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Abstract

Attempts to separate the power of classical and quantum imofleomputation have a long history.
The ultimate goal is to find exponential separations for cetajonal problems. However, such separa-
tions do not come a dime a dozen: while there were some eartesses in the form of hidden subgroup
problems for abelian groups—which generalize Shor’s fangaalgorithm perhaps most faithfully—only
for a handful of non-abelian groups efficient quantum athons were found. Recently, problems have
gotten increased attention that seek to identify hidders$ulrtures of other combinatorial and algebraic
objects besides groups. In this paper we provide new exanfipleexponential separations by consid-
ering hidden shift problems that are defined for severakef®f highly non-linear Boolean functions.
These so-called bent functions arise in cryptography, etregir property of having perfectly flat Fourier
spectra on the Boolean hypercube gives them resiliencastgagrtain types of attack. We present new
quantum algorithms that solve the hidden shift problemséweeral well-known classes of bent functions
in polynomial time and with a constant number of queriesevtie classical query complexity is shown
to be exponential. Our approach uses a technique that éxphei duality between bent functions and
their Fourier transforms.

1 Introduction

A salient feature of quantum computers is that they allowoteescertain problems much more efficiently
than any classical machine. The ultimate goal of quantumpeimg is to find problems for which an
exponential separations between quantum and classicatlsnoicomputation can be shown in terms of
the required resources such as time, space, communicatigueries. It turns out that the question about
a provably exponential advantage of a quantum computeratassical computers is a challenging one and
examples showing a separation are not easy to come by. @uranly few (promise) problems giving an
exponential separation between quantum and classicaluorgmare known. A common feature they share
is that, simply put, they all ask to extract hidden featuriesestain algebraic structures. Examples for this
are hidden shift problem5s [vDHI03], hidden non-linear stanes [CSVQOF], and hidden subgroup problems
(HSPs). The latter class of hidden subgroup problems watestiquite extensively over the past decade.
There are some successes such as the efficient solution BfStReor any abelian group [Shad97, Kit97],
including factoring and discrete log as well as Pell's equefHal02], and efficient solutions for some non-
abelian groups [FIM03,[BCvD05]. However, meanwhile some limitations of thewnapproaches to this
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problem are known [HMROG6] and presently it is unclear whether the HSP can lend itsel solution to
other interesting problems such as the graph isomorphisivigm.

Most of these methods invoke Fourier analysis over a fintbegé:. In some sense the Fourier transform
is good at capturing some non-trivial global properties @firection f which at the same time are hard to
figure out for the classical computer which can probe thetfan®nly locally at polynomially many places.
For many groups- the qguantum computer has the unique ability to compute aiéruansform forG very
efficiently, i.e., in timelogo(l) n, wheren is the input size. Even though the access to the Fourierrspect
is somewhat limited, namely via sampling, it nevertheless lbeen shown that this limited access can be
quite powerful. Historically, the first promise problemsiafntried to leverage this power were defined for
certain classes of Boolean functions: the Deutsch-Jozslalgm [DJ92] is to decide whether a Boolean
function f : Zy — Z, that is promised to be either constant or a balanced fundgi@ttually constant
or balanced. In the Fourier picture this asks to distinglstween functions that have all their spectrum
supported on the frequency and functions which have ddrequency component at all. It therefore comes
as no surprise that by sampling from the Fourier spectrunptbllem can be solved. Furthermore, it can
be shown that any deterministic classical algorithm mudtenam exponential number of queries. However,
this problem can be solved on a bounded error polynomial ttassical machine. Hence other, more
challenging, problems were sought which asked for moreistiphited features of the functioghand were
still amenable to Fourier sampling. One such problem iseatifly » € Z3 from black box access to a linear
Boolean functionf(z) = rx, wherex € Z4. Again, in the Fourier domain the picture looks very simge a
eachf corresponds to a perfect delta peak localized at frequenieading to an exact quantum algorithm
which identifiesr using a single query. Classically, it can be shown that) queries are necessary and
sufficient to identifyr with bounded error. Based on the observation that a quanampugter can even
handle the case well in which accessitts not immediate but rather through solving another probdgm
a smaller size, Bernstein and Vazirani [BV97] defined thaurgige Fourier sampling (RFS) problem by
organizing many instances of learning a hidden linear fandh a tree-like fashion. By choosing the height
of this tree to béog n they showed a separation between quantum computers, wénickotve the problem
in n queries, and classical computers which requifé” queries. Soon after this, more algorithms were
found that used the power of Fourier sampling over an abgjianp, namely Simon'’s algorithm [Sim94]
for certain functionsf : Z5 — Zg“l, and Shor’s algorithms [Sho97], whefavas defined on cyclic groups
and products thereof, eventually leading to the HSP.

