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Abstract—In this paper, we propose a novel encryption scheme 
for JPEG 2000 (J2K) and motion JPEG 2000. A block cipher 
in CBC mode is used to encrypt the bitstream of each J2K 
code-block. The encrypted J2K codestream preserves almost 
the same fine granularity scalability as the original J2K 
codestream yet with small or negligible overhead, and has fine 
and near RD-optimal truncations for a large range of bitrates. 
The proposed scheme enables desired transcoding directly on a 
single encrypted codestream without decryption to fit diverse 
capabilities of devices and heterogeneous networks with time-
varying bandwidths. Any node, trusted or not, along the 
delivery path is able to perform desired transcoding without 
sacrificing the end-to-end security of the system.  

I. INTRODUCTION 
JPEG 2000 (J2K) is a new image coding standard with 

fine granularity scalability (FGS) [1]. A J2K codestream is 
organized in a hierarchical structure with structural elements 
tiles, components, resolution levels, precincts, and layers. A 
packet is the fundamental building block in a J2K 
codestream, and is uniquely identified by the five 
aforementioned structural parameters. A J2K codestream 
provides FGS: the codestream can be truncated to the preset 
layers (i.e. qualities), resolutions, components, or to break 
packets to truncate at coding passes to fit a large variety of 
applications with devices of diverse capabilities and 
heterogeneous networks of different characteristics. FGS of a 
J2K codestream allows near Rate-Distortion (RD)-optimal 
bitrate reduction for a large range of bitrates. JPEG 2000 has 
also defined motion JPEG 2000 which encodes each video 
frame independently [2].  

Content should be protected against unauthorized usage. 
This is achieved typically by encrypting the content and 
ensuring that only authorized users can access the decryption 
keys. Protection can be further refined that authorized users 
can only consume protected content according to the 
acquired rights. This is done with a Digital Rights 
Management (DRM) system which provides persistent 
protection for content from creation to consumption [3][4]. 
In either simple or DRM protection, a J2K codestream 
should be encrypted such that the encrypted codestream still 
preserves certain level of scalabilities, preferably the original 
FGS. Such scalability enables desired transcoding directly on 
an encrypted stream without decryption. Otherwise each 
intermediate processing node, possibly untrusted, along the 
delivery path, needs to access the encryption secrets to 
decrypt the encrypted content first, transcode to a desired 
stream, and then re-encrypt the resulting stream, which may 
dramatically lower the end-to-end security of the system. 

