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Abstract
Sensor and actuator networks are often installed in build-

ings for energy-related applications such as lighting and cli-
mate control. Such systems require metadata about the de-
ployed hardware (e.g. which room each is in, what the func-
tion of each room is) in order to operate effectively. In this
paper we present methods to automatically determine such
metadata, in particular the room connectivity graph (i.e.,
which rooms share a doorway/interior window). Crucially,
our method works with just one sensor unit per room, does
not require special placement of any of the sensors, and can
therefore work on data from existing widely-deployed appli-
cations (such as burglar alarms). We apply this method to a
30-day data set from single per-room sensor units deployed
in two residential homes in the United Kingdom. Room con-
nectivity is determined based on: spillover of artificial light
between rooms; occupancy detections due to movement be-
tween rooms; and a fusion of the two. The fusion of both
techniques is shown to work better than either technique
alone, with a 93% true positive rate and 0.5% false positive
rate (aggregate across both houses), and a convergence time
of under a week.
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1 Introduction
Room-level sensing and actuation are increasingly being

used to optimise building energy consumption. An example
of this is a house which heats individual rooms, in advance
of that room’s occupancy. To deploy such systems, one must
not only physically install embedded devices, but also deter-
mine metadata such as which room each device is in and the
layout of those rooms in the home (e.g. a floorplan or a room
connectivity graph).

Such metadata can be provided manually, but this will add
time and complexity to the installation process, as has been
previously articulated [1, p. 128]. Sketching a floorplan (for
example via touchscreen or stylus) with deployed sensor IDs
requires some expertise on the part of the user, in addition
to the challenges of the sketching tool interface design, and
correct interpretation of the sketched rooms, doorways and
sensors. Providing even basic information about the number
of rooms, floors, and their connections also suffers from am-
biguities. Since installation should ideally be achievable by
untrained home owners/occupants rather than professional
installers, automatic methods of inferring this data without
manual input are valuable. Furthermore, these methods may
be more robust to changes within the house or to the devices
installed within it — e.g. replacement of a failing device.

We propose a set of algorithms to calculate room connec-
tivity (rooms which share a doorway or other opening such
as an interior window) of a home, relying on only single sen-
sor units deployed in each room, specifically using light and
motion sensing. We chose these sensor types, and chose to
use one per room, to reflect existing applications for smart
homes such as “dusk-till-dawn” lighting and burglar alarm
systems. Thus, the sensors may already be in place in the tar-
get environment, or their installation planned as part of the
home automation effort. Our algorithms leverage the data
gathered by these sensors to reduce the need for manual in-
put of metadata, but without requiring additional hardware.

The room connectivity graph that these algorithms out-
put can be useful for a number of applications. Here we
give four examples: First, most research in predictive heating
control has focused on temporal priors for occupancy pre-
diction (i.e. a room’s future occupancy is predicted using its
past occupancy). Information from connectivity graph could



be used to determine spatial priors (i.e. a room’s future occu-
pancy is predicted by the occupancy of neighbouring rooms).
Second, lighting and media devices (e.g. radios, televisions)
might be switched off when there is no occupant in the cur-
rent or connected rooms. Third, smart burglar alarm systems
could look for movement in rooms where no connected room
was first occupied. This would give warning even when the
owner is at home, but in another part of the building. Fourth,
smart heating systems could use the connectivity graph to as-
sist in training advanced heat flow models for more efficient
HVAC control solutions.

The contributions of this paper are: algorithms for room
connectivity inference based on light data (looking at light
levels in neighboring rooms and noticing when room light-
ing is turned on and off) and motion data (looking at motion
data and noticing when people walk from room to room); We
evaluate these algorithms using data previously gathered us-
ing sensors deployed for the purposes of predictive heating
control [2]. We show that a fusion of both techniques works
better than either alone, with a 93% true positive rate and
0.5% false positive rate (aggregate across both houses).