The idea to achieve speedups from Boolean functions theessbls obtained significantly less atten-
tion. Recently, Hallgren and Harrow [HHO8] revisited the Rproblem and showed that other unitary
matrices can serve the role of the Fourier transform in tHimitien of RFS problems. They have obtained
superpolynomial speedups over classical computing foda wliass of Boolean functions and unitary matri-
ces, including random unitary matrices. Together with lob@und results [Aar03] this gives a reasonably
good understanding of the power and limitations of the RF®lpm. In another important development, it
was shown that the ability to efficiently perform Fouriemiséorms on a quantum computer can also be used
to efficiently perform correlations between certain fuod. In the so-called hidden shift problem defined
by van Dam, Hallgren, and Ijpp_[vDHIO3] this was used in the e@hbf computing a correlation between

a black box implementation of(z) = (""’;5), where % denotes the Legendre symbol and Z, is a
fixed element, and the Legendre symbol itself. The main idddrid this is that the Fourier transform of a
shifted function picks up a linear phase which depends oslitie Since a correlation corresponds to point-
wise multiplication of the Fourier transforms and since ltlegendre symbol is its own Fourier transform,
the correlation can be performed by computing the Legengriel into the phase, leading to an efficient

algorithm that needs only a constant number of queries. Essical query complexity of this problem is




polynomial inlog p.

Our results. Our main contribution is a generalization of the hiddentgitibblem for a class of Boolean
functions known as bent functioris [Rot76]. Bent functiorsthose Boolean functions for which the Ham-
ming distance to the set of all linear Boolean functions igimam (based on comparing their truth tables).
For this reason bent functions are also called maximum imea functiond A direct consequence of this
is that the Fourier transform of a bent functigris perfectly flat, i. e., in absolute value all Fourier coef-
ficients, which are defined with respect to the real valuedtian = — (—1)7(®), are equal and as small
as possible. This feature of having a flat Fourier spectrudessrable for cryptographic purposes because,
roughly speaking, such a function is maximally resistargireg attacks that seek to exploit a dependence
of the outputs on some linear subspace of the inputs. It mhshat bent functions exist if and only if the
number of variables is even and that there are many of theymgstically, the number of bent functions in

on/2
) V2m2n/2 )| see for instanceé [CGD6]. What is more, several explicit

constructions of infinite families of bent functions are Wwmoand they are related to so-called difference sets
which are objects studied in combinatorics. Since the Eotransform off is flat and the Boolean Fourier
transform is real, it follows that (up to normalization) tReurier spectrum takes only valuesl, i.e.,

it again is described by a Boolean function, called dial bent function and denoted tj&v/ Arguably, the
most prominent example for a bent function is the inner peotlinctionip,, (z1, ..., x,) = Zfﬁ L9122
written in short asp,, (z,y) = xy*. This function can be generalized f6z, y) = x7(y)! + g(y), wherer

is an arbitrary permutation of strings of lengili2 andg : ZS/ 2., Zs is an arbitrary function. This leads
to the class of so-called Maiorana-McFarland bent funstiofihe dual bent function is then given by the
Boolean functionf (z,y) = 7~ (2)y’ + g(x*(x)).

We define the hidden shift problem for a fixed bent functfoas follows: an oracl€® provides us with
access tgf andg, whereg is promised to be a shifted version ffwith respect to some unknown shift
Using oracles of this kind, we show an exponential separatiche quantum and classical query complexity
of the hidden shift problem, the former being at most lindag, latter being exponential. Furthermore, we
also consider a variation of the problem where an orétie addition provides oracle access to the dual
bent functionf. We show thats can be extracted fror®) by a quantum algorithm using one query fo
and one query t(f. We present two other classes of bent functions, namelyah@pspread class defined
by Dillon [Dil75] and a class defined by Dobbertin [Doh95], iatn uses properties of certain Kloosterman
sums over finite fields to show the bentness of the functions.

What is the significance of our result? In short, we provide egamples for exponential separations
between quantum and classical computing. The class ofgmbktudied in this paper yields a large new
set of problems for exponential separations in query coxitglevith respect to oracles. A feature of the
guantum algorithms presented here are their simplicityhat besides classical computation of function
values the only quantum operation required are the Fouaastorm over the grougs;.

How does this relate to other separations? While exporesdjgarations in query complexity were
known before, for instance for abelian hidden subgroup Iprob, the hidden shift problems for bent func-
tions are the first problems for which such a separation cashben fromBooleanfunctions. In the case
of abelian HSP for orde2 subgroups ofZ%, it is possible to assume that the functions hiding the hidde

subgroup take the fornfi(z) = 7n(Ax), whereA € IE‘%"‘”X" is a matrix of rankn — 1, andr is a permu-

. . n/2+1
n variables is at leas® (2 /e

INote that high nonlinearity of a function refers to the spelatharacterization, i. e., the Hamming weight of the highen-
zero frequency component is high. It does not imply that) = ZVEZQ a,x”, when written as a multivariate polynomial over
F2, has a high (algebraic) degree, defined as the maximum defjaee monomiak”. Indeed, there are many examples of highly
nonlinear functions whose algebraic degre®.is



tation of strings of lengtm — 1. The goal is to find a vectoy € F5 in the kernel ofA. Note that these
functions are not Boolean functions but rather functioosfZ — Z3~*. To the best of our knowledge the
best separations that were obtainable so far from Booleaatifins were the superpolynomial separations
shown in [HHO8]. Those were obtained by generalizing thasdsf recursive Fourier sampling from parity
functions to more general classes of Boolean functions.

