
Incremental Model-based Learners
With Formal Learning-Time Guarantees

Alexander L. Strehl
Computer Science Dept.

Rutgers University
Piscataway, NJ 08854 USA

strehl@cs.rutgers.edu

Lihong Li
Computer Science Dept.

Rutgers University
Piscataway, NJ 08854 USA

lihong@cs.rutgers.edu

Michael L. Littman
Computer Science Dept.

Rutgers University
Piscataway, NJ 08854 USA
mlittman@cs.rutgers.edu

Abstract

Model-based learning algorithms have been
shown to use experience efficiently when
learning to solve Markov Decision Processes
(MDPs) with finite state and action spaces.
However, their high computational cost due
to repeatedly solving an internal model in-
hibits their use in large-scale problems. We
propose a method based on real-time dy-
namic programming (RTDP) to speed up two
model-based algorithms, RMAX and MBIE
(model-based interval estimation), resulting
in computationally much faster algorithms
with little loss compared to existing bounds.
Specifically, our two new learning algorithms,
RTDP-RMAX and RTDP-IE, have consid-
erably smaller computational demands than
RMAX and MBIE. We develop a general the-
oretical framework that allows us to prove
that both are efficient learners in a PAC
(probably approximately correct) sense. We
also present an experimental evaluation of
these new algorithms that helps quantify the
tradeoff between computational and experi-
ence demands.

1 Introduction

This paper deals with the important problem of learn-
ing how to act in a Markov Decision Process with a
finite number of states and actions. This problem is
fundamental in reinforcement learning (RL) because
it requires the learning agent to handle the explo-
ration/exploitation dilemma in conjunction with the
temporal credit assignment problem. By the explo-
ration/exploitation dilemma, we mean the conflict in-
volved in choosing between a behavior intended to gain
new information (explore) and one meant to maximize
reward by utilizing current knowledge (exploit). A se-

quential decision making problem involving temporal
credit assignment is one where an agent’s actions have
an effect on the environment and determine which ac-
tions and rewards are available in the future.

Agents that learn a model of their unknown environ-
ment are called model-based learners. We build on pre-
vious work in this area and introduce two new model-
based learning algorithms, RTDP-RMAX and RTDP-
IE. These algorithms distinguish themselves from pre-
vious model-based algorithms (such as Rmax and E3)
in that they avoid completely solving (computing an
optimal policy of) their model. This modification
alleviates a great computational burden and the re-
sulting algorithms have improved per-action compu-
tational complexities. Our main theoretical contribu-
tion is showing that the new algorithms still possess
polynomial bounds on the amount of mistakes (non
ε-optimal choices) they make during learning.

2 Definitions and Notation

This section introduces the Markov Decision Process
notation used throughout the paper; see Sutton and
Barto (1998) for an introduction. A finte MDP M is
a five tuple 〈S, A, T,R, γ〉, where S is the finite state
space, A is the finite action space, T : S ×A× S → R
is a transition function, R : S × A → R is a reward
function, and 0 ≤ γ < 1 is a discount factor on the
summed sequence of rewards. We also let S and A
denote the number of states and the number of ac-
tions, respectively. From state s under action a, the
agent receives a random reward r, which has expecta-
tion R(s, a), and is transported to state s′ with prob-
ability T (s′|s, a). A policy is a strategy for choosing
actions. Only deterministic policies are dealt with in
this paper. A stationary policy is one that produces
an action based on only the current state. We as-
sume (unless noted otherwise) that rewards all lie be-
tween 0 and 1. For any policy π, let V π

M (s) (Qπ
M (s, a))

denote the discounted, infinite-horizon value (action-

value) function for π in M (which may be omitted
from the notation) from state s. If T is a positive in-
teger, let V π

M (s, T) denote the T -step value function of
policy π. Specifically, V π

M (s) = E[
∑∞

j=1 γj−1rj] and
V π

M (s, T) = E[
∑T

j=1 γj−1rj] where [r1, r2, . . .] is the
reward sequence generated by following policy π from
state s. These expectations are taken over all possi-
ble infinite paths the agent might follow. The optimal
policy is denoted π∗ and has value functions V ∗

M (s)
and Q∗M (s, a). Note that a policy cannot have a value
greater than 1/(1− γ).

3 Problem Definition

In our setting, we assume that the learner receives S,
A, and γ as input. The reinforcement-learning prob-
lem is defined as follows. The agent always occupies a
single state s of the MDP M . The learning algorithm
is told this state and must compute an action a. The
agent receives a reward r and is then transported to
another state s′ according to the reward and transition
functions from Section 2. This procedure then repeats
forever. The first state occupied by the agent may be
chosen arbitrarily. We define a timestep to be a single
interaction with the environment, as described above.

When evaluating algorithms, there are three essential
traits to consider. They are space complexity, com-
putational complexity, and sample complexity. Space
complexity measures the amount of memory required
to implement the algorithm while computational com-
plexity measures the amount of operations needed to
execute the algorithm, per step of experience. Sam-
ple complexity measures the number of timesteps for
which the algorithm does not behave near optimally
or, in other words, the amount of experience it takes
to learn to behave well.

