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• Part IV: Natural Language Understanding
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Part I

Background
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Deep learning

Machine learning

Data Statistics Programs
Machine learning
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Scientists See Promise in Deep-Learning Programs
John Markoff

November 23, 2012

Rick Rashid in Tianjin, China, October, 25, 2012

Deep learning 

technology enabled 

speech-to-speech 

translation

The Universal 

Translator … comes true!

A voice recognition program translated a speech given by 

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese. 
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Cortana
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……Facebook’s foray into deep learning sees it following its 

competitors Google and Microsoft, which have used the 

approach to impressive effect in the past year. Google has hired 

and acquired leading talent in the field (see “10 Breakthrough 

Technologies 2013: Deep Learning”), and last year created 

software that taught itself to recognize cats and other objects 

by reviewing stills from YouTube videos. The underlying deep 

learning technology was later used to slash the error rate of 

Google’s voice recognition services (see “Google’s Virtual Brain 

Goes to Work”)….Researchers at Microsoft have used deep 

learning to build a system that translates speech from English 

to Mandarin Chinese in real time (see “Microsoft Brings Star 

Trek’s Voice Translator to Life”). Chinese Web giant Baidu also 

recently established a Silicon Valley research lab to work on 

deep learning.

September 20, 

2013

http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.technologyreview.com/news/429442/google-puts-its-virtual-brain-technology-to-work/
http://www.technologyreview.com/news/507181/microsoft-brings-star-treks-voice-translator-to-life/
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Geoff Hinton

DNN: (Fully-Connected) Deep Neural Networks
“DNN for acoustic modeling in speech recognition,” in IEEE SPM, Nov. 2012

First train a stack of N models each of 

which has one hidden layer. Each 

model in the stack treats the hidden 

variables of the previous model as data.

Then compose them 

into a single Deep Belief 

Network.

Then add outputs 

and train the DNN 

with backprop.

Li Deng

Dong Yu
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CD-DNN-HMM 
Dahl, Yu, Deng, and Acero, “Context-Dependent 
Pre-trained Deep Neural Networks for Large 
Vocabulary Speech Recognition,” IEEE Trans. ASLP, 
Jan. 2012

After no improvement for 10+ years by the 

research community…

…MSR reduced error from ~23% to <13% 

(and under 7% for Rick Rashid’s S2S demo)!
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Image OutputLeCun et al., 1998

Deep Convolutional NN for Images

CNN: local connections with weight sharing;

pooling for translation invariance 
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A Basic Module of the CNN

Image

Pooling

Convolution
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earlier

Deep Convolutional NN for Images

Histogram Oriented Grads

Pooling

SVM

Image

2012

Convolution/pooling

Convolution/pooling

Convolution/pooling

Raw Image pixels

Convolution/pooling

Convolution/pooling

Fully connected

Fully connected

Fully connected



14Microsoft Research

Deep CNN !!!

Univ. Toronto team

Krizhevsky, Sutskever, Hinton, “ImageNet
Classification with Deep Convolutional Neural 
Networks.” NIPS, Dec. 2012



15Microsoft Research

Yoshua Bengio

Bengio, Ducharme, Vincent, Jauvin, “A 
neural probabilistic language model. “ 
JMLR, 2003
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• Large LM perplexity reduction

• Lower ASR WER improvement

• Expensive in learning

• Later turned to FFNN at Google:

Word2vec, Skip-gram, etc.

• All UNSUPERVISED

Tomas Mikolov

Mikolov, Karafiat, Burget, Cernocky, Khudanpur, “Recurrent neural 
network based language model.“ Interspeech, 2010

cat

chases

is
…
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Useful Sites on Deep Learning

http://www.cs.toronto.edu/~hinton/

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_
Readings

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

http://deeplearning.net/reading-list/

http://deeplearning.net/tutorial/

http://deeplearning.net/deep-learning-research-groups-and-
labs/

• Google+ Deep Learning community

18

http://www.cs.toronto.edu/~hinton/
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_Readings
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://deeplearning.net/reading-list/
http://deeplearning.net/tutorial/
http://deeplearning.net/deep-learning-research-groups-and-labs/
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learning 
and applications

19



Part II

Deep learning in spoken 

language understanding
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“Show me flights from Boston to New York today”

DateCity-arrival

Intent: find_flight

Domain: travel

City-departure

“Show me flights from Boston to New York today”

Semantic slots:

Cortana
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(1)  “I want to fly from San Francisco to New York in a weekend”

(2) “Show me weekend flights from SFO to JFK”
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𝑃 𝐶 𝑊 =
1

𝑍
 

𝑖

𝑤𝑖𝑓𝑖(𝐶,𝑊)
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Deep stack net for semantic utterance 

classification:
1) A stack of a series of 3-layer perceptron modules

2) Output layer is concatenated with raw input to form 

input layer of the next module

[Tur, Deng, Hakkani-Tur, He, 2012; Deng, Tur, He, Hakkani-Tur, 2012]

Domain: travel

“Show me flights from Boston to New York today”
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Error keeps decreasing until up to six

layers are added up

30% error reduction over a 

boosting-based baseline!

