m Computer

COVER FEATURE

A Layered Software
Architecture for Quantum
Computing Design Tools

Krysta M. Svore, Alfred V. Abo

Columbia University

Andrew W. Cross, Isaac Chuang

Massachusetts Institute of Technology

Igor L. Markov

University of Michigan

Compilers and computer-aided design tools are essential for fine-grained control of

nanoscale quantum-mechanical systems. A proposed four-phase design flow assists with

computations by transforming a quantum algorithm from a high-level language program

into precisely scheduled physical actions.

uantum computers have the potential to solve

certain computational problems—for example,

factoring composite numbers or comparing an

unknown image against a large database—

more efficiently than modern computers. They

are also indispensable in controlling quantum-
mechanical systems in emergent nanotechnology
applications, such as secure optical communication, in
which modern computers cannot natively operate
on quantum data.

Despite convincing laboratory demonstrations of
quantum information processing, as the “Ongoing
Research in Quantum Computing” sidebar describes, it
remains difficult to scale because it relies on inherently
noisy components. Adequate use of quantum error cor-
rection and fault tolerance theoretically should enable
much better scaling, but the sheer complexity of the tech-
niques involved limits what is achievable today. Large
quantum computations must also achieve a high degree
of parallelism to complete before quantum states deco-
here.

As candidate quantum technologies mature, the fea-
sibility of quantum computation will increasingly
depend on software tools, especially compilers, that
translate quantum algorithms into low-level, technol-
ogy-specific instructions and circuits with added fault
tolerance and sufficient parallelism.

Published by the IEEE Computer Society

We propose a layered software architecture consist-
ing of a four-phase computer-aided design flow that
assists with such computations by mapping a high-level
language source program representing a quantum algo-
rithm onto a quantum device. By weighing different
optimization and error-correction procedures at appro-
priate phases of the design flow, researchers, algorithm
designers, and tool builders can trade off performance
and accuracy.

QUANTUM COMPUTATION

The quantum circuit, a commonly used computation
model similar to a modern digital circuit, provides a rep-
resentation of a quantum algorithm. Digital circuits cap-
ture both mathematical algorithms, such as for sorting
and searching, and methods for real-world control and
measurement, as in cellular phones and automobiles.
Quantum circuits likewise describe methods for control
of quantum systems, such as atomic clocks and optical
communication links, that cannot be fully controlled
with conventional binary digital circuits alone.

A quantum circuit consists of quantum bits (qubits),
quantum gates, quantum wires, and qubit measure-
ments. A qubit is analogous to a classical bit but can be
in a wave-like superposition of the symbolic bit values
0 and 1, written a|0) + b|1), where a and b are complex
numbers. Mathematically, a qubit can be written as a

0018-9162/06/$20.00 © 2006 IEEE

|
Ongoing Research in Quantum Computing

Researchers in industry and government labs are exploring
various aspects of quantum design and automation with a wide
range of applications. In addition to the examples described
below, universities in the US, Canada, Europe, Japan, and China
are carrying out much broader efforts.

BBN Technologies

Based in Cambridge, Massachusetts, BBN Technologies
(www.bbn.com) developed the world’s first quantum key dis-
tribution (QKD) network with funding from the US Defense
Advanced Research Projects Agency.The fiber-optical DARPA
Quantum Network offers 24x7 quantum cryptography to
secure standard Internet traffic such as VWeb browsing, e-com-
merce, and streaming video.

D-Wave Systems

Located in Vancouver, British Columbia, Canada, D-Wave
Systems (www.dwavesys.com) builds superconductor-based
software-programmable custom integrated circuits for quan-
tum optimization algorithms and quantum-physical simulations.
These ICs form the heart of a quantum computing system
designed to deliver massively more powerful and faster perfor-
mance for cryptanalysis, logistics, bioinformatics,and other appli-
cations.

Hewlett-Packard

The Quantum Science Research Group at HP Labs in Palo
Alto, California, is exploring nanoscale quantum optics for infor-
mation-processing applications (www.hpl.hp.com/research/gsr).
In addition, the Quantum Information Processing Group at the
company’s research facility in Bristol, UK, is studying quantum
computation, cryptography, and teleportation and communica-
tion (wWww.hpl.hp. com/research/qip).

Hypres

Located in Elmsford, New York, Hypres Inc. (www.
hypres.com) is the leading developer of superconducting digital
for wireless and optical communication. Based on rapid single-
flux quantum logic, these circuits have achieved gate speeds up
to 770 GHz in the laboratory.

IBM Research

Scientists at IBM’s Almaden Research Center in California and
the T.).Watson Research Center’s Yorktown office in New York
developed a nuclear magnetic resonance (NMR) quantum com-
puter that factored 15 into 3 X 5 (http://archives.cnn.com/
2000/TECH/computing/08/15/quantum.reut). Researchers at the
Watson facility and the Zurich Research Lab are also developing
Josephson junction quantum devices (www. research.ibm.
com/ss_computing) as well as studying quantum information the-
ory (www.research.ibm.com/quantuminfo).

Id Quantique

Based in Geneva, Switzerland, id Quantique (www.idquan-
tique.com) is a leading provider of quantum cryptography solu-
tions, including wire-speed link encryptors, QKD appliances,
a turnkey service for securing communication transfers, and
quantum random number generators.The company’s optical
instrumentation product portfolio includes single-photon
counters and short-pulse laser sources.