We say that an algorithm is PAC-MDP (Probably Ap-
proximately Correct in Markov Decision Processes) if
its sample complexity can be bounded by a polyno-
mial in the environment size and approximation pa-
rameters, with high probability. Such algorithms, in-
cluding E3 (Kearns & Singh, 2002), Rmax (Brafman
& Tennenholtz, 2002), and MBIE (Strehl & Littman,
2005), typically build an internal model of the environ-
ment, which is “solved” to find a near-optimal policy.

4 Reinforcement-Learning Algorithms

In this section, we present two new RL algorithms
that are based on well-known model-based algorithms,
Rmax and MBIE. The new algorithms, like the old, are
based on the idea of using an internal model to guide
behavior. However, our main goal is to avoid the com-
putational burden of repeatedly solving a model while

preserving the benefits of fast learning by keeping a
model. Our main idea can be summed up as applying
the Real-time Dynamic Programming (RTDP) algo-
rithm to the agent’s internal model. Our approach
is similar to that of the Adaptive-RTDP algorithm of
Barto et al. (1995), except that more sophisticated ex-
ploration techniques are employed.

Our first algorithm, called RTDP-RMAX, uses a
model similar to that of the Rmax algorithm. The way
it treats the exploration problem can be loosely identi-
fied as the approach taken by the “näıve” algorithm for
the k-armed bandit problem (Fong, 1995). Essentially,
state-actions must be tried a certain fixed number of
times before the statistics gathered for them are incor-
porated into the agent’s model. Until it happens, the
state-action is considered to be “maximally rewarding”
in the model.

The second algorithm, called RTDP-IE, uses a model
similar to that of the MBIE algorithm (Strehl &
Littman, 2005) or the Action-Elimination algorithm
(Even-Dar et al., 2003). It treats the exploration
problem similarly to the Interval Estimation (IE) al-
gorithm for the k-armed bandit problem (Kaelbling,
1993). The intuition of the algorithm is that an action
is chosen that maximizes the upper tail of a confidence
interval computed on the action values maintained by
the algorithm. Compared to the näıve algorithm (or
Rmax), this strategy can exhibit more focused behav-
ior and faster learning, as experience is incorporated
much faster into the agent’s model.

All algorithms we consider maintain action-value esti-
mates, Q(s, a) for each state-action pair (s, a). At time
t = 1, 2, . . ., let Qt(s, a) denote the algorithm’s cur-
rent action-value estimate for (s, a) and let Vt(s) de-
note maxa∈A Qt(s, a). The learner always acts greed-
ily with respect to its estimates, meaning that if st

is the tth state reached, a′ := argmaxa∈A Qt(st, a)
is the next action chosen. Additionally, each algo-
rithm makes use of “optimistic initialization”, that is,
Q1(s, a) = 1/(1− γ) for all (s, a). The main difference
between the algorithms is how the action values are
updated on each timestep. For all algorithms, we let
n(s, a, t) be the number of times (s, a) has been expe-
rienced (action a has been taken from state s) up to
and including timestep t (this corresponds to the first
t actions).

4.1 The RTDP-RMAX Algorithm

In addition to the standard inputs, the RTDP-RMAX
algorithm requires an additional positive integer pa-
rameter m. Later, in the analysis of Section 5, we
provide a formal procedure for choosing m, but for
now we consider it a free parameter that controls the

exploration behavior of the agent (larger values of m
encourage greater exploration while smaller values en-
courage greedier behavior).

Suppose that a is the tth action of the agent and is
taken from state s, and that n(s, a, t) ≥ m. The fol-
lowing update then occurs:

Qt+1(s, a) = R̂t(s, a) + γ
∑

s′∈S

T̂t(s′|s, a)Vt(s′), (1)

where R̂t and T̂t are the empirical reward and tran-
sition functions (the maximum likelihood estimates)
computed using the history of the agent up to time t.
For all other (s′, a′) 6= (s, a), no update occurs. That
is, Qt+1(s′, a′) = Qt(s′, a′). Similarly if n(s, a, t) < m,
then no update occurs.

To summarize, the RTDP-RMAX algorithm chooses,
at each step, to either update a single state-action pair
or not. If the last state occupied by the agent, under
the last action chosen by the agent, has been experi-
enced at least m times, then the action-value estimate
for that state-action pair is updated. The update is
a standard full Bellman backup, as in value iteration,
where the empirical transition probabilities and em-
pirical reward functions are used (in place of the true
transition and reward functions, which are unknown
by the agent). This approach differs from Rmax in
that one step of value iteration (VI) is taken from one
state instead of running VI to completion.

4.2 The RTDP-IE Algorithm

Like RTDP-RMAX, the RTDP-IE (short for “real-
time dynamic programming with interval estimation”)
algorithm also requires an additional real-valued pa-
rameter β (larger values encourage greater exploration
while smaller values encourage greedier behavior) that
can be chosen to provide a formal learning-time guar-
antee, as we show in Section 5.

