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Abstract

The most intuitive memory consistency model for shared-memory
multi-threaded programming is sequential consistency (SC). How-
ever, current concurrent programming languages support a re-
laxed model, as such relaxations are deemed necessary for en-
abling important optimizations. This paper demonstrates that an
SC-preserving compiler, one that ensures that every SC behavior of
a compiler-generated binary is an SC behavior of the source pro-
gram, retains most of the performance benefits of an optimizing
compiler. The key observation is that a large class of optimizations
crucial for performance are either already SC-preserving or can be
modified to preserve SC while retaining much of their effectiveness.
An SC-preserving compiler, obtained by restricting the optimiza-
tion phases in LLVM, a state-of-the-art C/C++ compiler, incurs an
average slowdown of 3.8% and a maximum slowdown of 34% on
a set of 30 programs from the SPLASH-2, PARSEC, and SPEC
CINT2006 benchmark suites.

While the performance overhead of preserving SC in the com-
piler is much less than previously assumed, it might still be un-
acceptable for certain applications. We believe there are several av-
enues for improving performance without giving up SC-preservation.
In this vein, we observe that the overhead of our SC-preserving com-
piler arises mainly from its inability to aggressively perform a class
of optimizations we identify as eager-load optimizations. This class
includes common-subexpression elimination, constant propagation,
global value numbering, and common cases of loop-invariant code
motion. We propose a notion of interference checks in order to
enable eager-load optimizations while preserving SC. Interference
checks expose to the compiler a commonly used hardware spec-
ulation mechanism that can efficiently detect whether a particular
variable has changed its value since last read.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed, and
parallel languages; D.3.4 [Programming Languages]: Processors—
Optimization

General Terms Languages, Performance

Keywords memory consistency models, sequential consistency,
SC preservation, interference checks
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1. Introduction

A memory consistency model (or simply memory model) defines the
semantics of a concurrent programming language by specifying the
order in which memory operations performed by one thread become
visible to other threads in the program. The most natural memory
model is sequential consistency (SC) [31]. Under SC, the individual
operations of the program appear to have executed in a global
sequential order consistent with the per-thread program order. This
semantics matches the intuition of a concurrent program’s behavior
as a set of possible thread interleavings.

It is commonly accepted that programming languages must relax
the SC semantics of programs in order to allow effective compiler
optimizations. This paper challenges that assumption by demon-
strating an optimizing compiler that retains most of the performance
of the generated code while preserving the SC semantics. A com-
piler is said to be SC-preserving if every SC behavior of a generated
binary is guaranteed to be an SC behavior of the source program.

Starting from LLVM [32], a state-of-the-art C/C++ compiler, we
obtain an SC-preserving compiler by modifying each of the op-
timization passes to conservatively disallow transformations that
might violate SC.1 Our experimental evaluation (Section 3) indi-
cates that the resulting SC-preserving compiler incurs only 3.8%
performance overhead on average over the original LLVM compiler
with all optimizations enabled on a set of 30 programs from the
SPLASH-2 [49], PARSEC [7], and SPEC CINT2006 (integer com-
ponent of SPEC CPU2006 [26]) benchmark suites. Moreover, the
maximum overhead incurred by any of these benchmarks is just over
34%.

1.1 An Optimizing SC-Preserving Compiler

The empirical observation of this paper is that a large class of opti-
mizations crucial for performance are either already SC-preserving
or can be modified to preserve SC while retaining much of their ef-
fectiveness. Several common optimizations, including procedure
inlining, loop unrolling, and control-flow simplification, do not
change the order of memory operations and are therefore natu-
rally SC-preserving. Other common optimizations, such as common
subexpression elimination (CSE) and loop-invariant code motion,
can have the effect of reordering memory operations. However,
these optimizations can still be performed on accesses to thread-
local variables and compiler-generated temporary variables. The
analysis required to distinguish such variables is simple, modular,
and is already implemented by modern compilers such as LLVM.
Furthermore, transformations involving a single shared variable are
also SC-preserving under special cases (Section 2).

Consider the instance of CSE in Figure 1, where the compiler
eliminates the subexpression X*2. By reusing the value of X read
at L1 in L3, this transformation effectively reorders the second ac-
cess to X with the access to Y at L2. While invisible to sequential

1 The SC-preserving version of LLVM is available at http://www.cs.
ucla.edu/∼todd/research/memmodels.html.



Original Transformed Concurrent
Context

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

⇒

L1: t = X*2;
L2: u = Y;
M3: v = t;

N1: X = 1;
N2: Y = 1;

(a) (b) (c)

Figure 1: A compiler transformation from program (a) into (b) that elim-
inates the common subexpression X*2. In the presence of a concurrently
running thread (c) and an initial state where all variables are zero, (b) can
observe a state u == 1 && v == 0, which is not visible in (a). Lowercase
variables denote local temporaries, while uppercase variables are potentially
shared.

programs, this reordering can introduce non-SC behaviors in a con-
current program, as shown in Figure 1. However, an SC-preserving
compiler can still perform this transformation as long as at least one
of X and Y is known to be thread-local. If X is thread-local, then its
value does not change between L1 and L3 and so the transformation
is SC-preserving. On the other hand, if Y is thread-local then any SC
execution of the transformed program can be shown to be equivalent
to an SC execution of the original program in which instructions L1
to L3 execute without being interleaved with instructions from other
threads. By carefully enabling transformations only when they are
SC-preserving, our compiler is able to achieve performance compa-
rable to a traditional optimizing compiler while retaining the strong
SC semantics.

1.2 Providing End-to-End Programmer Guarantees

Providing end-to-end SC semantics to the programmer requires ex-
ecuting the output of an SC-preserving compiler on SC hardware.
The empirical results in this paper complement recent architecture
research [8, 15, 23, 24, 28, 44] that demonstrates the feasibility
of efficient SC hardware. The basic idea behind these proposals
is to speculatively reorder memory operations and recover in the
rare case that these reorderings can become visible to other proces-
sors. While such speculation support necessarily increases hardware
complexity, we hope that our work on an SC-preserving compiler
increases the incentives for building SC hardware, since in combi-
nation they enable end-to-end SC semantics for programmers at a
reasonable cost.

Even in the absence of SC hardware, the techniques described in
this paper can be used to provide strong semantics to the program-
mer. For instance, when compiling to x86 hardware, which supports
the relatively-strong total store order (TSO) memory model [40],
a compiler that preserves TSO behavior (Section 7.2) provides
TSO semantics at the programming language level. The result is
a language-level memory model that is stronger and simpler than
the current memory-model proposals for C++ [6, 11] and Java [36].

1.3 Speculative Optimization For SC-Preservation

While the cost of an SC-preserving compiler is much less than pre-
viously assumed, one possible concern is that some applications
might be unwilling to pay this cost, however small. We argue that
one should exhaust possible avenues for improving the performance
of SC-preservation, such as more sophisticated static and dynamic
analyses, before exposing a relaxed program semantics to the pro-
grammer.

In this vein, we observe that a number of disabled optimizations
responsible for lost performance in our SC-preserving compiler in-
volve an eager load. For instance, the elimination of the expression
X*2 in Figure 1 can be considered as performing the load of variable
X eagerly at line L1 instead of at L3. Other eager-load optimizations
include constant propagation, copy propagation, partial-redundancy
elimination, global value numbering, and common cases of loop-

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

⇒

L1: t = X*2;
L2: u = Y;
M3: v = t;
C3: if(X modified since L1)
L3: v = X*2;

(a) (b)

Figure 2: Performing common subexpression elimination while guaranteeing
SC. The interference check at C3 ensures that the value of X has not changed
since last read at L1. This allows the compiler to reuse the value of X*2
computed in L1 without violating SC.

invariant code motion. Our experiments show that fully enabling
these eager-load optimizations in our compiler reduces the maxi-
mum slowdown of any benchmark from 34% to 6.5%.

