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Abstract

To quickly achieve good performance, reinforcement-learning algorithms for acting in large
continuous-valued domains must use a representation that is both sufficiently powerful to capture
important domain characteristics, and yet simultaneouslyallows generalization, or sharing, among
experiences. Our algorithm balances this tradeoff by usinga stochastic, switching, parametric dy-
namics representation. We argue that this model characterizes a number of significant, real-world
domains, such as robot navigation across varying terrain. We prove that this representational as-
sumption allows our algorithm to be probably approximatelycorrect with a sample complexity that
scales polynomially with all problem-specific quantities including the state-space dimension. We
also explicitly incorporate the error introduced by approximate planning in our sample complexity
bounds, in contrast to prior Probably Approximately Correct (PAC) Markov Decision Processes
(MDP) approaches, which typically assume the estimated MDPcan be solved exactly. Our experi-
mental results on constructing plans for driving to work using real car trajectory data, as well as a
small robot experiment on navigating varying terrain, demonstrate that our dynamics representation
enables us to capture real-world dynamics in a sufficient manner to produce good performance.

Keywords: reinforcement learning, provably efficient learning

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) has had some impressive real-world suc-
cesses, including model helicopter flying (Ng et al., 2004) and expert software backgammon players
(Tesauro, 1994). Two of the key challenges in reinforcement learningare scaling up to larger, richer
domains, and developing principled approaches for quickly learning to perform well. Our interest
lies in developing algorithms for large continuous-valued environments, including problems such as
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learning the best route to drive to work, or how a remote robotic rover canlearn to traverse different
types of terrain. To perform learning efficiently in such environments, wewill assume that the world
dynamics can be compactly described by a small set of simple parametric models,such as one for
driving on highways and another for driving on small roads. We will prove that this assumption
allows our algorithm to require an amount of experience that only scales polynomially with the
state space dimension. We will also empirically demonstrate that these assumptionsare realistic for
several real world data sets, indicating that our Continuous-Offset Reinforcement Learning (CORL)
algorithm may be well suited for large, high-dimensional domains.

A critical choice in the construction of a reinforcement-learning algorithm is how to balance
between actions that gather information about the world environment (exploration) versus actions
that are expected to yield high reward given the agent’s current estimatesof the world environment
(exploitation). In early work, algorithms such as Q-learning were shown toperform optimally in the
limit of infinite data (Watkins, 1989), but no finite-sample guarantees were known. More recently
there have been three main branches of model-based reinforcement learning research concerned
with the exploration problem. The first consists of heuristic approaches, some of which perform
very well in practice, but lack performance guarantees (for example Jong and Stone 2007). The
second branch strives to perform the action that optimally balances exploration and exploitation at
each step. Such Bayesian approaches include the model parameters inside the state space of the
problem. Poupart et al. (2006) assumed a fully observed discrete state space and modeled the un-
derlying model parameters as hidden states, effectively turning the problem into a continuous-state
partially observable Markov decision process (POMDP). Castro and Precup (2007) also assumed
a fully observed discrete state space but represented the model parameters as counts over the dif-
ferent transitions and reward received, thereby keeping the problemfully observable. Doshi et al.
(2008) considered a Bayesian approach for learning when the discrete state space is only partially
observable, and Ross et al. (2008) considered learning in a partially-observed continuous-valued
robot navigation problem. Approaches in the Bayesian RL framework runinto inherent complex-
ity problems and typically produce algorithms that only approximately solve their target optimality
criteria.

In our work we will focus on achieving near optimality, making precise guarantees on when,
and with what probability, it will be achieved. This type of approach to reinforcement learning
was commenced by Kearns and Singh (2002) and Brafman and Tennenholtz (2002) who created
algorithms that were guaranteed to achieve near optimal performance on allbut a small number of
samples, with high probability. We will refer to work in this line of research as “probably approx-
imately correct” (PAC-MDP), as introduced by Strehl et al. (2006), andwill discuss it further in
the sections that follow. One of the appealing aspects of this area over a Bayesian RL approach is
that it allows one to make precise statements about the efficiency and performance of algorithms:
if the MDP or POMDP used in the Bayesian RL approach could be solved exactly with an infor-
mative prior, then this approach would likely outperform PAC-MDP approaches. However, when a
Bayesian RL problem is only approximately solved or when the prior information is incorrect, it is
unknown how far the resulting solution is from the optimal behavior. Our work lies within this third
PAC-MDP approach, and draws upon the past advances made in this subfield, including our own
initial work in this area (Brunskill et al., 2008). The current work makes asignificant theoretical
generalization of our initial results which requires different proof techniques, and presents a number
of new experiments and discussions.
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Within the PAC-MDP line of research, there has been little work on directly considering
continuous-valued states. One exception is the work of Strehl and Littman (2008), who consid-
ered learning in continuous-valued state-action spaces. Their work assumed that a single dynamics
representation was shared among all states, and that the noise parameter of the dynamics represen-
tation was known. The focus of their paper was slightly different than the current work, in that the
authors presented a new online regression algorithm for determining whenenough information was
known to make accurate predictions.

An alternate approach to handling continuous state spaces is to discretize thespace into a grid.
This step enables prior PAC-MDP algorithms such as R-max (Brafman and Tennenholtz, 2002) to
be applied directly to the discretized space. However, their representationof the world may not fully
exploit existing structure. In particular, such a representation requiresthat the dynamics model for
each state-action tuple is learned independently. Since each state-action can have entirely different
dynamics, this approach has a great deal of representational power.However, as there is no sharing
of dynamics information among states, it has a very low level of generalization. In contrast, the work
of Strehl and Littman (2008) and the classic linear quadratic Gaussian regulator model (Burl, 1998)
assume that the dynamics model is the same for all states, greatly restricting the representational
power of these models in return for higher generalization and fast learning.

Recently, there have been several approaches that explore the middle ground of representational
power and generalization ability. Jong and Stone (2007) assumed that the dynamics model between
nearby states was likely to be similar, and used an instance-based approach to solve a continuous-
state RL problem. Their experimental results were encouraging but no theoretical guarantees were
provided, and the amount of data needed would typically scale exponentiallywith the state-space
dimension. A stronger structural assumption is made in the work of Leffler etal. (2007), which
focused on domains in which the discrete state space is divided into a set of types. States within the
same type were assumed to have the same dynamics. The authors proved thata typed representation
can require significantly less experience to achieve good performance compared to a standard R-
max algorithm that learns each state-action dynamics model separately.

Our work draws on the recent progress and focuses on continuous-state, discrete-action, typed
problems. By using a parametric model to represent the dynamics of each ofa discrete set of types,
we sacrifice some of the representational power of prior approaches (Leffler et al., 2007; Brafman
and Tennenholtz, 2002) in return for improved generalization, but still retain a much more flexible
representation than approaches that assume a single dynamics model that isshared across all states.
In particular, we prove that restricting our representational power enables our algorithm to have a
sample complexity that scalespolynomiallywith the state-space dimension. An alternate approach
is to place a uniformly spaced grid over the state space and solve the problemusing the existing
algorithms from Leffler et al. (2007) or Brafman and Tennenholtz (2002). However, this strategy
results in an algorithm whose computational complexity scales exponentially with the state-space
dimension.

Our algorithm involves a subroutine for solving a continuous-state MDP using the current model
estimates. Outside of special cases like the linear Gaussian quadratic regulator problem (Burl,
1998), planning cannot be performed exactly for generic continuous-state MDPs. Therefore we ex-
plicitly incorporate the error introduced by approximate planning in our samplecomplexity bounds.
This is in contrast to prior PAC-MDP approaches, which typically assume theestimated MDP can
be solved exactly.
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In particular, our dynamics representation is a simple noisy offset model, where the next state
is presumed to be a function of the prior state, plus an offset and some Gaussian distributed noise.
The offset and Gaussian parameters are assumed to be specified by the typet of the state and action
a, thereby allowing all states of the same type to share dynamics parameters. More formally,

s′ = s+βat + εat, (1)

wheres is the current state,s′ is the next state,εat ∼N (0,Σat) is drawn from a zero-mean Gaussian
with covarianceΣat, andβat is the offset.

In our experimental section we first demonstrate our algorithm on the standard RL PuddleWorld
problem of Boyan and Moore (1995). We next illustrate the importance of learning the variance
of different types by an example of an agent with a hard time deadline. The third example is a
simulated decision problem in which an agent is trying to learn the best route for driving to work.
The simulator uses real car-trajectory data to generate its trajectories. In the final experiment, a real
robot car learns to navigate varying terrain. These experiments demonstrate that the noisy offset
dynamics model, while simple, is able to capture real world dynamics for two different domains
sufficiently adequately to allow the agent to quickly learn a good strategy.

At a high level, our work falls into the category of model-based reinforcement-learning algo-
rithms in which the MDP model (Equation 1) can beKWIK-learned(Li et al., 2008; Li, 2009),
and thus it is efficient in exploring the world. The Knows Whats It Knows (KWIK) framework is
an alternate learning framework which incorporates characteristics of theProbably Approximately
Correct (PAC) learning framework, which will be discussed further below, and the mistake bound
framework. Though our theoretical development will follow a PAC-style approach, the KWIK
framework provides another justification of the soundness and effectiveness of our algorithm.

The focus of this paper is on the sample complexity of the CORL algorithm. CORL assumes
an approximate MDP planner to solve the current estimated MDP, and several such approximate
planners with guarantees on the resulting solution involve a discretizaton thatresults in an expo-
nential tiling of the state space. In such cases the computational complexity of CORL will scale
exponentially with the number of dimensions. However, the experimental results demonstrate that
CORL exhibits computational performance competitive with or better than existingapproaches.

The rest of the paper proceeds as follows. In Section 2, we will briefly discuss the background
to our work and then present the CORL algorithm. Section 3 presents our theoretical analysis of our
algorithm. In Section 4 we present experimental results, and in Section 5 we conclude and discuss
future work.

2. A Continuous-state Offset-dynamics Reinforcement Learner

This section introduces terminology and then presents our algorithm, CORL.