2 Related Work
Many home infrastructure deployments have relied upon

manual surveys to provide metadata about the home (room
connections, sensor positions, orientations, window proper-
ties, etc) [3] [4] [5]. Manual surveys can add time and com-
plexity to the installation process [1], may be error prone,
and may fall out of date as sensors are repaired or moved.

Automatically creating maps of a building or surround-
ings has been investigated by the robotics community [6]
but the methods used normally require specialized sensors
or custom robots which are currently impractical to apply at
scale. In the same vein, researchers have used the building’s
inhabitants to create blueprints whether by using wearable
sensors [7] or centimetre-level location readings [8]. Fu-
rukawa et al. [9] used images from a stereo camera to create a
blueprint and a 3D model of the interior of a building. How-
ever, these systems go far beyond what off-the-shelf sensors
can provide, instead requiring specialist equipment or a high-
performance location system.

In home heating control applications, the literature has fo-
cused mostly on a whole house occupancy metric [10] [11].
However, with research looking towards per-room con-
trol [2] it is becoming more important not to just know which
room an occupant is in currently, but which rooms they are
likely to go to next. These systems only need a simple build-
ing map, which shows how the rooms are linked by doors
and passages.

We feel that once sensors have been installed in a build-
ing, calibration should be an automatic affair. Brumitt et
al. [12] call for a geometric model to be created which would
allow for sensors and other devices to be added to infrastruc-
ture in a “Plug and Play” manner.

Lu and Whitehouse [1] describe a method for automati-
cally generating representative floorplans for a house; they
show this works in three of their four house deployments.
Their method clusters sensors into rooms and assigns con-
nectivity based on the concurrent firings of window– and

door jamb–placed sensors. The walls of these rooms are
assigned doorways (using magnetometer readings) and win-
dows (based on sunlight intensity readings over the course
of the day). The possible floorplan topologies are minimised
using heuristic filters, narrowing it down to a small number
of possible candidates.

Lu and Whitehouse’s method has the potential to ex-
pose aspects such as floorplan orientation with respect to
magnetic north, and identification of which internal/external
walls have doorways/windows. By contrast, our method ex-
poses only path-based connectivity between rooms, i.e. those
with connecting doorways or passages that people and light
pass through. This data is nonetheless useful for applications
(described in Section 1) such as predictive heating control
and adaptive burglar alarm systems.

Compared to that of Lu and Whitehouse, our method ex-
poses this path-based connectivity by operating on a lower
sensor density (one per room, compared to three or more);
utilising simpler sensor nodes with just one sensor of each
type rather than dual sensors (PIR-PIR and PIR-light) with
opposite-facing elements; and does not require special
placement of any of these sensors. Thus, our method can
work with data from existing sensors such as those used in
burglar alarms or lighting control, in which one sensor is
typically deployed in each room, and it does not have to be
mounted in a specific place, e.g. on the door of the room.

3 Algorithms
We use data from sensors originally deployed to perform

automatic per-room heat control based on predicted occu-
pancy, with the aim of reducing energy consumption for
heating [2]. This system required a single sensor node to
be deployed in each room (Figure 1) which measured: light
intensity, temperature and humidity at 5 second granularity,
and motion data (through a passive infrared sensor) at 1 sec-
ond granularity. This data was transmitted in real time to
a PC in the home using an 802.15.4 network. The system
was installed in two family homes in the United Kingdom,
and was used to conduct real time control of the heating sys-
tem in those homes. House A had 4 occupants and 15 rooms,
while House B had 3 occupants and 13 rooms. For this study,
we used 30 days of data from April 2011.

No special activity by the occupants was required by the
heating study or was undertaken in order to facilitate the
work presented in this paper.

While we have not evaluated different motion and light
sensor placements in the two homes, neither was the sensor
placement carefully optimized: the aims were decent motion
sensor coverage for each room (as would be common in a
burglar alarm installation), and practical and aesthetic appeal
(a concern for any real home). Moreover, we would like to
stress that the reported characteristics of this algorithm used
motion and light data arising from the natural behaviour of
occupants in two homes over the course of four weeks.

To get from light and motion data to room connectivity
graphs, the overall operation of our algorithms (and the or-
dering of this section) is as follows.