To enable eager-load optimizations without violating SC, we
propose the use of compiler-inserted interference checks to dynami-
cally ensure the correctness of optimizations that cannot be statically
validated as SC-preserving (Section 4). Figure 2 demonstrates this
idea. The figure shows the code from Figure 1(a) and its transfor-
mation with an interference check. For the CSE optimization to be
sequentially valid, the compiler already ensures that the variable X
is not modified by instructions between L1 and L3. The interference
check lifts this correctness requirement to concurrent programs by
ensuring that no other thread has modified X since last read at L1. If
the check succeeds, the program can safely reuse the earlier compu-
tation of X*2; if not, the program reverts to the unoptimized code.

Our interference checks are inspired by a common hardware
speculation mechanism [23] that is used to safely strengthen hard-
ware memory models. This mechanism allows a processor to track
cache-coherence messages to conservatively detect when a partic-
ular memory location may have been modified by another proces-
sor. We observe that this speculation mechanism can be used to dis-
charge our interference checks efficiently. We describe a simple in-
terface for exposing this capability to the compiler, based on the Ita-
nium architecture’s design of a similar feature [29] (Section 5). We
have built a hardware simulator supporting our speculation mecha-
nism and have performed a simulation study on 15 parallel programs
from the SPLASH-2 and PARSEC benchmarks. By incorporating
interference checks into a single optimization pass, we reduce the
average performance overhead of our SC-preserving compiler on
simulated TSO hardware from 3.4% to 2.2% and reduce the maxi-
mum overhead from 23% to 17% (Section 6).

2. Compiler Optimizations as Memory

Reorderings

In this section, we classify compiler optimizations based on how
they affect the memory reorderings of the program [2, 47].

2.1 SC-Preserving Transformations

Informally, we represent the (SC) behaviors of a program as a set
of interleavings of the individual memory operations of program
threads that respect the per-thread program order. A compiler trans-
formation is SC-preserving if every behavior of the transformed pro-
gram is a behavior of the original program. Note that it is acceptable
for a compiler transformation to reduce the set of behaviors.

Transformations involving thread-local variables and compiler-
generated temporaries are always SC-preserving. Furthermore,
some transformations involving a single shared variable are SC-
preserving [47]. For example, if a program performs two consecu-
tive loads of the same variable, as in Figure 3(a), the compiler can
remove the second load. This transformation preserves SC as any
execution of the transformed program can be emulated by an in-
terleaving of the original program where no other thread executes



a) redundant load: t=X; u=X; ⇒ t=X; u=t;
b) forwarded load: X=t; u=X; ⇒ X=t; u=t;
c) dead store: X=t; X=u; ⇒ X=u;
d) redundant store: t=X; X=t; ⇒ t=X;

Figure 3: SC-preserving transformations

L1: X = 1;
L2: P = Q;
L3: t = X;

⇒

L1: X = 1;
L2: P = Q;
L3: t = 1;

for(...){
...
P = Q;
t = X*X;
...

}

⇒

u = X*X;
for(...){
...
P = Q;
t = u;
...

}

(a) (b)

Figure 4: Examples of eager-load optimizations include constant/copy prop-
agation (a) and loop-invariant code motion (b). Both involve relaxing the
L → L and S → L ordering constraints.

between the two loads. On the other hand, this transformation re-
duces the set of behaviors, as the behavior in which the two loads
see different values is not possible after the transformation.

Similar reasoning can show that the other transformations shown
in Figure 3 are also SC-preserving. Further, a compiler can perform
these transformations even when the two accesses on the left-hand
side in Figure 3 are separated by local accesses, since those accesses
are invisible to other threads.

2.2 Ordering Relaxations

Optimizations that are not SC-preserving change the order of mem-
ory accesses performed by one thread in a manner that can become
visible to other threads. We characterize these optimizations based
on relaxations of the following ordering constraints among loads
and stores that they induce: L → L, S → L, S → S, and L → S.

Consider the CSE example in Figure 1(a). This optimization
involves relaxing the L → L constraint between the loads at L2 and
L3, moving the latter to be performed right after the first load of X at
L1, and eliminating it using the transformation in Figure 3(a). If the
example contained a store, instead of a load, at L2, then performing
CSE would have involved an S → L relaxation. We classify an
optimization as an eager load if it only involves L → L and S →

L relaxations, as these optimizations involves performing a load
earlier than it would have been performed before the transformation.

Another example of an eager load optimization is constant/copy
propagation as shown in Figure 4(a). In this example, the transfor-
mation involves moving the load of X to immediately after the store
of X (which requires L → L and S → L relaxation with respect to
the P and Q accesses) and then applying the transformation in Fig-
ure 3(b). The loop-invariant code motion example in Figure 4(b)
involves eagerly performing the (possibly unbounded number of)
loads of X within the loop once before the loop. This also requires
relaxing L → L and S → L ordering constraints due to the store and
load to shared variables P and Q respectively.

Figure 5 shows examples of optimizations that are not eager
loads. The dead-store elimination example in Figure 5(a) involves
relaxing the S → S and S → L constraints by delaying the first
store and then applying the SC-preserving step of combining the
adjacent stores as in Figure 3(c). Figure 5(b) shows an example of
a redundant store elimination that involves eagerly performing the
store of X by relaxing the L → S and S → S ordering constraints
and then applying the transformation in Figure 3(d).

X = 1;
P = Q;
X = 2;

⇒

;
P = Q;
X = 2;

t = X;
P = Q;
X = t;

⇒

t = X;
P = Q;
;

(a) (b)

Figure 5: (a) Dead store elimination involves relaxing the S → S and S → L
constraints. (b) Redundant store elimination involves relaxing the L → S
and S → S constraints.

3. An SC-Preserving Modification to LLVM

This section describes the design and implementation of our opti-
mizing SC-preserving compiler on top of LLVM and evaluates the
compiler’s effectiveness in terms of performance of the generated
code versus that of the baseline LLVM compiler.

3.1 Design

As described in the previous section, we can characterize each com-
piler optimization’s potential for SC violations in terms of how it
reorders memory accesses. In order to build our SC-preserving com-
piler, we examined each transformation pass performed by LLVM
and determined whether or not it could potentially reorder accesses
to shared memory. We further classified these passes based on what
types of accesses might be reordered.

Perhaps surprisingly, many of LLVM’s passes do not relax the
order of memory operations at all and these SC-preserving passes
can be left unmodified. These passes include sparse conditional con-
stant propagation, dead argument elimination, control-flow graph
simplification, procedure inlining, scalar replication, allocation of
function-local variables to virtual registers, correlated value propa-
gation, tail-call elimination, arithmetic re-association, loop simplifi-
cation, loop rotation, loop unswitching, loop unrolling, unreachable
code elimination, virtual-to-physical register allocation, and stack
slot coloring.

Other LLVM optimizations can relax the order of memory opera-
tions. Table 1 lists these optimization passes and classifies the kinds
of relaxations that are possible in each. To ensure that the compiler
would be SC-preserving, we disabled a few of these passes and mod-
ified the remaining passes to avoid reordering accesses to potentially
shared memory.

