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ABSTRACT imated nonlinear filter banks has been introduced [4, 8,9], 
where PR is obtained by imposing restrictions on the filter 
structure instead of on the filter coefieients. We use here a 
particularisation of a 

we propose a the 
general structure of a JPEG coder, but which uses a nonlin- 
ear transform to replace the DCT. The nonlinear transform 

pyramidal coder' which 

general framework 

is obtained by thehierarchical application of a median fil- 
ter predictor at  subsampled versions of the original signal. 
The transformed samples are grouped into square blocks 
and used to replace the DCT in the JPEG baseline coder. 
The Proposed coder shows several advantages: computation 
is greatly rduced compared to the DCT, image edges are 
better encoded, blocking is eliminated, and it allows lossless 
Coding. Objective comparisons show the superiority Of the 
proposed coder against both baseline and lossless JPEG. 

2. THE TRANSFORM 

2.1. One stage 

Let the picture elements (pixels or pels) in the input image 
be denoted by z(n1, nz). With the usual notation for multi- 
dimensional signals [11], we define the vector n = [nl, nz]T 
and denote the signal by z ( ~ ) .  We define the polyphase 
components of the signal as z;(m) = z(Mm + i), for M = 

1. INTRODUCTION 

Multiresolution techniques provide a convenient way of ex- 
ploring the several levels of spatial redundancy existing on 
most images. The Laplacian pyramid coder [l] explores this 
idea, and became quite popular for image processing and 
coding despite the fact that it expands the number of sam- 
ples. Expansiveness can be eliminated by directly applying 
an association of filter banks [2], which has been shown to 
be equivalent to the discrete wavelet transform [2]. The 
JPEG baseline system (referred here as DCT-JPEG) [3] is 
a de facto standard for lossy image compression. However, 
it is based on the discrete cosine transform (DCT), which 
is somewhat expensive to compute and can also cause ring- 
ing and blocking artifacts [3]. In this paper, we present a 
JPEG-based coder which uses a nonlinear transform instead 
of the DCT. The transform is based on a multiresolution fil- 
ter bank, and does not require multiplications, nor floating 
point numbers, and allows lossless coding. Comparison to 
the DCT-JPEG at several bit-rates shows the superiority 
of the proposed coder, both objectively and subjectively. 
The JPEG standard also includes a dedicated mode (non- 
DCT-based) for lossless coding [3]. We show that it is also 
outperformed by the proposed nonlinear coder. Besides, 
since no dedicated lossless mode is required, the coder is 
also convenient to nearly lossless coding. 

Perfect reconstruction (PR) in critically decimated sys- 
tems is generally guaranteed by imposing conditions on the 
filter coefficients. When dealing with nonlinear filters, no 
such general conditions exist [4]. For this reason, nonlin- 
ear filter banks were restricted to non-critically decimated 
cases [5, 6, 71. Recently, a new approach for critically dec- 
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concerned with 2D signals and with the case MI = MZ = 2, 
so that i can assume the values representing one out of four 
polyphase components: (O,O), (O,l), ( l ,O) ,  and (1,l). The 
samples in the original signal map to the polyphase compo- 
nents according to  the following grid pattern: 

(00) (01) ( 0 0 )  (01) ( 0 0 )  (01) ( 0 0 )  (01) ( 0 0 )  (01) ( 0 0 )  (01) 
(10) (11) (10) (11) (10) (11) (10) (11) (10) (11) (10) (11) 
(00) (01) ( 0 0 )  (01) ( 0 0 )  (0%) ( 0 0 )  (01) ( 0 0 )  (01) ( 0 0 )  (01) 

(10) (11) (10) (11) (10) (11) (10) (11) (10) (11) (10) (11) 

Applying the same notation to the transformed signal y(n), 
the decomposition for one pyramid level can be described 
as: 

yoo(n) = zoo(n) (1) 
yil(n) = m(n) - Fo(zoo(n)) (2) 

yoi,io(n) = zo1,1o(n) - Fl(soo(n),sil(n)) (3) 

where Fi is any linear or nonlinear function and zo1,1o(n) 
is the quincunx grid formed by zol(n) and xlo(n). It is 
clear that z(n) can be perfectly reconstructed since we can 
always fmd zy (n) as a function of y;j(n) and of previously 
reconstructed polyphase components. The relative spatial 
arrangement between the two rectangular grids zoo and 81% 

is the same as that between the two quincunx grids XOO,II 

and z01,10. The difference is arotation of 45 degrees. There- 
fore, 3'1 can be essentially the same as FO [lo]. 