Related work. The techniques used in this paper are related to the tedmigsed in[[vDHIO3], in
particular the method of using the Fourier transform thiit@rder to correlate a shifted function with
a given reference function, thereby solving a deconvatupiooblem. We see the main difference in the
richness of the class of Boolean functions for which the mettan be applied and the query lower bound.

It was observed in [FIM 03, Kup05] that the hidden shift problem fimjectivefunctionsf,g : G — S
from an abeliarG to a setS is equivalent to hidden subgroup problem ogx Zs, where the action df.;
onG is given by the inverse. There are several other papers éahindth the injective hidden shift problem
over abelian and non-abelian groups [CvD07, CWO07, MRRS@OT]contrast, the functions studied here
are defined on the abelian groég and very far from being injective. As we show it will be nevestess
possible to define a related hidden subgroup problem oveleameatary abelian group, however, for this
we have to consider “quantum functions” to encode the period

Perhaps most closely related to our scenario is the work lsg&tiuiand Shparlinski [RS04] who consid-
ered shift problems for the case pff(x)), wheref is a polynomial on a finite grou@ and x a character
of GG, a general setup that includes our scenario. The two casggfoh algorithms were given in [RSD4]
are the reconstruction of a monic, square-free polynorfiial F,[X], wherey is the quadratic character
(Legendre symbol) over, and the reconstruction of a hidden shift over a finite gre(gpr), wherey is the
character of a known irreducible representatiorGofThe technique used ih [RS04] is a generalization of
the technique of [vDHIO3]. In the present paper we extencttags of functions for which the hidden shift
problem can be solved to the case whgilie a multivariate polynomial and' is the groupZs.

Related to the hidden shift problem is the problem of unknahifts, i. e., problems in which we are
given a supply of quantum states of the fofm + s), wheres is random, andD has to be identified.
Problems of this kind have been studied by Childs, Vaziami, Schulmar [CSV07], wheiR is a sphere of
unknown radius, Decker, Draisma, and Wocjan [DDWO08], whetrie a graph of a function, and Montanaro
[Mon09], whereD is the set of points of a fixed Hamming-weight. The latter paso considers the cases
whereD hides other Boolean functions such as juntas, a problennviiigblso studied in [AS07]. In contrast
to all these problems in our case the Bkeis already known, but the shifthas to be identified.

We are only aware of relatively few occasions where benttfans have been used in theoretical com-
puter science: they were used in the context of learningtefsections of halfspaces [KS07], where they
gave rise to maximum possible number of slicings of edgesehypercube. Also the recent counterexam-
ple for failure of the inverse Gowers conjecture in smallrelateristic [LMS08] uses a special bent function.

2 Fourier analysis of Boolean functions

We recall some basic facts about Fourier analysis of Bodia@actions, see also the recent review article
[dWO8] for an introduction. Letf : Z5 — R be a real valued function on thedimensional Boolean
hypercube. The Fourier representationfaé defined as follows. First note that for any subSet [n] =
{1,...,n} we can define a character®§ via ys :  — (—1)5*", wherez € Z3 (the transpose is necessary
as we assume that all vectors are row vectors). The inneuptad two functions on the hypercube is
defined agf, g) = Zi > .. f(x)g(xz) = Ex(fg). Thexs are inequivalent characters 8§, hence they obey

the orthogonality relatiof,. (x sx7) = ds. 7. The Fourier transform of is a functionf: Z5 — R defined



by
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f(S) is the Fourier coefficient of at frequencysS, the set of all Fourier coefficients is called the Fourier
spectrum off and we have the representatign= ) ¢ f(S)XS. Two useful facts about the Fourier trans-
form of Boolean functions are Parseval’s identity and thevotution property. Parseval’s identity says
that || fl|I2 = > g 7(5)? which is a special case dff,g) = s F(8)3(S). For two Boolean functions
f.g: Z% — R their convolution(f « g) is the function defined as * g)(z) = 3~ Zyezn flz+y)g(y). A
standard feature of the Fourier transform |s that it map:gtbep operation to a point wise operation in the
Fourier domain. Concretely, this means t!ﬁatg( ) = f(S)g(S) i. e., convolution becomes point-wise
multiplication and vice-versa.

