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Abstract

To quickly achieve good performance, reinforcement-legyralgorithms for acting in large
continuous-valued domains must use a representationsthath sufficiently powerful to capture
important domain characteristics, and yet simultanecaisbyvs generalization, or sharing, among
experiences. Our algorithm balances this tradeoff by uaiatpchastic, switching, parametric dy-
namics representation. We argue that this model charaegea number of significant, real-world
domains, such as robot navigation across varying terrai@.pWve that this representational as-
sumption allows our algorithm to be probably approximatsyrect with a sample complexity that
scales polynomially with all problem-specific quantitiesluding the state-space dimension. We
also explicitly incorporate the error introduced by appneate planning in our sample complexity
bounds, in contrast to prior Probably Approximately Corf@AC) Markov Decision Processes
(MDP) approaches, which typically assume the estimated M@Pbe solved exactly. Our experi-
mental results on constructing plans for driving to workngsieal car trajectory data, as well as a
small robot experiment on navigating varying terrain, dastate that our dynamics representation
enables us to capture real-world dynamics in a sufficientmeato produce good performance.

Keywords: reinforcement learning, provably efficient learning

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) has had some dsipgereal-world suc-
cesses, including model helicopter flying (Ng et al., 2004) and expivta@ backgammon players
(Tesauro, 1994). Two of the key challenges in reinforcement leaarmgcaling up to larger, richer
domains, and developing principled approaches for quickly learningrforpewell. Our interest
lies in developing algorithms for large continuous-valued environments dimgyproblems such as
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learning the best route to drive to work, or how a remote robotic rovelezan to traverse different
types of terrain. To perform learning efficiently in such environmentsyill@essume that the world
dynamics can be compactly described by a small set of simple parametric nmadisgs one for
driving on highways and another for driving on small roads. We wilivprthat this assumption
allows our algorithm to require an amount of experience that only scalgagoially with the
state space dimension. We will also empirically demonstrate that these assuraptioaalistic for
several real world data sets, indicating that our Continuous-Offdatdteement Learning (CORL)
algorithm may be well suited for large, high-dimensional domains.

A critical choice in the construction of a reinforcement-learning algorithmois to balance
between actions that gather information about the world environment (axplo) versus actions
that are expected to yield high reward given the agent’s current estinfates world environment
(exploitation). In early work, algorithms such as Q-learning were showetimrm optimally in the
limit of infinite data (Watkins, 1989), but no finite-sample guarantees weoe/Rn More recently
there have been three main branches of model-based reinforcemerndeasearch concerned
with the exploration problem. The first consists of heuristic approacloese ®f which perform
very well in practice, but lack performance guarantees (for examplg dad Stone 2007). The
second branch strives to perform the action that optimally balances etipfosad exploitation at
each step. Such Bayesian approaches include the model parameterdhiesstate space of the
problem. Poupart et al. (2006) assumed a fully observed discrete gtate anhd modeled the un-
derlying model parameters as hidden states, effectively turning the prafe a continuous-state
partially observable Markov decision process (POMDP). Castro ascupr(2007) also assumed
a fully observed discrete state space but represented the model pasaaseteunts over the dif-
ferent transitions and reward received, thereby keeping the prdilgnobservable. Doshi et al.
(2008) considered a Bayesian approach for learning when the istete space is only partially
observable, and Ross et al. (2008) considered learning in a partiEaed continuous-valued
robot navigation problem. Approaches in the Bayesian RL frameworkntoninherent complex-
ity problems and typically produce algorithms that only approximately solve thrgettaptimality
criteria.

In our work we will focus on achieving near optimality, making precise guaes on when,
and with what probability, it will be achieved. This type of approach to merégment learning
was commenced by Kearns and Singh (2002) and Brafman and Teftizef@@®2) who created
algorithms that were guaranteed to achieve near optimal performancelurt alsmall number of
samples, with high probability. We will refer to work in this line of research@ebably approx-
imately correct” (PAC-MDP), as introduced by Strehl et al. (2006), ailddiscuss it further in
the sections that follow. One of the appealing aspects of this area overeaiBa RL approach is
that it allows one to make precise statements about the efficiency andmenice of algorithms:
if the MDP or POMDP used in the Bayesian RL approach could be solvelgxgith an infor-
mative prior, then this approach would likely outperform PAC-MDP apginea. However, when a
Bayesian RL problem is only approximately solved or when the prior informagiancorrect, it is
unknown how far the resulting solution is from the optimal behavior. Oukwes within this third
PAC-MDP approach, and draws upon the past advances made in tfisddubcluding our own
initial work in this area (Brunskill et al., 2008). The current work makesgaificant theoretical
generalization of our initial results which requires different proof tégqhes, and presents a number
of new experiments and discussions.
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Within the PAC-MDP line of research, there has been little work on directlysidening
continuous-valued states. One exception is the work of Strehl and Littn@@8)2who consid-
ered learning in continuous-valued state-action spaces. Their warknadghat a single dynamics
representation was shared among all states, and that the noise pardnietatymamics represen-
tation was known. The focus of their paper was slightly different than tineent work, in that the
authors presented a new online regression algorithm for determiningevivergh information was
known to make accurate predictions.

An alternate approach to handling continuous state spaces is to discretgmtieeinto a grid.
This step enables prior PAC-MDP algorithms such as R-max (Brafman amefikoltz, 2002) to
be applied directly to the discretized space. However, their represeratioaworld may not fully
exploit existing structure. In particular, such a representation reghia¢she dynamics model for
each state-action tuple is learned independently. Since each state-antimaveaentirely different
dynamics, this approach has a great deal of representational gdaweever, as there is no sharing
of dynamics information among states, it has a very low level of generalizati@ontrast, the work
of Strehl and Littman (2008) and the classic linear quadratic Gaussialateguonodel (Burl, 1998)
assume that the dynamics model is the same for all states, greatly restrictirgptbsentational
power of these models in return for higher generalization and fast lgarnin

Recently, there have been several approaches that explore the nrimldbel @f representational
power and generalization ability. Jong and Stone (2007) assumed thanid®ids model between
nearby states was likely to be similar, and used an instance-based dpfreatve a continuous-
state RL problem. Their experimental results were encouraging but neetluad guarantees were
provided, and the amount of data needed would typically scale exponentitiilyhe state-space
dimension. A stronger structural assumption is made in the work of Lefflat. €2007), which
focused on domains in which the discrete state space is divided into a spéesf §tates within the
same type were assumed to have the same dynamics. The authors proadygbdtrepresentation
can require significantly less experience to achieve good performaneeaced to a standard R-
max algorithm that learns each state-action dynamics model separately.

Our work draws on the recent progress and focuses on contiratatgs-discrete-action, typed
problems. By using a parametric model to represent the dynamics of eadalisafrete set of types,
we sacrifice some of the representational power of prior approatkée( et al., 2007; Brafman
and Tennenholtz, 2002) in return for improved generalization, but si@dinre much more flexible
representation than approaches that assume a single dynamics modedhiatisacross all states.
In particular, we prove that restricting our representational powebslesa@ur algorithm to have a
sample complexity that scalpslynomiallywith the state-space dimension. An alternate approach
is to place a uniformly spaced grid over the state space and solve the prosiegnthe existing
algorithms from Leffler et al. (2007) or Brafman and Tennenholtz (206®wever, this strategy
results in an algorithm whose computational complexity scales exponentially \gitstake-space
dimension.

Our algorithm involves a subroutine for solving a continuous-state MDRjtsacurrent model
estimates. Outside of special cases like the linear Gaussian quadratidoegutdlem (Burl,
1998), planning cannot be performed exactly for generic contingtate-MDPs. Therefore we ex-
plicitly incorporate the error introduced by approximate planning in our saogotglexity bounds.
This is in contrast to prior PAC-MDP approaches, which typically assumedtimated MDP can
be solved exactly.
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In particular, our dynamics representation is a simple noisy offset modetevihe next state
is presumed to be a function of the prior state, plus an offset and somsi@adsstributed noise.
The offset and Gaussian parameters are assumed to be specified Ipethef the state and action
a, thereby allowing all states of the same type to share dynamics parameteestavoally,

S =S+ Bat + €at: (1)

wheresis the current states is the next stategg: ~ A (0, Z4) is drawn from a zero-mean Gaussian
with covariance 4, andfy is the offset.

In our experimental section we first demonstrate our algorithm on the sthRtlaPuddleWorld
problem of Boyan and Moore (1995). We next illustrate the importanceaohileg the variance
of different types by an example of an agent with a hard time deadline. Tittketkample is a
simulated decision problem in which an agent is trying to learn the best rautigifing to work.
The simulator uses real car-trajectory data to generate its trajectories. finahexperiment, a real
robot car learns to navigate varying terrain. These experiments deatenttat the noisy offset
dynamics model, while simple, is able to capture real world dynamics for tworgiffelomains
sufficiently adequately to allow the agent to quickly learn a good strategy.

At a high level, our work falls into the category of model-based reinforegrearning algo-
rithms in which the MDP model (Equation 1) can K&VIK-learned(Li et al., 2008; Li, 2009),
and thus it is efficient in exploring the world. The Knows Whats It KnowSJIK) framework is
an alternate learning framework which incorporates characteristics &frtmbly Approximately
Correct (PAC) learning framework, which will be discussed furthéolweand the mistake bound
framework. Though our theoretical development will follow a PAC-stylerapch, the KWIK
framework provides another justification of the soundness and eff@eetds of our algorithm.