Los Alamos National Lab

The Los Alamos National Lab (http://gso.lanl.gov/qc) in New
Mexico is studying quantum-optical long-distance secure com-
munications and QKD for satellite communications. It has also
conducted groundbreaking work on quantum error correction,
decoherence, quantum teleportation, and the adaptation of
NMR technology to quantum information processing.

MagiQ Technologies

MagiQ Technologies (www.magiqtech.com), headquartered
in New York City, launched the world’s first commercial quan-
tum cryptography device in 2003. MagiQ Quantum Private
Network systems incorporate QKD over metro-area fiber-
optic links to protect against both cryptographic deciphering
and industrial espionage.

NEC Labs

Scientists at NEC’s Fundamental and Environmental Research
Laboratories in Japan, in collaboration with the Riken Institute
of Physical and Chemical Research, have demonstrated a basic
quantum circuit in a solid-state quantum device (www.labs.nec.
co.jp/Eng/innovative/E3/top.html). Recently, NEC researchers
have also been involved in realizing the fastest fortnight-long,
continuous quantum cryptography final-key generation.

NIST

Established in 2000, the Quantum Information Program at the
US National Institute of Standards and Technology (http:/
qubit.nist.gov) is building a prototype |0-qubit quantum proces-
sor—made of trapped ions, neutral atoms, or “artificial atoms”
made of superconducting electrical circuits—to provide a proof-
in-principle of quantum information processing. Researchers at
the program’s facilities in Boulder, Colorado,and Gaithersburg,
Maryland, are also developing a high-speed QKD system with
efficient and precise single-photon sources and detectors.

NTT Basic Research Labs

NTT’s Superconducting Quantum Physics Research Group
in Japan focuses on the development of quantum crytography
protocols (www.brl.ntt.co.jp/group/shitsuryo-g/qc). In particu-
lar, they have exhibited quantum cryptography using a single
photon realized in a photonic network of optical fibers.

January 2006

software encourages wider com-

Design flow
munity participation.
AUl QIR | Technology- [gasm | Technology- | qpoL TSicthI(ztoo%y A sufficiently transparent
program —*| Frontend » independent » dependent » or quantum architecture facilitates tool inter-
(s Ol e device operability, focused point-tool
: development, and incremental
Abstraction .
improvements. Quantum algo-
Quantum ,| Quantum ,| Quantum ,| Machine rithm designers and those devel-
algorithm " ircui " ircui "| instructions
2 cireuit circuit oping quantum circuit optimi-

zations can explore new algo-
rithms and error-correction pro-

Figure 1. Proposed design flow. The first three phases are part of the quantum computer
compiler, while the last phase implements the quantum algorithm on a quantum device or

simulator.

vector of complex numbers. In computational terms, a
qubit assumes either the value 0 or the value 1, with
probability |a]* and |b]?, respectively.

An n-qubit quantum state is written as a vector rep-
resenting a superposition of 27 different bit strings. The
state remains in a superposition for the computation’s
duration, and the final sequence of measurements col-
lapses the state onto the bit string that gives the result of
the computation. This result will not be affected if all
bit strings in a given state are multiplied by a constant,
called a global phase, before measurement. However,
the ratios of coefficients of different bit strings, known
as relative phases, are significant.

A quantum gate is a reversible transformation of a
quantum state that preserves total probability—for
example, for a single qubit |a]* + |b]* = 1. Quantum gates
are represented by unitary matrices that act on quan-
tum state vectors by left multiplication. Gates are con-
nected by quantum wires that transport qubits forward
in time or space. Quantum wires cannot fan out—that
is, qubits with unknown state cannot be duplicated.
Matrix multiplication models composition of gates in
series; the Kronecker, or tensor, product models com-
position of gates in parallel.

Inaccurate gates and uncontrolled environmental cou-
plings introduce data errors. Uncontrolled coupling results
in decoherence, which causes qubits to damp exponen-
tially to states that behave probabilistically, like (possibly
biased) classical coins. Such states have no phase infor-
mation and cannot perform quantum computation. These
effects complicate quantum information processing, but
researchers can address them using tools that perform
optimizations and automatically add error correction.

FOUR-PHASE DESIGN FLOW

We envision a hierarchy of design tools with simple
interfaces between layers that include programming lan-
guages, compilers, optimizers, simulators, and layout
tools. Such an architecture appears necessary because
no single entity can afford the huge investments required
to develop all necessary tools. To this end, open source

m Computer

cedures in more realistic settings
involving actual noise and phys-
ical resource constraints. Re-
searchers can also simulate
important quantum algorithms on proposed new tech-
nologies before doing expensive lab experiments.

Our four-phase design flow, shown in Figure 1, maps
a high-level program representing a quantum algorithm
into a low-level set of machine instructions to be imple-
mented on a physical device. The high-level quantum
programming language encapsulates the mathematical
abstractions of quantum mechanics and linear algebra.!
The design flow’s first three phases are part of the quan-
tum computer compiler (QCC). The last phase imple-
ments the algorithm on a quantum device or simulator.

