
JPEG 2000 Encryption Enabling Fine Granularity Scalability without Decryption
Bin B. Zhu, Shipeng Li

Microsoft Research Asia, Beijing 100080, China
{binzhu, spli}@microsoft.com

Yang Yang
Dept. of Elec. Eng. & Info Sci., Univ. of Sci. & Technol.

of China, Hefei, Anhui 230027, China

Abstract—In this paper, we propose a novel encryption scheme
for JPEG 2000 (J2K) and motion JPEG 2000. A block cipher
in CBC mode is used to encrypt the bitstream of each J2K
code-block. The encrypted J2K codestream preserves almost
the same fine granularity scalability as the original J2K
codestream yet with small or negligible overhead, and has fine
and near RD-optimal truncations for a large range of bitrates.
The proposed scheme enables desired transcoding directly on a
single encrypted codestream without decryption to fit diverse
capabilities of devices and heterogeneous networks with time-
varying bandwidths. Any node, trusted or not, along the
delivery path is able to perform desired transcoding without
sacrificing the end-to-end security of the system.

I. INTRODUCTION
JPEG 2000 (J2K) is a new image coding standard with

fine granularity scalability (FGS) [1]. A J2K codestream is
organized in a hierarchical structure with structural elements
tiles, components, resolution levels, precincts, and layers. A
packet is the fundamental building block in a J2K
codestream, and is uniquely identified by the five
aforementioned structural parameters. A J2K codestream
provides FGS: the codestream can be truncated to the preset
layers (i.e. qualities), resolutions, components, or to break
packets to truncate at coding passes to fit a large variety of
applications with devices of diverse capabilities and
heterogeneous networks of different characteristics. FGS of a
J2K codestream allows near Rate-Distortion (RD)-optimal
bitrate reduction for a large range of bitrates. JPEG 2000 has
also defined motion JPEG 2000 which encodes each video
frame independently [2].

Content should be protected against unauthorized usage.
This is achieved typically by encrypting the content and
ensuring that only authorized users can access the decryption
keys. Protection can be further refined that authorized users
can only consume protected content according to the
acquired rights. This is done with a Digital Rights
Management (DRM) system which provides persistent
protection for content from creation to consumption [3][4].
In either simple or DRM protection, a J2K codestream
should be encrypted such that the encrypted codestream still
preserves certain level of scalabilities, preferably the original
FGS. Such scalability enables desired transcoding directly on
an encrypted stream without decryption. Otherwise each
intermediate processing node, possibly untrusted, along the
delivery path, needs to access the encryption secrets to
decrypt the encrypted content first, transcode to a desired
stream, and then re-encrypt the resulting stream, which may
dramatically lower the end-to-end security of the system.

Many multimedia encryption schemes have been
proposed in the literature. Some are designed specifically for
scalable streams. A comprehensive review on scalable
multimedia encryption schemes, i.e., the schemes that
preserve certain level of scalabilities in the encrypted stream,
is given in [5]. As for JPEG 2000 encryption, Grosbois et al.
[6] proposed two encryption schemes to provide access
control on either resolutions or layers. To provide access
control on resolutions, signs of wavelet coefficients in high
frequency subbands are pseudo-randomly flipped. The
output of a pseudo-random sequence generator is used to
determine if the sign of a coefficient is inverted or not. A
different seed to the generator is used for each code-block.
Each seed is encrypted and inserted into the codestream right
after the last termination marker of the corresponding code-
block by exploiting the fact that any byte appearing behind a
termination marker is skipped by a J2K standard compliant
decoder. The resulting encrypted codestream is J2K format
compliant. To provide access control on J2K layers, the
bitstream of coding passes belonging to last layers are
pseudo-randomly flipped in the same way as that used for
image resolution scrambling. One drawback of the scheme is
that the two types of access control cannot be supported with
a single encrypted stream. Another drawback is that a seed
inserted after the last termination marker of a code-block
may be lost during truncation or transmission, rendering the
code-block undecryptible. Wee et al. [7] proposed an
encryption scheme called Secure Scalable Streaming (SSS)
that works with J2K. The scheme groups J2K packets into
SSS packets. All data except header fields in each SSS
packet are independently encrypted with a block cipher in
Cipher Block Chaining (CBC) mode. The Initialization
Vector (IV) used in the encryption is inserted into the header
of each SSS packet, which may add significant overhead,
esp. if FGS is needed to be supported in the encrypted
stream. Scalable granularity is also reduced to a progressive
SSS packet level. The supported adaptations in SSS are
either to drop an entire SSS packet or to truncate trailing data
in a SSS packet. To reduce encryption overhead, the number
of SSS packets for each J2K compressed image is not high,
resulting in very coarse granularity of scalability in an SSS-
encrypted stream. The paper [7] gives an example of 9 SSS
packets, in either 3RX3L or 1RX9L setting that supports 3
resolutions and 3 layers, or 1 resolution and 9 layers,
respectively. Other scalabilities are not supported since
individual J2K packets cannot be directly accessed after SSS
encryption. For example, an SSS stream in the 1RX9L
setting does not support multiple resolutions.