In quantum notation the Fourier transform on the Boolearehgyybe differs slightly in terms of the
normalization and is given by the unitary matrix

1 ¢
Hon = > (=D ) (yl.
Vef_mgezg

This is sometimes called the Hadamard transfarm [NCOO]hitn paper we will also use the Fourier spec-
trum defined with respect to the Hadamard transform whicteriffrom [1) by a factor oR="/2. It is
immediate from the definition aff,~ that it can be written in terms of a tensor (Kronecker) pradifiche
Hadamard matrix of size x 2, namelyHy» = (H2)®", a fact which makes this transform appealing to use
on a quantum computer since it can be computed usSifig) elementary operations. Also note that in the
context of cryptography also the name Walsh-Hadamardfoemdor Ho» is common.

Another note on a convention which applies when we consideralued functionsf : Z5 — Z,. Then
we tacitly assume that the real valued function correspanth f is actually F' : = — (—1)/®). The
Fourier transform is then defined with respecftoi. e., we obtain that

Flw) = = 3 (-1 +@), @

on
TELY

where we usev € Z% instead ofS C [n] to denote the frequencies. Other than this notational cdiorg
the Fourier transform used il (2) for Boolean valued funtiand the Fourier transform usedl[ih (1) for real
valued functions are the same. In the paper we will sloppigntify f = F and it will be clear from the
context which definition has to be used.

3 Bent functions

Definition 1. Let f : Z§ — Z2 be a Boolean function. We say thatis bentif the Fourier coefficients
flw) =% Dpezy (1) /(@) satisfy| f(w)| = 27/2 for all w € Z2, i. e., if the spectrum of is flat.

Necessary for bent functions invariables to exist is that is even [Dil75] MS77]. Iff is bent, then
this implicitly defines another Boolean function &2 f (w) =: (—1)7(®). Then this function/ is again a

bent function and called the dual bent functionfoBy taking the dual twice we obtaifi back: f: f.



3.1 Afirst example: the inner product function

The most simple bent function i§x, y) := xy wherez,y € Z,. It is easy to verify thaif defines a bent
function. This can be generalized2a variables([MS77] and we obtain the inner product

n
ipn(xh e Ty Y1y e - ayn) = szyz
i=1

Again, it is easy to see thap,, is bent. In Section 312 we will see that,, belongs to a much larger class
of bent functions. There (in Lemnma 4) we also establish thattip,, = ip,, is its own dual bent function
which also implies that the vect@(r—l)ipn(x’y)]x,yezg is an eigenvector offs>». This should be compared

to [vDHIO3] where it was used that the Legendre symégb gives rise to an eigenvector of the Fourier
transformDF'T,, over the cyclic groug,,. The shift problem for the inner product function is closediated

to the Fourier sampling problem of finding a stringhat is hidden by the functioffi(a, z) = az® [BV97],
and indeed the string can be readily identified from the sta% Zmezg(—l)”t |z). In the hidden shift

problem the problem is to identifya, b) from 55 3, | 7 (—1)Pn(*+ev¥0) |z ). This state is up to a

global phase given by 3", yezg(—l)wt”btﬂat |z, y). By computingip,, into the phase the latter can be

mapped tozin Zm,yezg(—l)mtﬂ“t |z, y). From this state the strin@., b) can be extracted by applying to it
a Boolean Fourier transform followed by measurement in dmeputational basis.

3.2 Bent function families

Many examples of bent functions are known and we briefly mevdeme of these classes. Recall that
any quadratic Boolean functiofi has the formf(z1,...,2,) = >, i jziz; + >, fiz; which can be
written asf(z) = xQz' + La', wherez = (z1,...,2,) € Z3. Here,Q € Fy*™ is an upper triangular
matrix andL € F5. Note that since we are working over the Boolean numbers, amewgthout loss of
generality assume that the diagonal(@is zero (otherwise, we can absorb the terms ibo It is useful

to consider the associated symplectic matsix= (Q + Q') with zero diagonal which defines a symplectic
form B(u,v) = uBv'. This form is non-degenerate if and onlyrifnk(B) = n. The coset off + R(n,1)

of the first order Reed-Muller code is described by the ranBofThis follows from Dickson’s theorem
[MS77] which gives a complete classification of symplectimis overZ,:

Theorem 1 (Dickson) Let B € Z3*" be a symmetric matrix with zero diagonal (such matrices dse a
called symplectic matrices). Then there exBts GL(n,Z;) andh € [n/2] such thatRBR' = D, where

D is the matrix(1; ® o) ® 0,2, considered as a matrix ovéfs (whereo, is the permutation matrix
corresponding tq1, 2)). In particular, the rank ofB is always even. Furthermore, under the base change
given byR the functionf becomes the quadratic foripy, (z1,...,x9,) + L' (21, ..., z,) where we used
the inner product functiorp;, and a linear functionZ’.

Next, we give a characterization of the Fourier transformaro&ffine transform of a bent function.

Lemma 2 (Affine transforms) Let f be a bent function, led € GL(n,Z2) andb € Z%, and define
g(z) := f(zA+ b). Then alsog(x) is a bent function andj(w) = (—1)~“A ) f(w(A~1)) for all
w € Zy.