Deng, Tur, He, Hakkani-Tur, Use of kernel deep convex networks and 

end-to-end learning for spoken language understanding, IEEE-SLT 2012
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A example in the Airline Travel Information System (ATIS) corpus

show flights from boston to new york today

Slots O O O B-dept O B-arr I-arr B-date

Slot filling can be viewed as a sequential tagging problem
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• N: number of training samples

• T: number of words in the sentence i

• K: “observation” functions (feature functions)

• x: input words in the sentence

• y: output tags

Conditional random field (CRF)

Other variants of CRF exist, e.g., semi-CRF.
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𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙3

𝒉3

𝒚3

𝒗𝑇

𝒉𝑇

𝒚𝑇

𝑾 𝑾

𝑽 𝑽 𝑽 𝑽

𝑼 𝑼 𝑼 𝑼

Recurrent neural networks for slot filling

…
𝑾

[Mesnil, He, Deng, Bengio, 2013; Yao, Zweig, Hwang, Shi, Yu, 2013]

where 𝑥𝑡: 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤𝑜𝑟𝑑 , 𝑦𝑡: 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑎𝑔

𝑦𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 𝑈 ∙ ℎ𝑡 , 𝑤ℎ𝑒𝑟𝑒 ℎ𝑡 = 𝜎(𝑊 ∙ ℎ𝑡−1 + 𝑉 ∙ 𝑥𝑡)

ℎ𝑡 is the hidden layer that carries the information from time 0~𝑡
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Back-propagation through time (BPTT)

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙3

𝒉3

𝒚3

𝑾 𝑾

𝑼 𝑼 𝑼

𝒍𝒂𝒃𝒆𝒍3 at time 𝑡 = 3

1. Forward propagation

𝑽 𝑽 𝑽

2. Generate output

3. Calculate error

4. Back propagation

5. Back prop. through time
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𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙3

𝒉3

𝒚3

𝑾 𝑾

𝑽 𝑽 𝑽

𝑼 𝑼 𝑼

Jordan RNN 

…

where 𝑥𝑡: 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤𝑜𝑟𝑑 , 𝑦𝑡: 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑎𝑔

𝑦𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 𝑈 ∙ ℎ𝑡 , 𝑤ℎ𝑒𝑟𝑒 ℎ𝑡 = 𝜎(𝑊 ∙ 𝑦𝑡−1 + 𝑉 ∙ 𝑥𝑡)

ℎ𝑡 is the hidden layer that carries the information from time 0~𝑡
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Information flow in the bi-directional RNN, with both diagrammatic and mathematical descriptions.
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Information flow in an LSTM unit of the RNN, with both diagrammatic and mathematical descriptions.
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Mesnil, Dauphin, Yao, Bengio, Deng, Hakkani-Tur, He, 

Heck, Tur, Yu, Zweig, "Using recurrent neural networks for 

slot filling in spoken language understanding,“ IEEE TASLP
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Part III

Learning Semantic 

Embedding
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𝑓 𝒄𝒂𝒕 =

The index of “cat” in 

the vocabulary

a.k.a the 1-hot

word vector
word embedding 

vector in the 

semantic space

Deerwester, Dumais, Furnas, Landauer, 

Harshman, "Indexing by latent 

semantic analysis," JASIS 1990
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W

U

Word embedding

𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 = 𝑈
𝑇𝜎(𝑊 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 + 𝑏)

Scoring: 

Training:

𝐽 = max 0, 1 + 𝑆− − 𝑆+

Where 

𝑆+ = 𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5
𝑆− = 𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤

−, 𝑤4, 𝑤5
And

< 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 > is a valid 5-gram from text corpus

< 𝑤1, 𝑤2, 𝑤
−, 𝑤4, 𝑤5 > is a “negative sample” constructed

by replacing the word 𝑤3 with a random word𝑤−

Collobert, Weston, Bottou, Karlen, 

Kavukcuoglu, Kuksa, “Natural Language 

Processing (Almost) from Scratch,” JMLR 

2011

e.g., update the model until 𝑆+ > 1 + 𝑆−

e.g., a negative example: “cat chills X a mat”

[and Mikolov, Yih,  Zweig, NAACL 2013; Mikolov et al., ICLR 2013; etc.]
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word embedding 

matrix

w1,w2,        …            wN

𝒗 𝑤 =

# words

dim

w

 However, for large scale NL tasks a decomposable, robust representation is preferable

 Vocabulary of real-world  big data tasks could be huge (scalability)

>100M unique words in a modern commercial search engine log, and keeps growing

 New words, misspellings, and word fragments frequently occur (generalizability) 



46Microsoft Research

dim = 100M

dim=500

dim = 50K

1-hot word vector

embedding vector

word embedding 

matrix: 500 × 100𝑀

dim = 100M

dim=500

1-hot word vector

embedding vector

SWU embedding 

matrix: 500 × 50𝐾

SWU encoding

matrix

𝑊

𝑈

𝑉

Could go up to extremely large

𝑊 → 𝑈 × 𝑉

Huang, He, Gao, Deng, Acero, Heck, “Learning deep structured 

semantic models for web search using clickthrough data,” CIKM, 2013

]