In addition to providing support for the abstractions
used to specify quantum algorithms, the programming
languages and compilers at the top level of our tool suite
accommodate optimization improvements as our under-
standing of new quantum technologies matures. The
simulation and layout tools at the bottom level incor-
porate details of the emerging quantum technologies
that would ultimately implement the algorithms
described in the high-level language. The tools balance
tradeoffs involving performance, qubit minimization,
and fault-tolerant implementations.

The representations of the quantum algorithm
between the phases are the key to an interoperable tools
hierarchy. In the first phase, the compiler front end maps
a high-level specification of a quantum algorithm into a
quantum intermediate representation (QIR)—a quan-
tum circuit with gates drawn from some universal set.
Compared to traditional logic circuits, quantum circuits
are more structured and typically have intrinsic sequen-
tial semantics, wherein gates modify globally maintained
state qubits in parallel.

In the second phase, a technology-independent opti-
mizer maps the QIR into an equivalent lower-level circuit
representation of single-qubit and controlled-NOT
(CNOT) gates. The compiler optimizes this Quantum
Assembly Language (QASM) according to a cost func-
tion such as circuit size, circuit depth, or accuracy. Since
limiting quantum computing to a fixed set of registers
and fixed word size would significantly restrict its power,
QASM does not have such limitations, unlike traditional

assembly languages. Therefore, parallelism has a greater
impact and must be extracted by the compiler.

The third phase consists of optimizations suited to the
quantum computing technology and outputs Quantum
Physical Operations Language (QPOL), a physical-lan-
guage representation with technology-specific parame-
ters. QPOL includes two subphases: The first maps the
representation of single-qubit and CNOT gates into a
QASM representation using a fault-tolerant discrete uni-
versal set of gates; the second maps these gates into a
QPOL representation containing the physical instructions
for the fault-tolerant operations scheduled in parallel,
including the required movements of
physical particles. Knowledge of the
physical layout and architectural lim-
itations enters no later than at this
step.

The final phase utilizes technology-
dependent tools such as layout mod-
ules, circuit and physical simulators,
or interfaces to actual quantum
devices. If at this point certain tech-
nology constraints or objectives have not been met, algo-
rithm and device designers can repeat some earlier phases.
In addition, it is possible to add fault tolerance and error
correction at multiple phases of the design process.

The “Example Design Flow: EPR Pair Creation” side-
bar provides a concrete example of how our proposed
design flow automates the process of transforming
mathematical models into software for controlling a live
quantum-mechanical system.

PROGRAMMING ENVIRONMENT
AND LANGUAGE

Designing a quantum programming environment is
difficult given the currently limited repertoire of quan-
tum algorithms. However, this situation is likely to
improve as the demand for nanoscale control increases.
The programming model is also uncertain because
researchers can design a quantum computer as either an
application-specific integrated circuit or a general-pur-
pose processor. However, it is safe to assume that clas-
sical computers will monitor quantum devices through
a bidirectional communication link.?

A quantum programming environment should pos-
sess several key characteristics.? First, it needs a high-
level quantum programming language that offers the
necessary abstractions to perform useful quantum oper-
ations. It should support complex numbers, quantum
unitary transforms (quantum gates), and measurements
as well as classical pre- and postprocessing. Support for
reusable subroutines and gate libraries is also required.
However, the exact modularization of a quantum pro-
gramming environment remains an open question.

In addition, the environment as well as the program-
ming language should be based on familiar concepts and

The quantum programming
environment should allow

easy separation of classical
and quantum computations.

constructs. This would make learning how to write,
debug, and run a quantum program easier than using a
totally new environment.

The quantum programming environment also should
allow easy separation of classical and quantum compu-
tations. Because a quantum computer has noise and lim-
ited coherence time, this separation can limit computa-
tion time on the quantum device. The compiler for a
quantum programming language should be able to trans-
late a source program into an efficient and robust quan-
tum circuit or physical implementation; it should be easy
to translate into different gate sets or optimize with
respect to a desired cost function.

Further, the high-level program-
ming language should be hardware-
independent and compile onto dif-
ferent quantum technologies. How-
ever, the language and environment
should allow the inclusion of tech-
nology-specific modules.

Finally, a language that supports
high-level abstractions would facili-
tate development of new quantum algorithms.
Researchers have proposed many quantum program-
ming languages based on the quantum circuit model,>3
but a language that provides further insights on quan-
tum information processing could help in designing new
quantum algorithms.

By incorporating appropriate abstractions into a lan-
guage and environment for quantum computing, we
hope to develop an environment that makes design and
implementation of quantum algorithms easier. We also
seek a language that simplifies creation of robust, opti-
mized target programs.

QUANTUM COMPUTER COMPILER

A generic compiler for a classical language on a clas-
sical machine consists of a sequence of phases that
transform the source program from one representation
into another.* This partitioning of the compilation
process has led to the development of efficient algo-
rithms and tools for each phase. Because the front-end
processes for QCCs are similar to those of classical
compilers, researchers can use the algorithms and tools
to build lexical, syntactic, and semantic analyzers for
QCCs. However, the intermediate representations and
the optimization and code-generation phases of QCCs
differ greatly from classical compilers and require novel
approaches, such as a way to insert error-correction
operations into the target language program.

Quantum intermediate representation

Fixed word length in quantum computing is rare, but
several popular quantum computation models, such as
adiabatic quantum computing, can be converted to
quantum circuits. Therefore, in our design flow’s first

January 2006

phase, the QCC’s front end maps a high-level specifica-
tion of a quantum algorithm into a QIR based on the
quantum circuit model.!