The focus of this paper is on the sample complexity of the CORL algorithm. CQRunaes
an approximate MDP planner to solve the current estimated MDP, and kssuehaapproximate
planners with guarantees on the resulting solution involve a discretizatorethats in an expo-
nential tiling of the state space. In such cases the computational complexit@RE @ill scale
exponentially with the number of dimensions. However, the experimentdigefmonstrate that
CORL exhibits computational performance competitive with or better than exapipgpaches.

The rest of the paper proceeds as follows. In Section 2, we will brigflyuds the background
to our work and then present the CORL algorithm. Section 3 presents auetival analysis of our
algorithm. In Section 4 we present experimental results, and in Section bvetude and discuss
future work.

2. A Continuous-state Offset-dynamics Reinforcement Learer

This section introduces terminology and then presents our algorithm, CORL.

2.1 Background

The world is characterized by a continuous-state discounted MBP(S A, p(s|s,a),R,y) where
SC RN is the N-dimensional state spacA,is a set of discrete actiong(s|s,a) is the transition
dynamicsy € [0, 1) is the discount factor and: Sx A — [0, 1] is the reward function. In addition
to the standard MDP formulation, each stsig associated with a single observable typgeTl. The
total number of types islr and the mapping from states to typggs- T is assumed to be known.
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Algorithm 1 CORL
1: Input: N (dimension of the state spad@), (number of actions)Ny (number of types)R
(reward model)y (discount factor)Ng: (minimum number of samples per state-action pair)
2: Set all type-action tupleg, a) to be unknown and initialize the dynamics models (see text) to
create an empirical known-type MDP modé .

3: Start in a statep.

4: loop

5. Solve MDPMg using approximate solver and denote its optimal value functio@:by

6:  Select actiora = argmax Q(s,a).

7. Increment the appropriate; count (wherd is the type of state).

8:  Observe transition to the next state

9:  If ng exceeddNy then mark(a,t) as “known” and estimate the dynamics model parameters
for this tuple.

10: end loop

The dynamics of the environment are determined by the current stateaygeactiora taken:
p(sl‘s7 a) = N(S;s+ Bar, Zat).

Therefore, types partition the state space into regions, and each regesoi@ated with a particular
pair of dynamics parameters.

In this work, we focus on when the reward model is providaad the dynamics model parame-
ters are hidden. The parameters of the dynamics mgedndz;, are assumed to be unknown for
all typest and actions at the start of learning. This model is a departure from prior related work
(Abbeel and Ng, 2005; Strehl and Littman, 2008), which focuses onra general linear dynamics
model but assumes a single type and that the variance of the hgiseknown. We argue that
in many interesting problems, the variance of the noise is unknown and estirttatingise may
provide the key distinction between the dynamics models of different types.

In reinforcement learning, the agent must learn to select an agftijiven its current state At
each time step, it receives an immediate rewabdsed on its current stateThe agent then moves
to a next states’ according to the dynamics model. The goal is to learn a paticys — A that
allows the agent to choose actions to maximize the expected total reward itagilee The value
of a particular policyrtis the expected discounted sum of future rewards that will be receaived f
following this policy, and is denoted™(s) = En[z‘fzoyjrj |so = 5|, whererj is the reward received
on thej-th time step andy is the initial state of the agent. L&t be the optimal policy, and its
associated value function b (s).

2.2 Algorithm

Our algorithm €.f., Algorithm 1) is derived from the R-max algorithm of Brafman and Tennen-
holtz (2002). We first form a set df, a) tuples, one for each type-action pair. Note that each tuple

1. As long as the reward can be KWIK-learned (Li et al., 2008) themehelts are easily extended to when the reward
is unknown. KWIK-learnable reward functions include, for instancay€sian, linear and tabular rewards.

2. For simplicity, the reward is assumed to be only a function of state in thisrptps straightforward to extend our
results to the case when the reward function also depends on the action take
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corresponds to a particular pair of dynamics model parame@sisZat). A tuple is considered to

be “known” if the agent has been in typand taken actioa a numbeN times. At each time step,

we construct a new MDWik as follows, using the same state space, action space, and discount fac-
tor as the original MDP. If the number of times a tuple has been experiengei, greater than or
equal toNg, then we estimate the parameters for this dynamics model using maximum-likelihood
estimation:

Bat = i_mlE:,t_S)’ @)
5. - Z(g-s—Ba(§-s P @3)

Nat

where the sum ranges over all state-action pairs experienced for Wiadype ofs wast, the
action taken was, ands was the successor state. Note that while Equation 3 is a biased estimator,
it is also popular and consistent, and becomes extremely close to the unbstiseate when the
number of samplesy; is large. We choose it because it makes our later analysis simpler.

Otherwise, we set the dynamics model for all states and the action assoititetis type-
action tuple to be a transition with probability 1 back to the same state. We also maalifgviard
function for all states associated with an unknown type-action t(ipla,) so that all state-action
valuesQ(s,,ay) have a value 0¥max (the maximum value possible/1 —vy)). We then seek to
solve M. This MDP includes switching dynamics with continuous states, and we ane afa
no planners guaranteed to return the optimal policy for such MDPs in glen€ORL assumes
the use of an approximate solver to provide a solution for a MDP. Thera aagiety of existing
MDP planners, such as discretizing or using a linear function approximatmehwe will consider
particular planner choices in the following sections. At each time step, the elgeoses the action
that maximizes the estimate of its current approximate value accordipg to= argmax Q:(s,a).
The complete algorithm is shown in Algorithm 1.

3. Learning Complexity

In this section we will first introduce relevant background and thenigeoa formal analysis of the
CORL algorithm.

3.1 Preliminaries and Framework

When analyzing the performance of an RL algorithinthere are many potential criteria to use. In
our work, we will focus predominantly on sample complexity with a brief menticroofiputational
complexity. Computational complexity refers to the number of operations &eby the algorithm
for each step taken by the agent in the environment. We will follow Kaka@@3Pand ussample
complexityas shorthand for theample complexity of exploratiorit is the number of time steps
at which the algorithm, when viewed as a non-stationary pdiicig note-optimal at the current
state; that isQ*(s,a) — Q"(s,a) > € whereQ* is the optimal state-action value function a8 is
the state-action value function of the non-stationary paticizollowing Strehl et al. (2006), we are
interested in showing, for a giverandd, that with probability at least 4 & the sample complexity
of the algorithm is less than or equal to a polynomial function of MDP parasebéote that we
only consider the number of samples to ensure the algorithm will learn acdtex& near-optimal
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policy with high probability. As the agent acts in the world, it may be unlucky exukrience a
series of state transitions that poorly reflect the true dynamics due to noise.

Prior work by Strehl et al. (2006) provided a framework for analyzimg sample complexity
of R-max-style RL algorithms. This framework has since been used inadatber papers (Leffler
et al., 2007; Strehl and Littman, 2008) and we will also adopt the same agproVe first briefly
discuss the structure of this framework.

Strehl et al. (2006) defined an RL algorithm to be greedy if it choose<itsreto be the one
that maximizes the value of the current stai@ = argmax, Q(s,a)). Their main result goes as
follows: let 4(g,d) denote a greedy learning algorithm. Maintain a Ksbf “known” state-action
pairs. At each new time step, this list stays the same unless during that time stestate-action
pair becomes known. MDRFI is the agent’s current estimated MDP, consisting of the agent’s
estimated models for the known state-action pairs, and self loops and optimigicise(as in our
construction described in the prior section) for unknown state-actios.p®IDP My is an MDP
which consists of the true (underlying) reward and dynamics models fokrtben state-action
pairs, and again self loops and optimistic rewards for the unknown stite-@airs. To be clear,
the only difference between MDM and MDP M is that the first uses the agent's experience
to generate estimated models for the known state-action pairs, and the sisesrtie true model
parametersttis the greedy policy with respect to the current state-action vaygsobtained by
solving MDPM: V,\’7|TK is the associated value function fQf;, and may equivalently be viewed as
the value of policytcomputed using the estimated model parametgjs.is the value of policyrt
computed using the true model parameters. Assumethiatld are given and the following three
conditions hold for all states, actions and time steps:

1. Q*(s,a) — Qy, (s,a) <.
2. V,\T7|‘K () =V, (s) <e.

3. The total number of times the agent visits a state-action tuple that is Koisitbounded by
{(g,9) (thelearning complexity.

Then, Strehl et al. (2006) show for any MDW, 4(g,d) will follow a 4&-optimal policy from its
initial state on all bulN;qt time steps with probability at least-123, whereN;qt4 is polynomial in
the problem’s paramete(g(&, ), {, 3, 1 )-

The majority of our analysis will focus on showing that our algorithm fulfillsséhéhree criteria.
In our approach, we will define the known state-action pairs to be all tstase-actions for which
the type-action paift(s),a) is known. We will assume that the absolute values of the components
in 24 are upper bounded by a known constBgtwhich is, without loss of generality, assumed to
be greater than or equal to 1. This assumption is often true in practice. Nd¢edbe determinant
of matrix D by detD, the trace of a matri® by tr(D), the absolute value of a scaldby |d| and

the p-norm of a vectow by Hva. Full proofs, when omitted, can be found in the Appendix.