Proof. We computegj(w) using the substitutiop = A + b as follows:

1

-~ - _ 1\ywal+ f(xA+b)
) = 53
1 —1\t t
- _1)w(ATH)y=b)"+f(y)
= S 1)
y
= L ()T S (e )
2n
y

= (~1)7ATIP (AT,

O

By combining Theoreril1 and Lemrha 2 we arrive at the followingolary which characterizes the
class of quadratic bent functions.

Corollary 3. Let f(z) = zQz* + La! be a quadratic Boolean function such that the associateggtic
matrix B = (Q + Q') satisfiesrank(B) = 2h = n. Thenf is a bent function. The dual of this bent function
is again a quadratic bent function.

A complete classification of all bent functions has only baehieved forn = 2,4, and6 variables.
For larger number of variables some families are known,dadlgicoming from ad hoc constructions. We
present another one of the known families calMdMaiorana and McFarland). First, we remark there
are also constructions for making new bent functions frorovkm ones, the simplest one takes two bent
functions f and g in n andm variables and outputgr,y) — f(z) @ g(y). The classM of Maiorana-
McFarland bent functions consists of the functiofis,y) = x7(y)' + g(y), wherer is an arbitrary
permutation ofZ; and g is an arbitrary Boolean function depending gronly. The following lemma
characterizes the dual of a bent functiorMn

Lemma 4. Let f(x,y) := an(y)" 4+ g(y) be a Maiorana-McFarland bent function. Then the dual bent
function off is given byf(z,y) = 7~ (2)y’ + g(7~!(z)).

Proof. Let f(u, v) be the Fourier transform of at (u, v) € Z2". We obtain

flu,v) = L Z (—1)/ @)+ (w0)(zy)"

22n
z,yeLy
1 xm(y)t w,v)(z,y)?
= o Z (— 1)) +o)+(wv)(@y)
x,yeLy
= 2% Z (_l)vytﬂ](y) Z (_1)(u+ﬂ(y))xt
yery c€Zp
1 ot
= o (—1)% +g(y)5u’ﬂ(y)
yeELy
1 v~ (u)t4g(r 1 (u
= 2_n(_1) (W) +g(m" ()
Hence the dual bent function is given Byz, y) = 71 (2)y! + g(x(z)). O
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Another class of bent functions call@&(partial spreads) was introduced by Dillon [Dil75] and pdss
examples of bent functions outsideMf

Theorem 5. [Dil75] Let Uy, ..., Uy.2-1 ben/2-dimensional subspaces @f such thatU; N U; = {0}
holds for alli # j. Letx; be the characteristic function &f;. Thenf := Z?Z/IH X; IS a bent function.

A collection of setdJ; as in Theoreml5 is called artial spread Explicitly, the U; can be chosen as
Ui = {(z,a;x) : @ € Fynj2} Wherea; € FJ, , satisfiesg(a;) = 1 for a fixed balanced functiop. Here
we have identifiedZs with the finite field[F;» by choosing a polynomial basis. This provides an explicit
construction for bent functions IRS. A further class defined by Dobbertin has the property taldeM
andPS is defined as follows: first, identifi{Zy with IF,,.,» x [F,./2. Letg be a balanced Boolean function of

n/2 variables,y be a permutation df,.,. andy> be an arbitrary map frof,,./> t0 F,,./2. Then

e+ P W) |
Sy = | 9 (™) u £ 0
0 (ify=0

is a bent function.

There are other constructions of bent functions by means-ohied trace monomials. For this con-
nection, an understanding of certain Kloosterman sums toum to be important. Recall that the Klooster-
man sum infy. is defined asi(a) = Zzngn(—l)tr(fl*“x), whereFy, denotes the non-zero elements
of Fy» andtr denotes the trace map froffy- to Zy. Fora € Fon let f,(x) be the Boolean function
fa(@) = tr(ax®*™"). Itis known that ifa is contained in the subfiel,,» and Kl(a) = —1, then f,
is a bent function[[Dil75]. The existence of such an elemewias conjectured in Dillon’s paper and was
proved in [LW90] (see alsa [HZ99]) where its existence waswah for all n, thereby showing existence
bent functions in this class of trace monomials.

3.3 Other characterizations of bent functions

Finally, we note that there are many other characterizatidtent functions via other combinatorial objects,
in particular difference sets. The connection is rathemp#émwe get thatD; := {z : f(z) = 1} isa
difference set irZ3, i.e., the seAD; = {d; — ds : dy,d2 € Dy} of differences covers each non-zero
element ofZ3 an equal number of times. We briefly highlight some other ections to combinatorial
objects in the following:

Circulant Hadamard matrices. Bent functions give rise to Hadamard matrices of &Zex 2" in a very
natural way as group circulants as follows. L&t := ((—1)f(:”+y))x,yezg, then f is bent if and only if
Ay is a Hadamard matrix, i. eAfAJ} = nl,. Another way of saying this is that the shifted functions
z— (=1)7@+s) for s € Zy are orthogonal. Moreover, in the basis given by the colunfing.e the matrix
Ay becomes diagonal, the diagonal entries befiig).