Many multimedia encryption schemes have been 
proposed in the literature. Some are designed specifically for 
scalable streams. A comprehensive review on scalable 
multimedia encryption schemes, i.e., the schemes that 
preserve certain level of scalabilities in the encrypted stream, 
is given in [5]. As for JPEG 2000 encryption, Grosbois et al. 
[6] proposed two encryption schemes to provide access 
control on either resolutions or layers. To provide access 
control on resolutions, signs of wavelet coefficients in high 
frequency subbands are pseudo-randomly flipped. The 
output of a pseudo-random sequence generator is used to 
determine if the sign of a coefficient is inverted or not. A 
different seed to the generator is used for each code-block. 
Each seed is encrypted and inserted into the codestream right 
after the last termination marker of the corresponding code-
block by exploiting the fact that any byte appearing behind a 
termination marker is skipped by a J2K standard compliant 
decoder. The resulting encrypted codestream is J2K format 
compliant. To provide access control on J2K layers, the 
bitstream of coding passes belonging to last layers are 
pseudo-randomly flipped in the same way as that used for 
image resolution scrambling. One drawback of the scheme is 
that the two types of access control cannot be supported with 
a single encrypted stream. Another drawback is that a seed 
inserted after the last termination marker of a code-block 
may be lost during truncation or transmission, rendering the 
code-block undecryptible. Wee et al. [7] proposed an 
encryption scheme called Secure Scalable Streaming (SSS) 
that works with J2K. The scheme groups J2K packets into 
SSS packets. All data except header fields in each SSS 
packet are independently encrypted with a block cipher in 
Cipher Block Chaining (CBC) mode. The Initialization 
Vector (IV) used in the encryption is inserted into the header 
of each SSS packet, which may add significant overhead, 
esp. if FGS is needed to be supported in the encrypted 
stream. Scalable granularity is also reduced to a progressive 
SSS packet level. The supported adaptations in SSS are 
either to drop an entire SSS packet or to truncate trailing data 
in a SSS packet. To reduce encryption overhead, the number 
of SSS packets for each J2K compressed image is not high, 
resulting in very coarse granularity of scalability in an SSS-
encrypted stream. The paper [7] gives an example of 9 SSS 
packets, in either 3RX3L or 1RX9L setting that supports 3 
resolutions and 3 layers, or 1 resolution and 9 layers, 
respectively. Other scalabilities are not supported since 
individual J2K packets cannot be directly accessed after SSS 
encryption. For example, an SSS stream in the 1RX9L 
setting does not support multiple resolutions.  
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In this paper, we propose a novel encryption scheme for 
JPEG 2000 that enables FGS in an encrypted J2K 
codestream yet with very small or negligible overhead. In 
our scheme, the bitstream of coding passes of each code-
block, possibly padded with stuffing bits to ensure the length 
is a multiple of the encryption block size if ciphertext 
stealing [8] is not used, is independently encrypted with a 
block cipher such as AES in CBC mode. A single “global” 
IV is randomly generated and inserted into the image’s 
header fields. The IV used for encrypting each code-block is 
generated by hashing the global IV along with the 
parameters that uniquely identifies the code-block. The 
ciphertext of each code-block is then partitioned into smaller 
blocks, each block is aligned with the encryption block size, 
and put into J2K packets. Unlike SSS, we don’t use our own 
packets. The granularity of scalability after the encryption 
with our proposed scheme is nearly the same as the original 
JPEG 2000: an encrypted codestream can be truncated at any 
J2K packet, or each individual J2K packet can be reshaped 
by truncating trailing ciphertext of one or more code-blocks 
inside the packet. Auxiliary data for RD-optimal cutoff 
points can be inserted into header fields for near RD-optimal 
truncations in a large range of bitrates. For motion JPEG 
2000, an independent random IV is generated for each frame 
and inserted into the frame’s header. The same encryption 
scheme is applied to encrypt each frame.  

This paper is organized in the following way: In the next 
section, we briefly introduce JPEG 2000 which is the basis to 
describe our proposed scheme. Our scheme is described in 
detail in Section III, along with comparison with other 
proposed J2K encryption schemes. Experimental results are 
presented in Section IV. We conclude our paper in Section 
V. Before we go to the next section, we would like to note 
that unless explicitly mentioned otherwise, a packet means a 
J2K packet and a header is not encrypted in this paper. 

II. JPEG 2000  
JPEG 2000 (J2K) is a wavelet-based image coding 

standard [1]. In J2K, an image can be partitioned into smaller 
rectangular regions called tiles. Each tile is encoded 
independently. Data in a tile are divided into one or more 
components in a color space. A wavelet transform is applied 
to each tile-component to decompose into different 
resolution levels. The lowest frequency subband is referred 
to as the resolution level 0 subband, which is also resolution 
0. The image at a resolution r (r>0) consists of the data of the 
image at resolution (r-1) with the subbands at resolution 
level r. Wavelet coefficients are quantized by a scalar 
quantization to reduce precision of the coefficients except in 
the case of lossless compression. Each subband is partitioned 
into smaller non-overlapping rectangular blocks called code-
blocks. Each code-block is independently entropy-encoded. 
The coefficients in a code-block are encoded from the most 
significant bit-plane to the least significant bit-plane to 
generate an embedded bitstream. Each bit-plane is encoded 
within three sub-bitplane passes. In each coding pass, the bit-
plane data and the contextual information are sent to an 
adaptive arithmetic encoder for encoding. The arithmetic 
coding is terminated at the end of the last bit-plane encoding 