First, we determine a “transition matrix” from motion and
light data, e.g. we see how often the data suggests connec-
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Figure 4: Motion events are grouped into movement blocks.
When a block ends in one room and starts in another, a tran-
sition event is detected.

spillover ambient light from obstructed lights (e.g. in other
rooms), the PIR sensors must be directed at movement to de-
tect it. This means that motion events may be missed due
to temporary obstructions, or black spots caused by sensor
placement/orientation, or stillness even in an occupied room.
Also, unlike with light spillover, it takes time for people to
walk between the coverage zone of two sensors, which may
be quite far away if they are at opposite ends of the respec-
tive rooms. So, we need to use a larger time window to de-
tect movement, and this can introduce more opportunities for
false movements to be detected.

The algorithm works as follows. We group motion events
in a room that happen within 30 seconds of each other into
movement blocks (Figure 4). A candidate room connectivity
is created when the following conditions are both true:

1. A movement block from one room comes to an end,
while another motion blocks starts for a different room.

2. The time of one block stopping and another starting are
within 30 seconds of one another.

If more than one room has motion starting, we infer a
candidate connectivity only for the motion with the closest
time-stamp (so that if someone walks from room A through
B to C, we only infer AB not AC — and we can also infer
BC since B’s motion ended just before C’s began).

3.3 From Transition Matrix to Room Connec-
tivity Graph

To distill a transition matrix into a list of connections,
we first tried simply thresholding the list in various ways,
however, this always included some false positives. This is
because some rooms are used very rarely and so have few
motion and light events associated, while other often-used
rooms have much more motion and have the lights turned
on and off with a much higher frequency, so that the occa-
sional false positive involving that room outweighs the true
positives associated with the rarely-used rooms.

To address this, for each room (A), and each sensor type,
we normalize the number of events between that room and
each other room (B1,2,3,...) by dividing each by the highest
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Figure 5: Normalized frequencies from transition matrices,
which are thresholded by the κ value (e.g., 1.0) to determine
initial connections. The ground truth transitions are in the
highlighted blocks on the left hand side.

number of events, so that the most frequent candidate for
connectivity Bmax always had a score of 1.0, and the others
in the range 0.0-1.0. This normalization means rooms that
have little use are compared on level terms with rooms that
are often used. Figure 5 show graphs of such normalized
data.

We can then apply a threshold, κ, in the range 0.0-1.0,
which we define as the minimum score that a room B has to
reach in order to be considered connected to room A. Clearly,
at least one room B is connected to room A and this is re-
flected in the fact that the room Bmax is always chosen (since
its score is 1.0).

While the value κ=1 (i.e., for each room, only choosing
the other room with the most transition occurrences as con-
nected) works well, we will explore the effects of changing
the parameter κ in the evaluation.

Once each room is considered as room A in turn, we have
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Figure 6: True positive and false positive rates for the fused
light/motion classifier in each house, for various κ values.

lists of connections that arise from the different sensing tech-
niques. The union of these lists is taken as the initial set of
connections in the room graph. In other words, if room C is
found to have room D as an connectivity but room D does not
find room C connected, then the CD connectivity is nonethe-
less kept. This again promotes discovery of connections for
less-travelled rooms since the DC traffic might be “drowned
out” if D is heavily used as is its other neighbor(s).

On examining these initial connectivity sets, we found
them to often comprise multiple disjoint groups of rooms.
An event that often occurred was that all the rooms on one
floor are joined but the floor is not joined to neighboring
floors. We therefore applied a final a subgraph-stitching al-
gorithm to ensure the graph is fully connected (i.e., you can
get to any room from any other). To stitch the subgraphs,
we take at the smallest subgraph and look at all the transi-
tion events from each room in the subgraph to each room
outside the subgraph. The edge with the highest normalized
frequency is chosen as an connectivity. This process is re-
peated until all of the subgraphs have been stitched together.

Note that the procedure above applies separately to light
and motion data, and separate room connectivity graphs are
produced for each.