3.2 Analysis

Our analysis will serve to prove the main result:

Theorem 1 For any givend ande in a continuous-state noisy offset dynamics MDP withtyppes
where the covariance along each dimension of all the dynamics modedsiigléd by —Bg, B,
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on all but Neta time steps, our algorithm will follow de-optimal policy from its current state with
probability at leastl — 28, where Nyq is polynomial in the problem parametefl, |A|, Ny, %, %,

ﬁ, 5 Bo) wherey is the smallest eigenvalue of the dynamics covariance matrices.

Proof To prove this, we need to demonstrate that the three criteria of Strehl 20@6)(hold. The
majority of our effort will focus on the second criterion. This criterion stdtet the value of states
under the estimated known-state MlﬁR must be very close to the value of states under the known-
state MDPM that uses the true model parameters for all known type-action pairsoVe this we
must bound how far away the model parameters estimated from the aggfsesce can be from
the true underlying parameters, and how this relates to error in the resudting function. We
must also consider the error induced by approximately solving the estimat&M4D Achieving
a given accuracy level in the final value function creates constrainteoanclose the estimated
model parameters must be to the true model parameters. We will illustrate havctbrestraints
relate to the amount of experience required to achieve these constrdiigtén furn will give us an
expression for the number of samples required for a type-action pair kadwen, or the learning
complexity for our algorithm. Once we have proved the second criterion Weligcuss how the
other two conditions are also met.

Therefore we commence by formally relating how the amount of experiengel{er of transi-
tions) of the agent corresponds to the accuracy in the estimated dynamiespacmeters.

2R2
Lemma 2 Given anye,d > 0, then after T= 122'268" transition sampless, a, s') with probability at

leastl — %’ , the estimated offset paramefercomputed by Equation 2, and estimated covariance
parameterssj, computed by Equation 3, will deviate from the true paramefleasdo;j; by at most
& Pr(||B—Bll2 <€) > 1- § andPr(max |Gi; — 0ij| <€) > 1- 3.

Proof T will be the maximum of the number of samples to guarantee the above bounite for
offset paramete and the number of samples needed for a good estimate of the variance fgarame
We first examine the offset parameter:

Lemma 3 Given anye,d > 0, define § = 322253“. If there are F transition samplegs,a,s), then

with probability at leastl — g, the estimated offset parameté,r computed by Equation 2, will
deviate from the true offset paramet@rby no more thare along any dimension d; formally,

Pr(max [|Ba —Ball2 > 5) < &

Proof From Chebyshev’s inequality, we know

2
€ o5N
P —Sq)—Bq| > —) < 4"
(18 = 50) —Bal = ) < =5~
wheresgq andog are the value of theth state and variance of the offset along dimensiprespec-
tively. Using the fact that the variance of a sumTgfi.i.d. variables is jusfg multiplied by the
variance of a single variable, we obtain

Pr(| Z(#d —Sa) ~TgBa| 2 Tp—=) <
i= \/N TBZEZ
~ £ 02N
Pr(|Bg — Bal > —) < =4.
(‘Bd Bd| = \/N) = TBSZ
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We require the right-hand side above be at m;%sand solve foiTg:

T 303N?
oe2

We know that the variance along any dimension is bounded abo®Bg bp we can substitute this
in the above expression to derive a bound on the number of samplesecequir

3ByN?
Tg > 52
[ |
Lemma 3 immediately implies a bound on thg norm between the estimated offset parameter
vector and the true offset parameter vector, as follows:

Lemma 4 Given anye,d > 0, if Pr(max |Bg — B > 5 < 3w thenPr(||B—Bll2>¢) < 2.

Proof By a union bound, the probability that any of the dimensions exceeds an estiraor of at
mostiN is at most%. Given this, with probability at Ieast—l% all dimensions will simultaneously

f
have an estimation error of less th% and from the definition of the L2 norm this immediately
implies thatHB— Bll2 <e. [

We next analyze the number of samples needed to estimate the covariamegedyg.c

~ 2R2
Lemma 5 Assumenax; By — Bl < € for e < 1/4. Given anyd > 0, define § = 22,2, If there are
Ty transition sampless, a, '), then with probability at mo%, the estimated covariance parameter
Gij, computed by Equation 3, deviates from the true covariance paramgtby more thare over
all entries ij; formally, Pr(max j |Gi; — 0ij| > €) < g.

We provide the proof of Lemma 5 in the appendix: briefly, we again use yShelv's inequality
which requires us to bound the variance of the sample covariance.

Combining Lemmas 4 and 5 gives a condition on the minimum number of samplesamgces
to ensure, with high probability, that the estimated parameters of a particuattpn dynamics
model are close to the true parameters. Without loss of generality, ag&umé, then

2 2Rp2 2p2
T = max(T, Ty} = max{ 3N2B, 12N Bc} _1a%eg

€20 ' €25 €28

From Lemma 2 we now have an expression that relates how much expetienagent needs
in order to have precise estimates of each model parameter. We next restdlilish the distance
between two dynamics models which have different offset and covararameters. This distance
will later be important for bounding the value function difference betweergtimated model MDP
M and the true model MDRI.

Following Abbeel and Ng (2005), we choose to use the variational disthetween two dy-
namics model® andQ:
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dvar (P( / IP(X) — Q(x)[dx

In our algorithm 31 andZ; are the true offset parameter and covariance matrix of the Gaussian
distribution, andB; and %, are the offset parameter and covariance matrix estimated from data.
Since we can guarantee that they can be made arbitrarily close (elementwésgill be able to
bound the variational distance between two Gaussians, one defined withelparameters and the
other with the estimated parameters. The real-valued, positive eigenvalicamd, are denoted
by A1 > A2 > > Ay > 0andN] > A, > ... > A > 0, respectively. Because of symmetry and
positive definiteness &; andX,, A; andA{ must be real as well as positive. Since all eigenvalues
are positive, they are also the singular values of their respective matrices

Lemma 6 Assumenax j |Z1(i, j) — Z2(i, )| <& and Ne||=; ||, < 1, then,

|1B1—Ball2 |2 N2g 2N3B,¢e

Char (A8 =1, Ta), (& —slP 22)) < TH S 4 [8 o e

Proof We will use A\ (B, %) as an abbreviation fai((s — s|B,Z). Then

dvar(N(Blazl)aN(B&zz)) < dvar(N(Bl,zl),N(BZazl))+dvar(N(BZ7zl)7N(B2;ZZ))
H(?\C(Bl,zl)ﬂ\l(ﬁz,&))ﬂl+ [[(AL(B2,Z1), NL(B2, 22)) |1
2 2

/20 (A(Be.Z1) [| AL(B2.71)) 2k (AL(B2.Z1) | A((Bo. )

IN

where ¢ (||) is the Kullback-Leibler divergence. The first step follows from the triamgequality
and the last step follows from Kullback (1967) (included for completenedsinma 14 in the
appendix).

The KL divergence between twé-variate Gaussians has the closed form expression

Ot (AC(B122) 0B, E0) = 5 (B~ B Ey B~ o) +In o +1r(120) N ).

Substituting this expression into the above boundigpwe get

deEz
deEl

var(A(B1,21), N (B2, 22)) < \/(Bl—Bz)TZIl(Bl—Bz) + \/'n < > Hr(Z ') -N. (4

Our proof relies on bounding both terms of Equation 4. Note that this esipreseduces (up to a
constant) to the bound proved by Abbeel and Ng (2005) when the eariafknown.
We now start with the first term of Equation 4

Lemma 7

(By—B2)TZ; By Bo) < A1N||f31— Bal 3
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Proof First note that sinc&; * is a Hermitian matrix,

(BL—B2)"Z; *(B1—B2)
|1B1—B2)I[3
is a Rayleigh quotient which is bounded by the maximum eigenvallfq:bf The eigenvalues of

Zil are precisely the reciprocals of the eigenvalueX0fTherefore, the Rayleigh quotient above
is at most;-:

(BL— BZ)TZI1(81 —B2) < M
AN
[ |

We now provide lemmas that bound the components of the second term dfdegdiaproofs are
provided in the appendix.

Lemma 8 If max j|Z1(i, j) —22(i, j)| < eforanyl <i,j <N, then

< Ng i+i+ _|_i <N72€
- A Ao AN/ T )\N'

det22
det>;

‘In

Lemma 9 If max j [Z1(i, ) — Z2(i, j)| < € and Ne||=; Y|, < 1, then

2N3eB
tr(=;15;)-N< = 9
(227%1) = N — (N)L5\e

Combining the results of Lemmas 7, 8, and 9 completes the proof of Lemma 6. |

Note this bound is tight when the means and the variances are the same.

At this point we can relate the number of experiences (samples) of th¢ fgandistance
measure between the estimated dynamics model (for a particular type-aaticthggarue dynamics
model.

We now bound the error between the state-action values of the true MDH iedsolved
exactly and the approximate state-action values of our estimated modeMgRPtained using an
approximate planner, as a function of the error in the dynamics model estifihiess a departure
from most related PAC-MDP work which typically assumes the existence &raing oracle for
choosing actions given the estimated model.