47Microsoft Research



48Microsoft Research 48

Vocabulary 
size

Unique letter-tg
observed in voc

Number of 
Collisions

40K 10306 2   (0.005%)
500K 30621 22 (0.004%)

What if different words have the same word 

hashing vector (collision)?
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.…1,...0…                    1,…    1,…
…#-c-a           …… c-a-t ...a-t-#

…

 

𝑘=1

𝐾

(𝛼𝑐𝑎𝑡,𝑘 ∙ )
Letter-trigram embedding 

matrix

# total letter-trigrams

dim

𝒖𝑘

Count of LTG(k)

in the word “cat” 𝒖:The vector of LTG(k)

Example: cat → #cat# → #-c-a, c-a-t, a-t-# 
(w/ word boundary mark #)

𝒗 𝑐𝑎𝑡 =

Two words has the same LTG: 

collision rate ≈ 0.004%
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𝑤𝑖

[Li, Hastie, and Church 2006]

Each word will have a set of sparse random 

encoding of the 10000 basic units

. .. .
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a man is reading the new york times

H1

H2

H3

W1

W2

W3

W4

Input 1

H3

Raw text, e.g., a 

sequence of words

each non-linear layer gradually 

extracts deeper invariance

Abstract representation

in the semantic space

he semantic meaning of texts –
to be learned – is latent 
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1) Single layer learning: Restricted Boltzmann Machine (RBM)

2) Multi-layer training: deep auto-encoder, learn internal representations

Model is trained to minimize the reconstruction error

500

300

500

500

500

40K

Step1: get initial weights 

from RBM

Step2: auto-encoder

500

40K

500

300

500

40K

500

𝑊1

𝑊2

𝑊3

𝑊3
𝑇

𝑊2
𝑇

𝑊1
𝑇

Document

Document

unrolling

[Salakhutdinov & Hinton 2007, 2010]

Embedding 

of the document

re-construction error 
(to be minimized in training)
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Deep Structured Semantic Model/Deep Semantic Similarity Model (DSSM)
the DSSM learns phrase/sentence level semantic vector representation, e.g., query, document

The DSSM is built upon sub-word units for scalability and generalizability 
e.g., letter-trigram, phones, roots/morphs

The DSSM is trained by an similarity-driven objective
projecting semantically similar phrases to vectors close to each other

projecting semantically different phrases to vectors far apart

The DSSM is trained using various signals, with or without human labeling effort 
semantically-similar text pairs 
e.g., user behavior log data, contextual text [Huang, He, Gao, Deng, Acero, Heck, CIKM2013]

[Shen, He, Gao, Deng, Mesnil, WWW2014]

[Gao, He, Yih, Deng, ACL2014]

[Yih, He, Meek, ACL2014]

[Song, He, Gao, Deng, Shen, MSR-TR 2014]

[Gao, Pantel, Gamon, He, Deng, Shen, EMNLP2014]

[Shen, He, Gao, Deng, Mesnil, CIKM2014]

[He, Gao, Deng, ICASSP2014]

Deep Structured Semantic Model
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

Initialization:

Neural networks are initialized with random weights

DSSM for semantic embedding Learning

Huang, He, Gao, Deng, Acero, Heck, “Learning 
deep structured semantic models for web 
search using clickthrough data,” CIKM, 2013

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

DSSM for semantic embedding learning

Compute 

gradients
 𝜕

𝒆𝒙𝒑(𝒄𝒐𝒔 𝒗𝒔 , 𝒗𝒕+ )

 𝒕′={𝒕+,𝒕−} 𝒆𝒙𝒑(𝒄𝒐𝒔 𝒗𝒔 , 𝒗𝒕′ )
𝜕W

cos(𝑣𝑠, 𝑣𝑡+) cos(𝑣𝑠, 𝑣𝑡−)

Compute Cosine similarity between semantic vectors 

Training:

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t1: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t2: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔

DSSM for semantic embedding learning
Runtime:

𝒗𝒕𝟏 𝒗𝒕𝟐

similar apart

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4
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context <-> word 

query <-> clicked-doc 

pattern<-> predicate 

𝑷 𝒅+ 𝒒

𝑃 𝑑+ 𝑞 =
exp (𝛾 𝑐𝑜𝑠 𝑞, 𝑑+ )

 𝑑∈𝑫 exp(𝛾 𝑐𝑜𝑠 𝑞, 𝑑 )
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hot

Text string s

H1

H2

H3

W1

W2

W3

W4

Input 1

H3

one-hot targetDist=Xentropy
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hot

Text string s

H1

H2

H3

W1

W2

W3

W4

Input 1

H3

“vector”-valued “target”

Dist≠Xentropy
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hot

Text string s

H1

H2

H3

W1

W2

W3

W4

Input s

H3

“vector”-valued “target”

Text string t

H1

H2

H3

W1

W2

W3

Input t1

H3

Semantic representation

Distance(s,t)

W4
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hot

Text string s

H1

H2

H3

W1

W2

W3

W4

Input s

H3

Text string t

H1

H2

H3

W1

W2

W3

Input t1

H3

Distance(s,t1)

… …
… …… …

W4
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embedding

vector

re-construction error

Auto-encoder Training loss func.:

AE: reconstruction error

of the input

DSSM: distance between

embedding vectors

Training data:

AE: unsupervised 

(e.g., doc<->doc)

DSSM: weakly supervised

(e.g., query<->doc search log)

The DSSM can be trained using a variety of weak supervision signals

without human labeling effort (e.g., user behavior log data). 

