
QProbe: Locating the Bottleneck in Cellular
Communication

Nimantha Baranasuriya†, Vishnu Navda‡, Venkata N. Padmanabhan‡, Seth Gilbert†
†National University of Singapore ‡Microsoft Research India

ABSTRACT
Mobile communication is often frustratingly slow. When a
user encounters poor performance, and perhaps even “con-
firms” the same by running a speed test, the tendency is to
ascribe blame to the user’s last-mile provider. However, as
we argue in this paper, a more nuanced approach is needed
to identify the location of the bottleneck responsible for the
poor performance. Specifically, we focus on the question of
whether the bottleneck lies in the cellular last hop (3G or
LTE link) or elsewhere in the WAN path.

We present QProbe, a tool that takes advantage of the
proportional fair (PF) scheduler employed in cellular net-
works to determine whether queuing is happening at the cel-
lular link. After validating QProbe through simulations
and controlled experiments, we present our findings from a
measurement study conducted over a 2 month period involv-
ing over 600 real-world users across 51 operator networks in
33 countries. We find that, for example, the cellular last-hop
link is the bottleneck in 68.9% and 25.7% of the total bottle-
neck cases for 3G and LTE clients, respectively, suggesting
that there is a significant fraction of cases where the poor
performance experienced by the user is due to the WAN and
could potentially be routed around. Moreover, we show that
QProbe detects the bottleneck link location with greater
than 85% accuracy for both 3G and LTE clients in our mea-
surement study.

CCS Concepts
•Networks → Application layer protocols; Mobile net-
works; Network measurement;

Keywords
Cellular Networks; LTE; 3G; Bottleneck Detection

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’15, December 01-04, 2015, Heidelberg, Germany
c© 2015 ACM. ISBN 978-1-4503-3412-9/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2716281.2836118

1. INTRODUCTION
Cellular connections at times are frustratingly slow. While

it might be natural for users to blame the cellular link for
the poor performance, doing so is not always appropriate.
Indeed, modern cellular connections are often faster than
WiFi (e.g., [4] reports that LTE outperforms WiFi 40% of
the time). Therefore, we need a more nuanced approach to
identifying the location of the bottleneck.

Broadly, we would like to know whether the bottleneck
responsible for poor performance lies in the “last-mile” cel-
lular wireless link or elsewhere in the WAN path. Know-
ing this is key to remediating the problem. For example, if
the problem is not in the last-mile wireless link, one might
route around the WAN bottleneck, say by picking a different
replica (e.g., a different CDN server). On the other hand,
if the cellular link is the bottleneck, the user may have to
look for an alternate connection (e.g., WiFi) or have the ap-
plication adapt (e.g., by downsizing media content). Any
such adaptation undertaken by the client would be over and
above any remediation (e.g., load balancing) performed by
the cellular provider itself, thus having the advantage of be-
ing provider-independent.

The problem of locating the bottleneck in the context of
cellular-connected clients is challenging for several reasons.
First, cellular base stations employ per-station queues with
proportional fair (PF) scheduling [12], unlike the FIFO queu-
ing and servicing assumed in past work on identifying and
estimating bottleneck capacity on wired Internet paths (e.g.,
[7]). Second, cellular data plans tend to have tight data caps,
so the bottleneck detection algorithm needs to be lightweight
in terms of data usage, avoiding expensive data-intensive
probing. Third, cellular networks tend to be closed, under
the tight control of the operator, leaving clients with little
visibility into the state of the network (e.g., the network load)
and no access to a vantage point within the cellular network.

We present QProbe, a lightweight, active probing tech-
nique to locate the bottleneck link on an end-to-end path,
specifically, to decide whether the bottleneck lies on the wired
WAN path or on the cellular last-mile. QProbe works by
detecting whether there is queuing on either segment, hence
its name. This detection is enabled by the very different be-
haviour of FIFO queuing on the wired path and PF schedul-
ing at the cellular base station. When a train of small probe
packets is sent by QProbe running on a remote host, these

tend to get clumped together into back-to-back bursts when
there is queuing at the cellular base station, much more so
than when there is queuing on the wired path. On the other
hand, when TTL-limited (large) load packets are interspersed
with the small probe packets, then the inter-packet spac-
ing between the latter tends to get stretched when there is
queuing on the wired path but is unaffected by queuing at
the basestation. These 2 signals — back-to-back bursts and
stretching — are used in combination by QProbe to locate
the bottleneck.