2.1 Background

The world is characterized by a continuous-state discounted MDPM = 〈S,A, p(s′|s,a),R,γ〉 where
S⊆ R

N is theN-dimensional state space,A is a set of discrete actions,p(s′|s,a) is the transition
dynamics,γ ∈ [0,1) is the discount factor andR : S×A→ [0,1] is the reward function. In addition
to the standard MDP formulation, each states is associated with a single observable typet ∈ T. The
total number of types isNT and the mapping from states to typesS→ T is assumed to be known.
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Algorithm 1 CORL
1: Input: N (dimension of the state space),|A| (number of actions),NT (number of types),R

(reward model),γ (discount factor),Nat (minimum number of samples per state-action pair)
2: Set all type-action tuples〈t,a〉 to be unknown and initialize the dynamics models (see text) to

create an empirical known-type MDP modelM̂K .
3: Start in a states0.
4: loop
5: Solve MDPM̂K using approximate solver and denote its optimal value function byQt .
6: Select actiona = argmaxaQt(s,a).
7: Increment the appropriatenat count (wheret is the type of states).
8: Observe transition to the next states′.
9: If nat exceedsNat then mark〈a, t〉 as “known” and estimate the dynamics model parameters

for this tuple.
10: end loop

The dynamics of the environment are determined by the current state typet and actiona taken:

p(s′|s,a) =N (s′;s+βat,Σat).

Therefore, types partition the state space into regions, and each region isassociated with a particular
pair of dynamics parameters.

In this work, we focus on when the reward model is provided1 and the dynamics model parame-
ters are hidden. The parameters of the dynamics model,βat andΣat, are assumed to be unknown for
all typest and actionsa at the start of learning. This model is a departure from prior related work
(Abbeel and Ng, 2005; Strehl and Littman, 2008), which focuses on a more general linear dynamics
model but assumes a single type and that the variance of the noiseΣat is known. We argue that
in many interesting problems, the variance of the noise is unknown and estimatingthis noise may
provide the key distinction between the dynamics models of different types.

In reinforcement learning, the agent must learn to select an actiona given its current states. At
each time step, it receives an immediate rewardr based on its current state.2 The agent then moves
to a next states′ according to the dynamics model. The goal is to learn a policyπ : S→ A that
allows the agent to choose actions to maximize the expected total reward it will receive. The value
of a particular policyπ is the expected discounted sum of future rewards that will be received from
following this policy, and is denotedVπ(s) = Eπ[∑∞

j=0 γ j r j |s0 = s], wherer j is the reward received
on the j-th time step ands0 is the initial state of the agent. Letπ∗ be the optimal policy, and its
associated value function beV∗(s).

2.2 Algorithm

Our algorithm (c.f., Algorithm 1) is derived from the R-max algorithm of Brafman and Tennen-
holtz (2002). We first form a set of〈t,a〉 tuples, one for each type-action pair. Note that each tuple

1. As long as the reward can be KWIK-learned (Li et al., 2008) then theresults are easily extended to when the reward
is unknown. KWIK-learnable reward functions include, for instance, Gaussian, linear and tabular rewards.

2. For simplicity, the reward is assumed to be only a function of state in this paper. It is straightforward to extend our
results to the case when the reward function also depends on the action taken.
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corresponds to a particular pair of dynamics model parameters,〈βat,Σat〉. A tuple is considered to
be “known” if the agent has been in typet and taken actiona a numberNat times. At each time step,
we construct a new MDP̂MK as follows, using the same state space, action space, and discount fac-
tor as the original MDP. If the number of times a tuple has been experienced,nat, is greater than or
equal toNat, then we estimate the parameters for this dynamics model using maximum-likelihood
estimation:

β̃at =
∑nat

i=1(s
′
i −si)

nat
, (2)

Σ̃at =
∑nat

i=1(s
′
i −si − β̃at)(s′i −si − β̃at)

T

nat
(3)

where the sum ranges over all state-action pairs experienced for whichthe type ofsi was t, the
action taken wasa, ands′i was the successor state. Note that while Equation 3 is a biased estimator,
it is also popular and consistent, and becomes extremely close to the unbiasedestimate when the
number of samplesnat is large. We choose it because it makes our later analysis simpler.

Otherwise, we set the dynamics model for all states and the action associatedwith this type-
action tuple to be a transition with probability 1 back to the same state. We also modify the reward
function for all states associated with an unknown type-action tuple〈tu,au〉 so that all state-action
valuesQ(stu,au) have a value ofVmax (the maximum value possible, 1/(1− γ)). We then seek to
solve M̂K . This MDP includes switching dynamics with continuous states, and we are aware of
no planners guaranteed to return the optimal policy for such MDPs in general. CORL assumes
the use of an approximate solver to provide a solution for a MDP. There area variety of existing
MDP planners, such as discretizing or using a linear function approximation, and we will consider
particular planner choices in the following sections. At each time step, the agent chooses the action
that maximizes the estimate of its current approximate value according toQt : a = argmaxaQt(s,a).
The complete algorithm is shown in Algorithm 1.

3. Learning Complexity

In this section we will first introduce relevant background and then provide a formal analysis of the
CORL algorithm.

3.1 Preliminaries and Framework

When analyzing the performance of an RL algorithmA , there are many potential criteria to use. In
our work, we will focus predominantly on sample complexity with a brief mention ofcomputational
complexity. Computational complexity refers to the number of operations executed by the algorithm
for each step taken by the agent in the environment. We will follow Kakade (2003) and usesample
complexityas shorthand for thesample complexity of exploration. It is the number of time steps
at which the algorithm, when viewed as a non-stationary policyπ, is notε-optimal at the current
state; that is,Q∗(s,a)−Qπ(s,a) > ε whereQ∗ is the optimal state-action value function andQπ is
the state-action value function of the non-stationary policyπ. Following Strehl et al. (2006), we are
interested in showing, for a givenε andδ, that with probability at least 1−δ the sample complexity
of the algorithm is less than or equal to a polynomial function of MDP parameters. Note that we
only consider the number of samples to ensure the algorithm will learn and execute a near-optimal
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policy with high probability. As the agent acts in the world, it may be unlucky andexperience a
series of state transitions that poorly reflect the true dynamics due to noise.

Prior work by Strehl et al. (2006) provided a framework for analyzingthe sample complexity
of R-max-style RL algorithms. This framework has since been used in several other papers (Leffler
et al., 2007; Strehl and Littman, 2008) and we will also adopt the same approach. We first briefly
discuss the structure of this framework.

Strehl et al. (2006) defined an RL algorithm to be greedy if it chooses its action to be the one
that maximizes the value of the current states (a = argmaxa∈AQ(s,a)). Their main result goes as
follows: letA(ε,δ) denote a greedy learning algorithm. Maintain a listK of “known” state-action
pairs. At each new time step, this list stays the same unless during that time step a new state-action
pair becomes known. MDP̂MK is the agent’s current estimated MDP, consisting of the agent’s
estimated models for the known state-action pairs, and self loops and optimistic rewards (as in our
construction described in the prior section) for unknown state-action pairs. MDPMK is an MDP
which consists of the true (underlying) reward and dynamics models for theknown state-action
pairs, and again self loops and optimistic rewards for the unknown state-action pairs. To be clear,
the only difference between MDP̂MK and MDPMK is that the first uses the agent’s experience
to generate estimated models for the known state-action pairs, and the seconduses the true model
parameters.π is the greedy policy with respect to the current state-action valuesQM̂K

obtained by
solving MDPM̂K : Vπ

M̂K
is the associated value function forQM̂K

and may equivalently be viewed as
the value of policyπ computed using the estimated model parameters.Vπ

MK
is the value of policyπ

computed using the true model parameters. Assume thatε andδ are given and the following three
conditions hold for all states, actions and time steps:

1. Q∗(s,a)−QM̂K
(s,a) ≤ ε.

2. Vπ
M̂K

(s)−Vπ
MK

(s) ≤ ε.

3. The total number of times the agent visits a state-action tuple that is not inK is bounded by
ζ(ε,δ) (the learning complexity).

Then, Strehl et al. (2006) show for any MDPM, A(ε,δ) will follow a 4ε-optimal policy from its
initial state on all butNtotal time steps with probability at least 1−2δ, whereNtotal is polynomial in
the problem’s parameters(ζ(ε,δ), 1

ε ,
1
δ , 1

1−γ).
The majority of our analysis will focus on showing that our algorithm fulfills these three criteria.

In our approach, we will define the known state-action pairs to be all thosestate-actions for which
the type-action pair〈t(s),a〉 is known. We will assume that the absolute values of the components
in Σat are upper bounded by a known constantBσ which is, without loss of generality, assumed to
be greater than or equal to 1. This assumption is often true in practice. We denote the determinant
of matrix D by detD, the trace of a matrixD by tr(D), the absolute value of a scalard by |d| and
the p-norm of a vectorv by ‖v‖p. Full proofs, when omitted, can be found in the Appendix.

3.2 Analysis

Our analysis will serve to prove the main result:

Theorem 1 For any givenδ andε in a continuous-state noisy offset dynamics MDP with NT types
where the covariance along each dimension of all the dynamics models is bounded by[−Bσ,Bσ],
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on all but Ntotal time steps, our algorithm will follow a4ε-optimal policy from its current state with
probability at least1−2δ, where Ntotal is polynomial in the problem parameters(N, |A|,NT , 1

ε ,
1
δ ,

1
1−γ ,

1
λN

,Bσ) whereλN is the smallest eigenvalue of the dynamics covariance matrices.

Proof To prove this, we need to demonstrate that the three criteria of Strehl et al. (2006) hold. The
majority of our effort will focus on the second criterion. This criterion states that the value of states
under the estimated known-state MDPM̂K must be very close to the value of states under the known-
state MDPMK that uses the true model parameters for all known type-action pairs. To prove this we
must bound how far away the model parameters estimated from the agent’s experience can be from
the true underlying parameters, and how this relates to error in the resulting value function. We
must also consider the error induced by approximately solving the estimated MDP M̂K . Achieving
a given accuracy level in the final value function creates constraints onhow close the estimated
model parameters must be to the true model parameters. We will illustrate how these constraints
relate to the amount of experience required to achieve these constraints. This in turn will give us an
expression for the number of samples required for a type-action pair to beknown, or the learning
complexity for our algorithm. Once we have proved the second criterion we will discuss how the
other two conditions are also met.

Therefore we commence by formally relating how the amount of experience (number of transi-
tions) of the agent corresponds to the accuracy in the estimated dynamics model parameters.

Lemma 2 Given anyε,δ > 0, then after T=
12N2B2

σ
ε2δ transition samples(s,a,s′) with probability at

least1− 2δ
3 , the estimated offset parameterβ̃, computed by Equation 2, and estimated covariance

parameters̃σi j , computed by Equation 3, will deviate from the true parametersβ andσi j by at most
ε: Pr(‖β̃−β‖2 ≤ ε) ≥ 1− δ

3 andPr(maxi |σ̃i j −σi j | ≤ ε) ≥ 1− δ
3.