3.4 Fusion
As we will see in the evaluation, the motion and light

based results both exhibit significant errors. So, we also
explored a joint motion/light classifier to improve accuracy.
To avoid carrying through errors from the motion and light
based results, we combine the motion and light initial con-
nectivity set data by using the intersection of the two, i.e.
where both classifiers agree an connectivity is present. We
then apply the subgraph stitching algorithm to connect rooms
together, during which we use the sum of normalized fre-
quencies of motion and light events (i.e. range 0.0-2.0) to de-
termine which connections to add to connect the subgraphs,
also multiplying the κ parameter by 2. This makes sure that
motion and light data are weighted equally at the subgraph
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Figure 7: True positive and false positive rates for the light-
based, motion-based and fused classifiers, aggregate across
both houses, for various κ values.

stitching stage.

A comparison of separate and fused performance is pre-
sented in Section 4.2.

4 Evaluation

In this section, we compare the accuracy of light-based,
motion-based, and fused classifiers, and we look at the effect
of the κ parameter. We look at the false positive and negative
connections in the context of the house layouts. We then
look at the graph accuracy over time and how much data the
algorithms need to converge.

G 1 2

Correct

Incorrect
Missing

Connection Key

Figure 8: House A: Connections inferred from fused
light/motion data with κ=1.0.
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Figure 9: House B: Connections inferred from fused
light/motion data with κ=1.0.

4.1 Overall accuracy and κ parameter
Figure 6 shows the true positive and false positive rates

for each house, for the combined light and motion classifier.
With a “default” κ value of 1.0 (i.e., each room nominates a
single other room for the initial connectivity graph), in both
houses all but one connectivity is found, leading to an av-
erage true positive rate (TPR) of 93%. With just one false
positive in House A and none in House B, the false positive
rate (FPR) is 0.5%.

By varying the κ parameter, we can choose other operat-
ing points for the algorithm - e.g. with a κ of 0.7, the com-
bined TPR is 96% while the FPR is 1%, and in fact House
B’s graph is totally accurate! However, with just two houses
in the study, it is not reasonable to extrapolate that κ=0.7 is
a good value in general, so we stick with κ=1.0 as a default
value until further work can be conducted to explore this pa-
rameter in more houses.

4.2 Light, Motion and Both
Figure 7 shows the effect of using light data and motion

data alone (averaged between both houses). At κ=1, light
data alone has 84% TPR and 2% FPR, while motion alone
has 89% TPR and 1% FPR. By fusing the two data sources,
we achieve a TPR of 93% and FPR of 0.5%, i.e. more cor-
rect connections are found while also reducing the number of
incorrect connections. Thus, we have shown that when both
sensors are available it is worthwhile fusing data from both
sources to infer the most accurate room connectivity graph.

4.3 Understanding the errors
Figure 8 shows the connectivity graph overlaid onto the

floor plan of House A. All but one of the connections were
correctly classified, but an extra incorrect connectivity was
also present. This was due to the space between the doors
on the second floor landing (to the guest bedroom and guest
bathroom) being close together - so that motion essentially
happened simultaneously in both spaces, and light spillover
happened between the bedroom and bathroom. While this
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(b) House B

Figure 10: Connectivity graph accuracy over time with dif-
ferent classifiers.

is an error, with regards to actual applications of inferred
connectivity graphs e.g. for predictive heating or for burglar
alarms, the existence of this false link may not significantly
harm the applications since the spaces are essentially con-
nected.

Figure 9 shows the calculated connectivity graph overlaid
onto the floor plan of House B. All but one of the connec-
tions were correctly classified with no incorrect connections
due to ambiguities. Note that this floorplan has a loop, so
there are more doors per room on average than for non-loop
layouts such as House A. This would suggest that a lower κ

value (allowing more connections to be inferred per room)
works better - and indeed a κ value of 0.7 does give a totally
accurate graph (adding the missing connectivity).