Suppose that a is the tth action by the agent and is
taken from state s. The following update then occurs:

Qt+1(s, a) = (2)

R̂t(s, a) + γ
∑

s′∈S

T̂t(s′|s, a)Vt(s′) +
β√

n(s, a, t)
,

where R̂t and T̂t are the empirical reward and transi-
tion functions computed using the history of the agent
up to time t. For all other (s′, a′) 6= (s, a), no update
occurs. That is, Qt+1(s′, a′) = Qt(s′, a′).

Like RTDP-RMAX, the update is a standard full Bell-
man backup, where the empirical transition probabil-
ities and reward functions are used, plus an “explo-
ration bonus” proportional to β that decreases at a

rate inversely proportional to the square root of the
number of times the state-action pair has been expe-
rienced. Thus, a higher bonus is provided to state-
actions that have not been tried as often.

4.3 Related Algorithms

For the purpose of a concrete definition, define Rmax

to be the algorithm that maintains the same model
as RTDP-RMAX and that always chooses its actions
according to an optimal policy of its model. Similarly,
we define MBIE to be the algorithm that maintains
the same model1 as RTDP-IE and acts according to
an optimal policy of its model. Specifically, for both
Rmax and MBIE, the action values, Qt(s, a), are equal
to Q∗

M̂t
(s,a), where M̂t is the agent’s model at time t.

This definition differs slightly from the original devel-
opment of Rmax by Brafman and Tennenholtz (2002)
and more significantly from MBIE as presented by
Strehl and Littman (2005). However, these differences
are not important, in terms of analysis, as the same
learning bounds apply to both versions. They are also
not likely to be very different experimentally. How-
ever, to be completely fair, in our experiments we used
the form of the MBIE algorithm as it appears in Strehl
and Littman (2005).

The Adaptive-RTDP algorithm is simply the RTDP-
RMAX algorithm with m set to 1. The RTDP algo-
rithm can be characterized as being identical to the
Adaptive-RTDP algorithm except that the true MDP
is used as the model, rather than the empirical model.

4.4 Comparison of RTDP-RMAX and
RTDP-IE

The two new algorithms we introduce are very similar.
They both provide an incentive to explore unknown
parts of the environment by increasing the action-value
estimate used by the algorithm for state-action pairs
that have not been tried that often in the past. This
incentive encourages exploration, as the agent chooses
actions with maximum current action value, and up-
dates the action values of a state with respect to the
action values of the reachable next-states (in propor-
tion to the estimated probability of reaching them).
This chain of updates allows the exploration bonuses
to propagate from one action value to another and
hence encourages directed exploration.

The two algorithms differ in the form of the explo-
ration bonus they provide. The simpler algorithm,
RTDP-RMAX, simply enforces an action value of
1/(1 − γ) (the maximum possible true action value)

1Here, we add the bonuses, β/
p

n(s, a, t), of Equation
2 to the reward function of the model.

for any state-action pair that has not been tried at
least m times. This method works well, but has the
drawback of ignoring the statistics collected from the
first m tries of each state-action pair. We would expect
an intelligent algorithm to take advantage of its expe-
rience more quickly. Our second algorithm, RTDP-IE,
accomplishes this objective by providing a bonus to
each state-action pair that decreases with the number
of experiences of that state-action pair. This update
allows the experience to be useful immediately, but
still recognizes that state-action pairs with little expe-
rience need to continue to be explored2.

The above intuitions are not new, and are precisely
the intuitions used by the Rmax algorithm (for RTDP-
RMAX) and by the MBIE algorithm (for RTDP-IE).
The important difference is that Rmax and MBIE work
by completely solving their internal model (usually by
value iteration, but any technique is valid). This com-
putation incurs a worst-case per-step (action choice)
computational cost of Ω(SKA) (where K is the num-
ber of states that can be reached in one step with pos-
itive probability), which is highly detrimental in do-
mains with a large number of states and actions. On
the other hand, RTDP-RMAX and RTDP-IE require
only a single Bellman-style backup, resulting in a per-
step computational complexity of Θ(K ln(A)).3

Of great interest is how this tremendous reduction in
computational effort affects the performance of the al-
gorithms. This question is very difficult to answer
completely. We provide a theoretical analysis and
an empirical evaluation that sheds light on the is-
sue. First, we show that it is possible to prove bounds
on the number of sub-optimal choices (as formalized
in the following section) made by the RTDP-RMAX
and RTDP-IE algorithms that are no larger than a
constant times the best bounds known for Rmax and
MBIE, when logarithmic factors are ignored. Second,
we evaluate the performance of the four algorithms
experimentally on two different MDPs. The empirical
results indicate the performance of the new algorithms,
in terms of learning, is comparable to the old. Also,
as expected, the different algorithms exhibit different
tradeoffs between computational and sample complex-
ity.

5 Theoretical Analysis

In this section, we provide a detailed analysis of our
new algorithms. First, we explain and justify the type

2As our experiments show, it is sometimes the case that
the benefit of using RTDP-IE over RTDP-RMAX is small.