Proof T will be the maximum of the number of samples to guarantee the above bounds forthe
offset parameterβ and the number of samples needed for a good estimate of the variance parameter.
We first examine the offset parameter:

Lemma 3 Given anyε,δ > 0, define Tβ = 3N2Bσ
ε2δ . If there are Tβ transition samples(s,a,s′), then

with probability at least1− δ
3, the estimated offset parameterβ̃, computed by Equation 2, will

deviate from the true offset parameterβ by no more thanε along any dimension d; formally,
Pr(maxd ‖β̃d −βd‖2 ≥ ε√

N
) ≤ δ

3N .

Proof From Chebyshev’s inequality, we know

P(|(s′id −sid)−βd| ≥
ε√
N

) ≤ σ2
dN

ε2 ,

wheresid andσ2
d are the value of thei-th state and variance of the offset along dimensiond, respec-

tively. Using the fact that the variance of a sum ofTβ i.i.d. variables is justTβ multiplied by the
variance of a single variable, we obtain

Pr(|
Tβ

∑
i=1

(s′id −sid)−Tββd| ≥ Tβ
ε√
N

) ≤ Tβσ2
dN

T2
β ε2

Pr(|β̃d −βd| ≥
ε√
N

) ≤ σ2
dN

Tβε2 .
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We require the right-hand side above be at mostδ
3N and solve forTβ:

Tβ =
3σ2

dN2

δε2 .

We know that the variance along any dimension is bounded above byBσ so we can substitute this
in the above expression to derive a bound on the number of samples required:

Tβ ≥
3BσN2

δε2 .

Lemma 3 immediately implies a bound on theL2 norm between the estimated offset parameter
vector and the true offset parameter vector, as follows:

Lemma 4 Given anyε,δ > 0, if Pr(maxd |β̃d −βd| ≥ ε√
N
) ≤ δ

3N , thenPr(‖β̃−β‖2 ≥ ε) ≤ δ
3.

Proof By a union bound, the probability that any of the dimensions exceeds an estimation error of at
most ε√

N
is at mostδ3. Given this, with probability at least 1− δ

3 all dimensions will simultaneously

have an estimation error of less thanε√
N

and from the definition of the L2 norm this immediately

implies that‖β̃−β‖2 ≤ ε.

We next analyze the number of samples needed to estimate the covariance accurately.

Lemma 5 Assumemaxd |β̃d−βd| ≤ ε for ε < 1/4. Given anyδ > 0, define Tσ =
12N2B2

σ
δε2 . If there are

Tσ transition samples(s,a,s′), then with probability at mostδ3, the estimated covariance parameter
σ̃i j , computed by Equation 3, deviates from the true covariance parameterσi j by more thanε over
all entries i j; formally,Pr(maxi, j |σ̃i j −σi j | ≥ ε) ≤ δ

3.

We provide the proof of Lemma 5 in the appendix: briefly, we again use Chebyshev’s inequality
which requires us to bound the variance of the sample covariance.

Combining Lemmas 4 and 5 gives a condition on the minimum number of samples necessary
to ensure, with high probability, that the estimated parameters of a particular type-action dynamics
model are close to the true parameters. Without loss of generality, assumeBσ ≥ 1, then

T = max{Tβ,Tσ} = max

{

3N2Bσ

ε2δ
,
12N2B2

σ
ε2δ

}

=
12N2B2

σ
ε2δ

.

From Lemma 2 we now have an expression that relates how much experiencethe agent needs
in order to have precise estimates of each model parameter. We next need toestablish the distance
between two dynamics models which have different offset and covariance parameters. This distance
will later be important for bounding the value function difference between the estimated model MDP
M̂K and the true model MDPMK .

Following Abbeel and Ng (2005), we choose to use the variational distance between two dy-
namics modelsP andQ:
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dvar(P(x),Q(x)) =
1
2

Z

X
|P(x)−Q(x)|dx.

In our algorithm,β1 andΣ1 are the true offset parameter and covariance matrix of the Gaussian
distribution, andβ2 and Σ2 are the offset parameter and covariance matrix estimated from data.
Since we can guarantee that they can be made arbitrarily close (element-wise), we will be able to
bound the variational distance between two Gaussians, one defined with thetrue parameters and the
other with the estimated parameters. The real-valued, positive eigenvalues of Σ1 andΣ2 are denoted
by λ1 ≥ λ2 ≥ ·· · ≥ λN > 0 andλ′

1 ≥ λ′
2 ≥ ·· · ≥ λ′

N > 0, respectively. Because of symmetry and
positive definiteness ofΣ1 andΣ2, λi andλ′

i must be real as well as positive. Since all eigenvalues
are positive, they are also the singular values of their respective matrices.

Lemma 6 Assumemaxi, j |Σ1(i, j)−Σ2(i, j)| ≤ ε, and Nε
∥

∥Σ−1
1

∥

∥

∞ < 1, then,

dvar(N (s′−s|β1,Σ1),N (s′−s|β2,Σ2)) ≤
||β1−β2||2√

λN
+

√

N2ε
λN

+
2N3Bσε

λ2
N −N1.5ελN

.

Proof We will useN (β,Σ) as an abbreviation forN (s′−s|β,Σ). Then

dvar(N (β1,Σ1),N (β2,Σ2)) ≤ dvar(N (β1,Σ1),N (β2,Σ1))+dvar(N (β2,Σ1),N (β2,Σ2))

=
||(N (β1,Σ1),N (β2,Σ1))||1

2
+

||(N (β2,Σ1),N (β2,Σ2))||1
2

≤
√

2dKL (N (β1,Σ1)‖N (β2,Σ1))+
√

2dKL (N (β2,Σ1)‖N (β2,Σ2))

where dKL (‖) is the Kullback-Leibler divergence. The first step follows from the triangle inequality
and the last step follows from Kullback (1967) (included for completeness inLemma 14 in the
appendix).

The KL divergence between twoN-variate Gaussians has the closed form expression

dKL (N (β1,Σ1)‖N (β2,Σ2)) =
1
2

(

(β1−β2)
TΣ−1

1 (β1−β2)+ ln
detΣ2

detΣ1
+ tr

(

Σ−1
2 Σ1

)

−N

)

.

Substituting this expression into the above bound ondvar we get

dvar(N (β1,Σ1),N (β2,Σ2)) ≤
√

(β1−β2)TΣ−1
1 (β1−β2)+

√

ln

(

detΣ2

detΣ1

)

+tr
(

Σ−1
2 Σ1

)

−N. (4)

Our proof relies on bounding both terms of Equation 4. Note that this expression reduces (up to a
constant) to the bound proved by Abbeel and Ng (2005) when the variance is known.

We now start with the first term of Equation 4:

Lemma 7

(β1−β2)
TΣ−1

1 (β1−β2) ≤
1

λN
||β1−β2||22.
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Proof First note that sinceΣ−1
1 is a Hermitian matrix,

(β1−β2)
TΣ−1

1 (β1−β2)

||β1−β2)||22
is a Rayleigh quotient which is bounded by the maximum eigenvalue ofΣ−1

1 . The eigenvalues of
Σ−1

1 are precisely the reciprocals of the eigenvalues ofΣ1. Therefore, the Rayleigh quotient above
is at most 1

λN
:

(β1−β2)
TΣ−1

1 (β1−β2) ≤
||β1−β2||22

λN
.

We now provide lemmas that bound the components of the second term of Equation 4: proofs are
provided in the appendix.

Lemma 8 If maxi, j |Σ1(i, j)−Σ2(i, j)| ≤ ε for any1≤ i, j ≤ N, then
∣

∣

∣

∣

ln
detΣ2

detΣ1

∣

∣

∣

∣

≤ Nε
(

1
λ1

+
1
λ2

+ · · ·+ 1
λN

)

≤ N2ε
λN

.

Lemma 9 If maxi, j |Σ1(i, j)−Σ2(i, j)| ≤ ε and Nε
∥

∥Σ−1
1

∥

∥

1 < 1, then

tr
(

Σ−1
2 Σ1

)

−N ≤ 2N3εBσ

λ2
N − (N)1.5λNε

.

Combining the results of Lemmas 7, 8, and 9 completes the proof of Lemma 6.

Note this bound is tight when the means and the variances are the same.
At this point we can relate the number of experiences (samples) of the agent to a distance

measure between the estimated dynamics model (for a particular type-action) and the true dynamics
model.

We now bound the error between the state-action values of the true MDP model MK solved
exactly and the approximate state-action values of our estimated model MDPM̂K obtained using an
approximate planner, as a function of the error in the dynamics model estimates. This is a departure
from most related PAC-MDP work which typically assumes the existence of a planning oracle for
choosing actions given the estimated model.

Lemma 10 (Simulation Lemma) Let M1 = 〈S,A, p1(·|·, ·),R,γ〉 and M2 = 〈S,A, p2(·|·, ·),R,γ〉 be
two MDPs3 with dynamics as characterized in Equation 1 and non-negative rewards bounded
above by 1. Given anε (where 0 < ε ≤ Vmax), assume that for all state-action tuples(s,a),
dvar(p1(·|s,a), p2(·|s,a)) ≤ (1− γ)2ε/(2γ) and the error incurred by approximately solving a MDP,
defined asεplan is also at most(1− γ)2ε/(2γ) (to be precise,εplan = ||V∗−Ṽ∗||∞ ≤ (1− γ)2ε/(2γ)
whereṼ∗ is the value computed by the approximate solver). Letπ be a policy that can be applied
to both M1 and M2. Then, for any stationary policyπ, for all states s and actions a,|Qπ

1(s,a)−
Q̃π

2(s,a)| ≤ ε, whereQ̃π
2 denotes the state-action value obtained by using an approximate MDP

solver on MDP M2 and Qπ
1 denotes the true state-action value for MDP M1 for policy π.

3. For simplicity we present the results here without reference to types. In practice, each dynamics parameter would be
subscripted by its associated MDP, type, and action.
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Proof Let ∆Q = maxs,a |Qπ
1(s,a)− Q̃π

2(s,a)| and defineṼπ
2 to be the approximate value of policyπ

computed using an approximate MDP solver on MDPM2, andVπ
1 be the exact value of policyπ on

MDP M1. Note that since we are taking the max over all actions,∆Q is also equal to or greater than
maxs|Vπ

1 (s)−Ṽπ
2 (s)|. Let Lp2(s′|s,a) denote an approximate backup for MDPM2.