We make three main contributions in this paper:
1. We have designed a novel, lightweight probing tech-

nique to disambiguate between WAN and cellular (3G
/LTE) bottlenecks in time on the order 700 ms.

2. Using simulations and controlled experiments, we val-
idate the QProbe technique and show that it can lo-
cate the bottleneck with high accuracy.

3. We analyze data from our deployment of QProbe as
an iPhone app to over 600 users spread across 33 coun-
tries and 51 operators and show that QProbe classi-
fies the bottleneck with greater than 85% accuracy.

2. CELLULAR SCHEDULING
In this section, we highlight the unique characteristics of

the downlink packet scheduler in cellular base stations. We
then provide insight on how these are leveraged in QProbe.

Unlike WiFi and wireline routers, cellular base stations
employ a centralized proportional fair scheduler (or “PF-
scheduler”) that determines which client(s) should be served
in each scheduling interval (also referred to as a time slot or
TTI). Each slot is typically a few milliseconds long (2 ms in
3G). Multiple clients can be simultaneously served in a sin-
gle time slot by assigning different orthogonal codes (time-
frequency resource blocks) for 3G (LTE) clients.

The objective of the PF-Scheduler is to improve the aggre-
gate network throughput, while also being fair to the clients.
Instead of strict round-robin scheduling, the PF-Scheduler
picks a client that maximizes the ratio of instantaneous rate
to the average allocated rate for each client over a certain
time window. This ensures that no client is starved, while
also keeping the aggregate network throughput healthy.

As the number of clients in the network increases, the slot
allocations for a client tends to get spaced apart in time, as
the base station is serving other clients. However, when a
client is scheduled, multiple packets buffered at the base sta-
tion could well be transmitted back-to-back, depending on
the bitrate associated with the instantaneous link quality and
the average allocated rate from the recent past.

In order to gather slot-level data, we used the QXDM di-
agnostics tool from Qualcomm on a rooted Windows Phone
device. We performed a bulk download over 3G on one de-
vice, adding 0, 1, or 2 other downloaders in the background.
(We ran these experiments in the middle of the night to avoid
interference from other users.) Figure 1(a) clearly shows that
as the number of downloaders increased, the inter-slot gaps
also increased, from a median of 2 ms to 6 ms with the ad-
dition of just two downloaders; the throughput also dropped

0
4
8
12
16

0 1 2

Sl
ot

 G
ap

s

Downloaders

0

2

4

6

0 1 2Th
ro

ug
hp

ut
 (

M
bp

s)

Downloaders

Figure 1: (a) Slot gaps between assignments, and (b)
Throughputs observed by the measurement device with dif-
ferent number of background downloaders

correspondingly. During peak hours in crowded settings, we
have seen inter-slot gaps even larger than 6 ms.

Note that cross-traffic on a WAN link can also cause large
gaps to be introduced between packets destined to a client.
The key difference, however, is that with cellular networks,
when the PF-Scheduler chooses a client for downlink trans-
mission, multiple packets can be scheduled back-to-back,
especially if the packets are small and the inter-slot gap is
large. QProbe leverages this for its detection, especially
since inter-packet gaps can easily be measured by the client.

3. QPROBE DESIGN
In this section, we begin with a description of the design

constraints for the bottleneck detection algorithm. We fo-
cus on localizing the problem to one of two parts in an end-
to-end path, and describe our methodology for each part
separately. Finally, we put it all together and describe the
QProbe technique that combines these design elements.

3.1 Design Requirements
Our focus in this paper is on diagnosing pathological cases

when the observed throughput from an Internet server to
a cellular-connected client is quite low. The measurement
technique should be able to pinpoint the location of the bot-
tleneck to one of the two segments in an end-to-end path: (a)
wired WAN path; or (b) cellular wireless last hop. The wired
path includes the Radio Network Controller (RNC) optical
backbone within the provider’s network as well as the WAN
beyond. Typically, the conventional wisdom is that in a well-
engineered network the RNC network is unlikely to be the
bottleneck relative to the air interface (wireless hop) [22].

