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Abstract

Attempts to separate the power of classical and quantum models of computation have a long history.
The ultimate goal is to find exponential separations for computational problems. However, such separa-
tions do not come a dime a dozen: while there were some early successes in the form of hidden subgroup
problems for abelian groups–which generalize Shor’s factoring algorithm perhaps most faithfully–only
for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have
gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic
objects besides groups. In this paper we provide new examples for exponential separations by consid-
ering hidden shift problems that are defined for several classes of highly non-linear Boolean functions.
These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier
spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new
quantum algorithms that solve the hidden shift problems forseveral well-known classes of bent functions
in polynomial time and with a constant number of queries, while the classical query complexity is shown
to be exponential. Our approach uses a technique that exploits the duality between bent functions and
their Fourier transforms.

1 Introduction

A salient feature of quantum computers is that they allow to solve certain problems much more efficiently
than any classical machine. The ultimate goal of quantum computing is to find problems for which an
exponential separations between quantum and classical models of computation can be shown in terms of
the required resources such as time, space, communication,or queries. It turns out that the question about
a provably exponential advantage of a quantum computer overclassical computers is a challenging one and
examples showing a separation are not easy to come by. Currently, only few (promise) problems giving an
exponential separation between quantum and classical computing are known. A common feature they share
is that, simply put, they all ask to extract hidden features of certain algebraic structures. Examples for this
are hidden shift problems [vDHI03], hidden non-linear structures [CSV07], and hidden subgroup problems
(HSPs). The latter class of hidden subgroup problems was studied quite extensively over the past decade.
There are some successes such as the efficient solution of theHSP for any abelian group [Sho97, Kit97],
including factoring and discrete log as well as Pell’s equation [Hal02], and efficient solutions for some non-
abelian groups [FIM+03, BCvD05]. However, meanwhile some limitations of the known approaches to this
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problem are known [HMR+06] and presently it is unclear whether the HSP can lend itself to a solution to
other interesting problems such as the graph isomorphism problem.

Most of these methods invoke Fourier analysis over a finite groupG. In some sense the Fourier transform
is good at capturing some non-trivial global properties of afunction f which at the same time are hard to
figure out for the classical computer which can probe the function only locally at polynomially many places.
For many groupsG the quantum computer has the unique ability to compute a Fourier transform forG very
efficiently, i. e., in timelogO(1) n, wheren is the input size. Even though the access to the Fourier spectrum
is somewhat limited, namely via sampling, it nevertheless has been shown that this limited access can be
quite powerful. Historically, the first promise problems which tried to leverage this power were defined for
certain classes of Boolean functions: the Deutsch-Jozsa problem [DJ92] is to decide whether a Boolean
function f : Zn2 → Z2 that is promised to be either constant or a balanced functionis actually constant
or balanced. In the Fourier picture this asks to distinguishbetween functions that have all their spectrum
supported on the0 frequency and functions which have no0 frequency component at all. It therefore comes
as no surprise that by sampling from the Fourier spectrum theproblem can be solved. Furthermore, it can
be shown that any deterministic classical algorithm must make an exponential number of queries. However,
this problem can be solved on a bounded error polynomial timeclassical machine. Hence other, more
challenging, problems were sought which asked for more sophisticated features of the functionf and were
still amenable to Fourier sampling. One such problem is to identify r ∈ Zn2 from black box access to a linear
Boolean functionf(x) = rx, wherex ∈ Zn2 . Again, in the Fourier domain the picture looks very simple as
eachf corresponds to a perfect delta peak localized at frequencyr, leading to an exact quantum algorithm
which identifiesr using a single query. Classically, it can be shown thatΘ(n) queries are necessary and
sufficient to identifyr with bounded error. Based on the observation that a quantum computer can even
handle the case well in which access tox is not immediate but rather through solving another problemof
a smaller size, Bernstein and Vazirani [BV97] defined the recursive Fourier sampling (RFS) problem by
organizing many instances of learning a hidden linear function in a tree-like fashion. By choosing the height
of this tree to belog n they showed a separation between quantum computers, which can solve the problem
in n queries, and classical computers which requirenlogn queries. Soon after this, more algorithms were
found that used the power of Fourier sampling over an abeliangroup, namely Simon’s algorithm [Sim94]
for certain functionsf : Zn2 → Zn−1

2 , and Shor’s algorithms [Sho97], wheref was defined on cyclic groups
and products thereof, eventually leading to the HSP.

The idea to achieve speedups from Boolean functions themselves has obtained significantly less atten-
tion. Recently, Hallgren and Harrow [HH08] revisited the RFS problem and showed that other unitary
matrices can serve the role of the Fourier transform in the definition of RFS problems. They have obtained
superpolynomial speedups over classical computing for a wide class of Boolean functions and unitary matri-
ces, including random unitary matrices. Together with lower bound results [Aar03] this gives a reasonably
good understanding of the power and limitations of the RFS problem. In another important development, it
was shown that the ability to efficiently perform Fourier transforms on a quantum computer can also be used
to efficiently perform correlations between certain functions. In the so-called hidden shift problem defined
by van Dam, Hallgren, and Ip [vDHI03] this was used in the context of computing a correlation between