3.2 Implementation

Our compiler does not perform any heavyweight and/or whole-
program analyses to establish whether or not a location is shared
(e.g., thread-escape analysis). Rather we use simple, conservative,
local information to decide if a location is potentially shared. Dur-
ing an early phase of compilation, LLVM converts loads and stores
of non-escaping function-local variables into reads and writes of vir-
tual registers. Operations on these virtual registers can be freely re-
ordered. In certain situations, structures that are passed by value to
a function are accessed using load and store operations. Our com-
piler recognizes these situations and allows these memory opera-
tions to be reordered in any sequentially valid manner. In addition,
shared memory operations may be reordered with local operations.
Thus, for instance, we can safely allow the “instcombine” pass to
transform t=X; t+=u; t+=X; into t=X ≪ 1; t+=u; when both
t and u are local variables.

Incorporating our modifications to LLVM was a fairly natural
and noninvasive change to the compiler code. LLVM already avoids
reordering and removing loads and stores marked as being volatile.
Therefore, in the IR optimization passes we were often able to
use existing code written to handle volatiles in order to restrict
optimizations on other accesses to shared memory. The primary
mechanism by which we avoided reordering during the x86 code
generation passes was by “chaining” memory operations to one



Table 1: This table lists the passes performed by a standard LLVM compilation for an x86 target that have the potential to reorder accesses to shared memory.
The table indicates which memory orderings may be relaxed and whether our SC compiler disables the pass entirely or modifies it to avoid reordering.

Short Name Description L → L L → S S → L S → S SC Version

LLVM IR Optimization Passes

instcombine Performs many simplifications including algebraic simplification, sim-
ple constant folding and dead code elimination, code sinking, reordering
of operands to expose CSE opportunities, limited forms of store-to-load
forwarding, limited forms of dead store elimination, and more.

yes no yes no modified

argpromotion Promotes by-reference parameters that are only read into by-value pa-
rameters; by-value struct types may be changed to pass component
scalars instead.

yes no yes no disabled

jump-threading Recognizes correlated branch conditions and threads code directly from
one block to the correlated successor rather than executing a conditional
branch. While this threading in itself would not reorder memory ac-
cesses, this pass performs some partially redundant load elimination to
enable further jump threading, and that may have the effect of perform-
ing an eager load.

yes no yes no modified

licm Performs loop-invariant code motion and register promotion. yes yes yes yes modified
gvn The global value numbering pass performs transformations akin to com-

mon subexpression elimination, redundant and partially redundant load
elimination, and store-to-load forwarding.

yes no yes no modified

memcopyopt Performs several optimizations related to memset, memcpy, and mem-
mov calls. Individual stores may be replaced by a single memset. This
can cause observable reordering of store operations (e.g. A[0]=-1;
A[2]=-1; A[1]=-1 becomes memset(A,-1,sizeof(*A)*3). This
pass can also introduce additional loads not present in the original pro-
gram through a form of copy propagation.

no yes no yes disabled

dse Performs dead store elimination and redundant store elimination as
described in Figure 5

no yes yes yes disabled

x86 Code Generation Passes

seldag Builds the initial instruction selection DAG. Performs some CSE during
construction.

yes no no no modified

nodecombine Performs forms of CSE, constant folding, strength reduction, store-to-
load forwarding, and dead store elimination on the selection DAG. Can
reduce atomicity of certain operations; for instance a store of a 64-bit
float that can be done atomically on some architectures may be changed
to two 32-bit integer stores. Also, bit-masking code may be recognized
and changed to smaller operations without masking. This can have the
effect of reordering a store with prior loads.

yes yes no no modified

scheduling Schedules machine instructions. yes no no no modified
machinesinking Sinks load instructions and dependent computation to successor blocks

when possible to avoid execution on code paths where they are not used.
yes no no no modified

another in program order in the instruction selection DAG. This
indicates to the scheduler and other passes that there is a dependence
from each memory operation to the next and prevents them from
being reordered.

3.3 Example

The example in Figure 6 helps illustrate why an SC-preserving com-
piler can still optimize programs effectively. The source code shown
in part (a) of the figure is a simplifed version of a performance-
intensive function in one of our benchmarks. The function calcu-
lates the distance between two n-dimensional points represented
as (possibly shared) arrays of floating point values. In addition to
performing the floating point operations that actually calculate the
distance, directly translating this function into x86 assembly would
allocate space on the stack for the locally declared variables and
perform four address calculations during each iteration of the loop.
Each address calculation involves an integer multiply and an inte-
ger add operation as hinted by the comments in Figure 6 (a). Our
SC-preserving compiler is able to perform a variety of important
optimizations on this code:

• Since the locally declared variables (including the parameters)
do not escape the function, they can be stored in registers rather
than on the stack.

• CSE can be used to remove two of the address calculations since
they are redundant and only involve locals.

• Loop-induction-variable strength reduction allows us to avoid
the multiplication involved in the two remaining address calcu-
lations by replacing the loop variable representing the array in-
dex with a loop variable representing an address offset that starts
at zero and is incremented by 4 each iteration.

• Using loop-invariant code motion (and associativity of addition),
we can increment the array addresses directly during each itera-
tion rather than incrementing an offset and later adding it to the
base addresses.

The final result of applying the above SC-preserving optimizations
is shown in part (b) of the figure (using C syntax rather than x86
assembly). The fully optimizing compiler that does not preserve SC
is able to perform one additional optimization: it can use CSE to
eliminate the redundant floating point loads and subtraction in each
iteration of the loop. The resulting code is shown in part (c) of the
figure.



float Distance(
float* x, float*y, int n){

float sum = 0;
int i=0;

for(i=0; i<n; i++){
sum += (x[i]-y[i])

*(x[i]-y[i]);
// Note: x[i] is *(x+i*4)
// and y[i] is *(y+i*4)

}

return sqrt(sum);
}

float Distance(
float* x, float* y, int n){

register float sum = 0;
register px = x;
register py = y;
register rn = n;

for(; rn-->0; px+=4,py+=4){
sum += (*px-*py)

*(*px-*py);
}

return sqrt(sum);
}

float Distance(
float* x, float* y, int n){

register float sum = 0;
register px = x;
register py = y;
register rn = n;

for(; rn-->0; px+=4,py+=4){
register t = (*px-*py);
sum += t*t;

}

return sqrt(sum);
}

(a) (b) (c)

Figure 6: Example demonstrating the allowed optimizations in an SC-preserving compiler. The function in (a) computes the distance between two n-dimensional
points x and y represented as arrays. An SC-preserving compiler is able to safely perform a variety of optimizations, leading to the version in (b). However, it
cannot eliminate the common-subexpression *px - *py involving possibly-shared accesses to the array elements. A traditional optimizing compiler does not
have this restriction and is able to generate the version in (c).
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149 169.5 487

Figure 7: Performance overhead incurred by various compiler configurations compared to the stock LLVM compiler with -O3 optimization for SPEC CINT2006
benchmarks.

3.4 Evaluation

We evaluated our SC-preserving compiler on a variety of sequen-
tial and parallel benchmarks. Even though the topic of this paper
only concerns multi-threaded programs, we included the sequential
benchmarks in our evaluation as optimizing compilers are tuned to
perform well for these benchmarks. Our experimental results indi-
cate that the vast majority of the optimizations in LLVM responsible
for good performance are in fact SC-preserving.

We executed all programs on an Intel Xeon machine with eight
cores, each of which supports two hardware threads and 6 GB of
RAM. We evaluated each program under three compiler configu-
rations. The configuration “No optimization” is the stock LLVM
compiler with all optimizations disabled; “Naı̈ve SC-preserving”
enables only those LLVM passes that are already SC-preserving,
because they never reorder accesses to shared memory; and “SC-
preserving” is our full SC-preserving compiler, which includes
modified versions of some LLVM passes.