Input:

AE: 1-hot word vector

DSSM: sub-word unit 

(e.g., letter-trigram) dim = 5M

dim = 50K

500

500

300

target sentence

dim = 5M

dim = 50K

500

500

300

cosine

similarity

source sentence

DSSM

dim = 5M

500

500

300

Input sentence

500

500

Input sentence

embedding

vector
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Further extension: Convolutional DSSM

Shen, He, Gao, Deng, Mesnil, “A latent semantic model 

with convolutional-pooling structure for IR,” CIKM 2014

Word sequence input: capture the sequential structure in the text (in stead of using bag-of-words)

Convolutional and Max-pooling layer: identify key words/concepts in Q and D
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𝑊0𝑊0

Calculator software <s>

auto body repair cost calculator software

auto body repair cost calculator software

Query as a word sequence  

rather than “bag of words”<s> <s>

<s> auto body

body repair cost

500

𝑊1

500

𝑊1

500

𝑊1Convolution

matrix

win_size * 50 K win_size * 50 K win_size * 50 K

Max Pooling Layer 𝒗:  identify 

key words in a query500 Max pooling

Sliding Window input: 

n-gram phrase (n = 3)

Convolutional Layer 𝒉: generate 

word-within-context embedding

Letter-trigram representation…

…

𝑣 𝑖 = max
𝑡=1,…,𝑇

ℎ𝑡(𝑖)

300

𝑊2
Semantic Layer 𝒚

…
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– What does the model learn at the 

convolutional layer?

Capture the local context dependent word sense

• Learn one embedding vector for each local context-

dependent word

car body shop cosine 

similarity

car body kits 0.698

auto body repair 0.578

auto body parts 0.555

wave body language 0.301

calculate body fat 0.220

forcefield body armour 0.165

The similarity between different “body” within contexts

high 

similarity

low

similarity

wave body language

car body kits

auto body part

auto body repair

car body shop

forcefield body armour

calculate body fat

semantic space

The embedding vector 

of “auto body repair”

auto body repair

500

𝑊1 Convolution

matrix

3 * 50 K
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500 500 500

500 Max pooling

…

𝑣 𝑖 = max
𝑡=1,…,𝑇

ℎ𝑡(𝑖)

auto body repair …

auto body repair cost calculator software

Words that win the most active neurons at the max-

pooling layers:

Usually, those are salient words containing clear intents/topics
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Tasks X Y

Web search search query web documents

Ad selection search query ad keywords

Entity ranking mention (highlighted) entities

Recommendation doc in reading interesting things / other docs

Machine translation sentence in language a translations in language b

Knowledge-base construction entity entity 

Question answering pattern / mention relation / entity

Semantic reasoning context word

Text/Image retrieval text image

…
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• Training Dataset
• 30 Million (Query, Document) Click Pairs

• Testing Dataset
• 12,071 English queries 

• around 65 web document associated to each query in average

• Human gives each <query, doc> pair the label, with range 0 to 4

• 0: Bad 1: Fair 2: Good 3: Perfect 4: Excellent

• Evaluation Metric: (higher the better)
• NDCG

• GPU (Cuda NVidia GPU K20x)
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BM25 ULM PLSA BLTM WTM DSSM CDSSM

NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

NDCG@1 Results

Lexical Matching Models
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BM25 ULM PLSA BLTM WTM DSSM CDSSM

NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

NDCG@1 Results

Lexical Matching Models
Topic Models
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BM25 ULM PLSA BLTM WTM DSSM CDSSM

NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8
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32.5
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35

NDCG@1 Results

Lexical Matching Models

Topic Models

Click-Through based 
Translation Models
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BM25 ULM PLSA BLTM WTM DSSM CDSSM

NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8
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31

31.5
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32.5
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34

34.5

35

NDCG@1 Results

Lexical Matching Models

Topic Models

Click-Through based 
Translation Models

Deep Semantic Model
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BM25 ULM PLSA BLTM WTM DSSM CDSSM

NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

NDCG@1 Results

Lexical Matching Models

Topic Models

Click-Through based 
Translation Models

Deep Semantic Model

Convolutional Deep 
Semantic Model
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264 224170 231

free online car body shop repair estimates

132 186294 209

auto body repair cost calculator software

264 224170 231132 186294 209 Most active neurons at 

the max-pooling layers of 

the query and document 

nets, respectively
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88 1690 35

calcium supplements and vitamin d discussion stop sarcoidosis

102 9466 79

what happens if our body absorbs excessive amount vitamin d

88 1690 35102 9466 79
Most active neurons at 

the max-pooling layers of 

the query and document 

nets, respectively

sarcoidosis is a disease, a symptom is excessive amount of calcium in one's urine and blood. So medicines 

that increase the absorbing of calcium should be avoid. While Vitamin d is closely associated to calcium 

absorbing. 