a black box implementation off(x) =
(
x+s
p

)
, where

(
x
p

)
denotes the Legendre symbol ands ∈ Zp is a

fixed element, and the Legendre symbol itself. The main idea behind this is that the Fourier transform of a
shifted function picks up a linear phase which depends on theshift. Since a correlation corresponds to point-
wise multiplication of the Fourier transforms and since theLegendre symbol is its own Fourier transform,
the correlation can be performed by computing the Legendre symbol into the phase, leading to an efficient
algorithm that needs only a constant number of queries. The classical query complexity of this problem is
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polynomial inlog p.
Our results. Our main contribution is a generalization of the hidden shift problem for a class of Boolean

functions known as bent functions [Rot76]. Bent functions are those Boolean functions for which the Ham-
ming distance to the set of all linear Boolean functions is maximum (based on comparing their truth tables).
For this reason bent functions are also called maximum non-linear functions.1 A direct consequence of this
is that the Fourier transform of a bent functionf is perfectly flat, i. e., in absolute value all Fourier coef-
ficients, which are defined with respect to the real valued function x 7→ (−1)f(x), are equal and as small
as possible. This feature of having a flat Fourier spectrum isdesirable for cryptographic purposes because,
roughly speaking, such a function is maximally resistant against attacks that seek to exploit a dependence
of the outputs on some linear subspace of the inputs. It turnsout that bent functions exist if and only if the
number of variables is even and that there are many of them: asymptotically, the number of bent functions in

n variables is at leastΩ

((
2n/2+1

e

)2n/2 √
2π2n/2

)
, see for instance [CG06]. What is more, several explicit

constructions of infinite families of bent functions are known and they are related to so-called difference sets
which are objects studied in combinatorics. Since the Fourier transform off is flat and the Boolean Fourier
transform is real, it follows that (up to normalization) theFourier spectrum takes only values±1, i. e.,
it again is described by a Boolean function, called thedual bent function and denoted bỹf . Arguably, the
most prominent example for a bent function is the inner product functionipn(x1, . . . , xn) =

∑n/2
i=1 x2i−1x2i

written in short asipn(x, y) = xyt. This function can be generalized tof(x, y) = xπ(y)t + g(y), whereπ

is an arbitrary permutation of strings of lengthn/2 andg : Z
n/2
2 → Z2 is an arbitrary function. This leads

to the class of so-called Maiorana-McFarland bent functions. The dual bent function is then given by the
Boolean functionf̃(x, y) = π−1(x)yt + g(π−1(x)).

We define the hidden shift problem for a fixed bent functionf as follows: an oracleO provides us with
access tof andg, whereg is promised to be a shifted version off with respect to some unknown shifts.
Using oracles of this kind, we show an exponential separation of the quantum and classical query complexity
of the hidden shift problem, the former being at most linear,the latter being exponential. Furthermore, we
also consider a variation of the problem where an oracleÕ in addition provides oracle access to the dual
bent functionf̃ . We show thats can be extracted from̃O by a quantum algorithm using one query tof
and one query tõf . We present two other classes of bent functions, namely the partial spread class defined
by Dillon [Dil75] and a class defined by Dobbertin [Dob95], which uses properties of certain Kloosterman
sums over finite fields to show the bentness of the functions.

What is the significance of our result? In short, we provide new examples for exponential separations
between quantum and classical computing. The class of problems studied in this paper yields a large new
set of problems for exponential separations in query complexity with respect to oracles. A feature of the
quantum algorithms presented here are their simplicity in that besides classical computation of function
values the only quantum operation required are the Fourier transform over the groupsZn2 .

How does this relate to other separations? While exponential separations in query complexity were
known before, for instance for abelian hidden subgroup problems, the hidden shift problems for bent func-
tions are the first problems for which such a separation can beshown fromBooleanfunctions. In the case
of abelian HSP for order2 subgroups ofZn2 , it is possible to assume that the functions hiding the hidden

subgroup take the formf(x) = π(Ax), whereA ∈ F
(n−1)×n
2 is a matrix of rankn − 1, andπ is a permu-

1Note that high nonlinearity of a function refers to the spectral characterization, i. e., the Hamming weight of the highest non-
zero frequency component is high. It does not imply thatf(x) =

P

ν∈Zn

2

ανxν , when written as a multivariate polynomial over
F2, has a high (algebraic) degree, defined as the maximum degreeof any monomialxν . Indeed, there are many examples of highly
nonlinear functions whose algebraic degree is2.
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tation of strings of lengthn − 1. The goal is to find a vectors ∈ Fn2 in the kernel ofA. Note that these
functions are not Boolean functions but rather functions fromZn2 → Zn−1

2 . To the best of our knowledge the
best separations that were obtainable so far from Boolean functions were the superpolynomial separations
shown in [HH08]. Those were obtained by generalizing the ideas of recursive Fourier sampling from parity
functions to more general classes of Boolean functions.

Related work. The techniques used in this paper are related to the techniques used in [vDHI03], in
particular the method of using the Fourier transform thricein order to correlate a shifted function with
a given reference function, thereby solving a deconvolution problem. We see the main difference in the
richness of the class of Boolean functions for which the method can be applied and the query lower bound.