For the purpose of deployablity, we do not assume that we
have vantage points within the cellular network or along the
WAN path for additional measurements, nor do we assume
access to a cohort of cooperating clients. Hence, we focus
on designing an end-to-end measurement technique between
a server on the Internet and an individual cellular-connected
mobile device. Moreover, since cellular connections are me-
tered, a key constraint is to ensure that the data usage in-
curred for our measurements is quite low and is unlikely to
exacerbate congestion.

Our goal is to have a technique that works across different
platforms and does not require any new OS or network ca-
pabilities, and can be easily deployed in existing platforms
as a user-level application. This is different from prior tech-
niques such as LoadSense [3], which relies on passive low-

Internet

1 . . . 2 . . . 25

TTL = hop_count - 1

Cellular Network

T

Probe Packets (0 bytes payload)

Load Packets (MTU bytes payload)

Server

Mobile

QProbe Packet Train

T – Duration of the QProbe packet train in ms

Figure 2: QProbe packet train with tiny probe packets and
large load packets. TTL for load packets expires 1-hop be-
fore cellular network and get dropped en route.

level measurements from the cellular stack.

3.2 Detection Methodology
At a high level, QProbe technique consists of actively

sending probe traffic downstream from an Internet server
to a mobile device, and analyzing the probes received at
the client-side to diagnose the problem. We send a train
of equally spaced tiny probe packets to the client and ob-
serve the arrival times. The small-sized probes ensure that
the probing traffic is light.

When these packets arrive at the basestation, if the wire-
less link is not congested, the basestation would not be back-
logged and so the packets are likely to be delivered imme-
diately. In this case, we expect to see the inter-packet spac-
ing at the receiver to be very similar to that at the transmit-
ter. However, with an increase in wireless cross-traffic, the
basestation would have to service several other clients, and
the probe packets are likely to get queued up at the bases-
tation. Two successive probes would get queued up at the
basestation if the inter-packet spacing at the sender is smaller
than the times when the client gets scheduled by the PF-
scheduler. When the PF-scheduler chooses to service the
client to which the probe traffic is destined, multiple probe
packets can be delivered depending on the quantum of ser-
vice allocated to the client.

Moreover, since the packets are small-sized, the chances
of multiple probe packets being delivered back-to-back are
very high. Thus, to detect wireless congestion, we look for
occurrences of increase in inter-packet spacing followed by
one or more back-to-back packets1. As observed experimen-
tally in the previous section, the higher the congestion, the
larger the spacing between two consecutive scheduling op-
portunities. Thus, we expect to see more back-to-back pack-
ets delivered during each scheduling opportunity.

The idea of using a number of back-to-back probes as a
measure of wireless congestions relies on the fact that probes
arrive spaced apart in time at the basestation. However, cross-
traffic on the WAN path can also cause probe packets to get
queued up at a WAN link, and arrive at the basestation with-
out any gaps between them. In such a case, differentiating
the WAN effects from wireless congestion is difficult.
1When two consecutive probes arrive within a single trans-
mission time interval (2 ms), we count them as back-to-back.

stretch_factor
>	sf_threshold

WAN

#back-to-back
<	bb_threshold

#back-to-back
>	bb_threshold

WirelessUnclassified

Yes No

No

Yes Yes

Figure 3: QProbe Algorithm

To isolate the effects of WAN cross-traffic, we introduce
load packets, one or more large MTU sized packets in-between
two successive probes. The objective of the load packets
is to ensure that the probe packets arrive spaced apart in
time at the basestation. But, load packets introduce two
new problems. Since they are large, the data consumption
for measurement traffic increases. More importantly, at high
wireless congestion, as the per-client allocation during each
scheduling opportunity reduces, multiple probe packets may
not get scheduled at the same time even if they are queued
up at the basestation. To address these problems, we em-
ploy a commonly used TTL-based approach to drop the load
packets at an IP hop close to the cellular network before they
reach the basestation. We set the TTL of the load packets to
hop_count− 1, where hop_count is the number of hops in
the path between the server and the client.

