Preferential Path Profiling: Compactly Numbering
Interesting Paths

Kapil Vaswani Aditya V. Nori Trishul M. Chilimbi

Indian Institute of Science, Bangalore Microsoft Research India Microsoft Research

kapil@csa.iisc.ernet.in adityan@microsoft.com trishulc@microsoft.com
Abstract coverage of a given test suite. In addition, abstractions of paths can

help automatic test generation tools generate more robust test cases.
Finally, program path histories often serve as a valuable debugging
aid by revealing the instruction sequence executed in the lead up to
interesting program points.

Unfortunately, the benefits of using path profiles come at a cost
— profiling paths is expensive. Our measurements of an implemen-
tation of a state-of-the-art path profiler [3] indicate an average exe-
cution time overhead of 50% with as much as a 132% overhead in
the worst case and other studies report similarly high overheads [6].

by separating interesting paths from other paths and assigning aseirfhibS hjgf;)lovirhea(; has Iirfnlited Bthe. ui? Olf(patg pdrofiles Ifnl favor
of unique and compact numbers to these interesting paths. We drawf! PasIC DIOCK Or edge proliles. basic block and edge profies are
a parallel between arithmetic coding and path numbering, and useC€@Per to collect but less accurately capture a program's dyrlamlc
this connection to prove an optimality result for the compactness of 2€havior as compared to paths. While Ball et al. found that 80% of

ath numbering produced P. This compact path numberin program paths could _be attributed from an edge profile [5], more re-
gnables ouPPIg i%plementggii())n to record p?ath il?lformation in e?n cent work_found that just 48% of paths could be attrlbute_d from an
array instead of a hash table. Our experimental results indicate that2d9€ Profile [6]. In both cases, the most complex (and likely most
PPP reduces the runtime overhead of profiling paths exercised by interesting) paths were not predu_:table from an edge p|_'of|le. Th'?‘
the largest (ref) inputs of thePEC CPU2000 benchmarks from 'EPresents an opportunity as basic block and edge profiles are still
50% on average (maximum of 132%) to 15% on average (maxi- preferred over path profiles for measuring test coverage and driving
mum of 26%) as compared to a state-of-the-art path profiler. proﬂle-gwded optimizations sugh as code placement, inlining, un-

rolling, and superblock scheduling.

Path profiles provide a more accurate characterization of a pro-
gram’s dynamic behavior than basic block or edge profiles, but are
relatively more expensive to collect. This has limited their use in
practice despite demonstrations of their advantages over edge pro
files for a wide variety of applications.

We present a new algorithm called preferential path profiling
(PPP), that reduces the overhead of path profiliR§P leverages
the observation that most consumers of path profiles are only inter-
ested in a subset of all program patR®.P achieves low overhead

Categories and Subject DescriptorsD.2.5 [Software Engineer- Apart from these traditional usage scenarios, we envisage the
ing]: Testing and Debugging; E.£pding and Information The- use of path profiling in several other cost-sensitive enviornments.
ory]: Data Compaction and Compression For instance, in residual path profiling, a user is interested in de-
. . termining the set of paths that a deployed program executed in
General Terms Algorithms, Measurement, Reliability the field that were not exercised during testing. This information
Keywords Profiling, preferential paths, arithmetic coding, dy- could be used to improve and augment test suites, and if included
namic analysis with bug reports resulting from field failures, could help pinpoint

the root cause of errors. Another scenario involves ascertaining
1. Introduction whether paths that were identified as hot paths during testing and

) used to optimize the program continue to remain hot during field
Path profiles are a succinct and pragmatic abstraction of a pro-usage. In addition, we might want to gather detailed information
gram’s dynamic control-flow behavior. Recording program paths about these paths, such as cache misses, page faults, and variations
has proved valuable in a wide variety of areas such as computerin execution time, without resorting to sampling techniques [12].
architecture, compilers, debugging, program testing, and software Finally, we might be interested in efficiently tracking a subset of
maintenance [4]. Path profiles capture much more control-flow in- paths in deployed software that meet a certain criteria, for example,
formation than basic block or edge profiles, and are much smaller paths that access safety or security critical resources, or that exer-
than complete instruction traces. Several compiler optimizations cise an error prone code region. A common trait in all these sce-
perform better when trade-offs are driven by accurate path pro- narios is the need for efficiently and accurately profiling a known
files [1]. Program paths are also a more credible way of measuring subset of paths.

Let us first examine why existing path profiling schemes incur
relatively high overhead. The efficient path profiling scheme pro-
posed by Ball and Larus, which forms the basis of all path profil-

Permission to make digital or hard copies of all or part of this work for personal or €TS, @Ssigns weights to edges of a control flow graff) such
classroom use is granted without fee provided that copies are not made or distributedthat all paths are allocated unique identifiers (i.e., the sum of the
for profit or commercial advantage and that copies bear this notice and the full citation weights of the edges along every path is unigue) [3]. During pro-
on the first page. To copy otherwise, to republish, to post on servers or to redistribute gram execution, the profiler accumulates weights along the edges
to lists, requires prior specific permission and/or a fee. ! . . .o
and updates an array entry that corresponds to this path identifier.

