
Secure Computation Interfaces

Manuel Costa, Orion Hodson, Marcus Peinado, Sriram Rajamani, Mark Russinovich, Kapil Vaswani

Introduction
Applications such as secure Hadoop [1] need to have part of their data and code isolated from privileged

software (e.g., the operating system), and they need to be able to establish secure communication

channels between the isolated code and remote machines. This document investigates the APIs needed

to develop these applications. These APIs isolate the applications from the underlying hardware or

software that provides “secure computation” [2, 3, 4, 5]. For example, the applications should work

independently of whether isolation is implemented using SGX [6], or using Hypervisor-based isolation

techniques [2, 3, 4, 5].

Overview
This document investigates a primitive programming model for secure computation on top of which

more complex ones can bootstrap. We believe this programming model can be simple (we discuss only 8

functions). The main capability that we want to make available to applications is to create a memory

region that is isolated from the operating system (i.e. the operating system cannot access the region);

this is similar to an isolated process provided by virtualization infrastructures [2, 3, 4, 5], or an SGX

enclave [6]. Such a region may contain both code and data; once created, the region can only be

accessed by its own code. The main advantage of this feature is that even if the operating system is

compromised or operated by a malicious administrator, the attackers cannot access the data and code

in the isolated region.

Figure 1 – Secure computation in a cloud provider scenario

Cloud

Remote machine

Isolated Region

Untrusted

Code

Trusted Code

Trusted

Code

To make the discussion concrete, we use a typical scenario for secure computation in a cloud provider,

but the secure computation interfaces discussed here can be used in other scenarios. Figure 1 depicts

the cloud provider scenario.

We describe how the untrusted code in the cloud creates an isolated region with some code provided by

the user, and how the trusted code inside the isolated region communicates with the code outside. We

also describe how the trusted code in a remote machine can establish a secure channel with the trusted

code inside the isolated region.

Untrusted Code Outside the Isolated Region
Untrusted code needs to be able to create an isolated region and put some code and data in it:

HANDLE
IsolatedRegionCreate(
 In LPCTSTR packagePath,
 In ISOLATION_PROVIDER isolationProvider,
 _In_opt_ CALL_OUT_HANDLER callOutHandler
)

This function creates an isolated region and loads the package specified by the packagePath argument

into that region. The package is a container of code and data similar to the app packages used by

Windows Store applications. The package also includes configuration parameters such as the size of the

region. We assume the code in the package is self-contained and has no dependencies on the operating

system; we implemented Hadoop with this restriction. All communication with the outside world is done

through the untrusted code; if the trusted code wishes to protect secrets it encrypts them before

passing them to the untrusted code. The isolationProvider identifies the underlying provider of secure

computation services, e.g., VSM. The callOutHandler identifies a function in the untrusted code that

can handle IO control codes sent from inside the region.

Untrusted code also needs to be able to invoke code in the isolated region. The simplest way to achieve

this is to send an IO control code to the region:

IRIO_RESULT

IsolatedRegionIoControl(

 In HANDLE region,

 In DWORD callInId,

 _In_reads_bytes_opt_(inputBufferBytes)
 LPCVOID inputBuffer,
 In SIZE_T inputBufferBytes,
 _Out_writes_bytes_to_opt_(outputBufferBytes, *bytesReturned)
 LPVOID outputBuffer,
 In SIZE_T outputBufferBytes,
 _Out_opt_ PSIZE_T bytesReturned
)

The function that handles the control code inside the isolated region is identified in the package.

Finally, untrusted code can destroy an isolated region with:

VOID IsolatedRegionClose(_In_ HANDLE region)

 Trusted Code Inside the Isolated Region
Code running inside the isolated region should be able to send IO control codes to code outside:

IRIO_RESULT
IsolatedAppIoControl(
 In DWORD callOutId,
 _In_reads_bytes_opt_(inputBufferBytes) LPCVOID inputBuffer,
 In SIZE_T inputBufferBytes,
 _Out_writes_bytes_to_opt_(outputBufferBytes, *bytesReturned)
 LPVOID outputBuffer,
 In SIZE_T outputBufferBytes,
 _Out_opt_ PSIZE_T bytesReturned
)

Code running inside the trusted environment should be able to get authentication codes or signatures

for data that it wants to send outside:

BOOL
IsolatedAppSignMessage(
 _In_reads_bytes_(messageBytes) LPCVOID message,
 In SIZE_T messageBytes,
 _Out_writes_bytes_to_(outputBufferBytes, *outputBufferBytesRequired)
 LPVOID outputBuffer,
 In SIZE_T outputBufferBytes,
 Always(_Out_) PSIZE_T outputBufferBytesRequired
)

This function generates a signature for the buffer with secret keys available only to the provider of

trusted computation. These signatures can typically be verified by code outside the isolated

environment using the public keys of the provider of trusted computation.

Finally, code running inside the trusted environment should be able to get keys to encrypt data:

BOOL
IsolatedAppGetKey(
 In KeyId keyId,
 _Out_writes_bytes_to_(keyBufferBytes, *keyBufferBytesRequired)
 LPVOID keyBuffer,
 In SIZE_T keyBufferBytes,
 Always(_Out_) PSIZE_T keyBufferBytesRequired
)

These keys allow the trusted code to encrypt data, save it in external storage, and then decrypt it in a

subsequent execution.