Load packets provide two benefits. Not only do they en-
sure that probe packets arrive spaced apart in time at the re-
ceiver, they also help in detecting WAN link bottlenecks. In
cases where the WAN link is the bottleneck, the load packets
can introduce additional delay due to the packet transmission
time of MTU-sized packets over a wired bottleneck link. As
a result, the packet spacing between successive probe pack-
ets can increase. We measure this effect using a metric called
stretch-factor, which is computed as the ratio of time dura-
tion of the packet train at the receiver to that at the sender.
The duration of the train refers to the time between the last
and the first probe packets.

Ideally, when there are no bottlenecks anywhere, the packet
spacings are similar, and the stretch-factor should be close
to 1. When there are bottlenecks in the WAN path, addi-
tional spacing is introduced due to the transmission of the
load packets, and the total duration of the train gets stretched
at the receiver, resulting in a stretch-factor value greater than
1. With wireless bottlenecks, we still expect low stretch-
factor (close to 1) since the PF-scheduler can deliver mul-
tiple probe packets back-to-back after each occurrence of a
large gap due to cross-traffic at the base station.

The overall construction of the QProbe packet train is
shown in Figure 2. We send a sequence of 25 probe pack-
ets spaced equally apart. Multiple load packets of MTU size
with TTL set to hop_count−1 are sent in between two con-
secutive probe packets. The spacing between two load pack-
ets as well as the spacing between a probe packet and a load
packet is set to 1 ms. The user-level QProbe client appli-

cation records the timestamps of the received packets and
runs our detection algorithm to determine the bottleneck lo-
cation. Since we do not know the wireless conditions, we run
QProbe train for different values of spacings (4ms to 8ms)
between the probe packets to get a better estimate of the con-
dition. Therefore, the total data usage for running 5 QProbe
trains is only 3.5KB, and completes in just 720 ms.

Our detection algorithm uses two features to determine
whether it is a wireless problem or a WAN path problem.
When the number of back-to-back packets observed is high
and the stretch-factor metric is low, we classify it as a wire-
less problem, and whenever the number of back-to-back pack-
ets is low and the stretch-factor is high, we classify it as a
WAN bottleneck. Otherwise, we let the problem remain un-
classified.

For each QProbe run for a certain probe packet spac-
ing, we record the packet arrival timestamps, and run the
detection algorithm. The detection algorithm for QProbe
is described in a flow-chart shown in Figure 3. There are
two thresholds – sf_threshold and #bb_threshold
that are used to determine the different bottleneck scenarios.

Computing QProbe Thresholds: Using controlled experi-
ments (see Section 4.2), we evaluated QProbe by varying
packet spacings from 4 ms to 8 ms in increments of 1 ms for
489 problem cases, out of which 233 were bottlenecked by
the wireless link and the remaining 256 cases experienced
WAN bottlenecks. For each of these runs, the ground truth
is known – whether the problem is wired or wireless. We
trained a 10-fold cross-validation decision tree to predict the
bottleneck using stretch-factor and the number of back-to-
back packets as the two features. We use the thresholds ob-
tained from the tree that is generated from this training phase
for classification of QProbe runs done on 3G.

Since LTE throughput ranges are different from 3G, the
thresholds for LTE are trained separately. However, we did
not have a sufficient number of LTE connections to perform
controlled runs. Therefore, we used a subset of the LTE runs
that we obtained from our large-scale measurement study
(Section 4.3) to build decision tree models for LTE, and de-
rived the thresholds for the two metrics.

Reasons for Unclassified: There can be instances of wire-
less bottleneck cases that have high stretch-factor along with
high back-to-back packets. These occur mostly due to tran-
sient congestion occurring in both wired and wireless paths.
In addition, some wired bottleneck cases can have a low
stretch-factor and low back-to-back packets. We believe,
this can occur due to congestion in the wired backhaul por-
tion of the cellular network. Since, load packets get dropped
at the IP cellular gateway, any congestion in the wired path
beyond this point are unlikely to impact the probe packets
and thus does not cause the two metrics to increase signif-
icantly. Both the above two categories are hard to identify
due to lack of ground truth information. In our algorithm,
we treat them as unclassified runs.

4. EVALUATION
We validate the QProbe technique using LTE simula-

tions in NS3, and controlled experiments in two 3G networks
in India. We then go on to deploy QProbe as an iPhone app
and collect data from the wild for a large number of cellular
operators for both 3G and LTE networks.