Since these value functions are the fixed-point solutions to their respective Bellman operators,
we have for every(s,a) that

|Qπ
1(s,a)− Q̃π

2(s,a)|

=

∣

∣

∣

∣

(

R(s,a)+ γ
Z

s′∈S
p1(s

′|s,a)Vπ
1 (s′)ds′

)

−
(

R(s,a)+ γ
Z

s′∈S
Lp2(s

′|s,a)Ṽπ
2 (s′)ds′

)∣

∣

∣

∣

≤ γ
∣

∣

∣

∣

Z

s′∈S
p1(s

′|s,a)Vπ
1 (s′)−Lp2(s

′|s,a)Ṽπ
2 (s′)ds′

∣

∣

∣

∣

≤ γ
∣

∣

∣

∣

Z

s′∈S
p1(s

′|s,a)Vπ
1 (s′)− p1(s

′|s,a)Ṽπ
2 (s′)+ p1(s

′|s,a)Ṽπ
2 (s′)−Lp2(s

′|s,a)Ṽπ
2 (s′)ds′

∣

∣

∣

∣

≤ γ
∣

∣

∣

∣

Z

s′∈S

[

p1(s
′|s,a)(Vπ

1 (s′)−Ṽπ
2 (s′))+ p1(s

′|s,a)Ṽπ
2 (s′)− p2(s

′|s,a)Ṽπ
2 (s′)

+p2(s
′|s,a)Ṽπ

2 (s′)−Lp2(s
′|s,a)Ṽπ

2 (s′)
]

ds′
∣

∣

≤ γ
∣

∣

∣

∣

Z

s′∈S
p1(s

′|s,a)(Vπ
1 (s′)−Ṽπ

2 (s′))ds′
∣

∣

∣

∣

+ γ
∣

∣

∣

∣

Z

s′∈S
(p1(s

′|s,a)− p2(s
′|s,a))Ṽπ

2 (s′)ds′
∣

∣

∣

∣

+γ
∣

∣

∣

∣

Z

s′∈S
p2(s

′|s,a)Ṽπ
2 (s′)−Lp2(s

′|s,a)Ṽπ
2 (s′)ds′

∣

∣

∣

∣

where the final expression was obtained by repeatedly adding and subtracting identical terms and
using the triangle inequality. This expression must hold for all statessand actionsa, so it must also
hold for the maximum error over all states and actions:

max
s

max
a

|Qπ
1(s,a)−Q̃π

2(s,a)| ≤ γ
Z

s′∈S
p1(s

′|s,a)∆Qds′ + γ
∣

∣

∣

∣

Z

s′∈S
(p1(s

′|s,a)−p2(s
′|s,a))Ṽπ

2 (s′)ds′
∣

∣

∣

∣

+γ
∣

∣

∣

∣

Z

s′∈S

(

p2(s
′|s,a)Ṽπ

2 (s′)−Lp2(s
′|s,a)Ṽπ

2 (s′)
)

ds′
∣

∣

∣

∣

∆Q ≤ γ∆Q + γ
∣

∣

∣

∣

Z

s′∈S
(p1(s

′|s,a)− p2(s
′|s,a))Ṽπ

2 (s′)ds′
∣

∣

∣

∣

+γ
∣

∣

∣

∣

Z

s′∈S

(

p2(s
′|s,a)Ṽπ

2 (s′)−Lp2(s
′|s,a)Ṽπ

2 (s′)
)

ds′
∣

∣

∣

∣

≤ γ∆Q + γVmax

∣

∣

∣

∣

Z

s′∈S
p1(s

′|s,a)− p2(s
′|s,a)ds′

∣

∣

∣

∣

+γ
∣

∣

∣

∣

Z

s′∈S

(

p2(s
′|s,a)Ṽπ

2 (s′)−Lp2(s
′|s,a)Ṽπ

2 (s′)
)

ds′
∣

∣

∣

∣

≤ γ∆Q + γVmaxdvar(p1(s
′|s,a), p2(s

′|s,a))+ γεplan
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where we have again used the triangle inequality. Therefore

∆Q ≤ γ∆Q + γVmaxdvar + γεplan

=
γ dvar

1−γ

1− γ
+

γεplan

1− γ
,

where we have useddvar as shorthand fordvar(p1(s′|s,a), p2(s′|s,a))
We have now expressed the error in the value function as the sum of the error due to the model

approximation and the error due to using an approximate MDP planner. Usingthe assumptions in
the lemma, the result immediately follows.

We can now use the prior lemmas to prove Theorem 1. First we need to examineunder what
conditions the two assumptions of the Simulation Lemma hold. The first assumption requires that
dvar(p1(·|s,a), p2(·|s,a)) ≤ (1− γ)2ε/(2γ) for all state-action tuples. From Lemma 6 this holds for
a particular type-action tuple (which encompasses all state-action tuples where the state belongs to
that type) if

||β2−β1||2√
λN

+

√

N2ε
λN

+
2N3Bσε

λ2
N − (N)1.5maxi j |σ̃i j −σi j |λN

≤ (1− γ)2ε
2γ

(5)

and

max
i j

|σ̃i j −σi j | ≤ ε. (6)

We can ensure Equation 5 holds by splitting the error into three terms:

‖β2−β1‖2√
λN

≤ (1− γ)2ε
4γ

N2ε
λN

≤ (1− γ)4ε2

32γ2

2N3Bσε
λ2

N − (N)1.5maxi j |σ̃i j −σi j |λN
≤ (1− γ)4ε2

32γ2 .

Given these three equations, and Equation 6, we can obtain bounds on theerror in the dynamics
parameter estimates:

‖β̃−β‖2 ≤ (1− γ)2ελ0.5
N

4γ
(7)

max
i j

|σ̃i j −σi j | ≤ (1− γ)4ε2λN

32γ2N2 (8)

max
i j

|σ̃i j −σi j | ≤ (1− γ)4ε2λ2
N

16γ2N3Bσ +(1− γ)4ε2(N)1.5λN
. (9)

Assume4 thatλN ≤ 1, N > 1 andBσ ≥ 1. In this case the upper bound in Equation 9 will be at
least as small as the upper bounds in Equations 7 and 8.

4. This is just a simplifying assumption and it is trivial to show the bounds will have a similar polynomial dependence
on the parameters if the assumptions do not hold.
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We therefore require that the errorε in the model parameters be bounded by

ε ≤ (1− γ)4ε2λ2
N

16γ2N3Bσ +(1− γ)4ε2(N)1.5λN
(10)

(from Equation 9). Lemma 2 provides a guarantee on the number of samplesT =
12N2B2

σ
ε2g required

to ensure with probability at least 1−g that all the model parameters have error of mostε. In order
to ensure that the model parameters for all actions and types simultaneously fulfill this criteria with
probability δ, it is sufficient to require thatg = δ/(|A|NT), from the union bound. We can then
substitute this expression forg and Equation 10 into the expression for the number of samplesT:

T =
12N2B2

σ
(

(1−γ)4ε2λ2
N

16γ2N3Bσ+(1−γ)4ε2(N)1.5λN

)

δ
|A|NT

=
12N2|A|NTB2

σ(16γ2N3Bσ +N1.5λN(1− γ)4ε2)2

(1− γ)8ε2δλ4
N

.

Given this analysis, the first assumption of the Simulation Lemma holds with probability at least
1−δ after

O

(

N8|A|NTB4
σ

(1− γ)8ε4δ(λN)4

)

samples.
The second assumption in the Simulation Lemma requires that we have access to an MDP

planner than can produce an approximate solution to our typed-offset-dynamics continuous-state
MDP. At least one such planner exists if the reward model is Lipschitz continuous; under a set of
four conditions, Chow and Tsitsiklis (1991) proved that the optimal value functionVε of a discrete-
state MDP formed by discretizing a continuous-state MDP intoΘ(ε)-length (per dimension)5 grid
cells is anε-close approximation of the optimal continuous-state MDP value function, denoted by
V∗:

||Vε −V∗||∞ ≤ ε.

The first condition used to prove the above result is that the reward function is Lipschitz-
continuous. In our work, the reward function is assumed to be given, sothis condition is a prior
condition on the problem specification. The second condition is that the transition function is piece-
wise Lipschitz continuous. In other words, the transition model is Lipschitz-continuous over each
of a set of finite subsets that cover the state space, and that the boundary between each subset re-
gion is piecewise smooth. For each type and action our transition model is a Gaussian distribution,
which is Lipschitz-continuous, and there are a finite number of different types so it is piecewise
Lipschitz-continuous. As long as our domain fulfills our earlier stated assumption that there are
a finite number of different type regions, and the boundaries between each are piecewise smooth,
then Chow and Tsitsiklis’s second assumption is satisfied. The third condition isthat the dynamics
probabilities represent a true probability measure that sums to one (

R

s′ p(s′|s,a) = 1), though the
authors show that this assumption can be relaxed to

R

s′ p(s′|s,a) ≤ 1 and the main results still hold.

5. More specifically, the grid spacinghg must satisfyhg ≤ (1−γ)2ε
K1+2KK2

andhg ≤ 1
2K whereK is the larger of the Lipschitz

constants arising from the assumptions discussed in the text, andK1 andK2 are constants discussed in Chow and
Tsitsiklis (1991). For smallε anyhg satisfying the first condition will automatically satisfy the second condition.
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In our work, our dynamics models are defined to be true probability models. Chow and Tsitsiklis’s
final condition is that there must be a bounded difference between any twocontrols. In our case we
consider only finite controls, so this property holds directly. Assuming the reward model fulfills the
first condition, our framework satisfies all four conditions made by Chow and Tsitsiklis, and we can
use their result.