Figure 7 shows the results for the SPEC CINT2006 benchmarks.
The figure shows the performance overhead of each benchmark
under the three compiler configurations, normalized to the bench-
mark’s performance after being compiled with the stock LLVM
compiler and all optimizations enabled (-O3). With no optimiza-
tions, the benchmarks incur an average 140% slowdown. Re-
enabling just the optimizations guaranteed to preserve SC reduces
this overhead all the way to 34%. Our full SC-preserving compiler
reduces the average overhead to only 5.5%, with a maximum over-
head for any benchmark of 28%.

The results for parallel applications from the SPLASH-2 and
PARSEC benchmark suites are shown in Figure 10 from Section 6
(the last two compiler configurations shown in the figure pertain
to the notion of interference checks that we introduce in the next
section). The results agree with those of the sequential benchmarks.
Without optimizations the benchmarks incur an average 153% slow-
down. Re-enabling “naı̈vely SC” optimizations reduces the over-
head to 22%, and our full SC-preserving compiler incurs an average
overhead of only 2.7%, with a maximum overhead for any bench-
mark of 34%.

4. Speculation for SC-Preservation

As shown in Table 1, most of the optimization passes that reorder
shared memory accesses only relax the L → L and S → L or-
derings. In other words, these optimizations have the potential to
perform eager loads but no other memory reorderings. In order to
evaluate how important these eager-load optimizations are for per-
formance, we fully enabled the four (SC-violating) eager-load IR
optimization passes in our SC-preserving compiler and re-ran our
parallel benchmarks. The “Only-Eager-Loads” configuration in Fig-
ure 10 illustrates the results. The benchmark with the largest over-
head in our SC-preserving compiler, facesim, rebounded from a
34% slowdown to only a 6.5% slowdown, and many other bench-
marks regained of all of their lost performance.

This experiment motivates our desire to speculatively perform
eager-load optimizations and then dynamically recover upon a pos-
sible SC violation in order to preserve SC. This section describes
how our compiler performs such speculation via a notion of inter-



DOM
ORIG
CONTINUE

⇒

DOM’
ORIG’
i.chk monitoredAccesses, rcvr
jump cont

rcvr: RECOVER
cont: CONTINUE’

Figure 8: Introducing interference checks when performing eager-load
transformations in ORIG, a single-entry, single-exit region of code with
no stores. Either or both of DOM’ and ORIG’ contain the definitions for
monitoredAccesses for the eager loads involved in the transformation.

ference checks, which conservatively determine whether a memory
location’s value has been modified since it was last read by the cur-
rent thread. First we specify the instruction set architecture (ISA) ex-
tensions in the hardware that support interference checks. Then we
show how a compiler can use these new instructions to speculatively
perform eager-load optimizations, and we argue for the correctness
of the approach.

4.1 ISA Extensions

Interference checks rely on three new instructions to be provided
by the architecture: m.load (monitored load), m.store (moni-
tored store), and i.check (interference check). The m.load and
m.store instructions behave as regular loads and stores but addi-
tionally instruct the processor to start monitoring possible writes to
the memory location being accessed. We assume that the processor
can monitor up to a maximum of N locations simultaneously. These
instructions therefore take as an additional parameter a tag from 0

to N − 1, which is used as an identifier for the memory location
being monitored.

The i.check instruction provides a mechanism to query the
hardware as to whether or not writes could have occurred to a
set of memory locations. It accepts an N -bit mask and a recovery
branch target as a parameter. The instruction conditionally branches
to the recovery target based on whether or not writes may have
occurred for any of the monitored memory addresses indicated by
the mask. If the instruction does not branch, it is guaranteed that
no thread has written to any of the locations indicated by the mask
since the instructions that initiated their monitoring were executed.
When using an i.check in the examples below, we will list the tags
explicitly for clarity rather than using a bit mask.

Note that our use of tags to identify accesses, rather than simply
identifying them with the address they access, allows the compiler to
safely use interference checks in the face of potential aliasing. The
compiler may end up monitoring two accesses to the same location
using separate tags due to unknown aliasing. The hardware will
correctly report interference between the time when the monitored
access for each tag was executed and the time of the i.check for
that tag. This design places the burden on the compiler to manage
the resources available for monitoring. It must ensure that when it
reuses a tag, the access that was previously assigned to that tag no
longer needs to be monitored.

4.2 Interference Check Algorithm

Figure 8 illustrates how our compiler performs eager load optimiza-
tions with interference checks. Informally, the algorithm works on
code in Static Single Assignment form (SSA) in the following steps:

1. Find a contiguous, single-entry, single-exit block of code with-
out stores. Call this block ORIG.

2. Create a branch target at the first instruction after ORIG. Call the
following instructions, starting at this new target, CONTINUE.

3. Make a copy of ORIG in its entirety and call it RECOVER. Note
that, since we are manipulating SSA code, all local and tempo-
rary values will be given a new SSA name in the copied code.

4. Apply eager-load transformations in ORIG and call the resulting
block of code ORIG’. The transformations may include any
combination of the following:

(a) Eliminate a load and replace its uses with a value from a
previous load or store to that address that dominates the
current load. This prior memory access may or may not be in
ORIG. Convert this previous memory access to an m.load or
m.store if it is not already one. If multiple definitions reach
the load to be removed, all of them have to be converted.

(b) Hoist a load from ORIG to a position dominating all of its
uses, potentially reordering with previous load and/or store
operations. Its new position may or may not be in ORIG.
Convert the hoisted load to an m.load.

We’ll call the code that dominated ORIG and may now contain
monitored instructions DOM’. Each access that is converted to a
monitored instruction must use a distinct tag, so the compiler is
limited to at most N eager-load conversions in this step.

5. Perform any desired SC-preserving optimizations on the code
remaining in ORIG’.

6. Insert an i.check instruction after ORIG’ that checks for inter-
ference on all accesses that were marked as monitored by step 4
and branches to the recovery code on failure.

7. For all values that are live-out of ORIG, transform CONTINUE by
inserting an SSA phi instruction at the beginning choosing the
appropriate value based on whether code flowed from ORIG’ or
RECOVER. Call the transformed block CONTINUE’.

4.3 Implementation and Example

We modified LLVM’s global value numbering (GVN) pass to make
use of interference checks in order to allow more aggressive opti-
mization while maintaining SC. The GVN pass performs a variety of
eager-load optimizations, including CSE, partial redundancy elimi-
nation, and copy/constant propagation. Due to time limitations, we
have not implemented the algorithm on other passes.

Figure 9 shows some LLVM IR code that calculates X2
+Y+X2,

along with the transformations that take place on it during the GVN
pass in order to eliminate the redundant computation of X2. Virtual
registers, or temporaries, are prefixed by the % symbol and are in
SSA form. First, the GVN pass removes the second load of memory
location X (which defines %5) and replaces all of its uses with the first
load of X. After this load elimination, we are left with the code in
(b), where it is clear that the second mul instruction is unnecessary,
so it is removed and its use is replaced with the previously calculated
value in virtual register %2. The final code with the load and multiply
eliminated is shown in (c). Figure 9(d) shows how our algorithm
adds interference checks to make this transformation SC-preserving.

4.4 Correctness of the Algorithm

We now argue that our algorithm for inserting interference checks is
SC-preserving. First consider the case when the interference check
fails. Neither ORIG nor ORIG’ contains any stores. Thus, the state of
non-local memory does not change during the execution of ORIG’.
As the code is in SSA form, all the effects of ORIG’ on local
state become dead once the code switches to RECOVER, which is
a copy of ORIG. Hence, other than needlessly executing ORIG’, the
transformed program has the same behavior as the original program
when the interference check fails.