4.1 Simulations
Using NS3, we created a real-world topologies consist-

ing of a multi-hop wired WAN path that connected to an
LTE basestation having a PF-scheduler. The WAN path con-
tained 17 hops, which is the mean number of hops in the
data we gathered from the wild (more details in Section 4.3).
The link speeds of the WAN path were set to 1 Gbps. We
connected a server on the wired endpoint to generate prob-
ing traffic destined to a cellular client at the other endpoint.
We then created different wireless congestion levels by in-
creasing the number of background bulk TCP downloaders
in the cell, varying the load level from low (6 downloaders)
to medium (9 downloaders) to high (13 downloaders). The
number of downloaders for each congestion level was de-
cided such that the TCP throughput observed at the QProbe
client resembled the 75th, 50th, and 25th percentiles of the
TCP throughputs we observed in the LTE measurements of
our dataset (Section 4.3). As part of QProbe, we sent a
100 ms probe train consisting of 25 packets with 4 ms inter-
packet spacing from the server.

Figure 4(a) shows the number of back-to-back packets re-
ceived at the client side, and Figure 4(b) shows the corre-
sponding stretch-factor for the same conditions. At high
loads, almost 80% of the probe traffic arrive back-to-back,
thus matching our hypothesis. In addition, stretch-factor re-
mains constant for the most part, with only a marginal in-
crease of 10% at high load. Thus, both metrics behave as
expected with wireless congestion.

We analyze the benefit of using load packets in between
probe packets in distinguishing WAN and wireless bottle-
necks. An intermediate WAN link can become a bottleneck
for two reasons: (a) due to low capacity, and (b) due to low
available bandwidth owing to cross-traffic. Our objective is
to detect WAN bottlenecks for both these cases.

We varied the capacity of an intermediate WAN link from
1 Mbps to 5 Mbps. As seen in Figure 4(c), the stretch-factor
does not change when there are no load packets in the probe
train, but with the introduction of load packets, the stretch
factor increased by a factor of 9 when the bottleneck band-
width is as low as 1 Mbps. Similarly, in the cross-traffic sce-
nario, with the increase of the volume of cross-traffic, Fig-
ure 4(d) shows that the stretch-factor shows an increase of
more than 25%.

4.2 Controlled Experiments
To evaluate QProbe on real networks, we conducted con-

trolled experiments on two 3G operators – BSNL and Air-
tel in Bengaluru, India, with several runs corresponding to
the wireless and WAN bottleneck scenarios. Using five co-
located smartphones, we generated heavy background wire-
less traffic in the cell via simultaneous TCP bulk downloads.
Next, we connected a laptop running the QProbe client to
the same basestation using a 3G USB dongle, and conducted

 0

 5

 10

 15

 20

 25

No Load Low Medium High#
 B

ac
k-

to
-b

ac
k

Pa
ck

et
s

(a)

 0

 0.5

 1

 1.5

 2

No Load Low Medium High

St
re

tc
h-

fa
ct

or

(b)

 0

 2

 4

 6

 8

 10

1 2 3 4 5

St
re

tc
h-

fa
ct

or

Without Load Packets
With Load Packets

(c)

 0

 0.5

 1

 1.5

 2

40% 60% 80%

St
re

tc
h-

fa
ct

or

Without Load Packets
With Load Packets

(d)

Figure 4: (a) Number of back-to-backs, and (b) stretch-factor with varying wireless congestion levels. stretch-factor for WAN
link bottlenecks due to (c) varying link bandwidth (in Mbps) and (d) varying cross-traffic volumes.

233 QProbe runs from a well-provisioned server hosted
on the Azure datacenter in Singapore. Note that these runs
are bottlenecked by the wireless link due to the presence of
background downloaders. To gather runs for WAN bottle-
necks, we also deployed the QProbe server on 34 Planet-
lab servers that had bottlenecked WAN paths2 and conducted
256 QProbe runs from them. To minimize interference
from other traffic in the same cell, we ran these experiments
late at night. To ensure the load packets are not accounted
for byte usage, we had to set the TTL to hop− count− 2.

Figure 5 depicts the stretch-factor and the number of back-
to-back packets of all the runs we conducted for a 4ms inter-
packet spacing for the probe packets. This plot verifies our
simulation results, in that we see more back-to-back pack-
ets and a small stretch-factor in the presence of a wireless
bottleneck, whereas a wired bottleneck result in fewer back-
to-back packets and a higher stretch-factor.