By selecting fixed grid points at a regular spacing of(1−γ)2ε
2γ , and by requiring that there exist at

least one grid point placed in each contiguous single-type region, we canensure that the maximum
error in the approximate value function compared to the exactly solved value function is at most
(1−γ)2ε

2γ . This provides a mechanism for ensuring the second assumption of the Simulation Lemma

holds. In other words, if the grid width used is the minimum of(1−γ)2ε
2γ and the minimum contiguous

length of a single-type region, then the resulting value function using this discrete approximate

planner is no more than(1−γ)2ε
2γ -worse in value than the optimal exact planner for the continuous-

state MDP.6

Type-action tuples with at leastT samples are defined to be “known.” From the analysis above,
the estimated dynamics model for such types have advar value from the true known type-action
dynamics model of at most(1− γ)2ε/(2γ). All unknown type-action tuples are defined to be self-
loops. Therefore the dynamics models of our known-type, estimated dynamics MDPM̂K relative to
a known-type MDP with the true dynamics parametersMK have advar of zero for all the unknown
type-action tuples (since these are always defined as self loops) and atmost(1− γ)2ε/(2γ) for all
the known type-action tuples. Hence the first assumption of the Simulation Lemma holds. The
second assumption of the Simulation Lemma is fulfilled given the analysis in the priorparagraph.
Given these two assumptions are satisfied, the Simulation Lemma guarantees thatthe approximate
value of our known-type MDPM̂K under its greedy policyπ (π(s) = argmaxaQM̂K

(s,a)) is ε-close
to the optimal value of the known-type MDP with the true dynamics parametersMK under policy
π: ||Ṽπ

M̂K
−Vπ

MK
||∞ ≤ ε. This fulfills condition 2 of Strehl et al. (2006).

The first condition of Strehl et al. (2006) can be re-expressed as:

Q∗(s,a)−QM̂K
(s,a) = (Q∗(s,a)−QMK (s,a))+(QMK (s,a)−QM̂K

(s,a)) ≤ ε.

We start by considering the first expression,Q∗(s,a)−QMK (s,a). If all type-action pairs are known,
thenMK is the same as the original MDP, and this expression equals 0. If some type-action pairs
are unknown, then the value of states of that type, associated with that action, becomesVmax under
MDP MK . As all known type-action pairs have the same reward and dynamics model as the original
MDP, this implies that the valueQMK must be either equal or greater thanQ∗, since all the value
of all unknown state-actions is at least as great inQMK as their real valueQ∗. For this reason,
Q∗(s,a)−QMK (s,a) is always less than or equal to 0.

We next considerQMK (s,a)−QM̂K
(s,a). The variational distancedvar between the dynamics

models ofMK and M̂K for all unknown type-action tuples is zero, because all the dynamics of
unknown tuples are self loops. As discussed above, thedvar between all known type-action tuples
is at most(1− γ)2ε/(2γ). We can then apply the Simulation Lemma to guarantee that|Qπ

MK
(s,a)−

Qπ
M̂K

(s,a)| ≤ ε. As a result, the first condition of Strehl et al. (2006) holds.
The third condition limits the number of times the algorithm may experience an unknown type-

action tuple. Since there are a finite number of types and actions, this quantity isbounded above by

6. The condition of the extent of a typed region is a requirement in order toensure that the discrete-representation
doesn’t skip over a smaller region of a different type, that may have adifferent optimal policy.
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NatNT |A|, which is a polynomial in the problem parameters(N, |A|,NT , 1
ε ,

1
δ , 1

1−γ ,
1

λN
,Bσ). Therefore,

our algorithm fulfills the three specified criteria and the result follows.

3.3 Discussion

Prior PAC-MDP work has focused predominantly on discrete-state, discrete-action environments.
The sample complexity of the R-max algorithm by Brafman and Tennenholtz (2002) scales with the
number of actions and the square of the number of discrete states, since a different dynamics model
is learned for each discrete state-action tuple. In environments in which states of the same type
share the same dynamics, Leffler et al. (2007) proved that the sample complexity scales with the
number of actions, number of discrete states, and number of types. Assuming the number of types
is typically much less than the number of states, this can result in significantly faster learning, as
Leffler et al. (2007) demonstrate empirically. However, a naı̈ve application of either technique to a
continuous-state domain involves uniformly discretizing the continuous-state space. This procedure
that results in a number of states that grows exponentially with the dimension of thestate space. In
this scenario the approaches of both Brafman and Tennenholtz (2002) and Leffler et al. (2007)
will have a sample complexity that scales exponentially with the state space dimension, though the
approach of Leffler et al. (2007) will scale better if there are a small number of types.

In contrast, the sample complexity of our approach scales polynomially in the numbers of ac-
tions and types as well as state space dimension, suggesting that it is more suitable for high di-
mensional environments. Our results follow the results of Strehl and Littman (2008), who gave an
algorithm for learning in continuous-state and continuous-action domains that has a sample com-
plexity that is polynomial in the state space dimension and the action space dimension. Our work
demonstrates that we can get similar bounds when we use a more powerful dynamics representa-
tion (allowing states to have different dynamics, but sharing dynamics within the same types), learn
from experience the variance of the dynamics models, and incorporate theerror due to approximate
planning.

Our analysis presented so far considers the discounted, infinite-horizon learning setting. How-
ever, our results can be extended to theH-step finite horizon case fairly directly using the results of
Kakade (2003). Briefly, Kakade considers the scenario where a learning algorithmA is evaluated in
a cyclingH-step periods. TheH-step normalized undiscounted valueU of an algorithm is defined
to be the sum of the rewards received during a particularH-step cycle, divided byH. Kakade de-
finesA to beε-optimal if the value over a state-action trajectory, until the end of the current H-step
period, is withinε of the optimal valueU . Using this alternate definition of value requires a modifi-
cation of the Simulation Lemma which results in a bound on∆Q of (H −1)Vmaxdvar +(H −1)εplan.
In short, theγ/(1− γ) terms has been replaced withH − 1. The earlier results on the number of
samples required to obtain good estimates of the model parameters are unchanged, and the final
result follows largely as before, except we now have a polynomial dependence on the horizonH of
the undiscounted problem, compared to a polynomial dependence on the discount factor 1/γ.

Finally, though our focus is on sample complexity, it is also important to briefly consider com-
putational complexity. To ensure the approximate planner produces highly accurate results, our
algorithm’s worst-case computational complexity is exponential in the number ofstate dimensions.
While this fact prevents it from being theoretically computationally efficient, in the next section we
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present experimental results that demonstrate our algorithm performs wellempirically compared to
a related approach in a real-life robot problem.

4. Experiments

First we demonstrate the benefit of using domain knowledge about the structure of the dynamics
model on the standard reinforcement-learning benchmark, PuddleWorld (Boyan and Moore, 1995).
Then we illustrate the importance of explicitly learning the variance parameters of the dynamics in a
simulated “catching a plane” experiment. This is in contrast to some past approaches which assume
the variance parameters to be provided, such as Strehl and Littman (2008).

Our central hypothesis is that offset dynamics are a simple model that reasonably approximate
several real world scenarios. In our third experiment, we applied our algorithm to a simulated
problem using in which an agent needs to learn the best route to drive to work, and used date
collected from real cars to simulate the dynamics. In our final experiment weapplied our algorithm
to a real-world robot car task in which the car most cross varying terrain (carpet and rocks) to reach
a goal location.

CORL requires a planner to solve the estimated continuous-state MDP. Planning in continuous-
state MDPs is an active area of research in its own right, and is known to be provably hard (Chow and
Tsitsiklis, 1989). In all our experiments we used a standard technique, Fitted Value Iteration (FVI),
to approximately solve the current MDP. In FVI, the value function is represented explicitly at only a
fixed set of states. In our experiments these fixed states are uniformly spaced in a grid over the state
space. Planning requires performing Bellman backups for each grid point;the value function over
points not in this set is computed by function interpolation. We used Gaussian kernel functions as the
interpolation method. Using sufficiently small kernel widths relative to the spacing of the grid points
will make the approach equivalent to using a nearest neighbour standard discretization. However,
there are some practical advantages in coarse grids to more smooth methods ofinterpolation. We
discuss this issue in more depth in the next section.

In each experiment,Nat was tuned based on informal experimentation.

4.1 Puddle World

Puddle world is a standard continuous-state reinforcement-learning problem introduced by Boyan
and Moore (1995). The domain is a two-dimensional square of width 1 with twooval puddles, which
consist of the area of radius 0.1 around two line segments, one from(0.1,0.75) to (0.45,0.75) and
the other from(0.45,0.4) to (0.45,0.8). The action space consists of the four cardinal directions.
Upon taking an action the agent moves 0.05 in the specified cardinal direction with added Gaussian
noiseN (0,0.001∗ I), whereI is a two-by-two identity matrix. The episode terminates when the
agent reaches the goal region which is defined as the area in whichx+y≥ 1.9. All actions receive
a reward of−1 unless the agent is inside a puddle, in which case it then receives a reward of −400
times the distance inside the puddle. Figure 1 provides a graphical depiction of the puddle world
environment.

We expect CORL will outperform prior approaches on this problem for two reasons. The first
is that we assume the reward is given. However even if the reward model is provided, most past
work still has to learn the dynamics model for this world, which is still a significant undertaking.
The second reason is a feature of the CORL algorithm: its dynamics model uses the additional
information that the dynamics for one action for all states of the same type are identical. Here there
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Figure 1: Puddle world. The small square with a star in it denotes the goal region. The black ovals
represent the puddles and the black line represents a sample partial trajectory of an agent
navigating around this world.

is only a single type, so CORL must learn only 4 sets of transition parameters, one for each action.
Our goal here is simply to demonstrate that this additional information can lead to significantly
faster learning over other more general techniques.

Puddle world has previously been used in reinforcement-learning competitions, and our eval-
uation follows the procedure of the second bakeoff (Dutech et al., 2005). We initially generated
50 starting locations, and cycled through these when initializing each episode. Each episode goes
until the agent reaches the goal, or has taken 300 actions. We report results from taking the av-
erage reward within fifty sequential episodes (so the first point is the average reward of episodes
1-50, the second point is the average of episodes 51-100, etc.). We set Nat to be 15, and solved the
approximate MDP model using Fitted Value Iteration with Gaussian kernel functions. The kernel
means were spaced uniformly in a 20x20 grid across the state space (every 0.05 units), and their
standard deviation was set to 0.01. Note that in the limit as the standard deviationgoes to 0 the func-
tion interpolation becomes equivalent to nearest neighbour. Nearest neighbour is the interpolation
method used in the approximate continuous-state MDP solver by Chow and Tsitsiklis (1991) which
provides guarantees on the resulting value function approximation. However, since computational
complexity scales exponentially with the grid discretization, practical applicationcan require the use
of coarse grids. In this case, we found that using a smoother function interpolation method empiri-
cally outperformed a nearest neighbour approach. In particular, we found that a kernel width, which
is a measure of the standard deviation, of 0.01 gave the best empirical performance. This value lies
in the middle of kernel widths which are smaller than the variance of the dynamicsmodels and the
grid spacing and those widths larger than the grid spacing and dynamics models.