We observed that “sarcoidosis” in the document title and “absorbs” “excessive” and “vitamin (d)” in the query 

have high activations at neurons 90, 66, 79, indicating that the model knows that “sarcoidosis“ share similar 

semantic meaning with “absorbs” “excessive” “vitamin (d)”, collectively.
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• Recall DSSM for text inputs:  s, t1, t2, t3, …

s s

• Can rank/generate text’s given image or can 
rank images given text.

Image features s

H1

H2

H3

W1

W2

W3

W4

Input s

H3

Text: a parrot rides a tricycle

H1

H2

H3

W1

W2

W3

Input t1

H3

Distance(s,t)

W4

… …

Raw Image pixels

Convolution/pooling

Convolution/pooling

Convolution/pooling

Convolution/pooling

Convolution/pooling

Fully connected

Fully connected

Softmax layerx
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Model DCG%

Linear (e.g., DeViSE) 50.1%

Deep (img-txt DSSM) 53.9%



80Microsoft Research

DSSM 

Model

Language 

Model

Detector Models,

Deep Neural Net 

Features, …

Computer 

Vision 

System sign
stop

street
signs

on

traffic

light

red

under

building

city

pole

bus

Caption 

Generation 

System

a red stop sign sitting under a traffic light on a city street

a stop sign at an intersection on a street

a stop sign with two street signs on a pole on a sidewalk

a stop sign at an intersection on a city street

…

a stop sign

a red traffic light

Global 

Semantic 

Ranking 

System

a stop sign at an intersection on a city street

Fang, Gupta, Iandola, Srivastava, Deng, Dollar, 

Gao, He, Mitchell, Platt, Zitnick, Zweig, “From 

captions to visual concepts and back,” on arXiv

From captions to visual concepts and back
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Entry BLEU % on 4-ref

(higher the better)

Equal to or better than 

human annotation *

Human (control) 19.3

Machine 21.1 23.3%

http://blogs.technet.com/b/machinelearning/archive/2014/11/

18/rapid-progress-in-automatic-image-captioning.aspx

http://blogs.technet.com/b/machinelearning/archive/2014/11/18/rapid-progress-in-automatic-image-captioning.aspx


82Microsoft Research



83Microsoft Research



84Microsoft Research

learning image and text vectors in an joint semantic space    



Part IV

Natural Language Understanding
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http://csunplugged.org/turing-test
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• Continuous Word Representations & Lexical Semantics

http://csunplugged.org/turing-test
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𝑓 𝒄𝒂𝒕 =

The index of “cat” in 

the vocabulary

a.k.a the 1-hot

word vector
word embedding 

vector in the 

semantic space

Deerwester, Dumais, Furnas, Landauer, 

Harshman, "Indexing by latent 

semantic analysis," JASIS 1990
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W

U

Word embedding

𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 = 𝑈
𝑇𝜎(𝑊 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 + 𝑏)

Scoring: 

Training:

𝐽 = max 0, 1 + 𝑆− − 𝑆+

Where 

𝑆+ = 𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5
𝑆− = 𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤

−, 𝑤4, 𝑤5
And

< 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 > is a valid 5-gram

< 𝑤1, 𝑤2, 𝑤
−, 𝑤4, 𝑤5 > is a “negative sample” constructed

by replacing the word 𝑤3 with a random word𝑤−

Collobert, Weston, Bottou, Karlen, 

Kavukcuoglu, Kuksa, “Natural Language 

Processing (Almost) from Scratch,” JMLR 

2011

Update the model until 𝑆+ > 1 + 𝑆−

e.g., a negative example: “cat chills X a mat”
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Mikolov, Yih,  Zweig, “Linguistic 

Regularities in Continuous Space 

Word Representations,” NAACL 

2013

Word Embedding

cat

chases

is

…
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The CBOW architecture (a) on the left, and the Skip-gram architecture (b) on the right. 

[Mikolov et al., 2013 ICLR].

Continuous Bag-of-Words
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context <-> word

words context higher cosine

dim = 600K

d=300

dim = 600K

d=300

similar

s: “w(t-2) w(t-1) w(t+1) w(t+2)” t: “w(t)”

d=500

[Song, He, Gao, Deng, 2014]

• Training Condition:
• 600K vocabulary size

• 1B words from Wikipedia 

• 300-dimentional vector

You shall know a word by 

the company it keeps 

(J. R. Firth 1957: 11)
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Plotting 3K words in 2D
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Plotting 3K words in 2D
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Plotting 3K words in 2D



Learning Word Similarity

=
?

Multi-Relational LSA

𝑓𝑟𝑒𝑙(∎,∎)

~~ × ×

Word Relation

Relational Similarity

:
?