3The logarithmic dependence on the number of actions
is achieved by using a priority queue to access and update
the action values.

of performance bounds we consider. Then, we develop
a general framework for proving performance bounds
of RL algorithms. This framework allows us to avoid
repetition in the analysis of our two algorithms. It also
provides methods that can be applied to new RL algo-
rithms as they are discovered in the future. Finally, we
apply the techniques to RTDP-RMAX and RTDP-IE,
and show that they are efficient learners for MDPs.

To formalize the notion of “efficient learning” we allow
the learning algorithm to receive two additional inputs,
ε and δ, both positive real numbers. The first param-
eter, ε, controls the quality of behavior we require of
the algorithm (how close to optimality do we expect)
and the second parameter, δ, which must be less than
1, is a measure of confidence (how certain do we want
to be of the algorithm’s performance). As these pa-
rameters decrease, greater exploration is necessary, as
more is expected of the algorithms.

5.1 Learning Efficiently

There has been much discussion in the RL commu-
nity over what defines an efficient learning algorithm
and how to define sample complexity. For any fixed
ε, Kakade (2003) defines the sample complexity of
exploration (sample complexity, for short) of an
algorithm A to be the number of timesteps t such
that the non-stationary policy at time t, At, is not
ε-optimal from the current state4, st at time t (for-
mally V At(st) < V ∗(st)−ε). We believe this definition
captures the essence of measuring learning. An algo-
rithm A is then said to be an efficient PAC-MDP
(Probably Approximately Correct in Markov Decision
Processes) algorithm if, for any ε and δ, the per-step
computational complexity and the sample complexity
of A are less than some polynomial in the relevant
quantities (S, A, 1/ε, 1/δ, 1/(1− γ)), with probability
at least 1 − δ. It is simply PAC-MDP if we relax
the definition to have no computational complexity re-
quirement. The terminology, PAC, is borrowed from
Valiant (1984), a classic paper dealing with classifica-
tion.

The above definition penalizes the learner for exe-
cuting a non-ε-optimal policy rather than for a non-
optimal policy. Keep in mind that, with only a finite
amount of experience, no algorithm can identify the
optimal policy with complete confidence. In addition,
due to noise, any algorithm may be misled about the
underlying dynamics of the system. Thus, a failure
probability of at most δ is allowed. See Kakade (2003)
for a full motivation of this performance measure. The
analysis of Rmax by Kakade (2003) and of MBIE by

4Note that At is completely defined by A and the
agent’s history up to time t.

Strehl and Littman (2005) use the same definition as
above. The analysis of Rmax by Brafman and Tennen-
holtz (2002) and of E3 by Kearns and Singh (2002) use
slightly different definitions of efficient learning.

5.2 General Framework

Our theory will be focused on algorithms that main-
tain a table of action values, Q(s, a), for each state-
action pair (denoted Qt(s, a) at time t)5. We also
assume an algorithm always chooses actions greedily
with respect to the action values. This constraint is
not really a restriction, since we could define an algo-
rithm’s action values as 1 for the action it chooses and
0 for all other actions. However, the general frame-
work is understood and developed more easily under
the above assumptions.

Definition 1 Suppose an RL algorithm A maintains
a value, denoted Q(s, a), for each state-action pair
(s, a) with s ∈ S and a ∈ A. Let Qt(s, a) denote the
estimate for (s, a) immediately before the tth action of
the agent. We say that A is a greedy algorithm if
the tth action of A, at, is at := argmaxa∈A Qt(st, a),
where st is the tth state reached by the agent.

The following is a definition of a new MDP that will
be useful in our analysis.

Definition 2 For an MDP M = 〈S, A, T,R, γ〉, a
given set of action values, Q(s, a) for each state-action
pair (s, a), and a set K of state-action pairs, we de-
fine the known state-action MDP MK = 〈S ∪
{s0}, A, TK , RK , γ〉 as follows. Let s0 be an additional
state added to the state space of M . Under all actions
from s0 the agent is returned to s0 with probability 1.
The reward for taking any action from s0 is 0. For
all (s, a) ∈ K, RK(s, a) = R(s, a) and TK(·|s, a) =
T (·|s, a). For all (s, a) 6∈ K, RK(s, a) = Q(s, a) and
T (s0|s, a) = 1.

The known state-action MDP is a generalization of
the standard notions of a “known state MDP” of
Kearns and Singh (2002) and Kakade (2003). It is
an MDP whose dynamics (reward and transition func-
tions) are equal to the true dynamics of M for a subset
of the state-action pairs (specifically those in K). For
all other state-action pairs, the value of taking those
state-action pairs in MK (and following any policy
from that point on) is equal to the current action-value
estimates Q(s, a). We intuitively view K as a set of
state-action pairs for which the agent has sufficiently
accurate estimates of their dynamics.

5The results don’t rely on the algorithm having an ex-
plicit representation of each action value (for example, they
could be implicitly held inside of a function approximator).

Definition 3 Suppose that for some algorithm there
is a set of state-action pairs Kt defined during each
timestep t. Let AK be defined as the event, called the
escape event, that some state-action pair (s, a) is
experienced by the agent at time t such that (s, a) 6∈ Kt.

Our proofs work by the following scheme (for whatever
algorithm we have at hand): (1) Define a set of known
state-actions for each timestep t. (2) Show that these
satisfy the conditions of Proposition 1.