Using the thresholds obtained from the training phase (Sec-
tion 3.2), QProbe algorithm classified 94.7% of the 489
runs, while 5.3% of the runs did not satisfy the two thresh-
old conditions, and thus remained unclassified for reasons
described in Section 3. For the runs that were classified, the
accuracy of detecting both wired and wireless bottlenecks is
more than 97.4%, thus showing that with a simple, easy to
measure client-side algorithm, we can accurately detect the
bottleneck location.

For validation, we also ran QProbe without background
traffic at night time and collected 833 runs for 3G and 989
runs for LTE. QProbe indeed classified only 8.2% and 1.9%

2We verified this by running TCP measurements with these
servers using a high-bandwidth wired link from the same
service provider as the cellular ISP.

1

3.16

10

31.62

 0 5 10 15 20 25

St
re

tc
h-

fa
ct

or

Back-to-back Packets

WAN Bottlenecks
Wireless Bottlenecks

Figure 5: # Back-to-back packets and stretch-factor for 489
QProbe runs. (Y-axis is in log scale.) WAN bottlenecks
result in low # back-to-back packets and high stretch-factor
while wireless bottlenecks show the opposite behavior.

as wireless bottlenecks for 3G and LTE, respectively, since
these periods are lightly loaded.

4.3 Large-scale Measurement Study
We developed QProbe as an iOS application on both

iPads and iPhones, and deployed it in the Apple App Store [16].
To detect bottlenecks in different end-to-end paths, we used
15 well-provisioned Microsoft Azure servers that were de-
ployed in different datacenters, located in the US, South Amer-
ica, Europe, Singapore, China, Japan, and Australia. We also
deployed the QProbe server on 51 geographically spread
PlanetLab servers.

We collected data from this deployment via users of the
QProbe iOS application. We advertised the app through
social platforms as well as Amazon MTurk to get more par-

Table 1: Summary of the dataset.

#Users 642
Data collection period 2 months
#QProbe Runs 8116
#Countries 33
#Cellular Providers 51

Table 2: QProbe runs for different radio technologies

Technology Runs Wireless Bottlenecks WAN Bottlenecks
3G 2573 215 (8.4%) 97 (3.8%)

LTE 5480 441 (8.1%) 837 (15.3%)

ticipation 3. Table 1 summarizes our dataset. We have made
our dataset publicly available at [15].

The 8116 runs were spread across different cellular radio
access technologies as shown in Table 2. We only analyzed
data from the dominant radio technologies present in this
study: 3G (WCDMA, HSDPA, and EVDO RevA) and LTE.

When users run the QProbe app, the app connects to the
two closest Azure servers, referred to as reference servers,
based on TCP RTTs. Then, the app conducts bulk TCP
download measurements with these two reference servers se-
quentially. Next, the app runs QProbe experiments from 6
randomly chosen servers sequentially. Thus, each run of the
app provides 6 QProbe measurements. For each of these 6
servers, the application first does TCP throughput measure-
ments and then receives 5 QProbe packet trains, having
probe packet spacings of 4 ms to 8 ms in increments of 1
ms. It logs the arrival timestamps of the probe packets and
uploads these timestamps, along with throughput measure-
ments and carrier information like the MNC, MCC codes,
and the operator’s name to a central server. We analyze this
data offline to evaluate QProbe’s bottleneck detection ac-
curacy.

Obtaining the Groundtruth: We use multiple throughput
measurements conducted during each run of the app to es-
timate ground truth. The basic idea is that whenever low
throughput is consistently observed with both reference servers
and the server the QProbe train is sent from, we blame it
on the last-mile wireless link. Otherwise, we blame the spe-
cific instance of low throughput on the WAN path from that
specific server. To determine what constitutes low through-
put, we looked at all throughput measurements obtained for
3G and LTE networks separately, and chose the 25th per-
centile as the threshold (732 kbps and 3149 kbps for 3G and
LTE, respectively).

Bottleneck Detection Accuracy: Using the threshold pa-
rameters obtained from training, we classified the bottle-
necked runs in the measurement study. QProbe classified
84.3% and 81.2% of 3G and LTE runs, respectively. For
those that were classified as either wireless or WAN path,
the overall accuracy of bottleneck detection is over 85% for
both 3G and LTE. Table 3 and Table 4 provide the confusion
matrix for 3G and LTE, respectively.
3We obtained Microsoft IRB approval for this study.