Lemma 10 (Simulation Lemma) Let My = (S A, p1(+|-,-),RY) and My = (S A p2(-|-,),RY) be

two MDPS with dynamics as characterized in Equation 1 and non-negative rewasdaded
above by 1. Given ag (whereO < € < Vimay), assume that for all state-action tuplés, a),
dvar(P1(-|s,@), p2(+|s,a)) < (1—y)%/(2y) and the error incurred by approximately solving a MDP,
defined agpian is also at most1—y)?e/(2y) (to be precisegpian = |V* —V*|| < (1—Y)%€/(2y)
whereV* is the value computed by the approximate solver).1tleé a policy that can be applied

to both My and Mb. Then, for any stationary policy, for all states s and actions aQ7(s,a) —

Qg(s, a)| <, Whereég denotes the state-action value obtained by using an approximate MDP

solver on MDP M and Q denotes the true state-action value for MDR fdr policy 1t

3. For simplicity we present the results here without reference to typgsattice, each dynamics parameter would be
subscripted by its associated MDP, type, and action.
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Proof LetAq = max,|Qf(s,a) — (j’zT(s, a)| and definé/J* to be the approximate value of policy
computed using an approximate MDP solver on M2, andV;" be the exact value of policgon
MDP M;. Note that since we are taking the max over all actidgsis also equal to or greater than
maxs [V{(s) —V3(s)|. LetLpy(S|s,a) denote an approximate backup for M.

Since these value functions are the fixed-point solutions to their resp&gilman operators,
we have for everys, a) that

Qi(s,a) — Q}(s,a)|
(R(s,a) +y/gesp1(s’|s, a)Vln(s’)dé) — <R(s,a) +y/§€SLp2(s']s,a)\72"(s’)dé>'

IN

V‘/gespl(s’S,a)Vl’T(S’)—Lpz(s’|s, a)\72"(s’)d§'

IN

V‘/gesp“g‘s’ VI(s) — p1(S|s,a)V5(s) + pu(s|s @)V3(s) — Lpa(S|s @)V5'(s)ds ’

IN

1| [ [Pl a)VETE) ~VE(E) + pa(S s ANEE) - pafss V)
p2(S|s,a)V5'(s) — Lpa(S[s,a)V5'(s)] ds|
V][ piis i) ~T5E)as| +| [ (pagisa) - paelsa) e

+

IN

9] [ pelsls AE) - Lpa(e aFiS)os
seS

where the final expression was obtained by repeatedly adding andatirgridentical terms and
using the triangle inequality. This expression must hold for all sttesl actions, so it must also
hold for the maximum error over all states and actions:

maxmax|Qi(s a)- GH(s )l < v/ pi(sls aliods +v| [ (pu(s]s.a)- pa(s]s a) V(€]
] [ (Pelsls ¥5(s) - Lpa(es aFie)) s
o < Vo | [ (mi(sIsi) - pa(s]s @) VF(<)ag)
9] [ (Pe(sls VE(S) ~ Lpa(es i) d

< Yo+ Waa [ pil¢lsa) —paisls a)c

*V‘/ges(pﬂg s, V3 (s) Lpz(§|s,a>\7;<d>)dé‘
< YAq +Wmaxdvar(pl(sl‘s, a), pz(SI]S, a))+ YEplan
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where we have again used the triangle inequality. Therefore

Ng < YAQ+Wimadvar + YEplan
dvar
Yoy | Yepian
1-y 1-y’
where we have usedl,r as shorthand fodyar(p1(S|s,a), p2(S|s,a))
We have now expressed the error in the value function as the sum oftinelee to the model

approximation and the error due to using an approximate MDP planner. W&rassumptions in
the lemma, the result immediately follows. |

We can now use the prior lemmas to prove Theorem 1. First we need to exandeewhat
conditions the two assumptions of the Simulation Lemma hold. The first assumpiioinesethat
dvar(P1(-|S, @), p2(-|s,@)) < (1—y)2e/(2y) for all state-action tuples. From Lemma 6 this holds for
a particular type-action tuple (which encompasses all state-action tuples thikestate belongs to
that type) if

1B2 — B1l|2 N2g 2N3Bge (1-vy)%e
et ~ < 5
VAN AN AR — (N)Yemax; |Gij — oij [An 2y ©)
and
max|Gij — 0ij| <. (6)
ij

We can ensure Equation 5 holds by splitting the error into three terms:
(B2 — Ball2 (1-y)%

VAN - 4y
R (1—vy)*e?
B S S V.
AN 32y2
2N3®Bge (1—vy)%e?
AR — (N)P5max; [Gij —ojj[An -~ 32

Given these three equations, and Equation 6, we can obtain bounds emdhé the dynamics
parameter estimates:

(1-V)%eAy°

IB-Blz = = ()
~ (1—y)4£2)\N

miJaX|0ij — Ojj | < W (8)
- 1—vy)%2\3

m”ax|0ij — ajj (L= v Ay 9)

< .
~  16y2N3Bg + (1—y)%€2(N)1oAy

Assumé thatAy < 1,N > 1 andBg > 1. In this case the upper bound in Equation 9 will be at
least as small as the upper bounds in Equations 7 and 8.

4. This is just a simplifying assumption and it is trivial to show the bounds aieha similar polynomial dependence
on the parameters if the assumptions do not hold.
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We therefore require that the ermim the model parameters be bounded by

- (L),

~ 16y2NS®Bg + (1 —y)*€2(N) 15NN (10)

(from Equation 9). Lemma 2 provides a guarantee on the number of sa'mpie%% required
to ensure with probability at least-1g that all the model parameters have error of ngogh order
to ensure that the model parameters for all actions and types simultanadfiblghfs criteria with
probability &, it is sufficient to require thag) = &/(|A|Ny), from the union bound. We can then
substitute this expression fgrand Equation 10 into the expression for the number of saniples

T 12N2BZ _ 12N?|A|Nr B2 (16y°N3Bg + N1.5AN (1 — y)*e?)?
( (1-y)%e} ) 5 (1—y)8e28Ay,; '
162N3Bo+(1-Y)%2(N)* %Ay ) JAINr

Given this analysis, the first assumption of the Simulation Lemma holds with glitpal least

1- 0 after
o NS\A]NTBﬁ}
(1—y)Be4d(An)*

samples.

The second assumption in the Simulation Lemma requires that we have acces$/@Pa
planner than can produce an approximate solution to our typed-offsaintgs continuous-state
MDP. At least one such planner exists if the reward model is Lipschitz aomigy under a set of
four conditions, Chow and Tsitsiklis (1991) proved that the optimal valnetfanV; of a discrete-
state MDP formed by discretizing a continuous-state MDP @e)-length (per dimensioR)grid
cells is ane-close approximation of the optimal continuous-state MDP value functiorgtddrby
V*:

[IVe = V|| <E.

The first condition used to prove the above result is that the rewardidanis Lipschitz-
continuous. In our work, the reward function is assumed to be givethis@ondition is a prior
condition on the problem specification. The second condition is that thetioarfsinction is piece-
wise Lipschitz continuous. In other words, the transition model is Lipschiteicuous over each
of a set of finite subsets that cover the state space, and that the bpbetiaeen each subset re-
gion is piecewise smooth. For each type and action our transition model isssi@adlistribution,
which is Lipschitz-continuous, and there are a finite number of differgedyso it is piecewise
Lipschitz-continuous. As long as our domain fulfills our earlier stated assomthat there are
a finite number of different type regions, and the boundaries betwednaza piecewise smooth,
then Chow and Tsitsiklis’s second assumption is satisfied. The third conditibatithe dynamics
probabilities represent a true probability measure that sums to JonEq|s,a) = 1), though the
authors show that this assumption can be relaxed fifs'|s,a) < 1 and the main results still hold.

5. More specifically, the grid spacirigy must satisfyhg < ,él%’})(ziz andhg < ﬁ whereK is the larger of the Lipschitz
constants arising from the assumptions discussed in the texKaaddK, are constants discussed in Chow and
Tsitsiklis (1991). For smak anyhg satisfying the first condition will automatically satisfy the second condition.
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In our work, our dynamics models are defined to be true probability modatsw@nd Tsitsiklis's
final condition is that there must be a bounded difference between argotmls. In our case we
consider only finite controls, so this property holds directly. Assuming tanémodel fulfills the
first condition, our framework satisfies all four conditions made by Chavsitsiklis, and we can
use their result.

By selecting fixed grid points at a regular spacmd]@"%, and by requiring that there exist at
least one grid point placed in each contiguous single-type region, wensame that the maximum
error in the approximate value function compared to the exactly solved vahetidn is at most

(1_72‘;)25. This provides a mechanism for ensuring the second assumption of the milleamma

holds. In other words, if the grid width used is the minimun#@‘(l)—zg and the minimum contiguous
length of a single-type region, then the resulting value function using thisetisapproximate

. —v)2 . . .
planner is no more tha&%—worse in value than the optimal exact planner for the continuous-

state MDP®

Type-action tuples with at lea$tsamples are defined to be “known.” From the analysis above,
the estimated dynamics model for such types hadg;avalue from the true known type-action
dynamics model of at mogi — y)%/(2y). All unknown type-action tuples are defined to be self-
loops. Therefore the dynamics models of our known-type, estimated dysMBiE M relative to
a known-type MDP with the true dynamics parametdgshave ad, s, of zero for all the unknown
type-action tuples (since these are always defined as self loops) et — y)%e/(2y) for all
the known type-action tuples. Hence the first assumption of the Simulation Lemlds hTrhe
second assumption of the Simulation Lemma is fulfilled given the analysis in theparagraph.
Given these two assumptions are satisfied, the Simulation Lemma guarantehs #yairoximate
value of our known-type MDm¥k under its greedy policyt (T(s) = argmax Qy, (s,a)) is e-close
to the optimal value of the known-type MDP with the true dynamics parambterander policy
1 [V —Vii, |l < €. This fulfills condition 2 of Strehl et al. (2006).