2.2. The pyramid 

As usual in the filter banks literature, we call the subband 
decomposition process analysis and the reconstruction pro- 
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Figure 1: Generation of a multiresolution pyramid. 

cess synthesis. We further extend the notation to define 

X,,i0il (no, n1) = z(2,no + 2’-’io,2” + 2’%). (4) 

As in the wavelet and pyramid transforms [l, 21, one can 
connect the input of a stage right to the low-pass output of 
another one as shown in Fig. 1. 

In image coding applications the subbands are quan- 
tized. Given the sequential nature of the decomposition 
process, we can avoid excessive accumulation of quantiza- 
tion error across subbands by using a feedback loop (local 
reconstruction) similar to that used in DPCM systems. Fur- 
thermore, for maximum compression, Fi should be a good 
interpolator in order to minimize the information sent along 
the subbands. 

If we let p r o c e s s ( y k , i j ( n ) ,  z(n), Q I )  be 
g k , i j ( n )  = interpolate(z(n)) 
y k , i j ( n )  = z k , i j ( n )  - & k , i j ( n )  

encode &I{Yk, i j (n)}  

$ k , i j ( n )  = QL1{Qz{Yk,ij(n)}} 

s k , i j ( n )  = & , i j ( n )  + g k , i j ( n )  
the description of the analysis process’ is given by: 

z=1 
P J C ~ ~ ~ Y S , O O ( ~ ) ,  Q1) 
for k = S: -1 : 1 

p r m e s s ( y k , i i ( n ) ,  s k , o o ( n ) ,  Q+i) 

1 = 1 + 2  

p r w s 8 ( Y k , 0 1 ( n ) ,  {&k,OO(n), & k , l l ( n ) } ,  Q l + Z )  
P ” ~ e s 8 ( Y k , l o ( n ) ,  {*k,OO(n), &k,11 (n)}, Q I + Z )  

end 

Note that at each iteration 

s k - l , O o ( n )  = (2k,OO(n) ,  ? k , O l ( n ) ,  & k , l O ( n ) ,  O k , l l ( n ) ) ,  

and Qn represents the quantization process at the n-th step 
and QC’ is the inverse operation. For example, for uniform 
quantizers with step size A,,, Qn{t} = rozmd(t/A,,) and 
Q i ’ { t }  = tA,,. For S = 3 (a depth-3 decomposition), an 
example of the sequence of pixels used is given in Fig. 2. 
In this figure, samples labeled “1” through “n” are used to 
interpolate samples labeled “n+l”. Note also that we can 
group the samples into 2‘ x 2’ blocks (as the 8 x 8 block 
in the figure) to replace traditional block transforms. 

We can characterize the analysis-synthesis process as a 
pyramidal scheme with critical sampling of the interpola- 
tion error, as an association of filter banks, or as a hierar- 
chical DPCM system, where samples are predicted by in- 
terpolation rather than conventional extrapolation [12, 131. 

Figure 2: Illustration of a 3-stage decomposition. Samples 
labeled “n+l” are transformed by computing the interpola- 
tion error using the 4 nearest samples labeled “1” through 
Un” . We can also group the samples into! blocks, as indi- 
cated. 

00.0.0.0.0. 
0 02 0 0 o_o~ooo 0 0 

0 0 0  0 0 0 0 0 010 0 
0 01. 0 0 0 0 0 0’0 0 

0 ol. 0 0 0 0 0 .lo 0 
0 010 0 0 18) 0 0 010 0 

0 010 0 0 0 0 0 010 0 
0 OI? 2 t~o-o-o,o 0 

0 010 0 El 0 0 0 0 010 0 

0 0 0 0 0 0 0 0 0 0 0  
0000.000000 

Figure 3: Typical support region of the int’erpolation filters. 

2.5. Interpolation 

The choice of the filters boils down to the choice of an in- 
terpolation method. In Fig. 3, samples in the grid marked 
by 0 are available to interpolate the sample marked with 
8. Typical support regions use 4 or 16 neighbors. Opti- 
mum linear interpolators can be easily computed (assuming 
the signal characteristics are known). Nevertheless, simple 
nonlinear interpolation has shown to produce better results 
than much more complex linear filters [14$]. Even with the 
recent theoretical advances in nonlinear systems [15,16,17], 
nonlinear filters still lack adequate design techniques. In- 
stead of exploring a complex ad-hoc design for the filter, we 
decided to settle on one of the simplest filters we can think 
of: a 2 x 2 median filter. The objective is to show the high 
potential of nonlinear systems. Although simple, we will 
show that such system can outperform much more complex 
linear systems. For four input samples aiij, we define the 
median filter by the following rule: 