:=

Word Analogy 

king : queen = man : woman
?



• Determine whether two pairs of words have the same 
relation (the “analogy” problem) [Bejar et al. ‘91]

• Why it’s useful?



• Word embedding taken from recurrent neural network 
language model (RNN-LM) [Mikolov 2011]

king

queen

man

woman
𝜃

• Relational similarity is derived by the cosine score
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0.018 0.014
0.050

0.229

0.324

0

0.1

0.2

0.3

0.4

Random BUAP Duluth_V0 UTD_NB DS
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p

e
a
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a
n

’s
 

41.5%
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Model Dim Size Accuracy

Avg.(sem+syn)

SG 300 1B 61.0%

CBOW 300 1.6B 36.1%

vLBL 300 1.5B 60.0%

ivLBL 300 1.5B 64.0%

GloVe 300 1.6B 70.3%

DSSM 300 1B 71.9%

(i)vLBL results are from (Mnih et al., 2013); skip-gram (SG) and CBOW results are from 

(Mikolov et al., 2013a,b); GloVe are from (Pennington, Socher, and Manning, EMNLP2014)

The dataset contains 19,544 word analogy questions:
Semantic questions, e.g.,: “Athens is to Greece as Berlin is to ?” 

Syntactic questions, e.g.,: “dance is to dancing as fly is to ?” 
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Similarity

𝑥 𝑘𝑖𝑛𝑔 𝑚𝑎𝑛 𝑤𝑜𝑚𝑎𝑛

𝑥
𝑥, 𝑘𝑖𝑛𝑔 𝑚𝑎𝑛 𝑤𝑜𝑚𝑎𝑛

𝑥
𝑥 𝑘𝑖𝑛𝑔 𝑥 𝑚𝑎𝑛 𝑥 𝑤𝑜𝑚𝑎𝑛



Learning Word Similarity

=
?

Multi-Relational LSA

𝑓𝑟𝑒𝑙(∎,∎)

~~ × ×

Word Relation

Relational Similarity

:
?

:=

Word Analogy 
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sunny
rainy

windycloudy

car

wheel

cab sad

joy

emotion

feeling
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Tomorrow will 

be rainy.
Tomorrow will 

be sunny.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟(rainy, sunny)?

𝑎𝑛𝑡𝑜𝑛𝑦𝑚(rainy, sunny)?
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• Joyfulness joy gladden

• Sad sorrow sadden

joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 0 0 0

Group 2: “sad” 0 0 1 1 0

Group 3: “affection” 0 0 0 0 1

Target word: row-vector Term: column-vector

Cosine Score
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𝐖 𝐔
𝐕𝑇

≈

𝑑 × 𝑛 𝑑 × 𝑘

𝑘 × 𝑘 𝑘 × 𝑛

𝚺

terms
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Distinguishing synonyms and antonyms is still 
perceived as a difficult open problem.
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• Factorization

• Apply SVD to the matrix to find latent components

• Measuring degree of relation

• Cosine of latent vectors
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• Joyfulness joy gladden

• Sad sorrow sadden

joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 0 0 0

Group 2: “sad” 0 0 1 1 0

Group 3: “affection” 0 0 0 0 1

Target word: row-vector
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• Joyfulness joy gladden

• Sad sorrow sadden

joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 -1 -1 0

Group 2: “sad” -1 -1 1 1 0

Group 3: “affection” 0 0 0 0 1

Target word: row-vector
Inducing polarity
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• Joyfulness joy gladden

• Sad sorrow sadden

joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 -1 -1 0

Group 2: “sad” -1 -1 1 1 0

Group 3: “affection” 0 0 0 0 1

Target word: row-vector
Inducing polarity

Cosine Score: + 𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑠
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• Joyfulness joy gladden

• Sad sorrow sadden

joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 -1 -1 0

Group 2: “sad” -1 -1 1 1 0

Group 3: “affection” 0 0 0 0 1

Target word: row-vector
Inducing polarity

Cosine Score: − 𝐴𝑛𝑡𝑜𝑛𝑦𝑚𝑠
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adulterate
purify 

0.64

0.56

0.74

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Mohammad et al. 08 Lookup PILSA

A
c
c
u
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c
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is a

part of 
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is a

part of 
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0 0 0 0

0 0 1 0

1 0 0 0

0 0 0 0

joyfulness

gladden

sad

anger

joyfulness

gladden

sad

anger

Synonym layer Antonym layer

1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0

Construct a tensor with two slices
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0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 1

joyfulness

gladden

sad

anger

Hyponym layer

1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0

1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0
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low-rank approximation

𝑤
1
,𝑤
2
,…
,𝑤
𝑑

𝑡1, 𝑡2, … , 𝑡𝑛

~~ × ×

𝑡1, 𝑡2, … , 𝑡𝑛

𝑟
𝑟

𝑟

𝑟

𝑤
1
,𝑤
2
,…
,𝑤
𝑑

latent representation of words
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low-rank approximation