The first condition of Strehl et al. (2006) can be re-expressed as:

Q'(s.@) — Qi (s8) = (Q(s,8) — Qmk (5:8)) + (Quk (S:8) — Qpy, (S:8)) < &.

We start by considering the first expressi@i(s, a) — Qu, (s, a). If all type-action pairs are known,
thenMg is the same as the original MDP, and this expression equals 0. If somedijpe-pairs
are unknown, then the value of states of that type, associated with that, dgmme¥/ .« under
MDP Mk. As all known type-action pairs have the same reward and dynamics nsotied ariginal
MDP, this implies that the valu®y, must be either equal or greater th@h, since all the value
of all unknown state-actions is at least as greaQjj. as their real valu&€*. For this reason,
Q*(s,a) — Qw (s,a) is always less than or equal to 0.

We next consideQuy (s,a) — Qy;, (s,@). The variational distanckar between the dynamics
models ofMk and Mk for all unknown type-action tuples is zero, because all the dynamics of
unknown tuples are self loops. As discussed abovegthebetween all known type-action tuples
is at most(1—y)2e/(2y). We can then apply the Simulation Lemma to guarantee|@fgi(s,a) —
Q. (s:8) < &. As aresult, the first condition of Strehl et al. (2006) holds.

he third condition limits the number of times the algorithm may experience an umktype-
action tuple. Since there are a finite number of types and actions, this quabtiyrided above by

6. The condition of the extent of a typed region is a requirement in ordensare that the discrete-representation
doesn't skip over a smaller region of a different type, that may halifexent optimal policy.
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NatNr|A], which is a polynomial in the problem parametés|A|,Nr, 1, 3, ﬁ, -, Bo). Therefore,
our algorithm fulfills the three specified criteria and the result follows. |

3.3 Discussion

Prior PAC-MDP work has focused predominantly on discrete-state,afiésaction environments.
The sample complexity of the R-max algorithm by Brafman and Tennenholt2)26@ales with the
number of actions and the square of the number of discrete states, siffeeemtidynamics model
is learned for each discrete state-action tuple. In environments in whicls statee same type
share the same dynamics, Leffler et al. (2007) proved that the sampldexitynpcales with the
number of actions, number of discrete states, and number of types. Agstimminumber of types
is typically much less than the number of states, this can result in significantdy fearning, as
Leffler et al. (2007) demonstrate empirically. However, &vaapplication of either technique to a
continuous-state domain involves uniformly discretizing the continuous-gtate sThis procedure
that results in a number of states that grows exponentially with the dimension sthtkespace. In
this scenario the approaches of both Brafman and Tennenholtz (2002)edfler et al. (2007)
will have a sample complexity that scales exponentially with the state space dimehsiogh the
approach of Leffler et al. (2007) will scale better if there are a small murobtypes.

In contrast, the sample complexity of our approach scales polynomially in théemnsg of ac-
tions and types as well as state space dimension, suggesting that it is mooéedoitanigh di-
mensional environments. Our results follow the results of Strehl and Littn@8§2who gave an
algorithm for learning in continuous-state and continuous-action domaihfdlsa sample com-
plexity that is polynomial in the state space dimension and the action space dime@siowork
demonstrates that we can get similar bounds when we use a more powerdumids representa-
tion (allowing states to have different dynamics, but sharing dynamics withisgme types), learn
from experience the variance of the dynamics models, and incorporagertinelue to approximate
planning.

Our analysis presented so far considers the discounted, infinite-hdeiaming setting. How-
ever, our results can be extended tolthstep finite horizon case fairly directly using the results of
Kakade (2003). Briefly, Kakade considers the scenario wheremitggalgorithm4 is evaluated in
a cyclingH-step periods. Thel-step normalized undiscounted valueof an algorithm is defined
to be the sum of the rewards received during a partiddistep cycle, divided byi. Kakade de-
fines A4 to bee-optimal if the value over a state-action trajectory, until the end of the cuifesiep
period, is withine of the optimal valuéJ. Using this alternate definition of value requires a modifi-
cation of the Simulation Lemma which results in a bound\grof (H — 1)Vimaxdvar + (H — 1)€pian.

In short, they/(1—y) terms has been replaced with— 1. The earlier results on the number of
samples required to obtain good estimates of the model parameters areget;hamd the final
result follows largely as before, except we now have a polynomialragrece on the horizod of
the undiscounted problem, compared to a polynomial dependence on therdifactor 1y.

Finally, though our focus is on sample complexity, it is also important to brieflgiden com-
putational complexity. To ensure the approximate planner produces higblyade results, our
algorithm’s worst-case computational complexity is exponential in the numistaiaf dimensions.
While this fact prevents it from being theoretically computationally efficient, értéxt section we
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present experimental results that demonstrate our algorithm performemygillically compared to
a related approach in a real-life robot problem.

4. Experiments

First we demonstrate the benefit of using domain knowledge about théuserad the dynamics
model on the standard reinforcement-learning benchmark, PuddleV@ayeuG and Moore, 1995).
Then we illustrate the importance of explicitly learning the variance paramdtirs dynamics in a
simulated “catching a plane” experiment. This is in contrast to some pastagh@®which assume
the variance parameters to be provided, such as Strehl and Littman (2008)

Our central hypothesis is that offset dynamics are a simple model thahazyg approximate
several real world scenarios. In our third experiment, we applied lgorithm to a simulated
problem using in which an agent needs to learn the best route to drivertq aed used date
collected from real cars to simulate the dynamics. In our final experimeappiked our algorithm
to a real-world robot car task in which the car most cross varying tercaipét and rocks) to reach
a goal location.

CORL requires a planner to solve the estimated continuous-state MDP. Rjamcontinuous-
state MDPs is an active area of research in its own right, and is known oy hard (Chow and
Tsitsiklis, 1989). In all our experiments we used a standard techniqued Matae Iteration (FVI),
to approximately solve the current MDP. In FVI, the value function is regmeed explicitly at only a
fixed set of states. In our experiments these fixed states are unifornclydsimea grid over the state
space. Planning requires performing Bellman backups for each grid paoentalue function over
points not in this set is computed by function interpolation. We used Gaussiaelfunctions as the
interpolation method. Using sufficiently small kernel widths relative to theisgaxt the grid points
will make the approach equivalent to using a nearest neighbour sthdidaretization. However,
there are some practical advantages in coarse grids to more smooth methudspoiation. We
discuss this issue in more depth in the next section.

In each experimentyy was tuned based on informal experimentation.

4.1 Puddle World

Puddle world is a standard continuous-state reinforcement-learnintepramtroduced by Boyan
and Moore (1995). The domain is a two-dimensional square of width 1 witlbwaipuddles, which
consist of the area of radiusl0around two line segments, one frgf1,0.75) to (0.45,0.75) and
the other from(0.45,0.4) to (0.45,0.8). The action space consists of the four cardinal directions.
Upon taking an action the agent move8®in the specified cardinal direction with added Gaussian
noise\’(0,0.001x 1), wherel is a two-by-two identity matrix. The episode terminates when the
agent reaches the goal region which is defined as the area in whigh> 1.9. All actions receive
a reward of—1 unless the agent is inside a puddle, in which case it then receives ra refiva4 00
times the distance inside the puddle. Figure 1 provides a graphical depittioa puddle world
environment.

We expect CORL will outperform prior approaches on this problem far tgasons. The first
is that we assume the reward is given. However even if the reward modelvigled, most past
work still has to learn the dynamics model for this world, which is still a signiticerdertaking.
The second reason is a feature of the CORL algorithm: its dynamics modethesadditional
information that the dynamics for one action for all states of the same typeearicial. Here there
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¥

Figure 1: Puddle world. The small square with a star in it denotes the ggiahtelhe black ovals
represent the puddles and the black line represents a sample partigbtyagg@n agent
navigating around this world.

is only a single type, so CORL must learn only 4 sets of transition parameter$opioeach action.
Our goal here is simply to demonstrate that this additional information can leadrificantly
faster learning over other more general techniques.

Puddle world has previously been used in reinforcement-learning compsfiaad our eval-
uation follows the procedure of the second bakeoff (Dutech et al., 2008)initially generated
50 starting locations, and cycled through these when initializing each epikaad episode goes
until the agent reaches the goal, or has taken 300 actions. We repaitsrifom taking the av-
erage reward within fifty sequential episodes (so the first point is theageeeward of episodes
1-50, the second point is the average of episodes 51-100, etc.).t\Ng $& be 15, and solved the
approximate MDP model using Fitted Value Iteration with Gaussian kernetiéumrsc The kernel
means were spaced uniformly in a 20x20 grid across the state spacg @é&munits), and their
standard deviation was set to 0.01. Note that in the limit as the standard degia¢i®to 0 the func-
tion interpolation becomes equivalent to nearest neighbour. Neaighboer is the interpolation
method used in the approximate continuous-state MDP solver by Chow aniliBsfi€991) which
provides guarantees on the resulting value function approximation. Howskce computational
complexity scales exponentially with the grid discretization, practical appliceinmequire the use
of coarse grids. In this case, we found that using a smoother functiopafe¢ion method empiri-
cally outperformed a nearest neighbour approach. In particulaQuvalfthat a kernel width, which
is a measure of the standard deviation, @fl0gave the best empirical performance. This value lies
in the middle of kernel widths which are smaller than the variance of the dynanudsls and the
grid spacing and those widths larger than the grid spacing and dynamicésmode

We compare our results to the reported results of Jong and Stone 6@#®d R-max and to
Lagoudakis and Parr (2003)’s Least Squares Policy Iteration {L'SRtted R-max is an instance-
based approach that smoothly interpolates the dynamics of unknown sitaitpsaviously observed
transitions, and takes a similar approach for modeling the reward funct®ml ik a policy iteration
approach which uses a linear basis function representation of the statezalues, and uses a set
of sample transitions to compute the state-action values.