It was observed in [FIM+03, Kup05] that the hidden shift problem forinjectivefunctionsf, g : G→ S
from an abelianG to a setS is equivalent to hidden subgroup problem overG⋊ Z2, where the action ofZ2

onG is given by the inverse. There are several other papers that deal with the injective hidden shift problem
over abelian and non-abelian groups [CvD07, CW07, MRRS07].In contrast, the functions studied here
are defined on the abelian groupZn2 and very far from being injective. As we show it will be nevertheless
possible to define a related hidden subgroup problem over an elementary abelian group, however, for this
we have to consider “quantum functions” to encode the period.

Perhaps most closely related to our scenario is the work by Russell and Shparlinski [RS04] who consid-
ered shift problems for the case ofχ(f(x)), wheref is a polynomial on a finite groupG andχ a character
of G, a general setup that includes our scenario. The two cases for which algorithms were given in [RS04]
are the reconstruction of a monic, square-free polynomialf ∈ Fp[X], whereχ is the quadratic character
(Legendre symbol) overFp and the reconstruction of a hidden shift over a finite groupχ(sx), whereχ is the
character of a known irreducible representation ofG. The technique used in [RS04] is a generalization of
the technique of [vDHI03]. In the present paper we extend theclass of functions for which the hidden shift
problem can be solved to the case wheref is a multivariate polynomial andG is the groupZn2 .

Related to the hidden shift problem is the problem of unknownshifts, i. e., problems in which we are
given a supply of quantum states of the form|D + s〉, wheres is random, andD has to be identified.
Problems of this kind have been studied by Childs, Vazirani,and Schulman [CSV07], whereD is a sphere of
unknown radius, Decker, Draisma, and Wocjan [DDW08], whereD is a graph of a function, and Montanaro
[Mon09], whereD is the set of points of a fixed Hamming-weight. The latter paper also considers the cases
whereD hides other Boolean functions such as juntas, a problem thatwas also studied in [AS07]. In contrast
to all these problems in our case the setD is already known, but the shifts has to be identified.

We are only aware of relatively few occasions where bent functions have been used in theoretical com-
puter science: they were used in the context of learning of intersections of halfspaces [KS07], where they
gave rise to maximum possible number of slicings of edges of the hypercube. Also the recent counterexam-
ple for failure of the inverse Gowers conjecture in small characteristic [LMS08] uses a special bent function.

2 Fourier analysis of Boolean functions

We recall some basic facts about Fourier analysis of Booleanfunctions, see also the recent review article
[dW08] for an introduction. Letf : Zn2 → R be a real valued function on then-dimensional Boolean
hypercube. The Fourier representation off is defined as follows. First note that for any subsetS ⊆ [n] =
{1, . . . , n} we can define a character ofZn2 viaχS : x 7→ (−1)Sx

t
, wherex ∈ Zn2 (the transpose is necessary

as we assume that all vectors are row vectors). The inner product of two functions on the hypercube is
defined as〈f, g〉 = 1

2n

∑
x f(x)g(x) = Ex(fg). TheχS are inequivalent characters ofZn2 , hence they obey

the orthogonality relationEx(χSχT ) = δS,T . The Fourier transform off is a functionf̂ : Zn2 → R defined
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by

f̂(S) = Ex(fχS) =
1

2n

∑

x∈Z
n
2

χS(x)f(x), (1)

f̂(S) is the Fourier coefficient off at frequencyS, the set of all Fourier coefficients is called the Fourier
spectrum off and we have the representationf =

∑
S f̂(S)χS . Two useful facts about the Fourier trans-

form of Boolean functions are Parseval’s identity and the convolution property. Parseval’s identity says
that ‖f‖2

2 =
∑

S f̂(S)2 which is a special case of〈f, g〉 =
∑

S f̂(S)ĝ(S). For two Boolean functions
f, g : Zn2 → R their convolution(f ∗ g) is the function defined as(f ∗ g)(x) = 1

2n

∑
y∈Z

n
2
f(x+ y)g(y). A

standard feature of the Fourier transform is that it maps thegroup operation to a point wise operation in the
Fourier domain. Concretely, this means that̂f ∗ g(S) = f̂(S)ĝ(S), i. e., convolution becomes point-wise
multiplication and vice-versa.

In quantum notation the Fourier transform on the Boolean hypercube differs slightly in terms of the
normalization and is given by the unitary matrix

H2n =
1√
2n

∑

x,y∈Z
n
2

(−1)xy
t |x〉 〈y| .

This is sometimes called the Hadamard transform [NC00]. In this paper we will also use the Fourier spec-
trum defined with respect to the Hadamard transform which differs from (1) by a factor of2−n/2. It is
immediate from the definition ofH2n that it can be written in terms of a tensor (Kronecker) product of the
Hadamard matrix of size2× 2, namelyH2n = (H2)

⊗n, a fact which makes this transform appealing to use
on a quantum computer since it can be computed usingO(n) elementary operations. Also note that in the
context of cryptography also the name Walsh-Hadamard transform forH2n is common.

