average cache hit rate across the dif-
ferent user classes when daily cache updates are used. On
average, across all user classes SONGO achieves a cache
hit rate of 66% when daily updates are used, an incremental
increase of only 1.5% (66% vs 65% hit rate). The small in-
crease could be due to the fact that the popular set of queries
and links did not change significantly over the one month
period we used in our evaluation. However, as Figure 19
shows, on average 40% to 50% of the approximately 2500
search results in the cache changed across days. This indi-
cates that the search results that are responsible for the ma-
jority of hits in the community part of the cache are among
the top 1000 most popular search results that always remain
popular across different days.

5. RELATED WORK
There have been several research efforts on understanding

mobile search behavior through detailed search log analysis
[6],[7],[8],[9],[10],[20],[3],[4]. These efforts have analyzed
search query volumes that vary from hundreds of thousands
to several tenths of millions of queries. Their main focus
has been on understanding mobile query characteristics (e.g.
average query length etc.) and comparing them to typical
desktop query characteristics, on demonstrating the locality
of mobile queries across the community of mobile users and
on providing a detailed breakdown of the different types of
queries that mobile users submit (e.g. entertainment, shop-
ping, etc.).

The work presented in this paper differs in three funda-
mental ways. First, we analyze 200 million mobile search
queries, a query volume that is at least one order of magni-
tude larger than the query volume used in any other mobile
search log study. Second, besides reporting similar obser-
vations on the locality of queries across the community of
mobile users, we also study in detail the repeatability of mo-
bile queries for individual users. Third, previous work has

Figure 18: SONGO’s average cache hit rate across the
4 different classes of users when daily cache updates are
used.

Figure 19: Number of different search results in the com-
munity part of the cache for every pair of days over the
one month period used for evaluation.
only used the search log analysis findings to provide key-
word auto-completion services on mobile devices [9]. In
contrast, we leverage our mobile search behavior observa-
tions to design and implement a mobile search cache capable
of instantly providing search results.

The concept of caching information on mobile devices has
also been applied in the past in the context of web caching
and prefetching [15],[2],[11],[14],[16]. Our work is com-
plimentary to these efforts, in the sense that SONGO fo-
cuses on caching search results and not web pages. However,
SONGO could be used along with web caching techniques
to provide an instant browsing experience on the phone.

Advertisement caching was also recently proposed. In [5],
a scheme for storing ads on the PC is proposed for perfor-
mance, privacy and profit. However, the work in [5] focuses
on desktop machines and thus, does not address any of the
design and implementation details of building such a cache
system on a mobile device.

6. DISCUSSIONS AND CONCLUSION
We have presented SONGO, a mobile search cache for

mobile devices. Using our prototype implementation and

13



query streams of real users extracted from the mobile search
logs, we demonstrated that SONGO can serve 2/3 of the
queries that an individual user submits on his phone, 16
times faster and 23 times more energy efficiently compared
to when using the 3G radio. We believe that the combination
of the SONGO architecture and the continuously increasing
memory resources on mobile devices can transform the mo-
bile user experience in the context of mobile web search and
far beyond.

Search Interface: Since retrieving search results from
the local cache in SONGO only takes tens of milliseconds,
one can combine SONGO with query auto-complete to im-
prove mobile search user interface by reducing the number
of query key strokes. A mobile phone can have a dictio-
nary of popular search queries. While a user types search
query characters, the system looks in the dictionary to find
the most popular queries that start with the contents in the
search textbox. The corresponding search results can be im-
mediately displayed in the main window, without user press-
ing the search button. For example, while typing ”f” in the
search box, the search box autocompletes it as ”facebook”
and the search result (i.e. http://mobile.facebook.com) is al-
ready shown in the result panel of the page. If the user does
not find the search results after finish typing a query term,
she can then click the search button and use the online ser-
vice. So SONGO is completely transparent to the user.

Content Caching: A caching architecture like SONGO is
not limited to improving mobile search experience. As the
storage and processing capabilities of mobile devices con-
tinue to improve, other frequently accessed contents such as
local business listing, coupons and promotions, blogs and
reviews, popular web sites, as well as certain contents on
personal computers can be cached on the devices for fast
user access on the go. While storing gigabytes of contents
on a phone is not expensive even with current flash storage
capacity, how to enable users to quickly find the right infor-
mation is nontrivial. Search is natural user interface for such
interaction. But one must solve the challenges of building
indexes and ranking the contents on low power devices with
limited user interface.