Now consider the case when the interference check succeeds.
This means that each monitored memory location is guaranteed to



Original Load Eliminated CSE SC with i.check

// DOM
%1 = load X
%2 = mul %1, %1
%3 = load Y
%4 = add %2, %3

//ORIG
%5 = load X
%6 = mul %5, %5

//CONTINUE
%7 = add %4, %6

⇒

// DOM
%1 = load X
%2 = mul %1, %1
%3 = load Y
%4 = add %2, %3

// ORIG’
%6 = mul %1, %1

// CONTINUE
%7 = add %4, %6

⇒

// DOM
%1 = load X
%2 = mul %1, %1
%3 = load Y
%4 = add %2, %3

// ORIG’

// CONTINUE
%7 = add %4, %2

// DOM’
%1 = m.load X, 0
%2 = mul %1, %1
%3 = load Y
%4 = add %2, %3

// ORIG’
i.check 0, rcvr
jump cont

// RECOVER
rcvr:
%5 = load X
%6 = mul %5, %5

// CONTINUE
cont:
%merge = phi (orig, %2, rcvr, %6)
%7 = add %4, %merge

(a) (b) (c) (d)

Figure 9: GVN first transforms program (a) into (b) by eliminating the “available load” from X, then notices that the result of the second multiplication has
already been computed and performs common subexpression elimination to arrive at (c). This transformation is not SC since it reorders the second load of X
with the load of Y.

be unmodified from the start of monitoring through the execution
of ORIG’. The key property of our algorithm is that every memory
location involved in an eager load is monitored from the point where
the eager load occurs until at least the point at which the load would
have occurred in the original program (since it would have occurred
somewhere within ORIG). Thus the value loaded in the optimized
code is the value that would have been read by the original program,
thereby preserving SC.

5. Hardware Support for Interference Checks

In this section we describe hardware support for efficiently imple-
menting the m.load, m.store, and i.check instructions described
in the previous section. The hardware changes required are simple
and efficient, and therefore practical. In fact, the new instructions we
propose are similar to the data speculation support in the Itanium’s
ISA [29], which was designed to enable speculative optimizations in
a single thread in the face of possible memory aliasing. Our design
safely supports both our goal (to ensure sequential consistency) as
well as Itanium’s speculative load optimizations. Our required hard-
ware support is simple: a structure to store N addresses (32 in our
implementation), each with an associated bit indicating whether the
address was possibly written.

5.1 Hardware Design

We propose a hardware structure called the Speculative Memory
Address Table (SMAT) which is similar to the Advanced Load
Address Table (ALAT) used in Itanium processors [29]. SMAT is
a Content-Addressable-Memory (CAM). It has N entries, enabling
the compiler to monitor interference on N addresses at any instant
of time. Each entry in the SMAT contains an address field and an
interference bit.

We collectively refer to m.load and m.store instructions as
monitor instructions. As described in the previous section, each
monitor instruction contains a tag between 0 and N − 1. When
executing a monitor instruction, the hardware stores the address
accessed by that instruction in the SMAT entry specified by the
tag, resets that entry’s interference bit, starts to monitor writes to
the address, and executes the memory operation requested by the
instruction.

A processor core can easily detect when another processor core
wants to write an address by monitoring invalidation coherence
requests. When a processor core receives an invalidation to a cache
block, the interference bit of each SMAT entry holding an address
from that block is set. The interference bit of an entry is also set
when a store to the associated address commits from the current
processor. While the latter behavior is not necessary to preserve SC,
it enables Itanium-style speculative load optimizations [29].

The compiler generates an i.check instruction with an N -
bit mask to check for interference on a maximum of N different
addresses. Each bit in the mask corresponds to an entry in the
SMAT. The hardware executes the i.check instruction by checking
the interference bits of the SMAT entries specified in its mask. If any
of the checked interference bits is set, the hardware branches to the
recovery code whose target is specified in the i.check instruction.

The hardware updates the SMAT for a monitor instruction and
executes i.check instructions only when they are ready to com-
mit from a processor core’s instruction window. This ensures that
the hardware does not update SMAT entries speculatively while ex-
ecuting instructions on an incorrect path taken due to branch mis-
prediction. The next section explains a subtlety in implementing the
monitor instructions in out-of-order processors.

5.2 Relation To In-Window Hardware Speculation

Our approach of monitoring invalidation coherence requests to de-
tect interference for a set of addresses is similar to what many pro-
cessors already implement for efficiently supporting TSO at the
hardware level [23]. TSO does not allow a load to be executed before
another load in program order even if they are accessing different
addresses. To achieve good performance, Gharachorloo et al. [23]
proposed to speculatively execute loads out-of-order. However, in-
structions are still committed in order from a FIFO queue called the
reorder buffer (ROB). Therefore, to detect misspeculation the hard-
ware simply needs to detect when another processor tries to write to
an address that has been read by a load that is yet to commit from
the ROB. This is achieved by monitoring the address of invalida-
tion coherence requests from other processor cores. On detecting a
misspeculation, the hardware flushes the misspeculated load and its
following instructions from the pipeline and restarts execution.



Our proposed hardware design essentially extends the above
hardware mechanism to detect interference for addresses of certain
memory operations (specified by the compiler) even after they are
committed from the ROB. This allows our compiler to eagerly
execute loads and later check for interference at the original location
of the load in the source code. On a m.load, the monitoring needs
to start logically when the processor receives the value of the load.
However, the SMAT entry is updated only when the instruction is
committed. In between the two events, when the load instruction is
in flight in the ROB, we rely on the monitoring performed above to
provide the required semantics of the i.check.

5.3 Conservative Interference Checks

While an implementation of interference checks must detect inter-
ference whenever it occurs, it is legal to signal interference when
none actually exists. Such false positives are acceptable in our de-
sign because they simply result in execution of the unoptimized
code, losing some performance but maintaining SC. The ability to
tolerate false positives allows us to avoid a number of potentially
complex issues and keep the hardware simple.

First, our hardware monitors interference at the cache block
granularity as coherence invalidation messages operate at cache
block level. This may result in false positives when compared to
a detector that monitors byte-level access. But the probability that
a cache block gets invalidated between a monitor instruction and
an i.check is very low. Moreover, frequent invalidations or “false
sharing” of hot cache lines result in performance degradations and
thus can expected to be rare in well-tuned applications.

Second, we conservatively invalidate SMAT entries for a cache
block that gets evicted due to capacity constraints. Monitoring inter-
ference for uncached blocks would require significant system sup-
port (similar in complexity to unbounded transactional memory sys-
tems [17]), but we believe it is not necessary for performance.

Third, in ISAs like x86 one memory instruction could potentially
access two or more cache lines, but our SMAT entry can monitor
only one cache block address. To address this problem, if a monitor
instruction accesses more than one cache block we immediately set
the interference bit for the SMAT entry that monitors the associated
address, which could cause a future i.check to fail forcing execu-
tion down an unoptimized path. Fortunately, such unaligned cache
accesses are rare.

Finally, a context switch may occur while multiple addresses
are monitored in the hardware SMAT. Instead of virtualizing this
structure, we propose to set the interference bit in all SMAT en-
tries after a context switch. This may cause future i.check instruc-
tions from the same thread to fail unnecessarily when it is context
switched back in, but we expect this overhead to be negligible as
context switches are relatively rare when compared to the frequency
of memory accesses.