Balanced derivatives. Besides the property of ; being a Hadamard matrix another equivalent character-
izations off to be bent is that the functiof,,(f) := f(xz + h) + f(z) is a balanced Boolean function (i. e.,
f takes0 and1 equally often) for all non-zeré.



Reed-Muller codes. Bent functions can also be characterized in terms of the fR&dkkr codes[[MS77].
Recall that the set of all truth tables (evaluations) of alypomials ovefZ, of degree up t@ in n variables

is called the Reed-MulleR(n, ). Then bent functions correspond to functions which haventagimum
possible distance to all linear functions, i.e., elemeft&@, 1). Quadratic bent functions iR(n,2) are

of particular interest. They correspond to symplectic ®mf maximal rank and play a role, e.g., in the
definition of the Kerdock codes.

Difference sets. Finally, we note that bent functions are equivalent to disjgaown as difference sets in
combinatorics, namely difference sets for the elementbsgfian groupsZ; [BJL99]. A difference set is
defined as follows: LeG be a finite group of order = |G|. A (v, k, \)-difference set inG is a subset
D C @G such that the following properties are satisfief] = k and the seND = {a — b : a,b € D,a #
b} contains every element i@ precisely \ times. Examples for difference sets are for instance the set
D = {z? : z € F,} of all squares in a finite field. Here the groGpis the additive group oF,, where
g = 3 (mod 4) is a prime power. The parameters of this family of differesets is given byg, 45, 132).
Bent functions on the other hand give rise to difference isetise elementary abelian grodp = Z5. The
connection is as followsD; := {x : f(x) = 1} is a difference set iy if and only if f is a bent function,
a result due to Dillon[Dil75]. In this fashion we obtaja™, 271 4 2(=2)/2 9n=2 4 2(n=2)/2) difference
sets inZy, see also [BJLS9].

4 Quantum algorithms for the shifted bent function problem

We introduce the hidden shift problem for Boolean functiois general, the hidden shift problem is a
quite natural source of problems for which a quantum compuight have an advantage over a classical
computer. See [CvD08] for more background on hidden shiftsralated problems.

Definition 2 (Hidden shift problem) Letn > 1 and letO be an oracle which gives access to two Boolean
functionsf, g : Z5 — Z, such that the following conditions hold: (f), andg are bent functions, and (ii)
there exists € Z3 such thaty(x) = f(x + s) for all z € Z3. We then say thaD, hides an instance of a
shifted bent function problem for the bent functiband the hidden shift € Z3. If in addition to f andg

the oracle also provides access to the dual bent funcﬁpthen we use the notatiofl I to indicate this
potentially more powerful oracle.

Theorem 6. Let Of 7 be an oracle that hides an instance of a shifted bent fungiioblem for a function

f and hidden shift and provides access to the dual bent functﬁnThen there exists a polynomial time
guantum algorithm4; that computes with zero error and makes two quantum querie@tjpf.

Proof. Let f : Z% — Z» be the bent function. We have oracle access to the shiftedifuny(z) = f(z+s)
via the oracle, i.e., we can apply the map|0) — |z) |f(z + s)) wheres € Z% is the unknown string.
Recall that whenever we have a function implementeg:a)) — |z) | f(x)), we can also computg into
the phase a&; : |r) — (—1)/® |z) by applying f to a qubit initialized in%(m) —|1)). The hidden
shift problem is solved by the following algorithm; : (i) Prepare the initial stat®), (ii) apply the Fourier
transform H5" to prepare an equal superpositi% erzg |x) of all inputs, (iii) compute the shifted

function g into the phase to ge\/t% erzg(—l)f(”s) |z), (iv) Apply HE" to get>" (—1)%" f(w) |w) =

v S, (=15 (=1)7@) ), (v) compute the functiomw) — (—1)7®) |w) into the phase resulting in
1

/on Law

(—1)swt |w), where we have used the fact thyats a bent function, and (vi) finally apply another




Hadamard transfornf/5’™ to get the states) and measure. From this description it is clear that we
needed one query tg and one query t(fto solve the problem, that the algorithm is exact, and that th
overall running time is given by (n) quantum operations. A quantum circuit implementing thigeathm

is shown in Figuréll(a). O

Next, we consider the situation where the oracle defines @ehighift problem but does not provide
access to the dual bent function. It turns out that in thi® a@s can still extract the hidden shift with a
polynomial time quantum algorithm, however the number @rigs increases from constant to linear.

Theorem 7. LetO; be an oracle that hides an instance of a shifted bent fungiroblem for a functionyf
and hidden shift. Then there exists a polynomial time quantum algorithgrthat computes with constant
probability of success and makesn) queries toO ;.