Table 3: Confusion matrix for 3G

QProbe Classification
Ground Truth Wireless WAN

Wireless 187 161 (86.1%) 26 (13.9%)
WAN 76 13 (17.1%) 63 (82.9%)

Table 4: Confusion matrix for LTE

QProbe Classification
Ground Truth Wireless WAN

Wireless 330 307 (93%) 23 (7%)
WAN 708 116 (16.4%) 592 (83.6%)

The Need for Two Metrics: Note that if we were to use
the number of back-to-back packets or the stretch-factor in
isolation to classify the runs, all of them can be classified.
However, in doing so, the classification accuracy drops sig-
nificantly. For example, if QProbe used only the number
of back-to-backs or the stretch-factor for classification, the
accuracy reduces by 14.4% and 15.5%, respectively. For
3G, the two corresponding accuracy reductions are 14.6%
and 21.7%. Therefore, though the two metric based classifi-
cation does not classify a fraction of the runs, it achieves a
far higher classification accuracy than using a single metric.

5. RELATED WORK
There has been much work on determining the location of

the bottleneck link in both wireless and wired settings due to
the numerous benefits such techniques provide. For exam-
ple, a technique like DiversiFi [10] can be used to improve
the reliability of real-time streams (e.g., Skype calls) if users
can determine that their WiFi link is poor. In the WiFi con-
text, there has been recent work [21, 20] on correlating TCP
performance with wireless metrics to determine where the
bottelneck lies in home networks. In cellular context, pas-
sive analysis of TCP flows inside the operator’s network [18]
have been used for identifying bottlenecks, but such van-
tage points for measurements are not available to end-hosts.
Hu et al. present a technique in [7] that is capable of locating
bottlenecks in the Internet. Other work has focused on diag-
nosing problems on WiFi, e.g., [1, 17, 9]. However, cellular
networks tend to be closed and do not lend themselves to
such analyses.

There is a large body of work on probing network paths
to determine the capacity (the speed of the slowest link) and
available bandwidth (the headroom on the tightest link).

The literature on capacity estimation often uses the packet-
pair technique [11], where a server sends two back-to-back
packets and the receiver estimates the capacity based on the
time gap of the packet arrivals. As this technique is suscep-
tible to cross-traffic interference, other work has employed
packet trains of various sizes [2], or filtering to discard sam-
ples that do not relate to the bottleneck link capacity [13].
Another widely used technique is based on the relationship
between the packet size and the delay to estimate the capac-
ity [5, 14]. A shortcoming of these tools is their dependence
on ICMP messages that are often blocked.

The literature on measuring available bandwidth can be
mainly divided in to two groups: packet rate method (PRM)
[8, 6] and packet gap method (PGM) [19]. The PRM method
works by sending trains of probe packets at different rates,
and checking at what point the receiving rate stops keep-
ing up. A significant downside, however, is that these tools
tend to impose a heavy load on the network. In contrast,
PGM tools estimate the change in spacing between pairs of
equal-sized probe packets as seen at the receiver, which is an
indication of the volume of cross-traffic. While it is lighter
weight than PRM, PGM’s estimation depends critically on
FIFO queuing being employed at the bottleneck.

Prior work has shown that above techniques do not pro-
vide accurate results in cellular networks [23]. Therefore,
our work on QProbe is distinguished from the above body
of work in terms of its focus on (a) locating the bottleneck
link rather than estimating its capacity, (b) cellular-terminated
paths, and (c) a deployable tool that can run on off-the-shelf
client devices (e.g., iPhone), which do not provide access to
any low-level network information.

6. CONCLUSION
Cellular-connected users often blame poor end-to-end net-

work path performances on the last-mile wireless connec-
tion. However, as shown in our measurement study, the
WAN path can be the bottleneck in many cases. QProbe
locates the bottleneck location by leveraging the unique char-
acteristics of the PF-schedulers used in cellular basestations.
While being a lightweight probing technique requiring only
∼ 700 ms to run and less than 4KB data usage, QProbe
locates the bottleneck in real-world 3G and LTE networks
with more than 85% accuracy.