𝑤
1
,𝑤
2
,…
,𝑤
𝑑

𝑡1, 𝑡2, … , 𝑡𝑛

~~ × ×

𝑡1, 𝑡2, … , 𝑡𝑛

𝑟
𝑟

𝑟

𝑟

~~ × ×

𝑟

𝑟

𝑟

latent representation of words

latent representation of a relation
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Target High Score Words

inanimate alive, living, bodily, in-the-flesh, incarnate

alleviate exacerbate, make-worse, in-flame, amplify, stir-up

relish detest, abhor, abominate, despise, loathe

* Words in blue are antonyms listed in the Encarta thesaurus. 
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adulterate
purify 

0.64

0.56

0.74
0.77

0.5

0.6

0.7

0.8

Mohammad et al. 08 Lookup PILSA MRLSA

A
c
c
u

ra
c
y
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Target High Score Words

bird ostrich, gamecock, nighthawk, amazon, parrot

automobile minivan, wagon, taxi, minicab, gypsy cab

vegetable buttercrunch, yellow turnip, romaine, chipotle, 

chilli
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footwear:boot

0.34
0.37

0.56

0.3

0.35

0.4

0.45

0.5

0.55

0.6

UTD Lookup MRLSA

A
c
c
u

ra
c
y
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• Knowledge Base Embedding

http://csunplugged.org/turing-test
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• Captures world knowledge by storing properties of millions of 
entities, as well as relations among them
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• Information Extraction
• “Hathaway was born in Brooklyn, New York.”

• Web Search

• Identify entities and relationships in queries
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• Knowledge base embedding
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Subject Predicate Object

Obama Born-in Hawaii

Bill Gates Nationality USA

Bill 

Clinton

Spouse-of Hillary 

Clinton

Satya 

Nadella

Work-at Microsoft

… … …
𝑛: # entities, 𝑚: # relations
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e1   en

e 1
  
 e

n

χ
χ

k

𝒳𝑘

𝑅𝑘 : born-in

Hawaii

Obama 1

𝑘-th slice

A zero entry means either:

• Incorrect (false)

• Unknown
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~~ × ×

𝒳𝑘 𝐀
𝐀𝑇ℛ𝑘

1

2
 

𝑘

𝒳𝑘 − 𝐀ℛ𝑘𝐀
𝑇
𝐹
2 +
1

2
𝐴 𝐹
2 + 

𝑘
ℛ𝑘 𝐹
2

RESCAL [Nickel+, ICML-11]

Reconstruction Error Regularization

𝑘-th relation
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× ×

𝐀
𝐀𝑇ℛborn−in

Hawaii

Obama
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1

2
 

𝑘

𝒳𝑘 − 𝐀ℛ𝑘𝐀
𝑇
𝐹
2

~~ × ×

𝒳𝑘 𝐀
𝐀𝑇ℛ𝑘

locations

people Relation: born-in
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1

2
 

𝑘

𝒳𝑘
′ − 𝐀𝑘𝑙ℛ𝑘𝐀𝑘𝑟

𝑇

𝐹

2

~~ × ×

𝒳𝑘
′ 𝐀𝑘𝑙 𝐀𝑘𝑟

𝑇ℛ𝑘
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where 𝐵𝑘 = ℛ𝑘𝐀
T𝐀ℛ𝑘

T, 𝐶𝑘 = ℛ𝑘
T𝐀T𝐀ℛ𝑘.

𝐯𝐞𝐜 ℛ𝑘 ← 𝐙
T𝐙 + 𝜆𝐈

−1
𝐙T𝐯𝐞𝐜 𝒳𝑘

where 𝐯𝐞𝐜 ⋅ is vectorization, 

𝐙 = 𝐀⨂𝐀 and ⨂ is the Kronecker product.

Fix ℛ𝑘, update 𝐀

Fix 𝐀, update ℛ𝑘
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𝒳𝑘
′𝐀𝑘𝑟 𝒳𝑘

′T𝐀𝑘𝑙 𝐵𝑘𝑟 𝐶𝑘𝑙

where 𝐵𝑘𝑟 = ℛ𝑘𝐀𝑘𝑟
T 𝐀𝑘𝑟ℛ𝑘

T, 𝐶𝑘𝑙 = ℛ𝑘
T𝐀𝑘𝑙
T 𝐀𝑘𝑙ℛ𝑘.

𝐯𝐞𝐜 ℛ𝑘

← 𝐀𝑘𝑟
T 𝐀𝑘𝑟⨂𝐀𝑘𝑙

T 𝐀𝑘𝑙 + 𝜆𝐈
−𝟏
× 𝐯𝐞𝐜 𝐀𝑘𝑙

T 𝒳𝑘
′𝐀𝑘𝑟
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# Entities 753k

# Relation Types 229

# Entity Types 300

# Entity-Relation Triples 1.8M
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RESCAL
[Nickel+, ICML-11]

𝑒𝑖 𝑒𝑗

𝑟𝑘

TransE
[Bordes+, NIPS-13]
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4.46

20.5

0 5 10 15 20 25

TRESCAL

RESCAL

Model Training Time (hours)

4.6x speed-up
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4.46

96

0 10 20 30 40 50 60 70 80 90 100

TRESCAL

TransE

Model Training Time (hours)

21.5x speed-up
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𝑒𝑖, 𝑟𝑘, ?