Another note on a convention which applies when we considerZ2 valued functionsf : Zn2 → Z2. Then
we tacitly assume that the real valued function corresponding to f is actuallyF : x 7→ (−1)f(x). The
Fourier transform is then defined with respect toF , i. e., we obtain that

F̂ (w) =
1

2n

∑

x∈Z
n
2

(−1)wx
t+f(x), (2)

where we usew ∈ Zn2 instead ofS ⊆ [n] to denote the frequencies. Other than this notational convention,
the Fourier transform used in (2) for Boolean valued functions and the Fourier transform used in (1) for real
valued functions are the same. In the paper we will sloppily identify f̂ = F̂ and it will be clear from the
context which definition has to be used.

3 Bent functions

Definition 1. Let f : Zn2 → Z2 be a Boolean function. We say thatf is bent if the Fourier coefficients
f̂(w) = 1

2n

∑
x∈Z

n
2
(−1)wx

t+f(x) satisfy|f̂(w)| = 2−n/2 for all w ∈ Zn2 , i. e., if the spectrum off is flat.

Necessary for bent functions inn variables to exist is thatn is even [Dil75, MS77]. Iff is bent, then
this implicitly defines another Boolean function via2n/2f̂(w) =: (−1)

ef(w). Then this functionf̃ is again a

bent function and called the dual bent function off . By taking the dual twice we obtainf back:
˜̃
f = f .
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3.1 A first example: the inner product function

The most simple bent function isf(x, y) := xy wherex, y ∈ Z2. It is easy to verify thatf defines a bent
function. This can be generalized to2n variables [MS77] and we obtain the inner product

ipn(x1, . . . , xn, y1, . . . , yn) :=
n∑

i=1

xiyi.

Again, it is easy to see thatipn is bent. In Section 3.2 we will see thatipn belongs to a much larger class
of bent functions. There (in Lemma 4) we also establish that that ipn = ĩpn is its own dual bent function
which also implies that the vector[(−1)ipn(x,y)]x,y∈Z

n
2

is an eigenvector ofH2n . This should be compared

to [vDHI03] where it was used that the Legendre symbol
(

·
p

)
gives rise to an eigenvector of the Fourier

transformDFTp over the cyclic groupZp. The shift problem for the inner product function is closelyrelated
to the Fourier sampling problem of finding a stringa that is hidden by the functionf(a, x) = axt [BV97],
and indeed the stringa can be readily identified from the state1√

2n

∑
x∈Z

n
2
(−1)ax

t |x〉. In the hidden shift

problem the problem is to identify(a, b) from 1
2n

∑
x,y∈Z

n
2
(−1)ipn(x+a,y+b) |x, y〉. This state is up to a

global phase given by12n

∑
x,y∈Z

n
2
(−1)xy

t+xbt+yat |x, y〉. By computingipn into the phase the latter can be

mapped to1
2n

∑
x,y∈Z

n
2
(−1)xb

t+yat |x, y〉. From this state the string(a, b) can be extracted by applying to it
a Boolean Fourier transform followed by measurement in the computational basis.

3.2 Bent function families

Many examples of bent functions are known and we briefly review some of these classes. Recall that
any quadratic Boolean functionf has the formf(x1, . . . , xn) =

∑
i<j qi,jxixj +

∑
i ℓixi which can be

written asf(x) = xQxt + Lxt, wherex = (x1, . . . , xn) ∈ Zn2 . Here,Q ∈ Fn×n2 is an upper triangular
matrix andL ∈ Fn2 . Note that since we are working over the Boolean numbers, we can without loss of
generality assume that the diagonal ofQ is zero (otherwise, we can absorb the terms intoL). It is useful
to consider the associated symplectic matrixB = (Q+Qt) with zero diagonal which defines a symplectic
form B(u, v) = uBvt. This form is non-degenerate if and only ifrank(B) = n. The coset off + R(n, 1)
of the first order Reed-Muller code is described by the rank ofB. This follows from Dickson’s theorem
[MS77] which gives a complete classification of symplectic forms overZ2:

Theorem 1 (Dickson). LetB ∈ Zn×n2 be a symmetric matrix with zero diagonal (such matrices are also
called symplectic matrices). Then there existsR ∈ GL(n,Z2) andh ∈ [n/2] such thatRBRt = D, where
D is the matrix(1h ⊗ σx) ⊕ 0n−2h considered as a matrix overZ2 (whereσx is the permutation matrix
corresponding to(1, 2)). In particular, the rank ofB is always even. Furthermore, under the base change
given byR the functionf becomes the quadratic formiph(x1, . . . , x2h) + L′(x1, . . . , xn) where we used
the inner product functioniph and a linear functionL′.

Next, we give a characterization of the Fourier transform ofan affine transform of a bent function.

Lemma 2 (Affine transforms). Let f be a bent function, letA ∈ GL(n,Z2) and b ∈ Zn2 , and define
g(x) := f(xA + b). Then alsog(x) is a bent function and̂g(w) = (−1)−w(A−1)tbf̂(w(A−1)t) for all
w ∈ Zn2 .
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Proof. We computêg(w) using the substitutiony = xA+ b as follows:

ĝ(w) =
1

2n

∑

x

(−1)wx
t+f(xA+b)

=
1

2n

∑

y

(−1)w·(A
−1)t(y−b)t+f(y)

=
1

2n
(−1)−w(A−1)tb

∑

y

(−1)w(A−1)tyt+f(y)

= (−1)−w(A−1)tbf̂(w(A−1)t).

By combining Theorem 1 and Lemma 2 we arrive at the following corollary which characterizes the
class of quadratic bent functions.