Acknowledgments
We thank the anonymous ACM CoNEXT 2015 reviewers
for their constructive feedback. Author Baranasuriya was an
intern at Microsoft Research India during part of this work.
He and author Gilbert were supported in part by A*STAR,
Singapore, under SERC Grant 1224104049.

7. REFERENCES
[1] A. Adya, P. Bahl, R. Chandra, and L. Qiu.

Architecture and Techniques for Diagnosing Faults in
IEEE 802.11 Infrastructure Networks. In MobiCom,
2004.

[2] R. L. Carter and M. E. Crovella. Measuring
Bottleneck Link Speed in Packet-switched Networks.
Perform. Eval., 1996.

[3] A. Chakraborty, V. Navda, V. N. Padmanabhan, and
R. Ramjee. Coordinating Cellular Background
Transfers Using Loadsense. In MobiCom, 2013.

[4] S. Deng, R. Netravali, A. Sivaraman, and
H. Balakrishnan. WiFi, LTE, or Both? Measuring
Multi-Homed Wireless Internet Performance. In IMC,
2014.

[5] A. B. Downey. Using Pathchar to Estimate Internet
Link Characteristics. In SIGMETRICS, 1999.

[6] A. B. Downey. Using pathchar to Estimate Link
Characteristics. In SIGCOMM, 1999.

[7] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and
J. Wang. Locating Internet Bottlenecks: Algorithms,
Measurements, and Implications. In SIGCOMM, 2004.

[8] M. Jain and C. Dovrolis. End-to-end available
bandwidth: measurement methodology, dynamics, and
relation with tcp throughput. In SIGCOMM, 2002.

[9] P. Kanuparthy, C. Dovrolis, K. Papagiannaki,
S. Seshan, and P. Steenkiste. Can User-Level probing
Detect and Diagnose Common Home-WLAN
Pathologies. ACM SIGCOMM Computer
Communication Review, 2012.

[10] R. Kateja, N. Baranasuriya, V. Navda, and V. N.
Padmanabhan. DiversiFi: Robust Multi-Link
Interactive Streaming. In CoNEXT, 2015.

[11] S. Keshav. A Control-theoretic Approach to Flow
Control. In SIGCOMM, 1991.

[12] H. Kushner and P. Whiting. Convergence of
Proportional-fair Sharing Algorithms Under General
Conditions. Wireless Communications, IEEE
Transactions on, July 2004.

[13] K. Lai and M. Baker. Measuring Link Bandwidths
Using a Deterministic Model of Packet Delay. In
SIGCOMM, 2000.

[14] pchar: A Tool
for Measuring Internet Path Charateristics (by B. Mah).
http://www.kitchenlab.org/www/bmah/Software/pchar/.

[15] QProbe Project Page.
http://www.comp.nus.edu.sg/ nimantha/qprobe.html.

[16] QProbe-Cellular Link Diagnostic Tool.
https://itunes.apple.com/sg/app/qprobe-cellular-link-
diagnostic/id988472779.

[17] S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and
S. Banerjee. Diagnosing Wireless Packet Losses in
802.11: Separating Collision from Weak Signal. In
INFOCOM, 2008.

[18] M. Schiavone, P. Romirer-Maierhofer, F. Ricciato, and
A. Baiocchi. Towards Bottleneck Identification in
Cellular Networks via Passive TCP Monitoring. In
ADHOC-NOW, 2014.

[19] J. Strauss, D. Katabi, and F. Kaashoek. A
Measurement Study of Available Bandwidth
Estimation Tools. In IMC, 2003.

[20] S. Sundaresan, N. Feamster, and R. Teixeira.
Measuring the Performance of User Traffic in Home
Wireless Networks. In PAM, 2015.

[21] S. Sundaresan, Y. Grunenberger, N. Feamster,
D. Papagiannaki, D. Levin, and R. Teixeira. WTF?
Locating Performance Problems in Home Networks.
Tech Report GT-CS-13-03, 2013.

[22] D. Wisely. IP for 4G. John Wiley & Sons, 2009.
[23] Y. Xu, Z. Wang, W. K. Leong, and B. Leong. An

End-to-End Measurement Study of Modern Cellular
Data Networks. In PAM, 2014.