7. Both results reported come from the paper of Jong and Stone (2007)
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. Number of episodes
Algorithm - —g5——756 T 200 | 400
CORL —-199 | —-184 | —203 | —187
Fitted R-max| —130 | —20 20 -20
LSPI —500 | —330 | —310| —-80

Table 1: PuddleWorld results. Each entry is the average reward/episoeiged during the prior
50 episodes. Results for the other algorithms are as reported by JoSsgaared(2007).

On the first 50 episodes, Fitted R-max had an average reward of amateky — 130, though on
the next 50 episodes it had learnt sufficiently good models that it redtsteesymptotic performance
of an average reward of approximatel20. In contrast, CORL learned a good model of the world
dynamics within the very first episode, since it has the advantage of kgawat the dynamics
across the entire state space are the same. This meant that CORL penfgth@dall subsequent
episodes, leading to an average reward on the first 50 episode$98. Least Squares Policy
Iteration (Lagoudakis and Parr, 2003) learned slower than Fitted RResults are summarized in
Table 1.

It is worth a short remark on the comparability of the reported results, & &8d Fitted R-
max were run without knowing the reward model. LSPI's performance deterministic reward
reinforcement-learning problem such as PuddleWorld will be identical toeitlopnance in the
known-reward case, as the rewards in the sampled transitions will bertteeisaither situation.
Given this, assuming known reward, as we do for CORL, will not chahgeLSPI results. In
contrast we do expect that Fitted R-max will be slightly faster if it does ned balearn the reward
model. This is because a wider interpolation width can be selected if the resdardwn and only
the dynamics are unknown, since all states share the same dynamics. édasvew in this case,
Fitted R-max will be approximating the Gaussian dynamics by a set of obsearesitions, and so
it appears likely that CORL will still be faster than Fitted R-max since CORL rassuthe (true)
parametric representation of the transition model.

In summary, given the reward function, CORL can learn a good dynamicelnextremely
quickly in PuddleWorld, since the dynamics are typed-offset with a single. tyffhis additional
information enables CORL to learn a good policy for puddle world much faiséer Fitted R-max
and LSPI. This experiment illustrates the advantage of CORL when thétimandynamics are
known to be identical across the state space, and to follow a noisy offsiimo

4.2 Catching a Plane

We next consider some examples with multiple types. Thousands of peopleshown internet

maps or GPS units to do efficient trip planning, and better traffic prediction &r@a of recent
research (Horvitz et al., 2005). In many street systems, there exignbemwof different classes
of road types according to the designated speed limits associated with thdse Thiese different
road types are often also associated with different variances. Forpdxawhile highways have
mean speeds that are faster than small side streets, highways typicalls hamelarge variance;
rush hour highway speeds may often be slower than smaller side streets.
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Figure 2: Motivating example where an agent must drive from a startitocédesignated with an
S) to a goal area (shown with a highlighted rectangle) in time for a deadlinkecam
choose to take large high speed and variance roads, or slower sneaticearoads.

In our first experiment we considered a scenario in which learning thiange is critical: an
agent must learn the best way to drive to an airport in time to catch a plannilarsreal-world
environment is depicted in Figure 2. The agent starts from home and candiike directly along
a small side street, or cross over to the left or right to reach a main highiMag. agent goes
forward more quickly on the highway (with a mean offset of 2 units), buthigbway also has a
high variance of @19. In contrast, on the small side streets the agent goes forward motg &ow
mean offset of 1 unit) but with very small variance@0001). The state space is four dimensional,
consisting of the agent’s currertandy location, its orientation, and the amount of time that has
passed. On each step five minutes pass. The agent can drive in a 94dgjidn: outside of this is
considered to be too far aw&yf the agent exits this region it receives a reward-df. The cost for
each step is-0.05, the reward for reaching the airport in time for check ir-is and the cost for
not making the airport in time is 1. The discount factor is set toQL N4 was set to 10. An episode
starts when the agent takes its first step and lasts until the agent reaelgesthexits the allowed
region, or reaches the time at which check in for the plane closes. Thé stgets at location,B
facing north, and must figure out a way to reach the goal region whiehs$5 — 8.5,15.5-17.5].

To solve the underlying MDP, fitted value iteration was used. The fixed po@ns regularly spaced
grid points with 15 across the x dimension, 20 across the y dimension, 4 dioerdagles, and 21
time intervals. This yielded over 25,000 fixed points.

The correct path to take depends on the amount of time left. Here we explwee different
deadline scenarios: when the agent has 60 minutes remakimingLat® 70 minutes remaining
(JustEnough or 90 minutes remaining until check in closes for the plaRenhingEarly. In all
three scenarios, the agent learned a good enough model of the dynaithics15 episodes to
compute a good policy. Note that using aveadiscretization of the space with the FVI fixed points
as states and applying R-max would be completely intractable, as a differeet mould have to
be learned for each of over 25,000 states. We display results for adl siaenarios in Table 2. In

8. Note that this could be a reasonable assumption in some cases, sucbradoctors had to stay within a certain
radius of a hospital when on call.
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Figure 3: (a) Simulated world map showing example environment. (b) Worldetivinto a set of
discrete types. Agent starts at driveway (black circle) and tries to l@wod route to
reach work. (c) An example section of a car trajectory (constructed &set of GPS
locations).

theRunningLatescenario the agent learned that the side streets are too slow to allow it teavier
the airport in time. Instead it took the higher variance highway which engliteseach the airport
in time in over half the episodes aftlk; is reached for all types: its average reward-8.4833
and it takes on average 56.62 minutes for it to reach the airpottustEnougthe agent learned
that the speed of side streets is sufficiently fast for the agent to reaahploet consistently in time,
whereas the higher speed and variance highway would result in thefagieg to reach the check
in time in some cases. Here the agent always reached the goal andseaeiaverage reward of
0.45. In theRunningEarlyscenario, the agent has enough time so that it can take either route and
reliably reach the airport in time. In this scenario it learned to always takaigisvay, since in
expectation that route will be faster. The average reward here wa29

This simulation serves to illustrate that our algorithm can quickly learn to perfeell, in
situations in which learning the variance is critical to ensure good perfa®an

4.3 Driving to Work

In our second experiment we again consider a simulated trip routing probigmwe now generate
transitions in the simulator by sampling from real traffic data distributions. bdeegent must learn
the best series of actions to drive from home to work in a small simulated wsetlKigure 3(a)
and 3(b)). The state consists of the current coordinatgs and the orientation of the agent. There
are three road types and each road type is associated with a differeitudien of speeds. The

Scenario Deadline (min)| Mean Reward/Episode Mean Time to Reach Goal (min)
RunningLate 60 —0.4833 56.62

JustEnough 70 0.45 60

RunningEarly 90 0.4629 58.6

Table 2: Catching a plane: results afié¢ has been reached for all types.
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Figure 4: A histogram of car speeds on small roads that is used to ¢etrarssitions on road type
2 and the estimated dynamics model parameters found during the experiment

distributions were obtained from the CarTel project (Eriksson et al.8R0thich consists of a set
of car trajectories from the Boston, Massachusetts area. GPS locatidtisng stamps are stored
approximately every second from a fleet of 27 car.section from one car trajectory is shown
in Figure 3(c). Using this data set we extracted car trajectories on antateefdighway, small
side streets and a local highway: these constitute types 1, 2 and 3 reslyeictithe simulation
world. Each car trajectory consisted of a settbfGPS+time data points, which was converted
into a set ofD — 1 transitions. Each transition in the simulation was sampled from these real-
world transitions; for example, transitions in the simulator on road type 2 veenpled from real-
world transitions on small side streets. Transitions from all three road types all rescaled by
the same constant in order to make the distances reasonable for the simwdtetf wrigure 4
displays a histogram of rescaled transitions associated with small side .stféetsigure shows
that the speed distribution for small side streets was not Gaussian: trek dipgéution for the
other two street types was also not Gaussian. In particular, in no tragectared does the car ever
go backwards, whereas in some Gaussian models there will be small itglzdlihis occurring.

In this experiment we sought to investigate how well a noisy offset moddt danction in this
environment, and the benefit of directly modelling different types of ro&@sh transition in the
simulated environment was sampled from the histogram of speeds assedthtdue road type at
the agent’s current position. Therefore, the data from the simulator isrdlm¢he real environment
than to the Gaussian distributions assumed by the learning algorithm.