Corollary 3. Letf(x) = xQxt + Lxt be a quadratic Boolean function such that the associated symplectic
matrixB = (Q+Qt) satisfiesrank(B) = 2h = n. Thenf is a bent function. The dual of this bent function
is again a quadratic bent function.

A complete classification of all bent functions has only beenachieved forn = 2, 4, and6 variables.
For larger number of variables some families are known, basically coming from ad hoc constructions. We
present another one of the known families calledM (Maiorana and McFarland). First, we remark there
are also constructions for making new bent functions from known ones, the simplest one takes two bent
functionsf and g in n andm variables and outputs(x, y) 7→ f(x) ⊕ g(y). The classM of Maiorana-
McFarland bent functions consists of the functionsf(x, y) := xπ(y)t + g(y), whereπ is an arbitrary
permutation ofZn2 and g is an arbitrary Boolean function depending ony only. The following lemma
characterizes the dual of a bent function inM .

Lemma 4. Let f(x, y) := xπ(y)t + g(y) be a Maiorana-McFarland bent function. Then the dual bent
function off is given byf̃(x, y) = π−1(x)yt + g(π−1(x)).

Proof. Let f̂(u, v) be the Fourier transform off at (u, v) ∈ Z2n
2 . We obtain

f̂(u, v) =
1

22n

∑

x,y∈Z
n
2

(−1)f(x,y)+(u,v)(x,y)t

=
1

22n

∑

x,y∈Zn
2

(−1)xπ(y)t+g(y)+(u,v)(x,y)t

=
1

22n

∑

y∈Z
n
2

(−1)vy
t+g(y)




∑

x∈Z
n
2

(−1)(u+π(y))xt




=
1

2n

∑

y∈Z
n
2

(−1)vy
t+g(y)δu,π(y)

=
1

2n
(−1)vπ

−1(u)t+g(π−1(u)).

Hence the dual bent function is given bỹf(x, y) = π−1(x)yt + g(π−1(x)).
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Another class of bent functions calledPS(partial spreads) was introduced by Dillon [Dil75] and provides
examples of bent functions outside ofM .

Theorem 5. [Dil75] Let U1, . . . , U2n/2−1 ben/2-dimensional subspaces ofZn2 such thatUi ∩ Uj = {0}
holds for alli 6= j. Letχi be the characteristic function ofUi. Thenf :=

∑2n/2−1

i=1 χi is a bent function.

A collection of setsUi as in Theorem 5 is called apartial spread. Explicitly, theUi can be chosen as
Ui = {(x, aix) : x ∈ F2n/2} whereai ∈ F×

2n/2
satisfiesg(ai) = 1 for a fixed balanced functiong. Here

we have identifiedZn2 with the finite fieldF2n by choosing a polynomial basis. This provides an explicit
construction for bent functions inPS. A further class defined by Dobbertin has the property to includeM

andPS is defined as follows: first, identifyZn2 with F2n/2 ×F2n/2 . Letg be a balanced Boolean function of
n/2 variables,ϕ be a permutation ofF2n/2 andψ be an arbitrary map fromF2n/2 to F2n/2 . Then

f(x, y) :=

{
g

(
x+ψ(ϕ−1(y))

ϕ−1(y)

)
: if y 6= 0,

0 : if y = 0

is a bent function.
There are other constructions of bent functions by means of so-called trace monomials. For this con-

nection, an understanding of certain Kloosterman sums turns out to be important. Recall that the Klooster-
man sum inF2n is defined asKl(a) =

∑
x∈F

×

2n
(−1)tr(x

−1+ax), whereF×
2n denotes the non-zero elements

of F2n and tr denotes the trace map fromF2n to Z2. For a ∈ F2n let fa(x) be the Boolean function
fa(x) = tr(ax2n/2−1

). It is known that ifa is contained in the subfieldF2n/2 andKl(a) = −1, thenfa
is a bent function [Dil75]. The existence of such an elementa was conjectured in Dillon’s paper and was
proved in [LW90] (see also [HZ99]) where its existence was shown for all n, thereby showing existence
bent functions in this class of trace monomials.

3.3 Other characterizations of bent functions

Finally, we note that there are many other characterizations of bent functions via other combinatorial objects,
in particular difference sets. The connection is rather simple: we get thatDf := {x : f(x) = 1} is a
difference set inZn2 , i. e., the set∆Df = {d1 − d2 : d1, d2 ∈ Df} of differences covers each non-zero
element ofZn2 an equal number of times. We briefly highlight some other connections to combinatorial
objects in the following:

Circulant Hadamard matrices. Bent functions give rise to Hadamard matrices of size2n × 2n in a very
natural way as group circulants as follows. LetAf := ((−1)f(x+y))x,y∈Z

n
2
, thenf is bent if and only if

Af is a Hadamard matrix, i. e,AfA
†
f = n1n. Another way of saying this is that the shifted functions

x 7→ (−1)f(x+s) for s ∈ Zn2 are orthogonal. Moreover, in the basis given by the columns of H2n the matrix
Af becomes diagonal, the diagonal entries beingf̃(x).