63040-7803-8834-8/05/$20.00 ©2005 IEEE.

In this paper, we propose a novel encryption scheme for
JPEG 2000 that enables FGS in an encrypted J2K
codestream yet with very small or negligible overhead. In
our scheme, the bitstream of coding passes of each code-
block, possibly padded with stuffing bits to ensure the length
is a multiple of the encryption block size if ciphertext
stealing [8] is not used, is independently encrypted with a
block cipher such as AES in CBC mode. A single “global”
IV is randomly generated and inserted into the image’s
header fields. The IV used for encrypting each code-block is
generated by hashing the global IV along with the
parameters that uniquely identifies the code-block. The
ciphertext of each code-block is then partitioned into smaller
blocks, each block is aligned with the encryption block size,
and put into J2K packets. Unlike SSS, we don’t use our own
packets. The granularity of scalability after the encryption
with our proposed scheme is nearly the same as the original
JPEG 2000: an encrypted codestream can be truncated at any
J2K packet, or each individual J2K packet can be reshaped
by truncating trailing ciphertext of one or more code-blocks
inside the packet. Auxiliary data for RD-optimal cutoff
points can be inserted into header fields for near RD-optimal
truncations in a large range of bitrates. For motion JPEG
2000, an independent random IV is generated for each frame
and inserted into the frame’s header. The same encryption
scheme is applied to encrypt each frame.

This paper is organized in the following way: In the next
section, we briefly introduce JPEG 2000 which is the basis to
describe our proposed scheme. Our scheme is described in
detail in Section III, along with comparison with other
proposed J2K encryption schemes. Experimental results are
presented in Section IV. We conclude our paper in Section
V. Before we go to the next section, we would like to note
that unless explicitly mentioned otherwise, a packet means a
J2K packet and a header is not encrypted in this paper.

II. JPEG 2000
JPEG 2000 (J2K) is a wavelet-based image coding

standard [1]. In J2K, an image can be partitioned into smaller
rectangular regions called tiles. Each tile is encoded
independently. Data in a tile are divided into one or more
components in a color space. A wavelet transform is applied
to each tile-component to decompose into different
resolution levels. The lowest frequency subband is referred
to as the resolution level 0 subband, which is also resolution
0. The image at a resolution r (r>0) consists of the data of the
image at resolution (r-1) with the subbands at resolution
level r. Wavelet coefficients are quantized by a scalar
quantization to reduce precision of the coefficients except in
the case of lossless compression. Each subband is partitioned
into smaller non-overlapping rectangular blocks called code-
blocks. Each code-block is independently entropy-encoded.
The coefficients in a code-block are encoded from the most
significant bit-plane to the least significant bit-plane to
generate an embedded bitstream. Each bit-plane is encoded
within three sub-bitplane passes. In each coding pass, the bit-
plane data and the contextual information are sent to an
adaptive arithmetic encoder for encoding. The arithmetic
coding is terminated at the end of the last bit-plane encoding