for a code-block. For error resilience, J2K also allows for 
termination of the arithmetic coded bitstream as well as the 
re-initialization of the context probabilities at each coding 
pass boundary to enable independent decoding of the 
bitstream from each coding pass. The compressed bitstream 
from each code-block is distributed across one or more 
layers in the codestream. Each layer represents a quality 
increment. A layer consists of a number of consecutive bit-
plane coding passes from each code-block in the tile, 
including all subbands of all components for that tile. J2K 
also provides an intermediate space-frequency structure 
known as a precinct. A precinct is a collection of spatially 
contiguous code-blocks from all subbands at a particular 
resolution level. The fundamental building block in a J2K 
codestream is called a packet. A packet is simply a 
continuous segment in the compressed codestream that 
consists of a number of bit-plane coding passes for each 
code-block in the precinct. Data length of each code-block in 
a packet is indicated in the packer header. Each packet can 
be uniquely identified by the five parameters: tile, 
component, resolution level, layer, and precinct. Each code-
block can be uniquely identified by the six parameters: tile, 
component, resolution level, precinct, subband, code-block 
index. All packets of a tile can be ordered with different 
hierarchical ordering in a J2K codestream by varying the 
ordering of the parameters in nested “for loops”, where each 
“for loop” is for one parameter from the above list. Details 
on J2K can be found in [1], and motion JPEG 2000 in [2]. 

III. FGS ENCRYPTION FOR JPEG 2000 & MOTION JPEG 2000 
In our J2K FGS encryption scheme, a random IV is first 

generated and inserted into J2K header fields. This IV is 
referred to as a “global” IV for the image. The bitstream 
from each code-block is independently encrypted with a 
block cipher in CBC mode from the first coding pass of the 
most significant bit to the last coding pass of the least 
significant bit. A block cipher partitions a plaintext into 
blocks of the same length as the block size of the block 
cipher to be used, typically 64 or 128 bits. Such a block is 
referred to as encryption block in this paper. If the J2K 
bitstream of a code-block, referred to as plaintext, is not 
aligned with the encryption block size, the last partial block 
is padded with stuffing bits to a full block. These padding 
bits are overhead of our proposed encryption scheme, as well 
as the global IV which is of the same size as an encryption 
block. 

The IV for encrypting a code-block is generated in the 
following way: a hash function such as SHA-1 [8] is applied 
to the global IV along with the parameters that uniquely 
identify the code-block. The resulting hash value is wrapped 
into blocks of the size of IV and XORed with each other. 
The result is used as the IV for encryption of the code-block. 
This code-block IV can be regenerated at decryption side and 
is not inserted into the codestream, which is very different 
from SSS proposed in [7]. 

After encryption, the ciphertext of each code-block is 
partitioned into smaller blocks which are all aligned with 
boundaries of encryption blocks and closest to the original 
partition if no encryption were used. These blocks of 
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ciphertext are then placed to packets of different layers in a 
similar way as the original J2K packetization. Auxiliary data 
for RD-optimal cutoff points can be inserted into header 
fields for near RD-optimal truncations in a large range of 
bitrates if packets are needed to be rate-reshaped.   

An image is usually encoded and encrypted at the 
highest rate of a range of supported bitrates. An encrypted 
J2K stream can be truncated at a preset resolution, layer, 
and/or component determined at the packetization time 
during encryption. For example, to truncate an encrypted 
J2K stream to a certain layer, all packets of higher layers are 
dropped. To truncate to a certain resolution, all packets of 
higher solution levels are dropped. Please note that packet 
headers are not encrypted in our scheme. Therefore each 
packet can be easily identified and directly accessed in an 
encrypted codestream. In addition to packet level 
truncations, a packet can also be rate-reshaped if finer 
granularity of scalability is needed. In this case, the trailing 
ciphertext of each code-block inside the packet can be 
independently truncated. Such a truncation should be aligned 
with encryption block boundaries.  