Note that all learning algorithms we consider take ε
and δ as input. We let A(ε, δ) denote the version of
algorithm A parameterized with ε and δ. The proof
of Proposition 1 follows the structure of the work of
Kakade (2003), but generalizes several key steps.

Proposition 1 Let A(ε, δ) be any greedy learning al-
gorithm such that for every timestep t, there ex-
ists a set Kt of state-action pairs. We assume that
Kt = Kt+1 unless, during timestep t, an update to
some action value occurs or the event AK happens.
Let MKt be the known state-action MDP and πt be
the current greedy policy, that is, for all states s,
πt(s) = argmaxa Qt(s, a). Suppose that for any in-
puts ε and δ, with probability at least 1 − δ, the fol-
lowing conditions hold for all states s, actions a, and
timesteps t: (1) Qt(s, a) ≥ Q∗(s, a) − ε (optimism),
(2) Vt(s) − V πt

MKt
(s) ≤ ε (accuracy), and (3) the to-

tal number of updates of action-value estimates plus
the number of times the escape event from Kt, AK ,
can occur is bounded by ζ(ε, δ) (learning complexity).
Then, when A(ε, δ) is executed on any MDP M , it will
follow a 4ε-optimal policy from its current state on all
but

O

(
ζ(ε, δ)

ε(1− γ)2
ln

1
δ

ln
1

ε(1− γ)

)

timesteps, with probability at least 1− 2δ.

Proof sketch: Suppose A(ε, δ) is executed on MDP
M . Fix the history of the agent up to the tth timestep
and let st be the tth state reached. Let At denote the
current (non-stationary) policy of the agent. Let T =

1
1−γ ln 1

ε(1−γ) . We have that |V π
MKt

(s, T)−V π
MKt

(s)| ≤
ε, for any state s and policy π (see Lemma 2 of Kearns
and Singh (2002)). Let W denote the event that, after
executing policyAt from state st in M for T timesteps,
one of the two following events occur: (a) the algo-
rithm performs a successful update (a change to any
of its action values) of some state-action pair (s, a), or
(b) some state-action pair (s, a) 6∈ Kt is experienced

(escape event AK). We have the following:

V At

M (st, T) ≥ V πt

MKt
(st, T)− Pr(W)/(1− γ)

≥ V πt

MKt
(st)− ε− Pr(W)/(1− γ)

≥ V (st)− 2ε− Pr(W)/(1− γ)
≥ V ∗(st)− 3ε− Pr(W)/(1− γ).

The first step above follows from the fact that following
At in MDP M results in behavior identical to that of
following πt in MKt

as long as no action-value updates
are performed and no state-action pairs (s, a) 6∈ Kt are
experienced. The second step follows from the defini-
tion of T above. The third and final steps follow from
preconditions (2) and (1), respectively, of the proposi-
tion. These hold with probability at least 1− δ.

Now, suppose that Pr(W) < ε(1− γ). Then, we have
that the agent’s policy on timestep t is 4ε-optimal:
V At

M (st) ≥ V At

M (st, T) ≥ V ∗
M (st) − 4ε. Otherwise, we

have that Pr(W) ≥ ε(1− γ). By an application of the
Hoeffding bound, the union bound, and precondition
(3) of the proposition, the latter case cannot occur for
more than O(ζ(ε,δ)T

ε(1−γ) ln 1/δ) timesteps t, with probabil-
ity at least 1− δ. ¤

5.3 RTDP-RMAX Analysis

For a clean analysis of the RTDP-RMAX algorithm,
we need to modify the algorithm slightly. The modi-
fication is not necessary when implementing the algo-
rithm (for which we suggest the more natural version
as previously described).

Our modification to the original algorithms is as fol-
lows. We allow the update, Equation 1, to take place
only if the new action value results in a decrease of at
least ε1 (we will provide the precise value of ε1 in the
proof of Proposition 3). In other words, the following
equation must be satisfied for an update to occur:

Qt(s, a)−
(

R̂t(s, a) + γ
∑

s′∈S

T̂t(s′|s, a)Vt(s′)

)
≥ ε1.

(3)
Otherwise, no change is made and Qt+1(s, a) =
Qt(s, a). In addition, the empirical transitions and
rewards, T̂t and R̂t, respectively, are computed using
only the first m experiences (next states and immedi-
ate rewards) for (s, a). Any additional experiences of
(s, a) are discarded and do not affect the model. This
second modification has the effect that only a single
empirical reward and transition function (per state-
action) will be learned by the agent; it does not con-
tinue to adjust its model over time. Hence, we will use
the simpler notation T̂ and R̂. We also let M̂ denote
the empirical MDP.

We expect that the modifications above will typically
have little effect on the behavior and performance (as
measured by discounted reward or sample complexity)
of the algorithm, but, since they bound the number of
times the model can change during learning, simplify
the analysis. The condition on the update will only
affect updates that would have resulted in a minimal
change to the action-value estimates. For sufficiently
large m, further refinements to the model also have
only a minor effect.