Provisions must be made in the QIR for classical and
quantum control flows as well as data flows. In partic-
ular, quantum-to-classical conversions are accomplished
via quantum measurements, while quantum condition-
als and entangled switch statements are implemented
using quantum multiplexer gates.’ High-level optimiza-
tions may involve simultaneous changes to quantum and
classical control flows and to data flows. We also con-
sider fault-tolerant constructions at various phases in
the design flow and incorporate circuit synthesis and
optimization techniques in both the technology-inde-
pendent and technology-dependent phases.

Circuit synthesis and optimization

During the second and third phases, the QCC syn-
thesizes and optimizes a QASM representation of a
quantum circuit using procedures similar to those cur-
rently used for digital circuits. Algorithms for classical

logic circuit synthesis map a Boolean function into a cir-
cuit using gates from a given gate library. Similarly,
quantum circuit synthesis creates a circuit that performs
a given unitary transform up to an irrelevant global
phase or a prescribed quantum measurement.

A digital logic designer can immediately construct a
two-level circuit of a Boolean function, linear in the size
of the function’s truth table, and then use various tech-
niques to optimize it. In contrast, finding a good quan-
tum circuit to implement a 27 X 27 unitary matrix is
difficult. Only very recently have constructive algorithms
become available that yield an asymptotically optimal
circuit with O(4”) gates. Because CNOT gates are typi-
cally most expensive, their counts have been pushed
down to only a factor of two away from lower bounds.’
Remaining gates operate on single qubits at a time, but
unlike CNOT gates they can be tuned using continuous
parameters.

When developing reusable software for automating
quantum circuit design, reducing technological depen-
dence is desirable. Today, the NAND gate is easier to

|
Example Design Flow: EPR Pair Creation

Accurately capturing quantum-mechanical systems using tra-
ditional Os and s is inherently difficult. Quantum information
must therefore be processed directly—without converting it
to bits—during state transformation and teleportation, com-
munication, measurements, and other common tasks.

Figure A illustrates how our proposed four-phase design flow
automates the transformation of mathematical models into soft-
ware for controlling a live physical system.

An algorithm designer, researcher, or engineer initially
expresses a mathematical specification of a quantum algorithm
in a high-level quantum programming language, automatically
creating a quantum circuit that encapsulates the mathematical
abstractions of quantum mechanics and linear algebra.

In the first phase of the design flow, the quantum computer
compiler abstracts the quantum circuit as a quantum inter-
mediate representation (QIR). Next, the QCC translates the
circuit into Quantum Assembly Language that captures a uni-
versal set of quantum gates. In the third phase, the QCC trans-
lates QASM instructions into Quantum Physical Operations
Language using software tools. QPOL has knowledge of par-
ticulars of the quantum device, including layout and a tech-
nology-specific gate library. Finally, technology-dependent
software and tools translate QPOL into machine instructions.

In this example, we demonstrate how to produce Einstein-
Podolsky-Rosen (EPR) pairs' for implementation on a trapped-
ion computer. Trapped-ion systems have shown considerable
potential as a future quantum computing technology.2 These
computers use charged, electromagnetically trapped atoms as
qubit carriers and the internal state of single ionized atoms as
qubits.The technology can multiplex ion traps to make the quan-

m Computer

tum computer larger.

An important physical resource for quantum computing and
communication, EPR pairs are entangled quantum states that can-
not be decomposed into tensor products of single-qubit states.
They represent quantum nonlocality and have applications in quan-
tum state teleportation, ultraprecise measurement,and lithogra-
phy as well as in a number of quantum computing algorithms.

For EPR pair creation, we abstract the mathematical repre-
sentation in a quantum circuit composed of a Hadamard (H)
and CNOT gate. The figure shows sample QASM and QPOL
representations. Determining the exact phase to insert fault tol-
erance and error correction is an open research question; here
we show how to replace a CNOT gate with a circuit for a fault-
tolerant encoded CNOT operation limited to local interactions.

QPOL instructions for creating an EPR pair can be translated
into a sequence of laser pulses—in this case, for performing a
CNOT gate on an ion-trap device.The machine instructions are
as follows:

I. Alternately raise and lower the potentials of electrodes A,
I,2,and 3 to move ions from trap A to trap B.
. Apply a laser to the “green” ion to cool the ion chain which

N

may have heated during movement.

. Apply mt-pulse on the first red sideband of the x ion.

. Apply pulse on carrier of the y ion.

. Apply mt-pulse on the first red sideband of the x ion.

. Split the “green” ion and the x ion away from the y ion and
move them back to trap A.

o U1 AW

The six-step process lasts 10-100 ps.

implement than the AND gate in CMOS-based inte-
grated circuits. Commercial circuit synthesis tools
address this by decoupling libraryless logic synthesis from
technology mapping. The former step uses an abstract
gate library, such as AND-OR-NOT, and emphasizes the
scalability of synthesis algorithms that capture the given
computation’s global structure. The latter step converts
all gates of a logic circuit to gates from a technology-spe-
cific gate library, often supplied by a chip manufacturer,
and is based on local optimizations.

We expect the distinction between technology-inde-
pendent circuit synthesis and technology mapping to
carry over to quantum circuits.® This is precisely why
the QCC maps the quantum algorithm into a QASM
representation consisting of single-qubit and CNOT
gates in the second phase of our design flow.