We compare our results to the reported results of Jong and Stone (2007)’s Fitted R-max and to
Lagoudakis and Parr (2003)’s Least Squares Policy Iteration (LSPI).7 Fitted R-max is an instance-
based approach that smoothly interpolates the dynamics of unknown states with previously observed
transitions, and takes a similar approach for modeling the reward function. LSPI is a policy iteration
approach which uses a linear basis function representation of the state-action values, and uses a set
of sample transitions to compute the state-action values.

7. Both results reported come from the paper of Jong and Stone (2007).
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Algorithm
Number of episodes

50 100 200 400
CORL −19.9 −18.4 −20.3 −18.7
Fitted R-max −130 −20 20 −20
LSPI −500 −330 −310 −80

Table 1: PuddleWorld results. Each entry is the average reward/episodereceived during the prior
50 episodes. Results for the other algorithms are as reported by Jong andStone (2007).

On the first 50 episodes, Fitted R-max had an average reward of approximately−130, though on
the next 50 episodes it had learnt sufficiently good models that it reachedits asymptotic performance
of an average reward of approximately−20. In contrast, CORL learned a good model of the world
dynamics within the very first episode, since it has the advantage of knowing that the dynamics
across the entire state space are the same. This meant that CORL performedwell on all subsequent
episodes, leading to an average reward on the first 50 episodes of−19.9. Least Squares Policy
Iteration (Lagoudakis and Parr, 2003) learned slower than Fitted R-max.Results are summarized in
Table 1.

It is worth a short remark on the comparability of the reported results, as LSPI and Fitted R-
max were run without knowing the reward model. LSPI’s performance on adeterministic reward
reinforcement-learning problem such as PuddleWorld will be identical to its performance in the
known-reward case, as the rewards in the sampled transitions will be the same in either situation.
Given this, assuming known reward, as we do for CORL, will not changethe LSPI results. In
contrast we do expect that Fitted R-max will be slightly faster if it does not have to learn the reward
model. This is because a wider interpolation width can be selected if the rewardis known and only
the dynamics are unknown, since all states share the same dynamics. However, even in this case,
Fitted R-max will be approximating the Gaussian dynamics by a set of observedtransitions, and so
it appears likely that CORL will still be faster than Fitted R-max since CORL assumes the (true)
parametric representation of the transition model.

In summary, given the reward function, CORL can learn a good dynamics model extremely
quickly in PuddleWorld, since the dynamics are typed-offset with a single type. This additional
information enables CORL to learn a good policy for puddle world much fasterthan Fitted R-max
and LSPI. This experiment illustrates the advantage of CORL when the transition dynamics are
known to be identical across the state space, and to follow a noisy offset model.

4.2 Catching a Plane

We next consider some examples with multiple types. Thousands of people nowrely on internet
maps or GPS units to do efficient trip planning, and better traffic prediction is an area of recent
research (Horvitz et al., 2005). In many street systems, there exist a number of different classes
of road types according to the designated speed limits associated with these roads. These different
road types are often also associated with different variances. For example, while highways have
mean speeds that are faster than small side streets, highways typically havea very large variance;
rush hour highway speeds may often be slower than smaller side streets.
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Figure 2: Motivating example where an agent must drive from a start location (designated with an
S) to a goal area (shown with a highlighted rectangle) in time for a deadline, and can
choose to take large high speed and variance roads, or slower small variance roads.

In our first experiment we considered a scenario in which learning this variance is critical: an
agent must learn the best way to drive to an airport in time to catch a plane. A similar real-world
environment is depicted in Figure 2. The agent starts from home and can either drive directly along
a small side street, or cross over to the left or right to reach a main highway.The agent goes
forward more quickly on the highway (with a mean offset of 2 units), but thehighway also has a
high variance of 0.49. In contrast, on the small side streets the agent goes forward more slowly (a
mean offset of 1 unit) but with very small variance (0.00001). The state space is four dimensional,
consisting of the agent’s currentx andy location, its orientation, and the amount of time that has
passed. On each step five minutes pass. The agent can drive in a 14 by 19 region: outside of this is
considered to be too far away.8 If the agent exits this region it receives a reward of−1. The cost for
each step is−0.05, the reward for reaching the airport in time for check in is+1 and the cost for
not making the airport in time is−1. The discount factor is set to 1.0. Nat was set to 10. An episode
starts when the agent takes its first step and lasts until the agent reaches the goal, exits the allowed
region, or reaches the time at which check in for the plane closes. The agent starts at location 7,3
facing north, and must figure out a way to reach the goal region which spans[6.5−8.5,15.5-17.5].
To solve the underlying MDP, fitted value iteration was used. The fixed pointswere regularly spaced
grid points with 15 across the x dimension, 20 across the y dimension, 4 orientation angles, and 21
time intervals. This yielded over 25,000 fixed points.

The correct path to take depends on the amount of time left. Here we explored three different
deadline scenarios: when the agent has 60 minutes remaining (RunningLate), 70 minutes remaining
(JustEnough), or 90 minutes remaining until check in closes for the plane (RunningEarly). In all
three scenarios, the agent learned a good enough model of the dynamicswithin 15 episodes to
compute a good policy. Note that using a naı̈ve discretization of the space with the FVI fixed points
as states and applying R-max would be completely intractable, as a different model would have to
be learned for each of over 25,000 states. We display results for all three scenarios in Table 2. In

8. Note that this could be a reasonable assumption in some cases, such aswhen doctors had to stay within a certain
radius of a hospital when on call.
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Figure 3: (a) Simulated world map showing example environment. (b) World divided into a set of
discrete types. Agent starts at driveway (black circle) and tries to learna good route to
reach work. (c) An example section of a car trajectory (constructed from a set of GPS
locations).

theRunningLatescenario the agent learned that the side streets are too slow to allow it to everreach
the airport in time. Instead it took the higher variance highway which enablesit to reach the airport
in time in over half the episodes afterNat is reached for all types: its average reward is−0.4833
and it takes on average 56.62 minutes for it to reach the airport. InJustEnoughthe agent learned
that the speed of side streets is sufficiently fast for the agent to reach theairport consistently in time,
whereas the higher speed and variance highway would result in the agent failing to reach the check
in time in some cases. Here the agent always reached the goal and receives an average reward of
0.45. In theRunningEarlyscenario, the agent has enough time so that it can take either route and
reliably reach the airport in time. In this scenario it learned to always take thehighway, since in
expectation that route will be faster. The average reward here was 0.4629.

This simulation serves to illustrate that our algorithm can quickly learn to perform well, in
situations in which learning the variance is critical to ensure good performance.

4.3 Driving to Work

In our second experiment we again consider a simulated trip routing problem,but we now generate
transitions in the simulator by sampling from real traffic data distributions. Herean agent must learn
the best series of actions to drive from home to work in a small simulated world (see Figure 3(a)
and 3(b)). The state consists of the current coordinates(x,y) and the orientation of the agent. There
are three road types and each road type is associated with a different distribution of speeds. The

Scenario Deadline (min) Mean Reward/Episode Mean Time to Reach Goal (min)
RunningLate 60 −0.4833 56.62
JustEnough 70 0.45 60
RunningEarly 90 0.4629 58.6

Table 2: Catching a plane: results afterNat has been reached for all types.
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Figure 4: A histogram of car speeds on small roads that is used to generate transitions on road type
2 and the estimated dynamics model parameters found during the experiment

distributions were obtained from the CarTel project (Eriksson et al., 2008), which consists of a set
of car trajectories from the Boston, Massachusetts area. GPS locations and time stamps are stored
approximately every second from a fleet of 27 cars.9 A section from one car trajectory is shown
in Figure 3(c). Using this data set we extracted car trajectories on an interstate highway, small
side streets and a local highway: these constitute types 1, 2 and 3 respectively in the simulation
world. Each car trajectory consisted of a set ofD GPS+time data points, which was converted
into a set ofD− 1 transitions. Each transition in the simulation was sampled from these real-
world transitions; for example, transitions in the simulator on road type 2 were sampled from real-
world transitions on small side streets. Transitions from all three road typeswere all rescaled by
the same constant in order to make the distances reasonable for the simulated world.10 Figure 4
displays a histogram of rescaled transitions associated with small side streets. This figure shows
that the speed distribution for small side streets was not Gaussian: the speed distribution for the
other two street types was also not Gaussian. In particular, in no trajectories used does the car ever
go backwards, whereas in some Gaussian models there will be small probability of this occurring.
In this experiment we sought to investigate how well a noisy offset model could function in this
environment, and the benefit of directly modelling different types of roads. Each transition in the
simulated environment was sampled from the histogram of speeds associatedwith the road type at
the agent’s current position. Therefore, the data from the simulator is closer to the real environment
than to the Gaussian distributions assumed by the learning algorithm.

The agent received a reward of 1 for reaching the work parking lot,−0.05 for each step, and
−1 if it left the local area. Each episode finished when the agent either reached the goal, left the
local area, or had taken 100 steps. An agent can go left, right or straight at each step. The transition
induced by a straight action was determined by the road type as specified in the prior paragraph,
and going left or right changed the orientation of the agent by 90 degrees with a very small amount
of noise. The number of samples needed until a type-action tuple is known,Nat, was set to be 20.
The discount factor was 1. The agent was always started in the same location and was allowed
to learn across a set of 50 episodes. Results were averaged across 20 rounds of 50 episodes per

9. See more information about the project athttp://cartel.csail.mit.edu/.
10. We also removed outlier transitions, as extremely fast speeds/transitions were likely to be errors in the log file.
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Figure 5: Reward versus episode. (a) Compares CORL with 3 types and 1type to Q-learning.
Results are averaged over 20 rounds (50 episodes per round). Error bars show 95% con-
fidence intervals. (b) Shows Q-learning with 500 episodes per round, averaged over 100
rounds.

round. In one experiment the agent was given full knowledge of the three world types, and learned
a different dynamics model for each type and action. In the second experiment the agent assumed
there was only a single type and learned a dynamics model for each action. We also compared our
approach toQ-learning over a uniformly-spaced discrete grid over the environment withanε-greedy
policy. We used a discretization that was identical to the fixed points used in thefitted value iteration
planner of CORL. Points were mapped to their nearest neighbors. Q-learning requires specifying
two parameters: the learning rateα which determines how much to adjust the state-action value
estimates after each update, andε which specifies how often to take a random action instead of the
action that maximizes the current Q values. In this experimentα was set to 1.0 and decreased by
multiplying by a factor of 0.9999 at each step.11 We setε to be 0.1.