During timestep t of the execution of RTDP-RMAX,
we define Kt to be the set of all state-action pairs
(s, a), with n(s, a, t) ≥ m such that:

Qt(s, a)−
(

R̂(s, a) + γ
∑

s′
T̂ (s′|s, a)Vt(s′)

)
≤ ε1. (4)

Note that M̂Kt is a well-defined known-state MDP
with respect to the agent’s model at time t (see Def-
inition 2). It can be viewed as an approximation to
MKt . This novel definition extends the standard def-
inition (as used in the analysis of Rmax and MBIE),
which associates Kt with the state-action pairs that
have been tried m times, to allow incremental updates
to propagate value information more gradually.

The following condition will be needed for our proof
that RTDP-RMAX is PAC-MDP. We will provide a
sufficient condition (specifically, L1-accurate transi-
tion and reward functions) to guarantee that it holds.
In words, the first part of the condition says that
the value of the greedy policy (with respect to the
agent’s action values) in the empirical known state-
action MDP (M̂Kt) is ε1-close to its value in the true
known state-action MDP (MKt). The second part says
that the optimal value function of the last and final
model learned by RTDP-RMAX is not too far from
what it would be if the correct transitions and rewards
were used for those state-actions tried at least m times.

Assumption A1 For all timesteps t and states s, we
have that |V πt

MKt
(s) − V πt

M̂Kt

(s)| ≤ ε1 where πt is the

greedy policy (with respect to the agent’s action-value
estimates) at time t. Also, |V ∗

MK̃
(s) − V ∗

M̂K̃

(s)| ≤ ε1

where K̃ = {(s, a) | ∃u ∈ Z+ s.t. n(s, a, u) ≥ m}.

We are now ready to show that the RTDP-RMAX al-
gorithm exhibits the property of “optimism”.

Proposition 2 Suppose RTDP-RMAX is executed on
any MDP M . If Assumption A1 holds, then Qt(s, a) ≥
Q∗(s, a)− ε1 holds for all timesteps t and state-action
pairs (s, a).

Proof: Let M ′ denote the final model of the algo-

rithm (such a model exists because RTDP-RMAX can
update its model at most SA times). Note that the
update, Equation 1, is identical to the update used
by value iteration (called the Bellman update) on the
MDP M ′. It is well known, see Chapter 2 of Bert-
sekas and Tsitsiklis (1996), that when given optimistic
initialization (Q1(s, a) = 1/(1 − γ)), any sequence of
such updates cannot drive the action values below the
optimal Q∗-values of M ′. By Assumption A1, the op-
timal Q∗-values of M ′ are no less than the the optimal
Q∗-values of the true MDP M minus ε1, which yields
the result. ¤

Proposition 3 If, on execution of the RTDP-RMAX
algorithm in any MDP M , Assumption A1 holds with
probability at least 1 − δ/2, then the RTDP-RMAX
algorithm is efficient PAC-MDP.

Proof: We apply Proposition 1. First, note that by
definition the algorithm performs updates if and only if
the event AK occurs and the current state-action pair
has been tried at least m times. Hence, it is sufficient
to bound the number of times that AK occurs. Once
a state-action pair has been tried m times, every ad-
ditional update decreases its action value by at least
ε1. Since its action value is initialized to 1/(1 − γ),
we have that each state-action pair can be updated
at most 1/(ε1(1 − γ)) times, for a total of at most
SAm + SA/(ε1(1− γ)) timesteps t such that AK can
occur. By Proposition 2, we have that the optimism
precondition is satisfied. Finally, we claim that, by
Assumption A1, Vt(s)−V πt

MKt
(s) ≤ 2ε1/(1−γ) always

holds. To verify this claim, note that V πt

M̂Kt

is the so-
lution to the following set of equations:

V πt

M̂Kt

(s) = R̂(s, πt(s)) + γ
∑

s′∈S

T̂ (s′|s, πt(s))V πt

M̂Kt

(s′),

if (s, πt(s)) ∈ Kt,

V πt

M̂Kt

(s) = Qt(s, πt(s)), if (s, πt(s)) 6∈ Kt.

The vector Vt is the solution to a similar set of equa-
tions except with some additional positive reward
terms, each bounded by ε1 (see Equation 4). It fol-
lows that Vt(s) − V πt

M̂Kt

(s) ≤ ε1/(1 − γ). Combining

this fact with Assumption A1 yields Vt(s)−V πt

MKt
(s) ≤

2ε1/(1−γ). Thus, by letting ε1 = ε(1−γ)/2, we satisfy
Vt(s)−V πt

MKt
(s) ≤ ε, as desired (to fulfill Condition (2)

of Proposition 1). Ignoring log factors, this analysis
leads to a total sample complexity bound of

Õ

((
SAm +

SA

ε(1− γ)2

)
1

ε(1− γ)2

)
. (5)

¤

5.3.1 Sufficient Condition for Assumption A1
to Hold

One way to guarantee that, with probability at least
1 − δ/2, Assumption A1 will hold on execution of
RTDP-RMAX is by requiring that

m = Θ
(

S

ε2(1− γ)4
ln

(
SA

δ

))
= Õ

(
S

ε2(1− γ)4

)
.