At receiver side, the IV for each code-block is 
regenerated from the inserted global IV. The ciphertext of 
each code-block in each received packet can be fully 
decrypted, thanks to the aforementioned packetization and 
truncation methods which generate encryption block aligned 
ciphertext for each code-block inside a packet. Since the J2K 
packet header includes information for the length of 
bitstream from each code-block in the packet, the ciphertext 
for each code-block in a packet can be easily identified. 
After decryption, the compressed bitstream for each code-
block in a packet is decoded with an arithmetic decoder. 
Since ciphertext of a code-block is aligned with the 
encryption block size, the bitstream of a coding pass may be 
partitioned into two packets. Therefore the decrypted 
bitstream of a code-block in a packet may end with a partial 
coding pass. In this case, the data corresponding to a partial 
coding pass are also input to the arithmetic coder for 
decoding. Decoding of the code-block pauses and waits for 
more data when the current decrypted bitstream is exhausted. 
When the next block of data of the code-block arrives, 
decoding is resumed. In this way, the data from each 
received packet is all used for decoding. The overhead is just 
those last bits that cannot generate a complete decodable 
symbol. This overhead is negligible. Therefore, even though 
our scheme has a very small overhead after encryption, the 
resulting codestream after truncations has negligible 
overhead. This is very different from SSS which has larger 
overhead in terms of percentage when a smaller number of 
SSS packets are used at decryption and decoding.  

Due to limitation of paper length, performance of the 
proposed scheme over a lossy communication network will 
not be discussed in this paper. It will be discussed in detail in 
a separate and lengthy paper. We only mention the result 
here: our encryption scheme has the same error resilience 
performance as the original J2K codestream if the error 
resilience option is not used. When the error resilience option 
is turned on, which results in a significant overhead, our 

scheme has a little worse error resilience performance than 
the original unencrypted J2K codestream. 

Our scheme has a few advantages over SSS. Our 
scheme has much finer granularity of scalability in the 
encrypted stream than SSS yet with smaller overhead, esp. 
when truncation occurs, as mentioned above. Each J2K 
packet and data of coding passes from individual code-
blocks in a packet can be directly accessed. Therefore our 
scheme can generate a single encrypted stream for diverse 
applications without having to use different encrypted 
streams as used in SSS. As shown in the next section, our 
scheme always generates fine, near RD-optimal truncations 
even though quite a few resolutions are simultaneously 
supported with the same encrypted codestream. In SSS, to 
support resolutions, less quality layers are supported to 
maintain the overhead at a fixed level, which results in very 
coarse, stairstep-like RD curves. As compared to the scheme 
proposed in [6], our scheme uses a single encrypted stream 
to support both layer access and resolution access rather than 
two differently encrypted codestreams used in [6]. No 
overhead data is provided in [6]. We expect that it has a 
similar overhead as our scheme when no truncation is 
applied (one seed in [6] and padding bits in ours for each 
code-block) but our scheme has less overhead if truncation is 
applied. In addition, our scheme has much less information 
leaking and much higher security than the schemes proposed 
in [6]. 

An alternative scheme is to use the ciphertext stealing 
method [8] in CBC mode which generates ciphertext of 
exactly the same size as the plaintext for any plaintext of size 
larger than one encryption block. In this method, the last full 
block and the last partial block of plaintext are encrypted 
differently from the rest blocks. In this alternative scheme, if 
a plaintext is not aligned with the encryption block size, the 
ciphertext of the last two blocks must be packed and 
truncated together in a packet. All other blocks are not 
allowed to be truncated to a partial encryption block. In this 
way, the last two blocks encrypted with ciphertext stealing 
can be detected if the ciphertext of a code-block inside a 
packet is not aligned with encryption block size. In a rare 
case that the compressed bitstream of a code-block is less 
than a full block, the ciphertext stealing method cannot be 
used. In this case, the padding scheme mentioned above is 
used. If this rare case is ignored, this alternative scheme does 
not introduce any overhead other than the inserted global IV. 