Balanced derivatives. Besides the property ofAf being a Hadamard matrix another equivalent character-
izations off to be bent is that the function∆h(f) := f(x+ h) + f(x) is a balanced Boolean function (i. e.,
f takes0 and1 equally often) for all non-zeroh.
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Reed-Muller codes. Bent functions can also be characterized in terms of the Reed-Muller codes [MS77].
Recall that the set of all truth tables (evaluations) of all polynomials overZ2 of degree up tor in n variables
is called the Reed-MullerR(n, r). Then bent functions correspond to functions which have themaximum
possible distance to all linear functions, i. e., elements of R(n, 1). Quadratic bent functions inR(n, 2) are
of particular interest. They correspond to symplectic forms of maximal rank and play a role, e. g., in the
definition of the Kerdock codes.

Difference sets. Finally, we note that bent functions are equivalent to objects known as difference sets in
combinatorics, namely difference sets for the elementary abelian groupsZn2 [BJL99]. A difference set is
defined as follows: LetG be a finite group of orderv = |G|. A (v, k, λ)-difference set inG is a subset
D ⊆ G such that the following properties are satisfied:|D| = k and the set∆D = {a − b : a, b ∈ D,a 6=
b} contains every element inG preciselyλ times. Examples for difference sets are for instance the set
D = {x2 : x ∈ Fq} of all squares in a finite field. Here the groupG is the additive group ofFq, where
q ≡ 3 (mod 4) is a prime power. The parameters of this family of differencesets is given by(q, q−1

2 , q−3
4 ).

Bent functions on the other hand give rise to difference setsin the elementary abelian groupG = Zn2 . The
connection is as follows:Df := {x : f(x) = 1} is a difference set inZn2 if and only if f is a bent function,
a result due to Dillon [Dil75]. In this fashion we obtain(2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2) difference
sets inZn2 , see also [BJL99].

4 Quantum algorithms for the shifted bent function problem

We introduce the hidden shift problem for Boolean functions. In general, the hidden shift problem is a
quite natural source of problems for which a quantum computer might have an advantage over a classical
computer. See [CvD08] for more background on hidden shifts and related problems.

Definition 2 (Hidden shift problem). Letn ≥ 1 and letOf be an oracle which gives access to two Boolean
functionsf, g : Zn2 → Z2 such that the following conditions hold: (i)f , andg are bent functions, and (ii)
there exists ∈ Zn2 such thatg(x) = f(x + s) for all x ∈ Zn2 . We then say thatOf hides an instance of a
shifted bent function problem for the bent functionf and the hidden shifts ∈ Zn2 . If in addition tof andg
the oracle also provides access to the dual bent functionf̃ , then we use the notationO

f, ef
to indicate this

potentially more powerful oracle.

Theorem 6. LetO
f, ef

be an oracle that hides an instance of a shifted bent functionproblem for a function

f and hidden shifts and provides access to the dual bent functionf̃ . Then there exists a polynomial time
quantum algorithmA1 that computess with zero error and makes two quantum queries toO

f, ef
.

Proof. Let f : Zn2 → Z2 be the bent function. We have oracle access to the shifted functiong(x) = f(x+s)
via the oracle, i. e., we can apply the map|x〉 |0〉 7→ |x〉 |f(x+ s)〉 wheres ∈ Zn2 is the unknown string.
Recall that whenever we have a function implemented as|x〉 |0〉 7→ |x〉 |f(x)〉, we can also computef into
the phase asUf : |x〉 7→ (−1)f(x) |x〉 by applyingf to a qubit initialized in 1√

2
(|0〉 − |1〉). The hidden

shift problem is solved by the following algorithmA1: (i) Prepare the initial state|0〉, (ii) apply the Fourier
transformH⊗n

2 to prepare an equal superposition1√
2n

∑
x∈Z

n
2
|x〉 of all inputs, (iii) compute the shifted

functiong into the phase to get1√
2n

∑
x∈Z

n
2
(−1)f(x+s) |x〉, (iv) Apply H⊗n

2 to get
∑

w(−1)sw
t
f̂(w) |w〉 =

1√
2n

∑
w(−1)sw

t
(−1)

ef(w) |w〉, (v) compute the function|w〉 7→ (−1)
ef (w) |w〉 into the phase resulting in

1√
2n

∑
w(−1)sw

t |w〉, where we have used the fact thatf is a bent function, and (vi) finally apply another
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Hadamard transformH⊗n
2 to get the state|s〉 and measures. From this description it is clear that we

needed one query tog and one query tõf to solve the problem, that the algorithm is exact, and that the
overall running time is given byO(n) quantum operations. A quantum circuit implementing this algorithm
is shown in Figure 1(a).

Next, we consider the situation where the oracle defines a hidden shift problem but does not provide
access to the dual bent function. It turns out that in this case we can still extract the hidden shift with a
polynomial time quantum algorithm, however the number of queries increases from constant to linear.

Theorem 7. LetOf be an oracle that hides an instance of a shifted bent functionproblem for a functionf
and hidden shifts. Then there exists a polynomial time quantum algorithmA2 that computesswith constant
probability of success and makesO(n) queries toOf .