for a code-block. For error resilience, J2K also allows for
termination of the arithmetic coded bitstream as well as the
re-initialization of the context probabilities at each coding
pass boundary to enable independent decoding of the
bitstream from each coding pass. The compressed bitstream
from each code-block is distributed across one or more
layers in the codestream. Each layer represents a quality
increment. A layer consists of a number of consecutive bit-
plane coding passes from each code-block in the tile,
including all subbands of all components for that tile. J2K
also provides an intermediate space-frequency structure
known as a precinct. A precinct is a collection of spatially
contiguous code-blocks from all subbands at a particular
resolution level. The fundamental building block in a J2K
codestream is called a packet. A packet is simply a
continuous segment in the compressed codestream that
consists of a number of bit-plane coding passes for each
code-block in the precinct. Data length of each code-block in
a packet is indicated in the packer header. Each packet can
be uniquely identified by the five parameters: tile,
component, resolution level, layer, and precinct. Each code-
block can be uniquely identified by the six parameters: tile,
component, resolution level, precinct, subband, code-block
index. All packets of a tile can be ordered with different
hierarchical ordering in a J2K codestream by varying the
ordering of the parameters in nested “for loops”, where each
“for loop” is for one parameter from the above list. Details
on J2K can be found in [1], and motion JPEG 2000 in [2].

III. FGS ENCRYPTION FOR JPEG 2000 & MOTION JPEG 2000
In our J2K FGS encryption scheme, a random IV is first

generated and inserted into J2K header fields. This IV is
referred to as a “global” IV for the image. The bitstream
from each code-block is independently encrypted with a
block cipher in CBC mode from the first coding pass of the
most significant bit to the last coding pass of the least
significant bit. A block cipher partitions a plaintext into
blocks of the same length as the block size of the block
cipher to be used, typically 64 or 128 bits. Such a block is
referred to as encryption block in this paper. If the J2K
bitstream of a code-block, referred to as plaintext, is not
aligned with the encryption block size, the last partial block
is padded with stuffing bits to a full block. These padding
bits are overhead of our proposed encryption scheme, as well
as the global IV which is of the same size as an encryption
block.

The IV for encrypting a code-block is generated in the
following way: a hash function such as SHA-1 [8] is applied
to the global IV along with the parameters that uniquely
identify the code-block. The resulting hash value is wrapped
into blocks of the size of IV and XORed with each other.
The result is used as the IV for encryption of the code-block.
This code-block IV can be regenerated at decryption side and
is not inserted into the codestream, which is very different
from SSS proposed in [7].

After encryption, the ciphertext of each code-block is
partitioned into smaller blocks which are all aligned with
boundaries of encryption blocks and closest to the original
partition if no encryption were used. These blocks of

6305

ciphertext are then placed to packets of different layers in a
similar way as the original J2K packetization. Auxiliary data
for RD-optimal cutoff points can be inserted into header
fields for near RD-optimal truncations in a large range of
bitrates if packets are needed to be rate-reshaped.

An image is usually encoded and encrypted at the
highest rate of a range of supported bitrates. An encrypted
J2K stream can be truncated at a preset resolution, layer,
and/or component determined at the packetization time
during encryption. For example, to truncate an encrypted
J2K stream to a certain layer, all packets of higher layers are
dropped. To truncate to a certain resolution, all packets of
higher solution levels are dropped. Please note that packet
headers are not encrypted in our scheme. Therefore each
packet can be easily identified and directly accessed in an
encrypted codestream. In addition to packet level
truncations, a packet can also be rate-reshaped if finer
granularity of scalability is needed. In this case, the trailing
ciphertext of each code-block inside the packet can be
independently truncated. Such a truncation should be aligned
with encryption block boundaries.

At receiver side, the IV for each code-block is
regenerated from the inserted global IV. The ciphertext of
each code-block in each received packet can be fully
decrypted, thanks to the aforementioned packetization and
truncation methods which generate encryption block aligned
ciphertext for each code-block inside a packet. Since the J2K
packet header includes information for the length of
bitstream from each code-block in the packet, the ciphertext
for each code-block in a packet can be easily identified.
After decryption, the compressed bitstream for each code-
block in a packet is decoded with an arithmetic decoder.
Since ciphertext of a code-block is aligned with the
encryption block size, the bitstream of a coding pass may be
partitioned into two packets. Therefore the decrypted
bitstream of a code-block in a packet may end with a partial
coding pass. In this case, the data corresponding to a partial
coding pass are also input to the arithmetic coder for
decoding. Decoding of the code-block pauses and waits for
more data when the current decrypted bitstream is exhausted.
When the next block of data of the code-block arrives,
decoding is resumed. In this way, the data from each
received packet is all used for decoding. The overhead is just
those last bits that cannot generate a complete decodable
symbol. This overhead is negligible. Therefore, even though
our scheme has a very small overhead after encryption, the
resulting codestream after truncations has negligible
overhead. This is very different from SSS which has larger
overhead in terms of percentage when a smaller number of
SSS packets are used at decryption and decoding.