6. Results

The experimental results relating to the performance of our SC-
preserving compiler were discussed in Section 3.4. In this section
we discuss additional experiments which evaluate the potential ef-
fectiveness of our interference checks. In addition, we compare the
performance of our SC-preserving compilers to a fully optimizing
compiler running on simulated hardware that uses a DRF0 memory
model which is more relaxed (allows more hardware reorderings)
than TSO. This gives a sense of the performance burden of providing
a strong, end-to-end memory model across hardware and software.

6.1 Compiler Configurations

As described in Section 3.4, our baseline compiler is the out-of-the-
box LLVM compiler with all optimizations (-O3). For our experi-

Table 2: Baseline IPC for simulated DRF0 hardware running binaries from
the stock LLVM compiler.

Application Avg. IPC Application Avg. IPC

blackscholes 1.94 bodytrack 1.61

fluidanimate 1.28 swaptions 1.67

streamcluster 1.42 barnes 1.57

water(nsquared) 1.66 water(spatial) 1.66

cholesky 1.78 fft 1.39

lu(contiguous blocks) 1.64 radix 0.99

ments on parallel benchmarks, we used the three compiler config-
urations discussed in that section (“No optimization”, “Naı̈ve SC-
preserving”, and “SC-preserving”), as well as two additional con-
figurations. The “Only Eager Loads” configuration includes all the
optimizations from the SC-preserving compiler plus the unmodi-
fied (SC-violating) version of all IR passes that perform only eager
load optimizations (GVN, instcombine, argpromotion, and jump-
threading). This configuration is intended to give a sense of the op-
portunity for improvement available to optimizations based on our
interference check technique and is only used for experiments on
native hardware and not on simulated machines. Finally, the “SC-
preserving+GVN w/ ICheck” configuration includes all of the op-
timizations from the SC-preserving compiler plus a modified GVN
pass that is made SC-preserving using our interference checks and
recovery code. When this configuration targets a simulated machine
with appropriate support, it emits m.load, m.store, and i.check
instructions. But when it targets native hardware, the configuration
emits m.load and m.store instructions as regular loads and stores
and emulates a never-failing i.check using a logical comparison of
constant values followed by a conditional branch. Thus, when run-
ning on the native machine, the overhead caused by increased code
size and the additional branch is captured, but the effect of actual or
false conflicts on monitored accesses is not. In a real implementa-
tion, however, we expect the i.check instruction to be more effi-
cient than a branch.

6.2 Benchmarks

We evaluated the performance of the various compiler configu-
rations on the PARSEC [7] and SPLASH-2 [49] parallel bench-
mark suites. Table 2 lists the average instructions executed per cy-
cle (IPC) for each of these benchmarks when compiled with the
stock LLVM compiler at -O3 optimization and run on our simu-
lated DRF0 hardware which implements weak consistency and is
described below. All of these benchmarks are run to completion.
For our experiments on actual hardware, we used the native in-
put for PARSEC benchmarks, while for the simulated machines we
used the sim-medium input set to keep the simulation time reason-
able. (Since streamcluster was especially slow to simulate, we
used the sim-small input.) For SPLASH-2 applications, we used
the default inputs for simulation. We modified the inputs to increase
the problem size for experiments on native hardware. We verified
the correct behavior of the benchmarks under all compiler config-
urations by using a self-testing option when available, or by com-
paring results with those produced when compiling the benchmark
using gcc.

6.3 Experiments on Native Hardware

We evaluated all six compiler configurations (including the baseline)
on an Intel Xeon machine with eight cores each of which supports
two hardware threads and 6 GB of RAM. Each benchmark was run
five times for each compiler configuration and the execution time
was measured. (The results given here are for CPU user time, though
the results for total time elapsed were very similar.) The overheads
given are relative to the baseline, fully-optimizing compiler and are
shown in Figure 10. Let’s consider the base SC-preserving compiler



Table 3: Processor Configuration

Processor 4 core CMP. Each core operating at 2Ghz.

Fetch/Exec/ Commit width
4 instructions(maximum 2 loads or 1 store)
per cycle in each core.

Store Buffer
TSO: 64 entry FIFO buffer with 8 byte granularity.
DRF0, DRFx: 8 entry unordered coalescing buffer
with 64 byte granularity.

L1 Cache 64 KB per-core (private), 4-way set associative, 64B
block size, 1-cycle hit latency, write-back.

L2 Cache 1MB private, 4-way set associative, 64B block size,
10-cycle hit latency.

Coherence MOESI directory protocol

Interconnection Hierarchical switch, 10 cycle hop latency.

Memory 80 cycle DRAM lookup latency.

SMAT 32 entries CAM structure, 1 cycle associative
lookup

first. Notice that for many of our benchmarks, restricting the com-
piler to perform only SC-preserving optimizations has little or no
effect. In fact, in some cases, disabling these transformations ap-
pears to speed the code up, indicating that the compiler ought not
to have performed them in the first place. There are several bench-
marks, however, for which the SC-preserving compiler incurs a no-
ticeable performance penalty, 34% in the case of facesim.2 On av-
erage, we see a 2.7% slowdown. Consider now the compiler con-
figuration which re-enables various eager load optimizations. Sev-
eral of the applications which suffered a significant slowdown under
the SC-preserving compiler regain much of this performance in this
configuration. Most notably, facesim vastly improves to 6.5% and
bodytrack, streamcluster, and x264 recover all (or nearly all)
of their lost performance. On average, the compiler with eager load
relaxations enabled is as fast as the stock compiler, indicating that
our technique of using interference checks to safely allow eager load
optimizations holds significant promise. Finally, the rightmost bar
in the graph shows the slowdown of the aggressive SC-preserving
compiler that includes the modified GVN pass with interference
checks. (Remember, we are running on a native machine in this set
of experiments, so a never-fail load check is emulated.) We see that
this technique regains a good portion of the performance lost by the
base SC-preserving compiler for facesim, reducing the overhead
from 34% to under 20%, with streamcluster and x264 showing
a more modest improvement.

6.4 Experiments on Simulated Machines

To study the performance of interference checks in hardware, we
used a cycle-accurate, execution driven, Simics [35] based x86 64
simulator called FeS2 [19]. We simulated TSO hardware with and
without support for interference checks and compared it to DRF0
hardware that supports weak consistency. The processor configu-
ration that we modelled is shown in Table 3. For the TSO simu-
lation, we modelled a FIFO store buffer that holds pending stores
and retires them in-order. We also modelled speculative load execu-
tion support [23]. The weakly consistent DRF0 simulation allowed
stores and loads to retire out-of-order.

2 Additional profiling and investigation revealed that the slowdown in
facesim was largely caused by a commonly invoked 3x3 matrix multiply
routine. The SC-preserving compiler was unable to eliminate the two redun-
dant loads of each of the 18 shared, floating point matrix entries involved
in the calculation. This resulted in 36 additional load instructions for each
matrix multiplication performed by the SC-preserving version of facesim.
Our GVN pass with interference checks is able to relegate the 36 additional
loads to the recovery code, eliminating them on the fast path. A straightfor-
ward rewrite of the source code to first read the 18 shared values into local
variables would have allowed the base SC-preserving compiler to generate
the fully optimized code.