Proof. First, note that as in Theorem 6 we can assume that the oracle computes the functionsf, g : Zn2 → Z2

into the phase. Furthermore, we can assume that the oracle can be applied conditionally on a bitb, i. e.,
we can apply the mapΛ1(Uf ) : |b〉 |x〉 7→ |b〉 |x〉 if b = 0 and |b〉 |x〉 7→ |b〉 (−1)f(x) |x〉 if b = 1.
Indeed, using a Fredkin gate FRED (see [NC00]) which specified by|b〉 |x〉 |y〉 7→ |b〉 |x〉 |y〉 if b = 0 and
|b〉 |x〉 |y〉 7→ |b〉 |y〉 |x〉 if b = 1, it is easy to implementΛ1(Uf ) as follows: (Λ1(Uf ) ⊗ 12n) |b〉 |x〉 |0〉 =
(FRED ◦ (12 ⊗ Uf ⊗ 12n) ◦ FRED) |b〉 |x〉 |0〉, up to a global phase.

We prove the theorem by reducing to an abelian hidden subgroup problem in the groupZn+1
2 . To do

this, we usef and g to define “quantum functions”, namelyF : x 7→ ∑
y∈Z

n
2
(−1)f(x+y) |y〉 andG :

x 7→ ∑
y∈Z

n
2
(−1)g(x+y) |y〉. Observe that due to the bentness off and g, the two functionsF andG

are injective quantum functions, i. e., they are injective complex valued functions that with respect to some
basis, which in general might be different from the computational basis, become classical injective functions.
Indeed, this follows from the fact that all derivatives of a bent function are balanced, see Section 3.2. Now,
a well known connection between the hidden shift problem forinjective functionsf , g over an abelian
groupA and a hidden subgroup problem can be used [Kup05, FIM+03]. For this, the hidden subgroup
problem is defined with respect to the semidirect productA ⋊ Z2 where the action is given by inversion
in A. In our case we haveA ⋊ Z2

∼= Zn+1
2 since the inversion action is trivial overZ2. The hiding

function for the HSP overZn+1
2 is defined asH(b, x) = F (x) if b = 0 andH(b, x) = G(x) if b = 1.

This defines a hidden subgroup{(0, 0), (1, s)} of order 2, knowledge of which clearly implies that we
know s. Once we have shown how to implement the hiding functionH, the algorithm will therefore be
the standard algorithm for the HSP: (i) Prepare the initial state|0〉, (ii) apply the Fourier transformH⊗n

2 to
prepare an equal superposition1√

2n+1

∑
b∈Z2,x∈Z

n
2
|x〉 of all inputs, (iii) compute the function into the second

register to get 1√
2n+1

∑
b∈Z2,x∈Zn

2
|b, x〉 |H(b, x)〉, (iv) Apply H⊗n+1

2 to the first register, and (v) measure

the first register. This leads to a measurement resulta ∈ Zn+1
2 that satisfies(1, s)at = 0. Repeating

steps (i)-(v) a total number ofO(n) times, we get a constant probability to uniquely characterize s from
the measurement data. Hence, the algorithm needsO(n) queries tof andg to solve the problem and the
overall running time is given byO(n2) quantum operations. The functionH(b, x) can be implemented in
a straightforward way using Hadamard transforms, controlled NOT operations [NC00], and the controlled
oracle callsΛ1(Uf ) mentioned above. A quantum circuit implementing one iteration of this algorithm is
shown in Figure 1(b).

It is perhaps interesting to note that the “probabilistic method” of directly implementing̃f via sampling
of f at a polynomial number of inputs and using the Chernoff boundis not sufficient for our purposes (see
e. g., [Man94] for the argument that

∑
i∈I χS(xi)f(xi) is exponentially close tõf for all S for a sample set
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(a) Quantum algorithmA1
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|0〉

��

��

H⊗n

H⊗n

H

t

n Ug

t

Uf

d

t

nH⊗n

H⊗n

H





meas.

(b) Quantum algorithmA2

Figure 1: Quantum algorithms for the hidden shift problem for bent functions. The quantum circuit in (a)
implements algorithmA1. This algorithm can be used if access to the shifted functiong(x) = f(x+ s) as
well as access to the dual bent functionf̃ is given. The algorithm uses one query tog and one query tõf
and is zero-error, i. e., it always returns the hidden shifts. The quantum circuit in (b) implements algorithm
A2. This algorithm uses access tof andg only and can be applied if access tof̃ is not available. The shown
circuit has to be appliedO(n) times, after which the data acquired by measuring the uppern + 1 qubits
characterizes the hidden shifts with constant probability of success.

I of polynomial size). The issue is that for bent functions we would have to distinguish exponentially small
Fourier coefficients±1/

√
2n. We conjecture that in the worst case it takes an exponentialnumber of queries

to f in order to implement one query tõf , but have no proof for this.
Finally, we state the two results that provide new query complexity separations between quantum and

classical algorithms. Our main tool is the Maiorana-McFarland class of bent functions which turns out to be
rich enough to prove the two results. First, we show that the classical query complexity for the hidden shift
problem over this class of bent functions is of orderΘ(n), while it can be solved with2 quantum queries.

Theorem 8. Let O
f, ef

be an oracle that hides a hidden shifts for an instance(f, g, f̃ ) of a hidden shift
problem for a bent functionf from Maiorana-McFarland class. Then classicallyΘ(n) queries are necessary
and sufficient to identify the hidden shifts. Further, there exists a recursively defined oracleOrec which
makes calls toO

f, ef
and whose quantum query complexity ispoly(n), whereas its classical query complexity

is superpolynomial.