In addition, temporary decompositions into elemen-
tary gates could help optimize pulse sequences and
reduce systematic inaccuracies in physical implementa-
tions. For example, a CNOT gate can be mapped onto
a specific technology by appropriately timing pulses that

References
I. A.Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical
Description of Physical Reality Be Considered Complete?,” Physi-
cal Rev,, vol.47,no. 10, 1935, pp. 777-780.

couple two qubits, as well as pre- and postprocessing by
less sophisticated pulses that affect single qubits.®
Technology-mapped circuits could potentially be opti-
mized further via automatic instantiation of error cor-
rection, efficient handling of universal gate libraries
without tunable gates, and identification of reusable
quantum logic blocks and their efficient implementation.

Quantum Assembly Language

During the technology-independent phase of our
design flow, the QCC maps a representation of the quan-
tum algorithm into an equivalent set of Quantum
Assembly Language instructions. QASM is a classical
reduced-instruction-set computing assembly language
extended by a set of quantum instructions based on the
quantum circuit model. It uses qubits and registers of
classical bits (cbits) as static units of information that
must be declared at the program’s beginning. Quantum
instructions in QASM consist solely of single-qubit uni-
tary gates, CNOT gates, and measurements. Any quan-
tum circuit can be constructed using these instructions.

2. DJ.Wineland et al.,“Experimental Issues in Coherent Quantum-
State Manipulation of Trapped Atomic lons,” J. Research of NIST,
vol. 103, no. 3, 1998, pp. 259-328.

Fault tolerance and error correction (QEC)

Mathematical model: Computational . .
VR Tad AT, _ o _ Quantum clom.puter _ Software: R Physical system. |
; ” ; > compiler: L »| Laser pulses applied
unitary operators, Quantum bits, QIR. QASM QPOL 10 ions in traps
and tensor products gates, and circuits ’
r
. J ———————— | e [o
| EPR pair creation : Quantum circuit model } QIR — QASM } | QPOL
| qubit x,y; | <layout>
)~ (O + (172 T 0 —{H 4= = Gare }—/hl grid (3.1)
| gate cx; i empty (1,1) - (3,1)
: : 12 _GB_ | h x; | : <ion x, "data", (1,1)>
______________ I ex x,y; | | <ion y, "data", (3,1)>
L | </layout>
| <qpol>
e : gate "H", (x)
|
I

}

lay) l
la)— QEC 1
|az) :
|

|

|

|

|

|

Moves Moves
by

165) D
Ibs) -

o

(2,1)

move X,

QASM = Quantum Assembly
Language

QIM = Quantum intermediate
representation

QPOL = Quantum Physical

Operations Language

Figure A. Using quantum information processing to control live physical systems. Proposed four-phase design flow, detailed for
EPR pair creation on a trapped-ion computer with machine instructions translated into a sequence of laser pulses that perform a

CNOT gate.

January 2006 m

BRIED
En

COEEEEIEED

[
P GEEEEEDEED

m
Gzocemmaesd
[5)

[alefsdatatadad ol :]

@EBEERSETD

GEEEEMESED
EEEHI%EEEQ

CEEEEEISED
an -

EEEB&EQQEE
EEEEEREEED
am
GRREES

[0
EEESNNEESED
EEEEREEEm
SiEEEEEaD
aigoSaEaEd

[r]=falel=lulfidn]a]
EEEENIEEEE

[=tded ot
Wl - -

] [
EEEEE
ESEE8
==k badin]

SBRERR
LLLL]

pEaoE
IE

esgEiEzsEe gzzem
EEOGEEEEAD EEESE

Figure 2. Trapped-ion simulator. Graphical display shows an H-
tree layout. Qubits are ions represented by spheres, and gates
are laser pulses, represented by lines. The qubits can move
within the black regions but not into the substrate, drawn using
light squares. The right window displays feedback regarding
current operations, noise-induced failures, and estimated
execution time.

Quantum Physical Operations Language

QPOL precisely describes the execution of a given
quantum algorithm expressed as a QASM program on
a particular technology, like trapped-ion systems. QPOL
includes physical operations as well as technology-
specific modules. In particular, it organizes physical
operations into five instruction types:

e [nitialization instructions specify how to prepare the
initial system state. This can include loading qubits
into the quantum computer, initializing auxiliary
physical states used in computations, and setting
qubits to |0).

o Computation instructions include quantum gates and
measurements.

® Movement instructions control the relative distance
between qubits to bring them together to undergo
simultaneous operations.

e Classical control instructions provide a subset of a
modern digital computer’s functionality and allow
quantum gates to be applied based on classical bit val-
ues stored in classical memory.

e System-specific instructions control other physical
degrees of freedom particular to the system that do
not explicitly fall into the other categories.

The final QPOL distributes these instructions to the avail-
able instruction processing units—highly parallel quan-
tum computers will have many—and by inserting
appropriate waiting times.

In the case of trapped-ion computers, initialization
has three stages: loading of multiple ions into a loading
region, laser cooling to reduce ion temperatures, and
optical pumping to put all qubits into a known state.

Computation is naturally described in terms of single-
qubit rotations and a controlled-phase gate between ions

m Computer

in the same trap, both achieved using a laser pulse
sequence. Measurement uses another laser pulse that
causes ions in the |0) state to fluoresce. Electrostatic fields
can move ions between multiplexed traps, and they can
move multiple ions in and out of the same trap.