With this many samples, the empirical model R̂(s, a)
and T̂ (·|s, a) will be close enough (in L1 distance
for the transitions) to the true dynamics R(s, a) and
T (·|s, a) (Kakade, 2003; Strehl & Littman, 2005). The
argument boils down to showing that Θ(ε(1 − γ)2)-
accurate rewards and transitions lead to ε-optimal
policies, and that Θ(S ln(1/δ)/α2) samples are needed
to ensure α-accurate rewards and transitions, with
high probability. The additional log factors are due
to an application of the union bound for the result to
hold over all state-action pairs.

5.3.2 Remarks on Our Speedup

By applying Proposition 3 with the value of m from
Section 5.3.1, we have shown that RTDP-RMAX is
PAC-MDP with a sample complexity bound of

Õ

(
S2A

ε3(1− γ)6

)
. (6)

This expression matches the best known bound for
Rmax (Kakade, 2003) and MBIE (Strehl & Littman,
2005), when logarithmic factors are ignored. Although
we don’t have room for details, we can prove similar
bounds for RTDP-IE.

It is an open question whether the current bounds for
Rmax can be improved in terms of its dependence on S
(Kakade, 2003). In his thesis, Kakade provides a suf-
ficient condition (Condition 8.5.1) that the parameter
m must satisfy for his PAC-MDP proof of Rmax to go
through. Our condition, Assumption A1, is stronger,
but similar in spirit to Condition 8.5.1.

5.4 RTDP-IE Analysis

The analysis of RTDP-IE actually follows that of
RTDP-RMAX very closely. As in Section 5.3, we mod-
ify the algorithm slightly.

In the version of RTDP-IE that we analyze, an up-
date is performed as specified by Equation 2 only if
it would result in a decrease of at least ε1. In addi-
tion, the empirical transitions and rewards, T̂t and R̂t,
respectively, are computed using only the first m ex-
periences (m is an additional parameter supplied to
the algorithm) for (s, a). Furthermore, once (s, a) has

been experienced m times, the bonus of β/
√

n(s, a, t)
in Equation 2 is replaced by ε1. The full proofs of this
section can be found in our extended paper.

Proposition 4 For any 0 < δ < 1 and positive in-
teger m, if Assumption A1 holds and β ≥ (1/(1 −
γ))

√
ln(SAm/δ)/2, then during execution of RTDP-

IE, with probability at least 1−δ/2, Qt(s, a) ≥ Q∗(s, a)
holds for all state-action pairs (s, a) and timesteps t.

Proposition 5 There exist values for m and β such
that the RTDP-IE algorithm is efficient PAC-MDP
with a sample complexity bound of Õ

(
S2A

ε3(1−γ)6

)
.

6 Experiments

To better quantify the relationship between them,
we performed two sets of experiments, each with
two versions of all four algorithms (Rmax, MBIE,
RTDP-RMAX, and RTDP-IE). In the first version, we
severely restricted the model size (the maximum num-
ber of next-state and immediate reward samples per
state-action pair that are used for computing the em-
pirical transition and reward functions). Specifically,
the model was limited to size m for Rmax and RTDP-
RMAX and to size 3 for MBIE and RTDP-IE, per
state-action pair. In the second version, we allowed
the model to grow6 up to size 100 (per state-action).
There numbers were chosen somewhat arbitrarily to
be “small” and “big”. We experimented over a range
of the various parameter settings (m for Rmax and
RTDP-RMAX and β for MBIE and RTDP-IE) and
optimized for the parameter setting that gathered the
most reward in the fewest timesteps.

For each experiment, we recorded the number of
timesteps (to measure sample complexity) and Bell-
man backups (to measure computational complexity)
required by the agent to achieve fixed and equally
spaced levels of cumulative reward. We implemented
various optimizations on each algorithm to avoid un-
necessary Bellman backup computations. Our exper-
iments were designed to supplement the theoretical
analysis of Section 5 and are not meant as a thorough
evaluation of our new algorithms.

The algorithms were first tested on random MDPs
generated as follows, for parameters S = 50, A = 5,
γ = 0.95, and Rmax = 1. To guarantee that every state

6Allowing the model size to change independently of the
algorithm’s internal parameters required a slight change to
the algorithm in some cases. For example, for Rmax, the
agent’s model may change for a state-action pair that is
already “known”. In this case, the agent must solve the
model each time it changes. Thus, allowing the model to
grow may increase the computational complexity, but will
also generally decrease the sample complexity.

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

N
um

be
r

of
 T

im
es

te
ps

 (
E

xp
er

ie
nc

e)

Cumulative Reward

Random
RTDP-RMAX

RMAX
Optimal

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 200 400 600 800 1000

N
um

be
r

of
 B

el
lm

an
 B

ac
ku

ps
 (

C
om

pu
ta

tio
n)

Cumulative Reward

RMAX
RTDP-RMAX

Figure 1: Algorithmic performance on Random MDPs

was reachable from every other state, random Hamilto-
nian circuits (to ensure connectivity) were constructed
under each action, and a probability of 0.1 was as-
signed to each of the corresponding transitions. Then,
for each state-action pair, the transition function was
completed by assigning random probabilities (sum-
ming up to 0.9) to 4 randomly selected next states.
Therefore, for each state-action pair, there were at
most 5 next-states. The mean reward, R(s, a), was
randomly selected with mean proportional to the in-
dex of s.7 Each experiment was repeated 100 times
and the results were averaged (error bars were omit-
ted from the figure because they were tiny).