Proof. The proof of the lower bound on the classical query complexity for O is information theoretic. The
tightness of the bound follows sincen bits of information abouts have to be gathered and each query can
yield at most1 bit. To see thatO(n) are indeed sufficient, consider the following (adaptive) strategy for
finding a shift(s, s′) of g(x, y) = (x + s)π(y + s′): first queryg(x, y) on (0, 0) to extractsπ(s′). Then
subtract this from the values at the points(ei, 0), whereei denotes theith standard basis vector. This gives
the bits ofπ(s′). Next evaluatef̃(x, y) = π−1(x)yt at the points(π(s′), ei). This gives the bits ofs′.
Finally, from evaluatingg at points(0, π−1(ei) + s′) we can obtain the bits ofs, i. e., the entire hidden shift
(s, s′).

A standard argument can be invoked [BV97] to recursively construct an oracle which hides a function
computed by a tree, the nodes of which are given by the oracle hiding a strings. In order to evaluatef(x)
at a node, first a sequence of smaller instances of the problemhave to be solved. We do not go into further
detail of the construction and only note that we get the analogous result as in [BV97], see also [HH08],
namely that a tree of heightlog n leads to a quantum query complexity of2logn which is polynomial inn,
whereas the classical query complexity is given bynlogn which grows faster than any polynomial.

The following theorem avoids the adaptive queries in the proof of Theorem 8 and uses oracles of the
form Of in which no queries to the dual bent function are allowed. Since the quantum computer can still
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determine the shift in polynomial time, here an exponentialseparation between classical and quantum query
complexity can be shown.

Theorem 9. LetOf be an oracle that hides a hidden shifts for an instance(f, g) of a hidden shift problem
for a bent functionf from Maiorana-McFarland class. Then classicallyΘ(

√
2n) queries are necessary and

sufficient to identify the hidden shifts.

Proof. The proof is similar to the lower bound for the linear structure problem considered in [dBCW02] and
the query lower bound for Simon’s problem [Sim94]. First, note that we can use Yao’s minimax principle
[Yao77] to show limitations of a deterministic algorithmA on the average over an adversarially chosen
distribution of inputs. Hence, we can consider deterministic algorithms andπ and s in the definition of
f(x, y) = xπ(y)t andg(x, y) = f(x, y + s) will be chosen randomly.

The distribution we chose to show the lower is to choseπ uniformly at random inS2n , the symmetric
group on the strings of lengthn, ands = (s1, s2) ∈ Z2n

2 such thats1 = 0 ands2 is chosen uniform at
random inZn2 . The instances we consider are given by oracle access to the functionsf(x, y) = xπ(y)t and
g(x, y) = f(x, y + s) = xπ(y + s)t. Now, without loss of generality we can assume that the classical
algorithmA has (adaptively or not) queried the oraclek = nO(1) times, i. e., it has chosen pairs(xi, yi) for
i = 1, . . . , k and obtained results

xiπ(yi)
t = ai

xiπ(yi + s)t = bi.

In order to characterize the information abouts after thesek queries we define setD = {xi : i =
1, . . . , k} ∪ {yi : i = 1, . . . , k}. We show that if no collision between the values off andg was produced,
then the information obtained abouts is exponentially small. To simplify our argument, we actually make
the classical deterministic algorithm more powerful by giving oracle access toπ(x) andπ(x+ s). Consider
the set of all differencesD(−) = {d1 − d2 : d1, d2 ∈ D} and the setDgood = Zn2 \ D(−). Note that
for an abelian groupA and subsetD ⊂ A with |D|2 < |A| we can always choose a setS such that
D ∩ (D + s) = ∅ for all s ∈ S. Indeed, we can chooseS = Dgood sincex ∈ D ∩ (D + s) would imply
that there existd1, d2 ∈ D with d1 = d2 + s, i. e., s ∈ D(−) which is a contradiction. Notice in our case
that |S| ≥ 2n − |D(−)| = 2n − nO(1). Now, we can change the value of the shifts to any other values′ as
long as the algorithm has not querieds directly (the chances of which are exponentially small: because of

a birthday for the stringss, the probability is given byΘ
(

1√
2n

)
). We do this by choosingπ′ in such a way

that it mapsπ(yi + s) = π′(yi + s′) while being consistent with all other queries. Because of the above
argument, as long as there is no collision, afterℓ queries tof , g, we still have a setS of size|S| ≥ 2n−nO(1)

of candidatess′, andπ′ which are also consistent with the sampled data, showing thelower bound.

Corollary 10. There exists an oracleO implementing a Boolean function such thatPO 6= BQPO.

5 Conclusions

We introduced the hidden shift problem for a class of Booleanfunctions which are at maximum distance
to all linear functions. For these so-called bent functionsthe hidden shift problem can be efficiently solved
on a quantum computer, provided that we have oracle access tothe shifted version of the function as well
as its dual bent function. The quantum computer can extract the hidden shift using just one query to these
two functions and besides this only requires to compute the Hadamard transform and measure qubits in
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the standard basis. We showed that this task is significantlymore challenging for a classical computer and
proved an exponential separation between quantum and classical query complexity.
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