Personalization and Privacy: A key advantage of per-
forming content search and ranking locally on a mobile phone
is personalization. The personalized hash table in SONGO
is an example of it. In general, the phone can learn from past
user activities and contextual information to better rank and
present contents that fits the preference of the particular user.
Performing personalization on the mobile phone rather than
in the cloud also preserves user privacy better. For exam-
ple, the phone can filter and aggregate user access logs and
activities before sharing it with the community data mining.

Accounting: A practical concern of deploying SONGO is
how to enable third parties, such as comScore, to correctly
account for mobile search traffic, which is a critical market
research number and directly links to advertisement revenue.
If on average 66% of search traffic are not visible on the In-

ternet, then the accounting cannot be accurate. One solution
is to send a ”one-way” search query in the background. The
query asks the search engine not to return any results, but the
traffic can be tracked by third party.

7. REFERENCES
[1] 2TB memory cards coming soon, http://www.wired.

com/gadgetlab/2009/01/two-terabyte-sd/.
[2] A. Balasubramanian, B. N. Levine, and A. Venkataramani.

Enhancing interactive web applications in hybrid networks.
In Proceedings of MobiCom, New York, NY, USA, 2008.

[3] K. Church, B. Smyth, K. Bradley, and P. Cotter. A large scale
study of european mobile search behaviour. In Proceedings
of MobileHCI, New York, NY, USA, 2008.

[4] K. Church, B. Smyth, P. Cotter, and K. Bradley. Mobile
information access: A study of emerging search behavior on
the mobile internet. ACM Trans. Web, 1(1):4, 2007.

[5] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and
P. Francis. Serving ads from localhost for performance,
privacy, and profit. In Proceedings of Hotnets, 2009.

[6] M. Kamvar and S. Baluja. A large scale study of wireless
search behavior: Google mobile search. In Proceedings of
the SIGCHI conference on Human Factors in computing
systems, New York, NY, USA, 2006.

[7] M. Kamvar and S. Baluja. Deciphering trends in mobile
search. Computer, 40(8):58–62, 2007.

[8] M. Kamvar and S. Baluja. The role of context in query input:
using contextual signals to complete queries on mobile
devices. In Proceedings of MobileHCI, 2007.

[9] M. Kamvar and S. Baluja. Query suggestions for mobile
search: understanding usage patterns. In Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems, New York, NY, USA, 2008.

[10] M. Kamvar, M. Kellar, R. Patel, and Y. Xu. Computers and
iphones and mobile phones, oh my! In 18th International
World Wide Web Conference, pages 801–801, April 2009.

[11] E. P. Markatos and C. E. Chronaki. A top-10 approach to
prefetching on the web. In Proceedings of INET, 1998.

[12] Mobile Search Trends Report, http:
//www.marketingcharts.com/interactive/
mobile-local-search-ad-revenues-to-reach-13b-by-2013-8092/.

[13] Monsoon Solutions, Power Monitor, http://www.
msoon.com/LabEquipment/PowerMonitor/.

[14] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data
mining algorithm for generalized web prefetching. IEEE
Trans. on Knoweledge and Data Engineering,
15(5):1155–1169, 2003.

[15] V. N. Padmanabhan and J. C. Mogul. Using predictive
prefetching to improve world wide web latency. SIGCOMM
Comput. Commun. Rev., 26(3):22–36, 1996.

[16] J. Pitkow and P. Pirolli. Mining longest repeating
subsequences to predict world wide web surfing. In
Proceedings of USENIX , 1999.

[17] Sony Ericsson Xperia X1a Mobile Phone,
http://www.sonyericsson.com/x1/.

[18] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information
re-retrieval: repeat queries in yahoo’s logs. In Proceedings of
SIGIR, New York, NY, USA, 2007.

[19] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search
via automated analysis of interests and activities. In
Proceedings of SIGIR, New York, NY, USA, 2005. ACM.

[20] J. Yi, F. Maghoul, and J. Pedersen. Deciphering mobile
search patterns: a study of yahoo! mobile search queries. In
Proceedings of WWW, New York, NY, USA, 2008.

14