Proof. First, note that as in Theorer 6 we can assume that the o@oleutes the functiong, g : Z5 — Zo
into the phase. Furthermore, we can assume that the oratleecapplied conditionally on a bit i.e.,
we can apply the map (Uy) : |b) |z) +— [b)|z) if b = 0 and |b) |z) +— [b) (=1)7@) |z) if b = 1.
Indeed, using a Fredkin gat&ED (see [NC00]) which specified by) |x) |y) — |b) |z) |y) if b = 0 and
b) |z) |y) — |b) ly) |x) if b =1, itis easy to implemend; (Uy) as follows: (A;(Uy) ® 1an) |b) |x) |0) =
(FREDo (1, ® Ur ® 19n) o FRED) |b) |) |0), up to a global phase.

We prove the theorem by reducing to an abelian hidden supgooablem in the grouﬂ’g“. To do
this, we usef and g to define “quantum functions”, namelyy : 2 — Zyezg(—l)f(“y) ly) and G :

T Zyezg(—l)g(“y) ly). Observe that due to the bentnessfoéind ¢, the two functionsf’ and G
are injective quantum functions, i. e., they are injectiveplex valued functions that with respect to some
basis, which in general might be different from the compaiet basis, become classical injective functions.
Indeed, this follows from the fact that all derivatives ofenbfunction are balanced, see Seclion 3.2. Now,
a well known connection between the hidden shift problemirfigective functionsf, g over an abelian
group A and a hidden subgroup problem can be used [Kup05,fIB). For this, the hidden subgroup
problem is defined with respect to the semidirect proddict Z, where the action is given by inversion
in A. In our case we havel x Z, = Z;‘“ since the inversion action is trivial oveét,. The hiding
function for the HSP oveZ; ™! is defined adi(b,x) = F(x) if b = 0 and H(b,z) = G(z) if b = 1.
This defines a hidden subgroy0, 0), (1,s)} of order2, knowledge of which clearly implies that we
know s. Once we have shown how to implement the hiding functidnthe algorithm will therefore be
the standard algorithm for the HSP: (i) Prepare the initiale30), (ii) apply the Fourier transforrﬂi{?" to
prepare an equal superpositi%}ﬁ zbeZQ,xEZg |z) of all inputs, (iii) compute the function into the second
register to ge\/% D beznmerny b, @) [H(D, 2)), (V) Apply HZ™ ! to the first register, and (v) measure
the first register. This leads to a measurement resudt Z;‘“ that satisfieg1, s)a® = 0. Repeating
steps (i)-(v) a total number ad(n) times, we get a constant probability to uniquely charaogesifrom
the measurement data. Hence, the algorithm néXds queries tof andg to solve the problem and the
overall running time is given by (n?) quantum operations. The functidii(b, z) can be implemented in
a straightforward way using Hadamard transforms, comtoNOT operations [NC00], and the controlled
oracle callsA;(Uy) mentioned above. A quantum circuit implementing one iteraof this algorithm is
shown in Figuré1(b). O

It is perhaps interesting to note that the “probabilisticmee” of directly implementingfvia sampling
of f at a polynomial number of inputs and using the Chernoff baantbt sufficient for our purposes (see
e.g., [Man94] for the argument that, _; xs(z;) f(;) is exponentially close tg for all S for a sample set
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(a) Quantum algorithrd; (b) Quantum algorithrod,

Figure 1. Quantum algorithms for the hidden shift problemlfent functions. The quantum circuit in (a)
implements algorithm4,. This algorithm can be used if access to the shifted fungtian = f(x + s) as
well as access to the dual bent functiﬁris given. The algorithm uses one querygt@and one query t(f
and is zero-error, i. e., it always returns the hidden shifthe quantum circuit in (b) implements algorithm
As. This algorithm uses accesst@andg only and can be applied if accessffds not available. The shown
circuit has to be applied(n) times, after which the data acquired by measuring the upperl qubits
characterizes the hidden shiftvith constant probability of success.

I of polynomial size). The issue is that for bent functions weilal have to distinguish exponentially small
Fourier coefficientst1/+/27. We conjecture that in the worst case it takes an exponentiaber of queries
to f in order to implement one query i but have no proof for this.

Finally, we state the two results that provide new query demify separations between quantum and
classical algorithms. Our main tool is the Maiorana-Mcéiadl class of bent functions which turns out to be
rich enough to prove the two results. First, we show that tagstcal query complexity for the hidden shift
problem over this class of bent functions is of or@r ), while it can be solved with quantum queries.

Theorem 8. Let Off be an oracle that hides a hidden shiftfor an instance(f, g, f) of a hidden shift
problem for a bent functioyf from Maiorana-McFarland class. Then classicath(n) queries are necessary
and sufficient to identify the hidden shift Further, there exists a recursively defined ora€le.. which
makes calls t@ 17 and whose quantum query complexitydsy (n ), whereas its classical query complexity
is superpolynomial.