Due to limitation of paper length, performance of the
proposed scheme over a lossy communication network will
not be discussed in this paper. It will be discussed in detail in
a separate and lengthy paper. We only mention the result
here: our encryption scheme has the same error resilience
performance as the original J2K codestream if the error
resilience option is not used. When the error resilience option
is turned on, which results in a significant overhead, our

scheme has a little worse error resilience performance than
the original unencrypted J2K codestream.

Our scheme has a few advantages over SSS. Our
scheme has much finer granularity of scalability in the
encrypted stream than SSS yet with smaller overhead, esp.
when truncation occurs, as mentioned above. Each J2K
packet and data of coding passes from individual code-
blocks in a packet can be directly accessed. Therefore our
scheme can generate a single encrypted stream for diverse
applications without having to use different encrypted
streams as used in SSS. As shown in the next section, our
scheme always generates fine, near RD-optimal truncations
even though quite a few resolutions are simultaneously
supported with the same encrypted codestream. In SSS, to
support resolutions, less quality layers are supported to
maintain the overhead at a fixed level, which results in very
coarse, stairstep-like RD curves. As compared to the scheme
proposed in [6], our scheme uses a single encrypted stream
to support both layer access and resolution access rather than
two differently encrypted codestreams used in [6]. No
overhead data is provided in [6]. We expect that it has a
similar overhead as our scheme when no truncation is
applied (one seed in [6] and padding bits in ours for each
code-block) but our scheme has less overhead if truncation is
applied. In addition, our scheme has much less information
leaking and much higher security than the schemes proposed
in [6].

An alternative scheme is to use the ciphertext stealing
method [8] in CBC mode which generates ciphertext of
exactly the same size as the plaintext for any plaintext of size
larger than one encryption block. In this method, the last full
block and the last partial block of plaintext are encrypted
differently from the rest blocks. In this alternative scheme, if
a plaintext is not aligned with the encryption block size, the
ciphertext of the last two blocks must be packed and
truncated together in a packet. All other blocks are not
allowed to be truncated to a partial encryption block. In this
way, the last two blocks encrypted with ciphertext stealing
can be detected if the ciphertext of a code-block inside a
packet is not aligned with encryption block size. In a rare
case that the compressed bitstream of a code-block is less
than a full block, the ciphertext stealing method cannot be
used. In this case, the padding scheme mentioned above is
used. If this rare case is ignored, this alternative scheme does
not introduce any overhead other than the inserted global IV.

The proposed J2K FGS encryption scheme is equally
applicable to motion JPEG 2000. For motion J2K, an
independent random “frame” IV is generated for each frame.
The frame IV which plays the same role as the global IV in
J2K encryption is then inserted into the header fields of the
frame. Each frame is encrypted in the same way as the image
case. Auxiliary data can be inserted into frame header fields
to allow near RD-optimal truncation for each frame.

IV. EXPERIMENTAL RESULTS
The proposed scheme has been implemented based on

the publicly available J2K implementation JasPer (version
1.701.0) [9]. The block cipher and the hash function used in
our implementation are Blowfish [8] and SHA-1 [8],

6306

respectively, from the publicly available Crypto++ library
(version 5.2.1) [10]. Blowfish is a 64 bit block cipher. The
following reported results are based on the experiments on a
set of standard 8-bit grayscale images of 512 by 512 pixels
with the proposed scheme which does not use the ciphertext
stealing method. Each image is compressed to a nominal 1.0
bpp with 5 levels of wavelet decomposition (i.e., 6 resolution
levels) and 10 layers. The nominal code-block size is set to
64 by 64. Table I shows the overhead of the proposed
encryption scheme when no truncation is applied. The
overhead is about 1.0% for all those images, which is smaller
than SSS reported in [7], even though our scheme has much
finer granularity of scalability. We mentioned that the
overhead of our scheme would reduce with truncations. This
is confirmed in our experiments to be described next.