Given set {all,alz,a~l,a22} 
0 Discard min{all, ala,azl,aza} 

Discard maz{aii,aiz,a21,azz} 

0 Output the average of the remaining two elements. 
See [lo] for a discussion on properties of this filtering oper- 
ation, as well as on its fast implementation algorithm. Such 
algorithm can be carried using B-bit integer arithmetic for 
B-bit images and is multiplication free. ‘more details can be found in [lo]. 
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Table 1: Performance (in bpp) of some lossless compressors. 
Coders 
NLP- JPEG 

GZIP 1.19 

S. JPEG-BASED CODING 

For evaluation and comparisons in a complete image coding 
system, we embedded the transform into JPEG. The idea 
is to replace the DCT coefficients by our pyramid samples. 
This has been done before by substituting the DCT by the 
DWT and using the same coder except by replacing the 
transform [18]. Here, we follow the same principle: using 
three stages (S = 3) and grouping the pyramid samples 
into blocks as shown in Fig. 2. We, therefore, refer to our 
coder as NLP-JPEG and refer to regular JPEG coder as 
DCT-JPEG. 

S is selected as 3 and 2 s  + 1 = 7 step sizes are selected 
for uniform quantizers. The image is transformed using the 
nonlinear pyramid with quantizer feedback. The low-pass 
samples are encoded using a 2D DPCM as: 

where we encode the value of Q1{vs,oo(n)}. The trans- 
formed samples are grouped into blocks of 2’ x 2’ = 8 x 8 
samples as in Fig. 2. For each block, the quantized sam- 
ples are reorganized into a vector. The samples are scanned 
from those labeled “1” to those labeled “7” in Fig. 2. The 
quantized samples are encoded using standard JPEG en- 
tropy coding based on Huffman codes. 

The DCT-JPEG has 64 quantizer steps (one for each 
DCT coefficient), while the proposed one has only 7 for 3 
stages. A complete description of an algorithm to optimize 
the quantizer steps can be found in [lo]. The quantizer 
steps were constrained to be non-decreasing because of the 
recursive nature of the proposed transform. 

Note that A,, = 1 leads to lossless coding. We com- 
pared the performance of the NLP-JPEG for lossless com- 
pression against three dedicated lossless coders: (1) the 
non-DCT lossless JPEG coder; (2)  Huffman based Said- 
Pearlman lossless coder 1191; (3) GnuZIP, which is a regular 
LZW compressor. Results are shown in Table 1. 

Tests were carried to compare the performances of NLP- 
and DCT-JPEG. Fig. 4 shows peak signal-to-noise ratio 
(PSNR) values for typical images. Resolution is 256 x 256- 
pels for “Cameraman” and 512 x 512-pels for the others. 
In these plots, we used optimized HufFman codes in JPEG 
for both the DCT and NLP based schemes. Although, in 
most cases, both approaches yield relatively close PSNR 
results, they generate images that look radically different 
in terms of the artifacts they produce. The DCT-JPEG 
approach at low bit rates produces the familiar ringing and 

PSNR (dB) PSNR (dB) 
‘U, , 38, 

/’ DCT-JPEG 30. 
a . 
26. 26 ’ 

24 , / Baby . 24, Cameraman 

0 1 1 1.5 0.5 1.5 0 0.5 
2221 1 22’ 

PSNR (dB) Bit-rate (bpp) PSNR (dB) Bit-rate (bpp) 

42, , 60- . 

I Lenna 
2 8 1  

0.5 
26 

1 
Bit-rate (bpp) Bit-rate @pp) 

Figure 4: Plot of PSNR versus bit-rate for several images. 

blocking artifacts. The NLP-JPEG approach has no ringing 
or blocking and generally encodes edges well, but it is not 
accurate to encode texture regions. Images are presented 
for subjective comparison in Fig. 5. 

4. CONCLUSIONS 

We presented a PR critically decimated nonlinear pyrami- 
dal structure for image compression based on the cascade 
of a two-step filter bank. Image coding tests were carried 
using JPEG and replacing the DCT by the proposed pyra- 
midal scheme. The proposed scheme shows superior perfor- 
mance over DCT-JPEG both objectively and subjectively. 
It also outperforms the alternative non-DCT based JPEG 
algorithm for lossless coding. The most appealing feature of 
the pyramid is its complexity, which is far less complex than 
most popular linear transforms and is suitable for hardware 
implementation. 
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