Trusted Code on a Remote Machine
Trusted code on a remote machine needs to be able to establish secure communication channels with
the isolated code. The base mechanism to achieve this is to be able to verify that a message originated
from the code in the isolated region. This can be achieved with these functions:

BOOL
IsolatedRegionGetDigest(
 In LPCTSTR packagePath,
 _Out_writes_bytes_to_(regionDigestBytes, *regionDigestBytesRequired)
 LPVOID regionDigest,
 In SIZE_T regionDigestBytes,
 Out PSIZE_T regionDigestBytesRequired
)

BOOL
IsolatedRegionCheckSignature(
 In ISOLATION_PROVIDER isolationProvider,
 _In_reads_(regionDigestBytes) LPCVOID regionDigest,
 In SIZE_T regionDigestBytes,
 _In_reads_(messageBytes) LPCVOID message,
 In SIZE_T messageBytes,
 _In_reads_(signatureBytes) LPCVOID signature,
 In SIZE_T signatureBytes
)

The IsolatedRegionGetDigest function returns a cryptographic digest that identifies the package. The
digest can be passed to the IsolatedRegionCheckSignature function along with the identifier the
secure computation provider. The function returns true if the message in the buffer was produced by
the code with the given digest on an isolated region created by the secure computation provider. The
contents of the signed/attested message can be used to establish shared secrets between the isolated
environment and the trusted code in a remote machine in a variety of ways (e.g., Diffie-Hellman key
exchange). We may want to support several of these secure channel establishment mechanisms in a
library and let users choose which one to use.

Example Application: Secure Hadoop
We now describe how to implement a secure version of Hadoop based on the interfaces described

above. In Secure Hadoop [1], users write map and reduce functions, we compile and encrypt those

functions, and bind them together with a small amount of public code, producing a DLL called

mapred.dll. We attach the user’s public key to mapred.dll to allow the code to encrypt messages and

send them to the user.

We also create an untrusted executable called fw.exe that interfaces with the Hadoop framework. Both

mapred.dll and fw.exe are sent to the cloud; fw.exe loads mapred.dll into an isolated region with

IsolatedRegionCreate and instructs mapred.dll to perform actions by sending it control codes using

IsolatedRegionIOControl. We use control codes to run a key exchange protocol, and to run the map

and reduce functions.

To establish a secure channel from a remote machine to the trusted code in the cloud, we run a “setup”

Hadoop job that runs the key exchange protocol: when the trusted code runs, it generates a key with

IsolatedAppGetKey and encrypts it with the user’s public key. The code than signs the encrypted key

using IsolatedAppSignMessage and outputs both the encrypted key and the signature. Code running

remotely on the user’s systems verifies the signature with IsolatedAppCheckSignature and decrypts

the key. It then encrypts the keys for the secret code (the map and reduce functions) and data with the

sealing key and sends the encrypted keys to the trusted code in the cloud. Communication between the

user’s systems and the cloud is done through the cloud file system in our implementation.

When processing data, the isolated code uses IsolatedAppIOControl with just two IO control codes

(ReadKeyValue and WriteKeyValue) to Read/Write encrypted key-value pairs from/to the untrusted

code.

Extensions
The programming model described above could be extended in several ways. First, memory

management functions similar to VirtualAlloc , VirtualFree, and VirtualProtect could be made

available inside the isolated regions to dynamically manage virtual memory. Second, functions to

support threading and synchronization could also be made available. Also, note that other mechanisms

based on inter-process communication primitives (shared memory, messaging interfaces, etc) could

conceivably be used to communicate with the isolated regions, instead of, or in addition to, the IO

control codes mechanism described in the preceding sections. Finally, note that all of these low-level

communication mechanisms can be used as used as a basis to build richer communication primitives

such as remote procedure calls (RPC).

We believe we should strive to keep the primitive programming model for secure computation small.

More complex programming modes can be built on top of the primitive model. Keeping the primitive

programming model for secure computation small is useful because not all applications will need/want

the more complex models. In particular, the more complex programming models will typically require

more code to be part of the Trusted Computing Base (TCB) and keeping the TCB small improves security.

Conclusion
The interfaces to support secure computation are simple. Defining these interfaces will allow us to

develop trusted computing applications independently of the underlying provider of trusted

computation.

References
[1] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-

Ruiz, and Mark Russinovich, VC3: Trustworthy Data Analytics in the Cloud using SGX, IEEE S&P 2015.

[2] Xiaoxin Chen , Tal Garfinkel , E. Christopher , Lewis Pratap , Subrahmanyam Carl , A. Waldspurger ,

Dan Boneh , Jeffrey Dwoskin , Overshadow: a virtualization-based approach to retrofitting protection in

commodity operating systems, in ASPLOS 2008

[3] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. 2013. InkTag:

secure applications on an untrusted operating system. In ASPLOS 2013.

[4] Jonathan M. Mccune , Yanlin Li , Ning Qu , Zongwei Zhou , Anupam Datta , Virgil Gligor , Adrian

Perrig, TrustVisor: Efficient TCB reduction and attestation, In IEEE S&P 2010.

[5] Device Guard Overview, https://technet.microsoft.com/en-us/library/dn986865(v=vs.85).aspx

[6] Intel Corporation, Software Guard Extensions Programming Reference, 329298-001US, September

2013, http://software.intel.com/sites/default/files/329298-001.pdf

https://technet.microsoft.com/en-us/library/dn986865(v=vs.85).aspx
http://software.intel.com/sites/default/files/329298-001.pdf