An external classical processor controls the execution
of QPOL instructions, stores measurement results, and
performs conditional instructions based on stored cbits.

System-specific instructions recool ions when they
heat due to movement operations. Certain laser pulses
also accomplish recooling, but the lasers are applied dif-
ferently for cooling than for gates, requiring different
treatment by the design tool.

HIGH-PERFORMANCE SIMULATION
OF QUANTUM CIRCUITS

Quantum-mechanical effects are useful for accelerat-
ing certain classical computations, as Lov Grover” and
Peter Shor® have shown; however, numerical simulation
of quantum computers on classical computers remains
important for engineering reasons.

In classical electronic design automation, chip design-
ers always test independent modules and complete sys-
tems by simulating them on test vectors before costly
manufacturing. Numerical simulations can also help to
evaluate quantum heuristics that defy formal worst-case
analysis or only work well for a fraction of inputs.

For the numerical simulation phase of our design flow,
we again use the quantum circuit formalism. Because
mathematical models of quantum states, quantum gates,
and measurement involve linear algebra, a key aspect of
efficient simulation is exploiting the structure in the matri-
ces and vectors derived from quantum circuits. To this
end, researchers have proposed polynomial-time simula-
tion techniques for circuits arising in error correction’
and for “slightly entangled” quantum computation.

QuiDDPro: A generic graph-based simulator

George Viamontes and colleagues'® have proposed a
generic simulation technique based on data compres-
sion using the quantum information decision diagram
(QulDD) data structure. Its worst-case performance is
no better than what can be achieved with basic linear
algebra, but it can dramatically compress structured vec-
tors and matrices, including all basis states, small gates,
and some tensor products.

A QuIDD is a directed acyclic graph with one source
and multiple sinks, each labeled with a complex num-
ber. The graph models matrix and vector elements as
directed paths; any given vector or matrix can be encoded
as a QulDD and vice versa (subject to memory con-
straints). Graph algorithms working on QuIDDs, sup-
plied as a software library, implement all linear-algebraic
operations in terms of compressed data representations.

Time and memory used by these algorithms to simu-
late a useful class of quantum circuits scale polynomi-

ally with the number of qubits. All components of
Grover’s algorithm, except for some application-depen-
dent oracles, fall into this class. QuIDD-based simula-
tion of the algorithm requires time and memory resources
that are polynomial in the oracle function’s size. If a com-
pact QuIDD can represent a particular oracle function
for some search problem, then classical simulation of the
algorithm runs nearly as fast as an ideal quantum circuit.
QulIDDs can also simulate density matrices by imple-
menting several additional operations, such as trace-
overs, in terms of graph traversals.!® Straightforward
modeling of any 16-qubit density matrix would require
64 Tbytes of memory. In contrast, for a reversible 16-
qubit adder circuit using CNOT and Toffoli gates, the
QuIlDDPro package (http://vlsicad.eecs.umich.edu/
quantum/qp) requires less than 5 Mbytes.

Trapped-ion simulator

Numerical simulations of quantum systems are also
useful when studying the feasibility or performance of
specific physical implementations.® We have carried out
such a simulation for trapped-ion systems with up to
1,000 qubits; this applies to quantum stabilizer circuits,
which are central to quantum error correction.

The keys to such realistic simulations are the layout of
qubits in physical space and the scheduling of opera-
tions. Our layout tool maps circuits onto an H-tree, a
recursively constructed fractal layout. This reduces
movement operations required per gate by keeping
qubits in inner codes near one another within concate-
nated quantum codes, which also have a self-similar
structure. Our scheduler tool uses implicitly specified
paths to optimize for minimal distances, expanding
QASM instructions to include movements.

The simulator output includes the final quantum state
(for circuit verification), measurement and failure his-
tories, total execution time, and, in the case of a fault-
tolerant circuit, validity of the final output. As Figure 2
shows, output also is a graphical display of QPOL
instructions as they are simulated.

DESIGN FLOW FOR FAULT-TOLERANT
ARCHITECTURES

The inherently noisy nature of quantum computers
requires inserting error-correction routines and replac-
ing gates with their fault-tolerant implementations to
achieve scalability. A system architect can apply this
process manually, synthesizing and laying out each
fault-tolerant gate (architecture-driven design), or a
compiler can apply it algorithmically (software-driven
design).

We are currently considering both processes for
trapped-ion computing systems, but the principles
extend to other physical systems. The central goal of
both designs is to guarantee that the final sequence of
physical operations will execute fault-tolerantly on the

Figure 3. TMR fault-tolerant NAND gate at the second level of
recursion, constructed from three fault-tolerant NAND (N)
gates and three majority (M) gates.

target system—if failures occur infrequently enough,
then the resulting errors cannot cause the system to fail.

Fault-tolerant classical components

In special applications of modern digital computers,
the canonical method for fault-tolerant computation is
triple modular redundancy." TMR involves feeding gate
inputs copied three times into three gates that fail with
probability O(p). The output lines of these faulty gates
fan out into three majority voting gates. The majority
gates essentially amplify the correct value of the com-
putation so that the fault-tolerant gate fails only if two
or more failures occur. Mathematically, the fault-toler-
ant gate fails with probability O(p?).