The CORL results are displayed in Figure 5(a). This figure displays threeencouraging results.
The first is that in both CORL algorithms the agent learned to consistently reach the goal: the only
way that the agent can receive a reward greater than−1 is to reach the goal, and all confidence inter-
vals lie above−1 for all episodes after 10, indicating that the agent in both cases was successfully
reaching the goal. This is promising because even though the underlying dynamics models were not
exactly Gaussian noisy offset dynamics, a noisy offset model approximation was sufficient for the
agent to learn a good policy in this environment. The estimated parameters computed for one type
and action are displayed in Figure 4.

The second result is that the policy found by the agent that models all threetypes differently
resulted in significantly higher reward than modeling the world with a single type:its performance
suffered initially because it takes longer to learn a model of the world dynamics, but from about
episode 10-50 modelling all types separately resulted in significantly higher reward per episode
than modelling all types as the same. Table 3 displays the average reward of both approaches on
episodes 10-50. These results demonstrate that traffic data does exhibitdifferent speed distributions

11. We tried different decay factors for theα parameter but found that this worked better than decayingα more rapidly.
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Algorithm Average reward/episode
CORL with 3 types 0.27
CORL with 1 type 0.00
Q-learning −3.2485

Table 3: Average reward on episodes 10-50 for the driving to work example.

on different types of roads, and that by considering such differences CORL can improve route
directions even in a small simulated example.

The third result is that both CORL algorithms significantly outperformedQ-learning: again see
Table 3 for comparing the short term performance ofQ-learning to the CORL algorithm. This is not
surprising sinceQ-learning is a model-free approach that trades off speed of computation per step in
return for not requiring consistency between its state values through learned reward and dynamics
models. Here in particular there is a large amount of structure in the domain thatQ-learning cannot
use.Q-learning does eventually begin to consistently reach the goal but this is onlyafter about 500
episodes, more than an order of magnitude longer than the CORL algorithms took to find a good
policy. These results are displayed in Figure 5(b). Such results argue that in situations where data
is costly to gather, using a model can be extremely helpful.

4.4 Robot Navigation Over Varying Terrain

We also tried our algorithm in a real-life robotic environment involving a navigation task where
a robotic car must traverse multiple surface types to reach a goal location. This experiment is a
second example where a noisy offset dynamics model provides a sufficiently good representation of
the real-world dynamics to allow our algorithm to learn good policies. We compared to the RAM-
Rmax algorithm (Leffler et al., 2007), a provably efficient RL algorithm for learning in discrete-state
worlds with types. The authors demonstrated that, by explicitly representing the types, they could
get a significant learning speedup compared to R-max, which learns a separate dynamics model
for each state. The RAM-Rmax algorithm represents the dynamics model usinga list of possible
next outcomes for a given type. CORL works directly with continuous-valued states, resulting
in the improved sample complexity discussed earlier. This is achieved through assuming a fixed
parametric representation of the dynamics, which is a less flexible model than the one used in RAM-
Rmax. In this experiment we were interested in whether our representation was still rich enough
to capture the real world dynamics involved in varying terrain traversal. Wealso investigated the
computational load of CORL compared to RAM-Rmax, since by restricting our representation size
we hoped to also achieve computational savings.

In this experiment we ran a LEGOR© Mindstorms NXT robot (see Figure 6(b)) on a multi-
surface environment. A tracking pattern was placed on the top of the robotand an overhead camera
was used to determine the robot’s current position and orientation. The domain, shown in Fig-
ure 6(a), consisted of two types of terrain: rocks embedded in wax and acarpeted area. The goal
was for the agent to begin in the start location (indicated in the figure by an arrow) and end in the
goal without going outside the environmental boundaries. The rewards were−1 for going out of
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(a) (b)

Figure 6: (a) Image of the environment. The start location and orientation is marked with an arrow.
The goal location is indicated by the circle.(b) LEGOR© robot.

bounds,+1 for reaching the goal, and−0.01 for taking an action. Reaching the goal and going out
of bounds ended the episode and resulted in the agent getting moved back tothe start location.12

Due to the close proximity of the goal to the boundary, the agent needs an accurate dynamics
model to reliably reach the goal. Part of the difficultly of this task is that the actions were going
forward, turning left, and turning right. Without the ability to move backwards, the robot needed to
approach the goal accurately to avoid falling out of bounds.

For the experiments, we compared our algorithm (“CORL”) and the RAM-Rmax algorithm
(“RAM”). The fixed points for the fitted value iteration portion of our algorithm were set to the
discretized points of the RAM-Rmax algorithm. Both algorithms used an EDISON image segmen-
tation system to uniquely identify the current surface type. The reward function was provided to
both algorithms.

The state space is three dimensional:x, y position and orientation. Our algorithm implementa-
tion for this domain used a full covariance matrix to model the dynamics variance. For the RAM-
Rmax agent, the world was discretized to a forty-by-thirty-by-ten state space. In our algorithm, we
used a function approximator of a weighted sum of Gaussians, as described in Section 2. We used
the same number of Gaussians to represent the value function as the size ofthe state space used in
the discretized algorithm, and placed these fixed Gaussians at the same locations. The variance over
the x andy variables was independent of each other and of orientation, and was set to be 16. To
average orientation vectors correctly (so that−180◦ degrees and 180◦ do not average to 0) we con-
verted orientationsθ to a Cartesian coordinate representationxθ = cos(θ),yθ = sin(θ). The variance
over these two was set to be 9 for each variable (with zero covariance).For our algorithm and the
RAM-Rmax algorithm, the value ofNat was set to four and five, respectively, which was determined
after informal experimentation. The discount factor was set to 1.

Figure 7(a) shows the average reward with standard deviation for eachof the algorithms over
three runs. Both algorithms are able to receive near-optimal reward on a consistent basis, choosing

12. A video of the task can be seen athttp://people.csail.mit.edu/emma/corl/SuccessfulRun.mov andhttp:
//people.csail.mit.edu/emma/corl/SuccessfulRun.wmv.
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Figure 7: (a) Reward received by algorithms averaged over three runs. Error bars show one standard
deviation. (b) Total time taken by algorithms averaged over three runs. Error bars show
one standard deviation.

similar paths to the goal. Our dynamics representation is sufficient to allow our algorithm to learn
well in this real-life environment.

In addition, by using a fixed size (parametric) dynamics representation, thecomputational time
per episode of our algorithm is roughly constant (Figure 7(b)). In the implementation of RAM-
Rmax, the computational time grew with the number of episodes due to its dynamics model repre-
sentation. This suggests that using a fixed size dynamics representation can have significant com-
putation benefits. Overall CORL performed well in this domain, both in terms of reward achieved
and computation required.

5. Conclusion and Future Work

In this paper we have presented CORL, an algorithm for efficiently learning to act in typed, continuous-
state environments. CORL has a sample complexity that scales polynomially with the state space
dimension and the number of types: this bound also directly incorporates the error due to approxi-
mate planning. Experiments on a simulated driving example using real world cardata, and a small
robot navigation task, suggest that noisy offset dynamics are a sufficiently rich representation to
allow CORL to perform well in some real-world environments.

Due to the approximate MDP planning, we cannot currently guarantee both polynomial sample
complexity and polynomial computational complexity. There are a number of recent advances
in continuous-state MDP planning (Kocsis and Szepesvári, 2006; Kveton and Hauskrecht, 2006;
Marecki and Tambe, 2008) as well as alternate approaches such as forward search techniques. In
the future it would be interesting to investigate whether there exist alternate MDP planners that
can provideε-close approximations to the exact solutions with a computational complexity that
scales polynomially with the number of state dimensions. Such approaches would enable CORL
to achieve the appealing goal of polynomial dependence on the number of state dimension for both
sample complexity and computational complexity.
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Finally, the bounds provided remain overly large for many practical applications. We are broadly
interested in developing techniques that can tighten the gap between the theoretical bounds and those
needed for practical performance in real-world reinforcement learning.
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Appendix A.

Lemma 5Assumemaxd |β̃d−βd| ≤ ε for ε < 1/4. Given anyδ > 0, define Tσ =
12N2B2

σ
δε2 . If there are

Tσ transition samples(s,a,s′), then with probability at mostδ3, the estimated covariance parameter
σ̃i j , computed by Equation 3, deviates from the true covariance parameterσi j by more thanε over
all entries i j; formally,Pr(maxi |σ̃i j −σi j | ≥ ε) ≤ δ

3.
Proof First recall thatσi j represents the covariance between dimensionsi and j. We are interested in
the probability that the estimated covarianceσ̃i j differs from the true parameterσi j : Pr(|σ̃i j −σi j | ≥
ε). From Chebyshev’s inequality, we can bound this expression as

Pr(|σ̃i j −σi j | ≥ ε) ≤ Var(σ̃i j )

ε2 , (11)

whereVar(σ̃i j ) is the variance of the sample variance.
We therefore require an upper bound on the variance of the sample covariance. We will derive

a bound on this below in the general case of the covariance between two variablesx andy both of
which are Gaussian distributed.

Var(σ̃xy) = E[(σ̃xy−σxy)
2]

= E





(

1
Tσ

Tσ

∑
k=1

(xk− x̄)(yk− ȳ)−σxy

)2




where x̄ and ȳ are the respective sample means, and in the second line we have written out the
definition of the sample covariance. We can then use the linearity of expectation to derive

Var(σ̃xy) =
1

T2
σ

Tσ

∑
k=1

Tσ

∑
m=1

E[(xk− x̄)(xm− x̄)(yk− ȳ)(ym− ȳ)]

−2σxy
1
Tσ

Tσ

∑
k=1

E[(xm− x̄)(ym− ȳ)]+E[(σxy)
2]

=
1

T2
σ

Tσ

∑
k=1

Tσ

∑
m=1

E[(xk− x̄)(xm− x̄)(yk− ȳ)(ym− ȳ)]− (σxy)
2
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where the second line follows from the definition of the covarianceσxy. We next divide the summa-
tion into two expressions, whenm= k and whenm 6= k, and use the property that the expectation of
independent variables is the product of their expectations:

Var(σ̃xy) =
1
Tσ

E[(xk−x̄)2(yk−ȳ)2]+
Tσ(Tσ−1)

T2
σ

E[(xk−x̄)(yk−µk)]E[(xm−x̄)(ym−ȳ)]−(σxy)
2

=
1
Tσ

E[(xk− x̄)2(yk− ȳ)2]+
Tσ(Tσ −1)

T2
σ

(σxy)
2− (σxy)

2.