TABLE I. Encryption overhead for 512 by 512 grayscale images
compressed at 1.0 bpp without any truncation.

Images Barbara Boat Goldhill Lena Peppers Zelda
Overhead

(%) 1.00 0.91 1.02 0.96 0.95 0.95

Figure 1. Images of the three highest resolutions from the encrypted
codestream of the image Lena.

Figure 2. Encrypted Lena.

Figure 1 shows the images of the three highest
resolutions supported with the encrypted codestream of
Lena. Figure 2 shows the encrypted image Lena. It appears
very random without any visual information leaking out.
Figure 3 shows the RD curve truncated at each layer for the
encrypted image Lena along with the original J2K RD curve
without encryption. The two curves almost coincide with
each other. This means that the RD performance when
truncations are applied directly on an encrypted codestream
produced by our scheme is almost the same as the original
J2K coder for a large range of bitrates. Our scheme produces
fine and smooth RD curves at each resolution, in great
contrast to the stairstep-like RD curves when 3 resolutions
are supported with SSS in the example given in [7]. Figure 3
also shows that our scheme’s experimental points get closer
to the corresponding points of non-encryption case when

more layers are truncated, virtually overlapping each other at
left side. This implies that the overhead of our scheme
reduces when more data is truncated, and is negligible at low
bitrates. SSS shows an opposite behavior that its overhead
increases percentage-wise when more data is truncated.

Figure 3. RD curves for both encrypted and unencrypted codestreams of
the image Lena truncated at preset layers.

V. CONCLUSION
We have described a novel encryption scheme for JPEG

2000 which preserves in the encrypted codestream almost
the same fine granularity scalability as the original
unencrypted J2K codestream. The overhead is very small,
about 1.0% for 8-bit 512 by 512 grayscale images at 1.0 bpp,
when no truncation is applied. This overhead reduces to a
negligible level when truncations are applied to code-blocks
and more and more data is truncated. The described scheme
produces encrypted codestreams with fine and smooth RD
curves at each resolution for a large range of bitrates. We
have also shown how the proposed scheme works with
motion JPEG 2000.

REFERENCES
[1] Information Technology – JPEG 2000 Image Coding System, Part 1:

Core Coding System, ISO/IEC 15444-1:2000.
[2] Information Technology – JPEG 2000 Image Coding System, Part 3:

Motion JPEG 2000, ISO/IEC 15444-3:2002.
[3] R. Iannella, "Digital Rights Management (DRM) Architectures," D-

Lib Magazine, vol. 7, no. 6, June 2001.
[4] A. M. Eskicioglu, J. Town, and E. J. Delp, “Security of Digital

Entertainment Content from Creation to Consumption,” Signal
Processing: Image Communication, Special Issue on Image Security,
vol. 18, no. 4, April 2003, pp. 237 – 262.

[5] B. B. Zhu, M. D. Swanson, and S. Li, “Encryption and Authentication
for Scalable Multimedia: Current State of the Art and Challenges,”
Proc. of SPIE Internet Multimedia Management Systems V, vol. 5601,
pp. 157-170, Philadelphia PA, Oct. 2004, (invited paper).

[6] R. Grosbois, P. Gerbelot, and T. Ebrahimi, “Authentication and
Access Control in the JPEG 2000 Compressed Domain,” Proc. SPIE
46th Annual Meeting, Applications of Digital Image Processing
XXIV, San Diego, California, 2001.

[7] S. J. Wee and J. G. Apostolopoulos, “Secure Scalable Streaming and
Secure Transcoding with JPEG-2000,” IEEE Int. Image Processing,
vol. 1, pp. I-205-208, Sept. 14-17, 2003.

[8] B. Schneier, Applied Cryptography: Protocols, Algorithms, and
Source Code in C, 2nd ed., John Wiley & Sons, Inc. 1996.

[9] JasPer, http://www.ece.uvic.ca/~mdadams/jasper.
[10] Crypto++, http://www.eskimo.com/~weidai/cryptlib.html.

6307