Figure 11 shows the results of our simulation study. When com-
pared to the fully optimizing compiler configuration running on the
simulated DRF0 machine, the performance overhead of using our
SC-preserving compiler on simulated TSO hardware is 3.4% on
average. This cost is reduced to 2.2% when the GVN pass with
interference checks is used. For several programs that incur sig-
nificant overhead, such as bodytrack and facesim, our interfer-
ence check optimizations reduce the overhead to almost zero. For
streamcluster, the overhead is reduced from about 23% to 17%.
We also found that the frequency of load-check failures is, on aver-
age, only about one in ten million instructions. This indicates that
the performance overhead due to false positives arising from several
hardware simplifications described in Section 5.3 is negligible.

7. Discussion and Related Work

7.1 Relationship to Data-Race-Free Memory Models

Today’s mainstream concurrent programming languages including
C++ and Java use variants of the data-race-free memory model
known as DRF0 [2, 3]. These memory models are rooted in the ob-
servation that good programming discipline requires programmers
to protect shared accesses to data with appropriate synchroniza-
tion (such as locks). For such data-race-free programs, these models
guarantee SC. For programs with data races, however, these models
guarantee either no semantics [11] or a weak and complex seman-
tics [36]. The compiler and hardware are restricted in the optimiza-
tions allowed across synchronization accesses, but they can safely
perform most sequentially-valid optimizations on regular memory
accesses.

Our work is primarily motivated by the need to provide under-
standable semantics to racy programs [1] both for debugging ease
of large software systems that are likely to have data races and for
guaranteeing security properties in safe languages such as Java [36].

In the context of a DRF0-compliant compiler (such as LLVM),
our interference checks can be seen as a specialized form of data
race detection. Our approach allows the compiler to speculatively
perform the eager-load optimizations which would be allowed in the
DRF0 model. However, rather than silently providing undefined or
weak semantics upon a data race, our interference checks dynami-
cally detect the race and recover in order to preserve SC. In this way,
data-race-free programs can be aggressively optimized and incur
just the additional cost of the interference check itself and the rare
false interference check that may occur (Section 5.3). Furthermore,
even racy programs benefit from our approach, because the interfer-
ence check captures exactly the requirement necessary to justify an
optimization’s SC-preservation. For instance, data races on variables
that are not eagerly loaded, as well as data races on eagerly-loaded
variables that occur outside of the scope of that reordering, cannot
violate SC preservation and so need not be detected.

While this paper focuses on eager-load optimizations, we hope
to explore in future work speculation mechanisms that enable other
DRF0-compliant optimizations while preserving SC.

7.2 A TSO-Preserving Compiler

Providing SC semantics to the programmer requires that the output
of an SC-preserving compiler be executed on SC hardware. While
most hardware platforms today support a relaxed memory model,
popular platforms such as Intel’s x86 and Sun’s SPARC platforms
provide a relatively-strong memory model known as total store or-
dering (TSO). Conceptually, TSO can be seen as a relaxation of SC
that allows S → L reorderings [2] and has a precise understandable
operational semantics [40].

Our approach to developing an SC-preserving compiler can be
naturally adapted to instead preserve TSO, thereby providing end-
to-end TSO semantics on existing TSO hardware. Transformations
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Figure 10: Performance overhead incurred by the various compiler configurations compared to stock LLVM compiler with -O3 optimization running on native
Xeon hardware for PARSEC and SPLASH-2 benchmarks.

Figure 11: Performance overhead of SC-preserving compiler on simulated TSO hardware with and without using interference checks relative to fully optimizing
SC-violating compiler on simulated DRF0 hardware.

that do not reorder memory accesses and those that only reorder
thread-local variables are TSO-preserving [48]. In addition, all of
the SC-preserving transformations shown in Figure 3 also preserve
TSO except for redundant store elimination [14].

In the context of a DRF0-compliant compiler, the result of this
approach would be a language-level memory model that provides
SC semantics for data-race-free programs and TSO semantics for
racy programs. This variation on DRF0 is significantly stronger and
much simpler than both the C++0x [6, 11] and Java [36] memory
models.

In recent work, Ševčı́k et al. describe a concurrency extension to
a small C-like programming language that provides end-to-end TSO
semantics [48]. They modify an existing compiler for the language
and mechanically prove that the optimizations are TSO-preserving,
thereby providing an end-to-end guarantee when the resulting bina-
ries are executed on x86 hardware. Our performance measurements
complement their work by indicating that a TSO-preserving com-
piler could be practical to use in a full-fledged programming lan-
guage.

7.3 Dynamic Detection of Data Races and SC Violations

Others have argued for the use of dynamic race detection to improve
the DRF0 memory model [10, 16, 18], in order to halt an execu-
tion when its semantics becomes undefined, analogous with Java’s
fail-stop approach to preventing array-bounds violations and null-
pointer dereferences. However, detecting data races either incurs 8x
or more performance overhead in software [20] or incurs significant
hardware complexity [4, 38, 43] despite many proposed optimiza-
tions to the basic technique.

Recently, Marino et al. [37] and Lucia et al. [34] observed that
it suffices to dynamically detect SC violations rather than races, and
that this can be done much more efficiently. In their approaches, the
compiler partitions a program into regions and may perform most
sequentially valid optimizations within a region but cannot opti-
mize across regions. Region boundaries are communicated to the
hardware as memory fences, thereby also preventing hardware op-
timizations across regions. Given these requirements, the hardware
can conservatively identify data races that potentially cause SC vi-
olations by detecting conflicting accesses in concurrently executing
regions, similar to the conflict detection performed by transactional
memory (TM) systems [27].



Our interference checks are a form of dynamic data-race detec-
tion that is sufficient to ensure SC-preservation of compiler trans-
formations. Such detection provides a weaker guarantee than the
above approaches, which additionally detect SC violations due to
hardware reorderings. However, our approach has a number of ad-
vantages. First, our detection scheme is fine-grained, requiring only
data race detection for variables that are involved in a compiler op-
timization and only during the dynamic lifetime of that optimiza-
tion’s effect. Second, we can perform this detection with relatively
minimal hardware support based on existing hardware speculation
mechanisms [50], rather than requiring the complexity of TM-style
conflict detection. Finally, we show how to safely recover from in-
terference for common compiler optimizations based on eager loads,
thereby allowing the execution to safely continue while maintaining
SC.

7.4 Optimistic Optimization via Hardware Speculation

Our interference checks are inspired by a common hardware mech-
anism for enabling out-of-order execution in the presence of strong
memory models [23]. This mechanism [50] allows a memory load
to be executed out-of-order speculatively, before earlier instructions
have completed. Once those instructions have completed, the load
need not be re-executed if the value has not changed in the mean-
while, and this can be conservatively detected by checking if the
associated cache line has been invalidated. We illustrate how this
technique can be adapted to the compiler by viewing common com-
piler optimizations as performing eager (i.e., speculative) reads, and
we describe a simple way for the hardware to expose this mecha-
nism to the compiler.

Others have proposed hardware support for dynamically de-
tecting memory aliasing between local loads and stores in a sin-
gle thread and expose that feature to the compiler so that it can
perform optimistic optimizations [22, 41]. The Itanium processor
implemented this feature using an Advanced Load Address Table
(ALAT) to enable aggressive load optimizations [29]. Recently, Na-
garajan and Gupta [39] extended Itanium’s ALAT mechanism to
detect memory aliasing with remote writes, enabling the compiler
to speculatively reorder memory operations across memory barri-
ers. While our hardware mechanism to detect memory aliasing is
similar to these proposals, we apply it to solve a different problem:
preserving SC in the face of common compiler transformations.