The proposed J2K FGS encryption scheme is equally 
applicable to motion JPEG 2000. For motion J2K, an 
independent random “frame” IV is generated for each frame. 
The frame IV which plays the same role as the global IV in 
J2K encryption is then inserted into the header fields of the 
frame. Each frame is encrypted in the same way as the image 
case. Auxiliary data can be inserted into frame header fields 
to allow near RD-optimal truncation for each frame. 

IV. EXPERIMENTAL RESULTS 
The proposed scheme has been implemented based on 

the publicly available J2K implementation JasPer (version 
1.701.0) [9]. The block cipher and the hash function used in 
our implementation are Blowfish [8] and SHA-1 [8], 
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respectively, from the publicly available Crypto++ library 
(version 5.2.1) [10]. Blowfish is a 64 bit block cipher. The 
following reported results are based on the experiments on a 
set of standard 8-bit grayscale images of 512 by 512 pixels 
with the proposed scheme which does not use the ciphertext 
stealing method. Each image is compressed to a nominal 1.0 
bpp with 5 levels of wavelet decomposition (i.e., 6 resolution 
levels) and 10 layers. The nominal code-block size is set to 
64 by 64. Table I shows the overhead of the proposed 
encryption scheme when no truncation is applied. The 
overhead is about 1.0% for all those images, which is smaller 
than SSS reported in [7], even though our scheme has much 
finer granularity of scalability. We mentioned that the 
overhead of our scheme would reduce with truncations. This 
is confirmed in our experiments to be described next.   

TABLE I.  Encryption overhead for 512 by 512 grayscale images 
compressed at 1.0 bpp without any truncation. 

Images Barbara Boat Goldhill Lena Peppers Zelda 
Overhead 

(%) 1.00 0.91 1.02 0.96 0.95 0.95 

 

Figure 1.  Images of the three highest resolutions from the encrypted 
codestream of the image Lena.  

 

Figure 2.  Encrypted Lena.  

Figure 1 shows the images of the three highest 
resolutions supported with the encrypted codestream of 
Lena. Figure 2 shows the encrypted image Lena. It appears 
very random without any visual information leaking out. 
Figure 3 shows the RD curve truncated at each layer for the 
encrypted image Lena along with the original J2K RD curve 
without encryption. The two curves almost coincide with 
each other. This means that the RD performance when 
truncations are applied directly on an encrypted codestream 
produced by our scheme is almost the same as the original 
J2K coder for a large range of bitrates. Our scheme produces 
fine and smooth RD curves at each resolution, in great 
contrast to the stairstep-like RD curves when 3 resolutions 
are supported with SSS in the example given in [7]. Figure 3 
also shows that our scheme’s experimental points get closer 
to the corresponding points of non-encryption case when 

more layers are truncated, virtually overlapping each other at 
left side. This implies that the overhead of our scheme 
reduces when more data is truncated, and is negligible at low 
bitrates. SSS shows an opposite behavior that its overhead 
increases percentage-wise when more data is truncated.  

 

Figure 3.  RD curves for both encrypted and unencrypted codestreams of 
the image Lena truncated at preset layers.  

V. CONCLUSION 
We have described a novel encryption scheme for JPEG 

2000 which preserves in the encrypted codestream almost 
the same fine granularity scalability as the original 
unencrypted J2K codestream. The overhead is very small, 
about 1.0% for 8-bit 512 by 512 grayscale images at 1.0 bpp, 
when no truncation is applied. This overhead reduces to a 
negligible level when truncations are applied to code-blocks 
and more and more data is truncated. The described scheme 
produces encrypted codestreams with fine and smooth RD 
curves at each resolution for a large range of bitrates. We 
have also shown how the proposed scheme works with 
motion JPEG 2000. 
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