Figure 1 provides a plot of the runs for the algorithms
whose models were restricted to 100 samples (the re-
sults with more restricted models were similar). Since
the curves for the Rmax and MBIE algorithms were
so alike we omitted the one for MBIE (similarly for
RTDP-RMAX and RTDP-IE). Each graph contains
one data point for every 20 units of cumulative re-
ward (per algorithm). From the top graph, we see

7We found that if the mean rewards are chosen uni-
formly at random, then the optimal policy almost always
picks the action that maximizes the immediate reward,
which is not interesting in the sense of sequential decision
making.

that MBIE/Rmax was able to obtain more cumula-
tive reward per timestep (on average) than the incre-
mental algorithms, but the bottom graph shows that
this achievement came at significantly larger compu-
tational cost.

The second set of experiments consisted of an MDP
similar to the k-armed bandit problem (with k = 6),
where the noise of the arms was modeled in the
transition function (rather than the reward function).
Specifically, there were 7 states (S = {0, . . . , 6}), with
0 as the start state and 6 actions. Taking action
j ∈ {1, . . . , 6} from state 0 results in a transition to
state j with probability 1/j and a transition back to
state 0 with probability 1 − 1/j. From state i > 0,
under each action, the agent is transitioned to state
0. Choosing action 1 from any state i > 0 results in
a reward of (3/2)i (all other rewards are 0). These
dynamics were created so that it is better to choose
the action with the lowest payoff probability (leaving
state 0). To recap, from state 0, each action behaves
like pulling a “one-armed bandit”. The arm “pays off”
if the agent is transitioned away from state 0. Once
in another state, the agent is free to choose action 1
and obtain non-zero reward. Each experiment was re-
peated 500 times and the results averaged.

The following results, for the algorithms with severely
restricted models (as described above), provide the
number of timesteps and backups required by each al-
gorithm (at its optimal parameter setting) to obtain a
total reward of 15000:

Param Timesteps Backups
Optimal - 9213 0
Rmax 6 12129 8761
MBIE 0.7 12914 4406
RTDP-IE 0.9 13075 5558
RTDP-RMAX 4 13118 5618
Random - 90252 0

When allowed to learn a less restricted model of size
100 (to avoid repetition, we omitted the optimal and
random agents) the following results were obtained:

Param Timesteps Backups
MBIE 0.05 10135 603513
RTDP-IE 0.2 11042 4391
RTDP-RMAX 1 11127 4438
Rmax 9 11286 336384

We see that all algorithms improved their performance
by using a more refined model, but RTDP-IE and
RTDP-RMAX could do so without as large an increase
in computation8. The differences in the number of

8We do not totally understand why the total computa-
tion of RTDP-IE and RTDP-RMAX went down when the
model was increased. It is certainly not true in general.

timesteps used by the RTDP-IE, RTDP-RMAX, and
Rmax algorithms, shown in the previous table, were
not significant.

7 Conclusion

We have shown that provably efficient model-based re-
inforcement learning can be achieved without the com-
putational burden of completely solving the internal
model at each step. To do so, we developed two new
RL algorithms, RTDP-RMAX and RTDP-IE, and an-
alyzed their sample complexity in general MDPs.

Acknowledgments

Thanks to the National Science Foundation (IIS-0325281).

We also thank John Langford and Eric Wiewiora for dis-

cussions.

References

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learn-
ing to act using real-time dynamic programming. Arti-
ficial Intelligence, 72, 81–138.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic
programming. Belmont, MA: Athena Scientific.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a
general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search, 3, 213–231.

Even-Dar, E., Mannor, S., & Mansour, Y. (2003). Action
elimination and stopping conditions for reinforcement
learning. The Twentieth International Conference on
Machine Learning (ICML 2003) (pp. 162–169).

Fong, P. W. L. (1995). A quantitative study of hypothesis
selection. Proceedings of the Twelfth International Con-
ference on Machine Learning (ICML-95) (pp. 226–234).

Kaelbling, L. P. (1993). Learning in embedded systems.
Cambridge, MA: The MIT Press.

Kakade, S. M. (2003). On the sample complexity of rein-
forcement learning. Doctoral dissertation, Gatsby Com-
putational Neuroscience Unit, University College Lon-
don.

Kearns, M. J., & Singh, S. P. (2002). Near-optimal rein-
forcement learning in polynomial time. Machine Learn-
ing, 49, 209–232.

Strehl, A. L., & Littman, M. L. (2005). A theoretical anal-
ysis of model-based interval estimation. Proceedings of
the Twenty-second International Conference on Machine
Learning (ICML-05) (pp. 857–864).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. The MIT Press.

Valiant, L. G. (1984). A theory of the learnable. Commu-
nications of the ACM, 27, 1134–1142.