Figure 3 shows a TMR fault-tolerant NAND gate at
the second level of recursion, constructed from three
fault-tolerant NAND gates and three majority gates. All
gates are assumed to fail with probability p, such that the
highlighted TMR NAND gate fails with probability
< 6p?, ignoring input errors. The entire circuit shown
fails with probability < 63p*. If p < 1/6, then this circuit
is more reliable than a basic gate.

Applying TMR recursively k times, as illustrated in
Figure 3 for k = 2, fault-tolerant components can be
made to fail with probability bounded above by p[(k) =
(cp)*/c. The constant c is determined by the maximum
number of fault paths through the highlighted circuit
that lead the circuit to fail. In this case, ¢ = 6 because at
least two gates or two majority voters must fail. If each
basic gate fails with probability p < 1/c, then p{k) —> 0
as k — 8. This construction exhibits a fault-tolerance

threshold p,, = 1/c.

Fault-tolerant quantum components
We construct fault-tolerant quantum components using
procedures similar to classical fault-tolerance techniques.

January 2006 m

two different processes within the

Data Data] framework of our design flow.
. Ancillat j_@m An a}rchitectfurel—drixllen design
L Verification__ % Spdomg | Process inserts fault-to erant gates
| Classical register | i N Y bit from a predesigned library during
------- sy technology-dependent code genera-
(a) (b) tion. A design team creates the library

of universal, fault-tolerant, technol-

Figure 4. Fault-tolerant quantum computation. (a) Recovery operation. (b) Single

syndrome bit extraction.

They can encode quantum information using quantum
computation codes' that allow fault-tolerant computa-
tion via a discrete universal set of gates. Calderbank-Shor-
Steane codes are one family of quantum codes that allow
a transversal implementation of an encoded CNOT gate.
Transversal gates are always fault tolerant because they
are implemented in a bitwise fashion—a gate between a
pair of encoded qubits is implemented by applying the gate
from bit 1 of the first encoded qubit to bit 1 of the second
encoded qubit, and so on.

However, there are no known computation codes for
which a universal set of encoded operations can be imple-
mented transversally. In practice, performing quantum
gates requires fault-tolerant preparation of several kinds
of ancillas, or scratch qubits. After each gate, we insert on
each qubit a recovery operation that consumes a syndrome
extraction ancilla to acquire syndrome bits. Syndrome
extraction ancillas must be available in great supply and
may need to be checked for critical errors using verifica-
tion ancillas. All of these operations must remain fault tol-
erant when qubits can only interact locally."?

Figure 4 illustrates key aspects of this process. A recov-
ery operation, shown in Figure 4a, interacts fault-toler-
antly with the data via syndrome bit extraction networks
Sy, This involves using a syndrome extraction ancilla
to measure each syndrome bit, possibly several times,
and storing the results to a classical register. A classical
computer processes the register and applies the appro-
priate error correction R to the data. Recovery opera-
tions must follow every fault-tolerant gate to correct
errors potentially introduced by that gate.

As Figure 4b shows, extracting a single syndrome bit
fault-tolerantly first requires an ancilla state |anc). The
highlighted network prepares and verifies the ancilla; a
verification qubit indicates if the verification network V
failed. Upon successful preparation of an ancilla, the C
network interacts with the data fault-tolerantly to col-
lect a syndrome bit. The quantum network D then
decodes and measures the bit. Some classical postpro-
cessing may take the place of D.

Fault-tolerant architectures

A quantum computation code conceptually separates
the logical and physical machine. Both architecture-dri-
ven and software-driven designs exploit this fact to yield

m Computer

ogy-specific components using a
combination of replacement rules,
heuristic methods, and device mod-
els, then publishes the library together with design rules
for connecting the composite components.

A software-driven design process inserts fault-toler-
ant gates during technology-independent code genera-
tion using replacement rules based on quantum circuits.
Sophisticated schedulers and layout tools insert QPOL
instructions to preserve fault tolerance. Algorithmic
optimizations make fine-grained replacements, and com-
pilers can use feedback from simulators to focus the
optimizers on the circuit’s critical regions. Our software
architecture allows such insertion and testing of error-
correction and fault-tolerance techniques at multiple
stages in the design flow.

ur work has thus far focused on the languages,

transformations, and fault-tolerance procedures

needed along the design flow to produce robust
implementations. However, many important challenges
remain to be solved before researchers can build or even
realistically design a scalable quantum computer.

To effectively use available quantum resources, we
must be able to schedule and synchronize parallel quan-
tum computations. We also need efficient technology-
independent optimization algorithms for realistic classes
of quantum circuits as well as strategies for adapting
generic circuits to specific architectural constraints and
implementation technologies.

Identifying and evaluating meaningful architectural
design blocks will necessitate further development of
simulation techniques for quantum circuits and high-
level programs.

Achieving robust, scalable quantum computation will
require both fault-tolerant architectural strategies com-
patible with emerging quantum device technologies and
optimization algorithms that minimize the number of
fault paths, code size, or number of gates in fault-toler-
ant circuits.

It will also be necessary to match tools to experimen-
tal implementations as well as develop methodologies
for design verification and test such as quantum state
tomography, circuit-equivalence checking, and test-vec-
tor generation.