7.5 Guaranteeing End-to-End Sequential Consistency

Our approach ensures that the compiler is SC-preserving but does
not prevent the hardware from exposing non-SC behavior. We could
augment our compiler to address this problem by inserting memory
fences to prevent hardware reorderings that potentially violate SC.
Such fences cause a significant performance penalty, so there has
been research in minimizing the number of fences required. Shasha
and Snir proposed the delay sets algorithm for determining the set of
fences to insert [45]. Recent research has further reduced the number
of fences required by incorporating analyses that detect which mem-
ory locations are possibly accessed by multiple threads [30, 46]. Fi-
nally, recent work describes a new hardware mechanism called a
conditional fence [33], which uses the results of a compiler analy-
sis to dynamically decide whether a given fence in the instruction
stream can be safely ignored while still ensuring SC. All of these
approaches rely critically on whole-program analyses to obtain suf-
ficient precision.

A different way to ensure SC at the language level is by stati-
cally rejecting possibly racy programs. Several static type systems
have been proposed that prevent races (e.g., [12, 13, 21]) and en-
sure stronger properties such as determinism [9]. By rejecting po-
tentially racy programs, these type systems ensure that all program
executions have SC semantics. However, these type systems enforce

a restricted programming style that is necessarily conservative. For
example, many static type systems for race detection only account
for lock-based synchronization and will reject race-free programs
that use other synchronization mechanisms. Further, even correct
programs that employ locks can be rejected due to imprecise infor-
mation about pointer aliasing. More precision in static race detection
can be achieved through whole-program analysis [42].

Hammond et al. [25] proposed the transactional coherency and
consistency (TCC) memory model. The programmer and the com-
piler ensure that every instruction is part of some transaction. The
runtime uses transactional memory [27] to ensure serializability of
transactions, which in turn guarantees SC at the language level. The
Bulk compiler [5] and the BulkSC hardware [15] together also guar-
antee SC at the language level. The bulk compiler partitions a pro-
gram into “chunks” and the BulkSC hardware employs speculation
and recovery to ensure serializable execution of chunks. Conflicts
are resolved through rollback and re-execution of chunks. These
techniques obtain a strong guarantee of SC, but at the cost of signif-
icant hardware extensions that are similar to transactional memory
support.

8. Conclusions

A memory model forms the foundation of shared-memory multi-
threaded programming languages. This paper empirically demon-
strates that the performance incentive for relaxing the intuitive SC
semantics in the compiler is much less than previously assumed. In
particular, this paper describes how to engineer an SC-preserving
compiler through simple modifications to LLVM, a state-of-the-art
C/C++ compiler. For a wide range of programs from the SPLASH-
2, PARSEC, and SPEC CINT2006 benchmark suites, our SC-
preserving compiler results in a performance overhead of only 3.8%
on average with a maximum of 34% overhead.

While the overheads, however small, might be unacceptable for
certain applications, this paper argues that other avenues for improv-
ing the performance of SC-preserving compilers should be explored
before resorting to relaxing the program semantics. We proposed
a novel hardware-software cooperation mechanism in the form of
interference checks, which enabled us to regain much of the perfor-
mance lost due to restrictions imposed on compiler optimizations to
preserve SC.
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sions regarding this work. We also like to thank the anonymous re-
viewers for valuable feedback on this paper. This work is supported
by the National Science Foundation under awards CNS-0725354,
CNS-0905149, and CCF-0916770 as well as by the Defense Ad-
vanced Research Projects Agency under award HR0011-09-1-0037.

References

[1] S. V. Adve and H.-J. Boehm. Memory models: A case for rethinking
parallel languages and hardware. Commun. ACM, 53(8):90–101, 2010.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
a tutorial. Computer, 29(12):66–76, 1996.

[3] S. V. Adve and M. D. Hill. Weak ordering—a new definition. In
Proceedings of ISCA, pages 2–14. ACM, 1990.

[4] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting data
races on weak memory systems. In ISCA, pages 234–243, 1991.

[5] W. Ahn, S. Qi, J.-W. Lee, M. Nicolaides, X. Fang, J. Torrellas,
D. Wong, and S. Midkiff. BulkCompiler: High-performance sequen-
tial consistency through cooperative compiler and hardware support.
In 42nd International Symposium on Microarchitecture, 2009.



[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In Proceedings of the 38th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL
’11, pages 55–66. ACM, 2011.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings

of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[8] C. Blundell, M. M. Martin, and T. F. Wenisch. InvisiFence:
Performance-transparent memory ordering in conventional multipro-
cessors. In Proceedings of the 36th annual International Symposium
on Computer architecture, ISCA ’09, pages 233–244. ACM, 2009.

[9] R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann, R. Komuravelli,
J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type and effect
system for Deterministic Parallel Java. In OOPSLA, 2009.

[10] H. J. Boehm. Simple thread semantics require race detection. In FIT

session at PLDI, 2009.

[11] H. J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In Proceedings of PLDI, pages 68–78. ACM, 2008.

[12] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. In Proceedings of OOPSLA, pages 56–69. ACM Press,
2001.

[13] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of

OOPSLA, 2002.

[14] S. Burckhardt, M. Musuvathi, and V. Singh. Verifying local transfor-
mations on relaxed memory models. In Compiler Construction, volume
6011 of Lecture Notes in Computer Science, pages 104–123. Springer
Berlin / Heidelberg, 2010.

[15] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk
enforcement of sequential consistency. In ISCA, pages 278–289, 2007.

[16] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. The case for system
support for concurrency exceptions. In USENIX HotPar, 2009.

[17] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Bies-
brouck, G. Pokam, B. Calder, and O. Colavin. Unbounded page-based
transactional memory. International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, 2006.

[18] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and transaction-
aware Java runtime. In PLDI, pages 245–255, 2007.

[19] FeS2. The FeS2 simulator. URL http://fes2.cs.uiuc.edu/.

[20] C. Flanagan and S. Freund. FastTrack: Efficient and precise dynamic
race detection. In Proceedings of PLDI, 2009.

[21] C. Flanagan and S. N. Freund. Type-based race detection for Java. In
Proceedings of PLDI, pages 219–232, 2000.

[22] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W. mei W. Hwu. Dynamic memory disambiguation using the memory
conflict buffer. In ASPLOS, pages 183–193, 1994.

[23] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to en-
hance the performance of memory consistency models. In Proceedings

of the 1991 International Conference on Parallel Processing, volume 1,
pages 355–364, 1991.

[24] C. Gniady and B. Falsafi. Speculative sequential consistency with little
custom storage. In IEEE PACT, pages 179–188, 2002.

[25] L. Hammond, V. Wong, M. K. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional memory coherence and consistency. In ISCA, pages 102–
113, 2004.

[26] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH

Computer Architecture News, 34:1–17, September 2006. ISSN 0163-
5964.

[27] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In Proceedings of ISCA, pages
289–300. ACM, 1993.

[28] M. D. Hill. Multiprocessors should support simple memory-
consistency models. IEEE Computer, 31:28–34, 1998. ISSN 0018-
9162.

[29] Itanium. Inside the Intel Itanium 2 processor. Hewlett Packard Techni-

cal White Paper, 2002.

[30] A. Kamil, J. Su, and K. Yelick. Making sequential consistency practical
in Titanium. In Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, page 15. IEEE Computer Society, 2005.

[31] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
100(28):690–691, 1979.

[32] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed

and Runtime Optimization. IEEE Computer Society, 2004.

[33] C. Lin, V. Nagarajan, and R. Gupta. Efficient sequential consistency
using conditional fences. In International Conference on Parallel

Architectres and Compilation Techniques, 2010.

[34] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H. Boehm. Conflict
Exceptions: Providing simple parallel language semantics with precise
hardware exceptions. In 37th Annual International Symposium on

Computer Architecture, June 2010.

[35] S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
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