4.4 Convergence Time
An important aspect of an auto-calibration system such as

this is how much data is required in order to get an accurate



result. We therefore studied the accuracy with fewer than 30
days of data, as shown in Figures 10a and 10b. House A and
B respectively took just 6 days and 4 days to converge on
the final results when using both motion and light data. With
motion or light data alone, convergence took 1-4 weeks and
was unstable. This provides another argument for using both
light and motion data where available.

5 Concluding Remarks
This paper has described new algorithms to construct a

geometric model of room connectivity using single per-room
sensor units as might be deployed for a burglar alarm sys-
tem or smart lighting system. We describe how to use light
sensors to detect artificial light spill-over from one room to
the next, and motion sensors to detect movement between
rooms, and a further algorithm fusing both light and motion
data. Using two houses in an exploratory data set, we showed
that the fusion of both types of data performed better than
either alone, and achieved 93% true positive rate and 0.5%
false positive rate, with a convergence time of under a week.

While this exploratory study has given promising results
for two UK houses with different floorplans, there must be
further investigation into the generality of our solution. Pri-
marily, this means evaluating the algorithms against sensor
deployments in a wider variety of floorplans; as with previ-
ous methods, a particular challenge may prove to be “open
plan” designs. Where we have applied heuristics, we have
tried to describe these clearly, in terms of the attributes of the
sensor data (e.g. sampling rates) so that others can reproduce
the algorithm. It remains to be seen how well our algorithms
can be applied to sensor data sets with different attributes.

Acknowledgement. Lancaster University’s involvement
in this research was supported by the EPSRC (grants
EP/I00033X/1 and EP/G008523/1).

6 References
[1] Jaikang Lu and Kamin Whitehouse. Smart blueprints: Automatically

generated maps of homes and the devices within them. In Proceedings

of Pervasive Computing, 2012.

[2] James Scott, A J Bernheim Brush, John Krumm, Brian Meyers, Mike
Hazas, Steve Hodges, and Nicolas Villar. Preheat : Controlling home
heating using occupancy prediction. Proceedings of UbiComp 2011,
pages 281–290, 2011.

[3] Michael C. Mozer. The Neural Network House: An Environment that
Adapts to its Inhabitants. In Proceedings of AAAI Spring Symposium

on Intelligent Environments, March 23-25, 1998, Stanford University,

Palo Alto, CA, USA, pages 110–114, 1998.

[4] Henry C. Spindler and Leslie K. Norford. Naturally ventilated and
mixed-mode buildings–part ii: Optimal control. Building and Envi-

ronment, 44(4):750 – 761, 2009.

[5] Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atke-
son, Irfan A. Essa, Blair Macintyre, Elizabeth D. Mynatt, Thad E.
Starner, and Wendy Newstetter. The Aware Home: A Living Labora-

tory for Ubiquitous Computing Research. 1999.

[6] Hartmut Surmann, Andreas Nchter, and Joachim Hertzberg. An au-
tonomous mobile robot with a 3d laser range finder for 3d exploration
and digitalization of indoor environments. Robotics and Autonomous

Systems, 45:181–198, 2003.

[7] Grant Schindler, Christian Metzger, and Thad Starner. A Wearable

Interface for Topological Mapping and Localization in Indoor Envi-

ronments. 2006.

[8] Robert K. Harle and Andy Hopper. Using Personnel Movements
for Indoor Autonomous Environment Discovery. In IEEE Inter-

national Conference on Pervasive Computing and Communications,
pages 125–132, 2003.

[9] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard
Szeliski. Reconstructing building interiors from images. In Inter-

national Conference on Computer Vision, pages 80–87, 2009.

[10] MC Mozer and L Vidmar. The neurothermostat: Predictive optimal
control of residential heating systems. Neural Information Processing

Systems, May 1997.

[11] Manu Gupta and Stephen Intille. Adding gps-control to traditional
thermostats: An exploration of potential energy savings and design
challenges. Pervasive Computing, 5538:95–114, 2009.

[12] B. Brumitt, J. Krumm, B. Meyers, and S. Shafer. Ubiquitous com-
puting and the role of geometry. Personal Communications, IEEE,
7(5):41 –43, oct 2000.