The agent received a reward of 1 for reaching the work parking-H6t05 for each step, and
—1 if it left the local area. Each episode finished when the agent eithehedahe goal, left the
local area, or had taken 100 steps. An agent can go left, right orlstegtigach step. The transition
induced by a straight action was determined by the road type as specifiesl pnidh paragraph,
and going left or right changed the orientation of the agent by 90 degritle a very small amount
of noise. The number of samples needed until a type-action tuple is kidyymwas set to be 20.
The discount factor was 1. The agent was always started in the santehoand was allowed
to learn across a set of 50 episodes. Results were averaged a@naamés of 50 episodes per

9. See more information about the projechetp: //cartel .csail.nmt.edu/.
10. We also removed outlier transitions, as extremely fast speeds/tragsitare likely to be errors in the log file.
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Figure 5. Reward versus episode. (a) Compares CORL with 3 types &ypuklo Q-learning.
Results are averaged over 20 rounds (50 episodes per round).bBrs show 95% con-
fidence intervals. (b) Shows Q-learning with 500 episodes per rowvedaged over 100
rounds.

round. In one experiment the agent was given full knowledge of tleetworld types, and learned

a different dynamics model for each type and action. In the secondiege the agent assumed
there was only a single type and learned a dynamics model for each ac#oals@compared our
approach t@-learning over a uniformly-spaced discrete grid over the environmen@nitkgreedy
policy. We used a discretization that was identical to the fixed points usedfittédevalue iteration
planner of CORL. Points were mapped to their nearest neighbors. Qirgaequires specifying
two parameters: the learning ratewhich determines how much to adjust the state-action value
estimates after each update, anghich specifies how often to take a random action instead of the
action that maximizes the current Q values. In this experimengs set to 1.0 and decreased by
multiplying by a factor of 0.9999 at each st€pWe sete to be 0.1.

The CORL results are displayed in Figure 5(a). This figure displays #mweeuraging results.
The first is that in both CORL algorithms the agent learned to consistentlig teagoal: the only
way that the agent can receive a reward greatertHhis to reach the goal, and all confidence inter-
vals lie above-1 for all episodes after 10, indicating that the agent in both cases wessstfiglly
reaching the goal. This is promising because even though the underlyiagnitys models were not
exactly Gaussian noisy offset dynamics, a noisy offset model apprtigimaas sufficient for the
agent to learn a good policy in this environment. The estimated parameterstednfigruone type
and action are displayed in Figure 4.

The second result is that the policy found by the agent that models all tifpes differently
resulted in significantly higher reward than modeling the world with a single fyp@erformance
suffered initially because it takes longer to learn a model of the world dyrsarnig from about
episode 10-50 modelling all types separately resulted in significantly higinard per episode
than modelling all types as the same. Table 3 displays the average rewasth @fdproaches on
episodes 10-50. These results demonstrate that traffic data does diffalaint speed distributions

11. We tried different decay factors for thegparameter but found that this worked better than decayinwpre rapidly.
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Algorithm Average reward/episode
CORL with 3 types 0.27

CORL with 1 type 0.00
Q-learning —3.2485

Table 3: Average reward on episodes 10-50 for the driving to woakngte.

on different types of roads, and that by considering such diffe®i@ORL can improve route
directions even in a small simulated example.

The third result is that both CORL algorithms significantly outperfori@eearning: again see
Table 3 for comparing the short term performanc@déarning to the CORL algorithm. This is not
surprising sinc&-learning is a model-free approach that trades off speed of computatictgp in
return for not requiring consistency between its state values througtektaeward and dynamics
models. Here in particular there is a large amount of structure in the domaiQ-tkatning cannot
use.Q-learning does eventually begin to consistently reach the goal but this isfiatyabout 500
episodes, more than an order of magnitude longer than the CORL algorithkn®téind a good
policy. These results are displayed in Figure 5(b). Such results argumtkituations where data
is costly to gather, using a model can be extremely helpful.

4.4 Robot Navigation Over Varying Terrain

We also tried our algorithm in a real-life robotic environment involving a ndwegatask where
a robotic car must traverse multiple surface types to reach a goal locathia.eXperiment is a
second example where a noisy offset dynamics model provides a suffiaeod representation of
the real-world dynamics to allow our algorithm to learn good policies. We coedparthe RAM-
Rmax algorithm (Leffler et al., 2007), a provably efficient RL algorithmléarning in discrete-state
worlds with types. The authors demonstrated that, by explicitly representngbs, they could
get a significant learning speedup compared to R-max, which learnsasagejplynamics model
for each state. The RAM-Rmax algorithm represents the dynamics modelai$istgof possible
next outcomes for a given type. CORL works directly with continuousealstates, resulting
in the improved sample complexity discussed earlier. This is achieved thregsgmang a fixed
parametric representation of the dynamics, which is a less flexible model thandhused in RAM-
Rmax. In this experiment we were interested in whether our representagi®still rich enough
to capture the real world dynamics involved in varying terrain traversal.al investigated the
computational load of CORL compared to RAM-Rmax, since by restrictingepnesentation size
we hoped to also achieve computational savings.

In this experiment we ran a LEG® Mindstorms NXT robot (see Figure 6(b)) on a multi-
surface environment. A tracking pattern was placed on the top of the aolan overhead camera
was used to determine the robot’s current position and orientation. Theimosh@awn in Fig-
ure 6(a), consisted of two types of terrain: rocks embedded in wax aadpated area. The goal
was for the agent to begin in the start location (indicated in the figure byraw)gand end in the
goal without going outside the environmental boundaries. The rewaeds-wl for going out of
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Figure 6: (a) Image of the environment. The start location and orientationrisechwith an arrow.
The goal location is indicated by the circle.(b) LEGOrobot.

bounds+1 for reaching the goal, and0.01 for taking an action. Reaching the goal and going out
of bounds ended the episode and resulted in the agent getting moved blaelstart location?

Due to the close proximity of the goal to the boundary, the agent needscarate dynamics
model to reliably reach the goal. Part of the difficultly of this task is that the @&teere going
forward, turning left, and turning right. Without the ability to move backwatis robot needed to
approach the goal accurately to avoid falling out of bounds.

For the experiments, we compared our algorithm (“CORL") and the RAM-Raigorithm
(“RAM™). The fixed points for the fitted value iteration portion of our algonttwere set to the
discretized points of the RAM-Rmax algorithm. Both algorithms used an EDISONdmagmen-
tation system to uniquely identify the current surface type. The rewarctiin was provided to
both algorithms.

The state space is three dimensionaly position and orientation. Our algorithm implementa-
tion for this domain used a full covariance matrix to model the dynamics varidrarethe RAM-
Rmax agent, the world was discretized to a forty-by-thirty-by-ten stateespaour algorithm, we
used a function approximator of a weighted sum of Gaussians, as akariBection 2. We used
the same number of Gaussians to represent the value function as thethieestite space used in
the discretized algorithm, and placed these fixed Gaussians at the samakCHitie variance over
the x andy variables was independent of each other and of orientation, and wests= 16. To
average orientation vectors correctly (so thd80® degrees and 18@o not average to 0) we con-
verted orientation8 to a Cartesian coordinate representatige: cog0),ys = sin(6). The variance
over these two was set to be 9 for each variable (with zero covariaRoepur algorithm and the
RAM-Rmax algorithm, the value df;; was set to four and five, respectively, which was determined
after informal experimentation. The discount factor was set to 1.

Figure 7(a) shows the average reward with standard deviation forcdahble algorithms over
three runs. Both algorithms are able to receive near-optimal reward @msgstent basis, choosing

12. A video of the task can be seerh&t p: / / peopl e. csai | . nit. edu/ enma/ corl / Successf ul Run. nov andht t p:
/I people.csail.nit.edu/ emma/corl/Successful Run. wv.

1979



BRUNSKILL, LEFFLER, LI, LITTMAN AND ROY

Average Per Episode Computation Time
120000

Average Per Episode Reward

100000

80000

60000

Reward

40000

Computation Time

20000

0

Xs

|
0 5 10 15 20 25 30
Episode Number Episode Number

(@) (b)

Figure 7: (a) Reward received by algorithms averaged over three Esror bars show one standard
deviation. (b) Total time taken by algorithms averaged over three runer Ears show
one standard deviation.

similar paths to the goal. Our dynamics representation is sufficient to allowlganitam to learn
well in this real-life environment.

In addition, by using a fixed size (parametric) dynamics representationpthputational time
per episode of our algorithm is roughly constant (Figure 7(b)). In thdeémentation of RAM-
Rmax, the computational time grew with the number of episodes due to its dynamies$ rejoik-
sentation. This suggests that using a fixed size dynamics representatibaveasignificant com-
putation benefits. Overall CORL performed well in this domain, both in termewérd achieved
and computation required.

5. Conclusion and Future Work

In this paper we have presented CORL, an algorithm for efficiently legtniact in typed, continuous-
state environments. CORL has a sample complexity that scales polynomially wittatbesgace
dimension and the number of types: this bound also directly incorporatesrtinelae to approxi-
mate planning. Experiments on a simulated driving example using real wortthtarand a small
robot navigation task, suggest that noisy offset dynamics are aisaofficrich representation to
allow CORL to perform well in some real-world environments.

Due to the approximate MDP planning, we cannot currently guarantee blythgmial sample
complexity and polynomial computational complexity. There are a number ehtexdvances
in continuous-state MDP planning (Kocsis and Szepas2006; Kveton and Hauskrecht, 2006;
Marecki and Tambe, 2008) as well as alternate approaches suchwasdsearch techniques. In
the future it would be interesting to investigate whether there exist alternateé pinners that
can providee-close approximations to the exact solutions with a computational complexity that
scales polynomially with the number of state dimensions. Such approachés eviable CORL
to achieve the appealing goal of polynomial dependence on the numbatetisnension for both
sample complexity and computational complexity.
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Finally, the bounds provided remain overly large for many practical agjmita We are broadly
interested in developing technigues that can tighten the gap between thaditadounds and those
needed for practical performance in real-world reinforcement legrnin
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Appendix A.