Proof. The proof of the lower bound on the classical query compleiit O is information theoretic. The
tightness of the bound follows sineebits of information about have to be gathered and each query can
yield at mostl bit. To see thaD(n) are indeed sufficient, consider the following (adaptiveatsgy for
finding a shift(s, s’) of g(z,y) = (z + s)m(y + s'): first queryg(x,y) on (0,0) to extractsw(s"). Then
subtract this from the values at the poifis, 0), wheree; denotes théth standard basis vector. This gives
the bits ofr(s’). Next evaluatef(z,y) = = *(x)y’ at the points(r(s’),e;). This gives the bits of'.
Finally, from evaluating; at points(0, 7! (e;) + s’) we can obtain the bits of, i. e., the entire hidden shift
(s,8).

A standard argument can be invokéd [BV97] to recursivelystmrect an oracle which hides a function
computed by a tree, the nodes of which are given by the oradiegha strings. In order to evaluatg ()
at a node, first a sequence of smaller instances of the prdidemto be solved. We do not go into further
detail of the construction and only note that we get the gymle result as in [BV97], see aldo [HHO08],
namely that a tree of heightg » leads to a quantum query complexity 2™ which is polynomial inn,
whereas the classical query complexity is giverm§ ™ which grows faster than any polynomial. O

The following theorem avoids the adaptive queries in thepod Theoren 8 and uses oracles of the
form O, in which no queries to the dual bent function are allowed.c&ithe quantum computer can still
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determine the shift in polynomial time, here an exponestglaration between classical and quantum query
complexity can be shown.

Theorem 9. Let O be an oracle that hides a hidden shiftor an instance f, g) of a hidden shift problem
for a bent functionf from Maiorana-McFarland class. Then classicaf/(\/2") queries are necessary and
sufficient to identify the hidden shift

Proof. The proof is similar to the lower bound for the linear struetproblem considered ih [dBCW02] and
the query lower bound for Simon’s problem [Sinh94]. Firsttethat we can use Yao’s minimax principle
[Yao77] to show limitations of a deterministic algorithp on the average over an adversarially chosen
distribution of inputs. Hence, we can consider deternimiglgorithms andr and s in the definition of
f(z,y) = zn(y)* andg(x,y) = f(z,y + s) will be chosen randomly.

The distribution we chose to show the lower is to cheagniformly at random inSy», the symmetric
group on the strings of length, ands = (s1,s2) € Z3" such thats; = 0 and s, is chosen uniform at
random inZ3. The instances we consider are given by oracle access tanhgdnsf (z,y) = zm(y)* and
g(z,y) = f(z,y +s) = zw(y + s)!. Now, without loss of generality we can assume that the idaks
algorithm A has (adaptively or not) queried the orakle= n®() times, i. e., it has chosen paits;, y;) for
i =1,...,k and obtained results

wﬂ(yi)t =
zm(y +s) = b

In order to characterize the information abauéfter these: queries we define séd = {z; : i =
1,...,k}U{y; : i =1,...,k}. We show that if no collision between the valuesfaindg was produced,
then the information obtained abauts exponentially small. To simplify our argument, we aclpyahake
the classical deterministic algorithm more powerful byigivoracle access to(x) andx(x + s). Consider
the set of all difference® ™) = {d; — dy : di,d2 € D} and the setDy,,q = Z5 \ D). Note that
for an abelian groupd and subsetD C A with |[D|> < |A| we can always choose a stsuch that
DN (D+s)=0forall s € S. Indeed, we can choose = D, sincez € D N (D + s) would imply
that there existl;,ds € D with d; = dy + s, i.e.,s € D(=) which is a contradiction. Notice in our case
that|S| > 2" — |[D(-)| = 27 — n90), Now, we can change the value of the shifb any other valug’ as
long as the algorithm has not queriedirectly (the chances of which are exponentially small:ause of

a birthday for the strings, the probability is given by (\/127>) We do this by choosing’ in such a way

that it mapsr(y; + s) = 7'(y; + s’) while being consistent with all other queries. Because efahove
argument, as long as there is no collision, aftqueries tof, g, we still have a se$ of size|S| > 2" —n01)
of candidates’, and=’” which are also consistent with the sampled data, showinpther bound. O

Corollary 10. There exists an oraclé® implementing a Boolean function such tiat £ BQPC.

5 Conclusions

We introduced the hidden shift problem for a class of Boolienttions which are at maximum distance
to all linear functions. For these so-called bent functitiveshidden shift problem can be efficiently solved
on a quantum computer, provided that we have oracle acceke ghifted version of the function as well

as its dual bent function. The quantum computer can extngchidden shift using just one query to these
two functions and besides this only requires to compute thdarhard transform and measure qubits in
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the standard basis. We showed that this task is significambiye challenging for a classical computer and
proved an exponential separation between quantum andcelbgsery complexity.
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