We can now use the Cauchy-Schwarz inequality on the first term to get

Var(σ̃xy) ≤ 1
Tσ

√

E[(xk− x̄)4]E[(yk− ȳ)4]+
Tσ(Tσ −1)

T2
σ

(σxy)
2− (σxy)

2

=
1
Tσ

√

E[(xk+µx−µx− x̄)4]E[(yk+µy−µy− ȳ)4]+
Tσ(Tσ−1)

T2
σ

(σ2
xy)

2−(σ2
xy)

2

=
1
Tσ

√

(3σ4
xx+6σ2

xx(x̄−µx)2 +(x̄−µx)4)(3σ4
yy+6σ2

yy(ȳ−µy)2 +(ȳ−µy)4)

+
Tσ(Tσ −1)

T2
σ

(σxy)
2− (σxy)

2

where we have used the fact that the fourth central moment of a Gaussiandistribution is 3σ2
xx in the

final line. Next we make use of the assumptions thatBσ is an upper bound to all covariance matrix
elements and the bound on the maximum error in the parameter offset estimates:

Var(σ̃2
xy) ≤ (ε4 +6ε2Bσ +3B2

σ)

Tσ
+

Tσ(Tσ −1)

T2
σ

(σxy)
2− (σxy)

2

≤ 4B2
σ

Tσ

where the last line follows becauseε < 1/4 andBσ ≥ 1. We can then substitute this result into
Equation 11 which yields

P(|σ̃i j −σi j | ≥ ε) ≤ 4B2
σ

ε2Tσ
.

To ensure that this bound holds simultaneously with probabilityδ
3 for all N2 covariance matrix

elements it suffices by the union bound to require that each covariance entry exceeds its expected
value by more thanε with probability at most δ

3N2 :

4B2
σ

ε2Tσ
≤ δ

3N2 .

Re-arranging yields the bound for the required number of samples:

Tσ ≥ 12N2B2
σ

δε2 .
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Lemma 8 If maxi, j |Σ1(i, j)−Σ2(i, j)| ≤ ε for any1≤ i, j ≤ N, then

∣

∣

∣

∣

ln
detΣ2

detΣ1

∣

∣

∣

∣

≤ Nε
(

1
λ1

+
1
λ2

+ · · ·+ 1
λN

)

≤ N2ε
λN

.

Proof Define E = Σ2 − Σ1. Clearly, E is symmetric since bothΣ1 and Σ2 are symmetric. Its
eigenvalues are denoted byψ1 ≥ ψ2 ≥ ·· · ≥ ψN, which are real (but can be negative or positive).
First, it is known that

detΣ1 =
N

∏
i=1

λi & detΣ2 =
N

∏
i=1

λ′
i .

Therefore,

ln
detΣ2

detΣ1
= ln

N

∏
i=1

λ′
i

λi
=

N

∑
i=1

ln
λ′

i

λi
.

From Geřsgorin’s theorem (Horn and Johnson, 1986, Theorem 6.1.1), the eigenvalues ofE must
be small as the elements ofE are small. Specifically, eachψi must lie in one of then Geřsgorin
discs:

∀1≤ j ≤ N : D j = {x∈ R | |x−E( j, j)| ≤ ∑
j ′ 6= j

∣

∣E( j, j ′)
∣

∣}.

It follows immediately that

|ψi | ≤
N

∑
j=1

|E(i, j)| ≤ Nε

as every component inE lies in [−ε,ε].
On the other hand, from Weyl’s theorem (Horn and Johnson, 1986, Theorem 4.3.1), we have

ψ1 ≥ λ′
i −λi ≥ ψN.

We have just proved that both|ψ1| and|ψN| are at mostNε, and thus
∣

∣λ′
i −λi

∣

∣≤ Nε.

Consequently,
λ′

i

λi
≤ λi +Nε

λi
= 1+

Nε
λi

.

Therefore, we have

ln
detΣ2

detΣ1
=

N

∑
i=1

ln
λ′

i

λi
≤

N

∑
i=1

ln

(

1+
Nε
λi

)

≤
N

∑
i=1

Nε
λi

≤ (N)2ε
λN

where the second to last inequality uses the inequality ln(1+x) ≤ x for x≥ 0.

The following lemmas will be useful to prove Lemma 9.
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Lemma 11 (Lemma 2.7.1 and Theorem 2.7.2 from Golub and Van Loan 1996) Suppose Ax= b
and (A+ ∆A)y = b+ ∆b with ‖∆A‖ ≤ ε‖A‖ and ‖∆b‖ ≤ ε‖b‖. If εκ(A) < 1, then A+ ∆A is
nonsingular, and

‖y−x‖
‖x‖ ≤ 2εκ(A)

1− εκ(A)
,

where‖·‖ can be anyℓp matrix/vector norm, andκ(A) = ‖A‖
∥

∥A−1
∥

∥ is the corresponding condition
number.

Lemma 12 (A trace inequality of von Neumann 1937) Let A and B be two symmetric matrices of
order n, whose singular values areξ1 ≥ ξ2 ≥ ·· · ≥ ξn ≥ 0 andζ1 ≥ ζ2 ≥ ·· · ≥ ζn ≥ 0, respectively.
Then

|tr(AB)| ≤
n

∑
i=1

ξiζi .

Lemma 13 Suppose the covariance matrixΣ1 is non-singular; that is its eigenvaluesλ1 : λN > 0.
Then

tr
(

Σ−1
1

)

=
N

∑
i=1

1
λi

≤ N
λN

max
i j

|Σ−1
1 (i, j)| ≤ ||Σ−1

1 ||1

||Σ−1
1 ||1 ≤

√
N||Σ−1

1 ||2 =

√
N

λN
.

Proof We prove the three upper bounds one by one:

1. It is a known fact that the trace of a matrix equals the sum of its eigenvalues. The first equality
follows from the observation that the eigenvalues ofΣ−1

1 are 1
λ1

, 1
λ2

, . . . , 1
λN

.

2. This inequality follows from the definition of||Σ−1
1 ||1: it is the maximum absolute row sum

of the matrixΣ−1
1 , and therefore is not less than the largest absolute component of the matrix.

3. It is known that||A||1 ≤
√

N||A||2 for anyN×N matrix A (see, eg. theorem 5.6.18 in Horn
and Johnson 1986). On the other hand,||Σ−1

1 ||2 equals the largest eigenvalue ofΣ−1
1 , which

is 1
λN

.

Lemma 9 If maxi, j |Σ1(i, j)−Σ2(i, j)| ≤ ε and Nε
∥

∥Σ−1
1

∥

∥

1 < 1, then

tr
(

Σ−1
2 Σ1

)

−N ≤ 2N3εBσ

λ2
N − (N)1.5λNε

.

Proof The i-th row (or column) ofΣ−1
1 is the solution to the system of linear equations:Σ1x = ei

whereei hasN−1 zero components except a 1 in thei-th component. Similarly, thei-th row (or
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column) ofΣ−1
2 is the solution toΣ2y = ei . SinceΣ1 andΣ2 differ by at mostε in every component,

we have
‖Σ1−Σ2‖1

‖Σ1‖1
≤ Nε

‖Σ1‖1
.

For convenience, denote the right-hand side above byε′. It follows from Lemma 11 that

‖x−y‖1 ≤
2ε′κ(Σ1)‖x‖1

1− ε′κ(Σ1)
.

The above inequality holds for allN possiblee values. Note that‖x−y‖1 is the absolute sum of
the i-th row (or column) ofΣ−1

1 −Σ−1
2 for ei . Let ψ1 ≥ ψ2 ≥ ·· · ≥ ψN ≥ 0 be the singular values of

Σ−1
1 −Σ−1

2 . From Geřsgorin’s theorem, it follows that for alli,

ψi ≤ max
e

‖x−y‖1 ≤
2ε′κ(Σ1)

1− ε′κ(Σ1)
max

e
‖x‖1 =

2ε′κ(Σ1)

1− ε′κ(Σ1)

∥

∥Σ−1
1

∥

∥

1 (12)

whereκ(Σ1) = ‖Σ1‖
∥

∥Σ−1
1

∥

∥ the condition number ofΣ1. We can now complete the proof:

tr
(

Σ−1
2 Σ1

)

−N = tr
(

(Σ−1
2 −Σ−1

1 )Σ1
)

(13)

≤
N

∑
i=1

ψiλi (14)

≤
2ε′κ(Σ1)

∥

∥Σ−1
1

∥

∥

1

1− ε′κ(Σ1)

N

∑
i=1

λi (15)

=
2ε′κ(Σ1)

∥

∥Σ−1
1

∥

∥

1

1− ε′κ(Σ1)
tr(Σ1) (16)

=
2Nε

∥

∥Σ−1
1

∥

∥

2
1

1−Nε
∥

∥Σ−1
1

∥

∥

1

tr(Σ1) (17)

=
2N2Bσε

∥

∥Σ−1
1

∥

∥

2
1

1−Nε
∥

∥Σ−1
1

∥

∥

1

, (18)

≤ 2N3εBσ

λ2
N − (N)1.5λNε

. (19)

The first equality (Equation 13) is due to the identity tr
(

Σ−1
1 Σ1

)

= tr(I) = N, and the first inequality
(Equation 14) is a direct application of von Neumann’s inequality (Lemma 12) which can be used
since the eigenvaluesλi are also the singular values in this case. The second inequality (Equation 15)
follows from the result of Equation 12, the second equality (Equation 16) follows by the definition of
matrix traces, and the third equality (Equation 17) is obtained by noting thatκ(Σ1) = ‖Σ1‖1

∥

∥Σ−1
1

∥

∥

1.
Since each term in the covariance matrix is known to be bounded byBσ then the trace is bounded
by NBσ which allows us to generate the fourth equality (Equation 18). The final result is obtained
using the result of Lemma 13.
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Lemma 14 (Theorem from Kullback 1967) Let p1 and p2 be two probability density functions
defined overX . Define

Ω = {x∈ X | p1(x) ≥ p2(x)}.
If p1 and p2 are both measurable (integrable) overΩ, then

dKL (p1‖ p2) ≥
1
8
‖p1− p2‖2

1 .
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