The grandest challenge of all is to design a high-level
programming language that encapsulates the principles

of quantum mechanics in a natural way so that physi-
cists and programmers can develop and evaluate more
quantum algorithms.

Design and verification tools for robust quantum
circuits are vital to the future of quantum informa-
tion processing systems, and their development will
be a natural evolutionary step as such machines grad-
uate from the laboratory to engineering design.

Acknowledgments

We are grateful to Stephen Edwards for many help-
ful comments on computer-aided design flows. Krysta
Svore acknowledges support from an NPSC fellow-
ship, Andrew Cross acknowledges support from an
NDSEG fellowship, and Igor Markov acknowledges
funding from the DARPA QulST program and the
NSE.

References

1. M.A. Nielsen and L.L. Chuang, Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

2. S. Bettelli, T. Calarco, and L. Serafini, “Toward an Architec-
ture for Quantum Programming,” The European Physics].
D, vol. 25, no. 2, 2003, pp. 181-200.

3. B. Omer, “A Procedural Formalism for Quantum Comput-
ing,” doctoral dissertation, Dept. Theoretical Physics, Tech-
nical Univ. of Vienna, 1998.

4. A.V. Aho, R. Sethi, and].D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986.

5. V.V. Shende, S.S. Bullock, and LI.L. Markov, “Synthesis of
Quantum Logic Circuits,” to appear in IEEE Trans. Com-
puter-Aided Design of Integrated Circuits, 2006; http://
arxiv.org/abs/quant-ph/0406176.

6. V.V. Shende, I.L. Markov, and S.S. Bullock, “Finding Small
Two-Qubit Circuits,” Proc. SPIE, vol. 5436, Apr. 2004, pp.
348-359.

7. L.K. Grover, “A Fast Quantum Mechanical Algorithm for
Database Search,” Proc. 28th Ann. ACM Symp. Theory of
Computing, ACM Press, 1996, pp. 212-219.

8. P.W. Shor, “Polynomial-Time Algorithms for Prime Factor-
ization and Discrete Logarithms on a Quantum Computer,”
SIAM]. Computing, vol. 26, no. 5, pp. 1484-1509.

9. S. Aaronson and D. Gottesman, “Improved Simulation of Sta-
bilizer Circuits,” Physical Rev. A, vol. 70, no. 5, 2004;
www.scottaaronson.com/papers/chp5.pdf.

10. G.F. Viamontes, I.L. Markov, and J.P. Hayes, “Graph-Based
Simulation of Quantum Computation in the State-Vector and
Density-Matrix Representation,” Quantum Information and
Computation, vol. 5, no. 2, 2005, pp. 113-130.

11. J. von Neumann, “Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components,” Automata
Studies, C.E. Shannon and J. McCarthy, eds., Princeton Univ.
Press, 1956, pp. 329-378.

12. D. Aharonov and M. Ben-Or, “Fault-Tolerant Computation

with Constant Error,” Proc. 29th Ann. ACM Symp. Theory of
Computing, ACM Press, 1997, pp. 176-188.

13. K.M. Svore, B.M. Terhal, and D.P. DiVincenzo, “Local Fault-
Tolerant Quantum Computation,” Physical Rev. A, vol. 72,
no. 5, 2005; http://arxiv.org/abs/quant-ph/0410047.

Krysta M. Svore is a PhD student in the Department of
Computer Science at Columbia University. Her research
interests include quantum computation, particularly quan-
tum fault tolerance and error correction, as well as data
mining and intrusion detection. Svore received an MS in
computer science from Columbia University. Contact her
at kmsvore@cs.columbia.edu.

Alfred V. Abo is Lawrence Gussman Professor of Computer
Science and vice chair for undergraduate education in the
Department of Computer Science at Columbia University.
His research interests include quantum computing, pro-
gramming languages, compilers, and algorithms. Abo
received a PhD in electrical engineering and computer sci-
ence from Princeton University. He is a Fellow of the Amer-
ican Association for the Advancement of Science, the ACM,
and the IEEE. Contact him at aho@cs.columbia.edu.

Andrew W. Cross is a PhD candidate in the Department of
Electrical Engineering and Computer Science at the Mass-
achusetts Institute of Technology, and a research assistant
in the Quanta Group at MIT Media Lab’s Center for Bits
and Atoms. His research focuses on fault-tolerant quantum
computing. Cross received an MS in electrical engineering
and computer science from MIT. Contact him at awcross@
mit.edu.

Isaac Chuang is an associate professor with joint appoint-
ments in the Department of Electrical Engineering and
Computer Science and the Department of Physics at MIT,
where be also leads the Quanta Group at MIT Media Lab’s
Center for Bits and Atoms. His research interests include
quantum information science, AMO implementations of
quantum computers, quantum algorithms, and architec-
tures for quantum information systems. Chuang received a
PhD in electrical engineering from Stanford University.
Contact him at ichuang@mit.edu.

Igor L. Markov is an assistant professor in the Department
of Electrical Engineering and Computer Science at the Uni-
versity of Michigan. His research interests include physical
design and physical synthesis for VLSI, synthesis and sim-
ulation of quantum circuits, and artificial intelligence.
Markov received a PhD in computer science from the Uni-
versity of California, Los Angeles. He is a member of the
ACM and the IEEE Computer Society and a senior mem-
ber of the IEEE. Contact him at imarkov@eecs.umich.edu.

January 2006