Lemma 5 Assumenax |Bq — Pa| < € for € < 1/4. Given anyd > 0, define § = Mg';Bcz’. If there are

T, transition sampless, a, '), then with probability at mog, the estimated covariance parameter

Gij, computed by Equation 3, deviates from the true covariance paramgtby more thare over

all entries ij; formally, Pr(max |Gij — 0ij| > €) < %.

Proof Firstrecall thatj; represents the covariance between dimensiandj. We are interested in

the probability that the estimated covariagediffers from the true parametet;: Pr(|di; — 0jj| >

€). From Chebyshev’s inequality, we can bound this expression as

Var(c”rij)
2

Pr(|Gij —aij| > €) < (11)

)

whereVar(G;;) is the variance of the sample variance.

We therefore require an upper bound on the variance of the sampleacma We will derive
a bound on this below in the general case of the covariance between tiableax andy both of
which are Gaussian distributed.

Var(Gy) = E[(Gxy—0xy)?]

15 ?
= E <Toz<xk_)z)(yk_37>_o-xy>

k=1

wherex andy are the respective sample means, and in the second line we have writter out th
definition of the sample covariance. We can then use the linearity of expadatierive

To To
Var(G,) = thkzl > El0%— im0k~ )]
T
—20xy_ri E[(Xm—X) (Ym— )] + E[(0xy)?]
0 k=1

1 T To

= 22 Y ElC%— X %m =X — Y)Y — Y]] = (0y)°
0 k=1m=1
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where the second line follows from the definition of the covariamge We next divide the summa-
tion into two expressions, when= k and wherm = k, and use the property that the expectation of
independent variables is the product of their expectations:

TU(To'_l)
T2
= El(i— R+ T"(TT"gfl)mxy)Z _(Gg)?.

Var(Gyy) = iE[(Xk—ﬂz(yk—WZH

T E[(%—)(Yk—H) E [ (m—X)(Ym—Y)] —(Oxy)”

We can now use the Cauchy-Schwarz inequality on the first term to get

VTR 97+ 2 (o (0

Var(Gyy)

IN

To(To—1)
T2

9

= Tlo\/E[(XkJr x— bx—X) 4 E[(Yk+ Ky — By — Y) 4] + (0%y)>—(0%,)?

1 — — — —
=T \/ (307 + 60%,(X— )2+ (X— k) 4) (303 + BGZ, (Y — Hy)2 + (Y — y)*)

-I-G(Tlc-;g_l)(cxy)z - (ny)z

where we have used the fact that the fourth central moment of a Gadsstidbution is 72, in the
final line. Next we make use of the assumptions Bats an upper bound to all covariance matrix
elements and the bound on the maximum error in the parameter offset estimates:

£*4+6e°By+3B2) Ty(To—1
( TG 0) + 0( _I(_FZ )(O.Xy)Z_(O.Xy)Z
o )

Var(G3,)

< %
< 3

where the last line follows because< 1/4 andB; > 1. We can then substitute this result into
Equation 11 which yields

. 4B2
P(|Gij —aij| > €) < sZT(;'

To ensure that this bound holds simultaneously with probatgliltgr all N? covariance matrix
elements it suffices by the union bound to require that each covariatryeezneeds its expected
value by more thas with probability at most2,:

° _ 3
€2Ts — 3N2’

Re-arranging yields the bound for the required number of samples:

12N%B3

TO' 2 68 2

1982



PROVABLY EFFICIENT LEARNING WITH TYPED PARAMETRIC MODELS

Lemma 81f max j [21(i, ) — a(i, j)| < eforanyl <i,j <N, then

< Ng 1—|—1+ +1 <N72€
- A A AN/ T AN

d et>,

In
det>;

Proof DefineE =, —Z%;. Clearly, E is symmetric since botk; and X, are symmetric. Its
eigenvalues are denoted iy > Y, > --- > Yy, which are real (but can be negative or positive).
First, it is known that

N N
detZ1 =[N & detZ,=[]A.
M >

Therefore,
detZz N )\’ N

=In In
From Gesggorin’s theorem (Horn and Johnson, 1986, Theorem 6.1.1), thevaiges oE must

be small as the elements Bfare small. Specifically, eaah; must lie in one of then GeSgorin
discs:

VL<I<N:D; = (xeRIN=E())I< 5 ET])

It follows immediately that

|w.|<z|E )l < Ne

as every component i lies in [—&, g].
On the other hand, from Weyl's theorem (Horn and Johnson, 19&8&rém 4.3.1), we have

W1 > A —Ni > Un.
We have just proved that botty;| and|py| are at mosNe, and thus
P\i, — )\i‘ < Ne.

Consequently,

Therefore, we have

i det2 N ( > N (N)2%e
In < In{ 1+ N

d et>q Zl ZI Zl Al T AN

where the second to last inequality uses the inequality-+x) < x for x > 0. [ |

The following lemmas will be useful to prove Lemma 9.
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Lemma 11 (Lemma 2.7.1 and Theorem 2.7.2 from Golub and Van Loan 1996) Suppose Ax b
and (A+ AA)y = b+ Ab with ||AA|| < e||A]] and ||Ab|| < g]|b||. If ek(A) < 1, then A+AA is
nonsingular, and

ly =X . _2ex(A)

X[ = 1-ex(A)

where|-|| can be any/, matrix/vector norm, ane(A) = ||A|| |A™!| is the corresponding condition
number.

Lemma 12 (A traceinequality of von Neumann 1937) Let A and B be two symmetric matrices of
order n, whose singular values afg > &, > --- > &, > 0and{y > {», > --- > { > O, respectively.
Then

Ir(AB) < 5 &L,

Lemma 13 Suppose the covariance matx is non-singular; that is its eigenvaluas : Ay > 0.
Then

N1 N

tr(z;1) = —<—

( 1 ) iZ;Ai A
max|z; ') < 1%

yN
AN

123411 < VN[22

Proof We prove the three upper bounds one by one:

1. Itis a known fact that the trace of a matrix equals the sum of |ts elgem/a'ﬂhle first equality

follows from the observation that the elgenvalue§pf areA , A e, AN

2. This inequality follows from the definition dfZ;%||: it is the maximum absolute row sum
of the matrixZIl, and therefore is not less than the largest absolute component of the.matrix

3. Itis known that|A||1 < v/N||A||2 for anyN x N matrix A (see, eg. theorem 5.6.18 in Horn
and Johnson 1986). On the other haiiB, ||, equals the largest eigenvalueXf*, which
o 1
IS 5-.
AN

|
Lemma 91f max j |Z1(i, j) — 22(i, )| < e and Ne||Z; ||, < 1, then

2N3eB,

tr(515) -N< ——— 9
(22721) = N2 — (N)M5hne

Proof Thei-th row (or column) onIl is the solution to the system of linear equatiohgx = g
whereg hasN — 1 zero components except a 1 in thiln component. Similarly, theth row (or
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column) onZ‘1 is the solution t&,y = g. SinceX; andZ, differ by at mostk in every component,

we have
[Z1—22fl, _ Ne

1Zally 7 1Zally
For convenience, denote the right-hand side abow&.dyfollows from Lemma 11 that

2e'K(Z1) [IXl1
— < ——— 2
||X y||l— 1_8/K(Zl)

The above inequality holds for @l possiblee values. Note thaffx—y||; is the absolute sum of
thei-th row (or column) 01251 - Zgl forg. Lety > Yo > --- > Yy > 0 be the singular values of
31— 5% From Gesgorin's theorem, it follows that for ail

2¢'k(Z1) 2¢'k(Z1)

. _ _ -1
L|JI S meaXHX yHl S 1—E/K(Zl) meaXHXHI - 1—E/K(zl) Hzl Hl (12)
wherek(21) = ||Z4]| [|Z; *|| the condition number of;. We can now complete the proof:
tr(Z1%) —N=tr((Z* -5 Hzy) (13)
N
< i;l-pi)\i (14)
2¢/(Z0) 2l &
= 1-€eK(Zy) i;)\' (15)
_ 2@ %,
= ey ) (16)
2Ne ;"5
= —— =1 (=) 17)
1-Nel|z ),
2 -12
_ N BGSHZ_ll Hl, (18)
1-Ne|[z;
3
2N°eBgy (19)

< .
B )\ﬁ—(N)l'S)\NS

The first equality (Equation 13) is due to the identit{ﬂflzl) =tr(l) =N, and the first inequality
(Equation 14) is a direct application of von Neumann’s inequality (Lemma h#jiwcan be used
since the eigenvalu@s are also the singular values in this case. The second inequality (Equation 15
follows from the result of Equation 12, the second equality (Equationdl@s by the definition of
matrix traces, and the third equality (Equation 17) is obtained by noting tBa) = | =1, || =1 Y|,
Since each term in the covariance matrix is known to be boundd®}; ltlgen the trace is bounded
by NBy; which allows us to generate the fourth equality (Equation 18). The finaltrissobtained
using the result of Lemma 13.

[ |
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Lemma 14 (Theorem from Kullback 1967) Let ; and p be two probability density functions
defined overX. Define

Q= {xeX|pi(x) > pa(X)}.
If p1 and p are both measurable (integrable) ov@r then

1
di (P1 ]| P2) > % [|p1— paf3-
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