67.56%

62.91%

69.26%

58.0%

60.0%

62.0%

64.0%

66.0%

68.0%

70.0%

72.0%

TransE RESCAL TRESCAL

Mean Average Precision (MAP)
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𝑒𝑖, ? , 𝑒𝑗

70.71%

73.08%

75.70%

68.0%

70.0%

72.0%

74.0%

76.0%

78.0%

TransE RESCAL TRESCAL

Mean Average Precision (MAP)
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Relation

representation

Scoring Function

𝑆𝑟 𝑎, 𝑏
# Parameters

Vector (TransE)
(Bordes+ 2013)

| 𝑎 − 𝑏 + 𝑉𝑟 |1,2 𝑂(𝑛𝑟 × 𝑘)

Matrix (Bilinear)
(Bordes+ 2012, 

Collobert & Weston 2008)

𝑎𝑇𝑀𝑟𝑏
𝑢𝑇𝑓( 𝑀𝑟1𝑎 +𝑀𝑟2𝑏)

𝑂(𝑛𝑟× 𝑘
2)

Tensor (NTN)
(Socher+ 2013)

𝑢𝑇𝑓(𝑎𝑇𝑇𝑟𝑏+𝑀𝑟1𝑎 +𝑀𝑟2𝑏) 𝑂(𝑛𝑟 × 𝑘
2 × 𝑑)

Diagonal Matrix

(RelDot) (Yang+ 2014)

𝑎𝑇𝑑𝑖𝑎𝑔 𝑀𝑟 𝑏 𝑂(𝑛𝑟 × 𝑘)



155Microsoft Research



156Microsoft Research

• Semantic Parsing & Question Answering

http://csunplugged.org/turing-test
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Knowledge 

Base

𝜆𝑥. sister−of(justin−bieber, 𝑥)

Who is Justin Bieber’s sister?

sibling−of(justin−bieber, jazmyn−bieber)
gender(jazmyn−bieber, female)

semantic parsing

query

inference

Jazmyn Bieber
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• Lots of ways to ask the same question

• Need to map them to the predicate defined in KB
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• Most common questions in the search query logs

• Foundation for answering complicated questions
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relation pattern entity 
mention

pattern mention relation entity
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Input

single-relation 

Output
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𝑄 =“When were DVD players invented?”

𝑄 → 𝑃 ∧ 𝑀
𝑃 → 𝑤ℎ𝑒𝑛 𝑤𝑒𝑟𝑒 X 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑
𝑀 → 𝐷𝑉𝐷 𝑝𝑙𝑎𝑦𝑒𝑟𝑠

𝑤ℎ𝑒𝑛 𝑤𝑒𝑟𝑒 𝑋 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 → be−invent−in2
𝐷𝑉𝐷 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 → dvd−player

𝜆𝑥. be−invent−in(dvd−player, 𝑥)
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𝑄 = “When were DVD players invented?”

𝑃 → 𝑤ℎ𝑒𝑛 X 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑
𝑀 → 𝑤𝑒𝑟𝑒 𝐷𝑉𝐷
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𝑄 = “When were DVD players invented?”

𝑃 → 𝑤ℎ𝑒𝑛 𝑤𝑒𝑟𝑒 X 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑
𝑀 → 𝐷𝑉𝐷 𝑝𝑙𝑎𝑦𝑒𝑟𝑠

𝑃𝑟𝑜𝑏(be−invent−in2|𝑤ℎ𝑒𝑛 𝑤𝑒𝑟𝑒 X 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑) = 0.5
𝑃𝑟𝑜𝑏(dvd−player|𝐷𝑉𝐷 𝑝𝑙𝑎𝑦𝑒𝑟𝑠) = 0.7

𝑃𝑟𝑜𝑏 𝜆𝑥. be−invent−in(dvd−player, 𝑥) 𝑄 = 0.35

Semantic Matching via

Deep Semantic Similarity Model !
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Word hashing layer: ft

Convolutional layer: ht

Max pooling layer: v

Semantic layer: y

     <s>             w1              w2                     wT             <s>Word sequence: xt

Word hashing matrix: Wf

Convolution matrix: Wc

Max pooling operation

Semantic projection matrix: Ws

... ...

500
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Relation Entity Argument #1 Entity Argument #2

be-official-language chinese-and-english hong-kong

be-second-largest-city-in arequipa peru

be-tallest-mountain-in ararat armenia

have-population-of city-of-vancouver 587,891

provide microsoft office-software

use-for laser lasik

… … …
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• 1.8M (question, single-relation queries)

be−invent−in dvd−player

be−invent−in2

st−patrick−day
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be−speak−in english hong−kong
be−predominant−language−in cantonese hong−kong

be−highest−mountain−in ararat turkey
be−mountain−in ararat armenia

• Same test questions in the Paralex dataset
• 698 questions from 37 clusters
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one GPU machine, 

10000 cores, learn a billion sentences in one day …
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