POPL’07 January 17-19, 2007, Nice, France. X .
Copyright@ 2007 ACM 1-59593-575-4/07/0001. . . $5.00 Unfortunately, for functions with a large number of paths, allocat-

procedure computeBLIncremen(g) N, =N + N,

Assume: e
@G = (V,E,s,t)is aDAG. 0 Ny
(b)W : E — Zis an empty map.
Returns: The mapiV defined for all edges such that every path in 0 e
G is assigned a unique weight. No Ne
1. Ny :=1;
2: for all nodesv € V' in reverse topological ordeto Figure 2. Assignment of weights to edges using the Ball-Larus
3 N, :=0; algorithm
4: forall edges € out(v) do
5: Wi(e) := Nu; L .
6: Ny := Ny + Naest(e); 2. Preliminaries
7. end for In this section, we briefly describe the Ball-Larus algorithm for pro-
8: end for filing acyclic, intra-procedural paths throughC&G of a program

Figure 1. The Ball-Larus Algorithm and motivate our problem using a simple example.

2.1 Definitions

Profiling algorithms for acyclic, intra-procedural paths (hence-
ing an array entry for all program paths is prohibitively expensive, forth referred to aspathg first convert theCFG of a proce-
if not infeasible. Consequently, path profiler implementations are dure into adirected acyclic grapi{DAG). EachDAG is a graph
forced to use a hash table to record path information for such func- G = (V, £, s,), whereV’ represents nodes or basic blocks in the
tions. Although using a hash table is space efficient as program’s procedure, and® is the set of edges between nodes. The maps
typically execute only a small subset of all possible paths, it in- src(e) anddest(e) denote the source and destination nodes re-
curs significantly higher execution time overhead as compared to spectively, of an edge. For every noder € V, out(v) denotes
updating an array entry. Previous work has shown that hash tablesthe set of edges emanating franin G, andsucc(v) represents all
account for a significant fraction of the overhead attributable to path the immediate successor nodes)oEach acyclic, intra-procedural

profiling [8]. pathp is a sequence of nodes frasio t. The functionpaths(G)

To address this problem, we proposeeferential path profil- refers to all acyclic, intra-procedural paths in G. The function
ing (PPP), a novel path profiling scheme that efficiently profiles pathsg(e) : E — 2paths(G) represents all paths i@ that tra-
arbitrary path subsets, which we refer toimtgresting pathsOur verse an edge. Conversely, the functioadges : P — 2% maps
algorithm can be viewed as a generalization of the Ball-Larus al- every patlp in G to the set of edges that belongto
gorithm, which forms the core of most existing path profiler im- An assignment of weights to the edges®fis represented as

plementations. As mentioned earlier, the Ball-Larus algorithm as- a mapW : E — Z (whereZ is the set of integers). The relation
signs weights to the edges of a giv€RG such that the sum of the pathid : P — Z maps each path topath identifier and is defined
weights of the edges along each path throughGR& is unique. as follows.

Our algorithm generalizes this notion to a subset of paths; it as- ; def

signs weights to the edges such that the sum of the weights along pathid(p) = Z Wie)
the edges of the interesting paths is unique. Furthermore, our algo-

rithm attempts to achieve a minimal and compact encoding of the 2.2 Ball-Larus Profiling
interesting paths; such an encoding significantly reduces the over-
heads of path profiling by eliminating expensive hash operations
during profiling. In addition, our profiling scheme separates inter-
esting paths from other paths and is able to classify paths during
program execution. The ability to classify paths is important for
many scenarios such as residual path profiling described earlier.

ecedges(p)

Given aDAG G for a procedure, the Ball-Larus algorithm as-
signs weights to the edges of the graph such that for every path
p € paths(G), pathid(p) is unique, and is equal to a number
between0 and N — 1, where N = |paths(G)|. The algorithm
computeBLIncrementshown in Figure 1, performs one bottom-
up pass througld’ and processes its nodes in reverse topological

Interestingly, we find that both the Ball-Larus algorithm and : >)
; ; ; : _order. With each node, the algorithm associates a couyit that
PPP are essentially a form of arithmetic coding [13, 15], a tech indicates the number of paths fromto the exit node’ (Line 5).

nigue commonly used for universal data compression. We make useAt h node. th toBLI & the list of
of this connection to prove an optimality result for the compactness t €ach node, inéomputesLincrementsaverses the list ot suc-
of path numbering produced BPP. We have implementeBPP cessor nodes and assigns weights to the corresponding outgoing
and our experimental evaluation using benchmarks from the SPECedgeS.' This algorithm is based on a simple idea that is stated in the
CPU2000 suite shows thRPP reduces the overheads of profiling °llowing lemma [3].

paths exercised by their largest (ref) inputs from 50% on average | eyua 1. LetG = (V, E, s,t) be aDAG. The number of paths
(maximum of 132%) to 15% on average (with a maximum of 26%) from any nodes in G to the exit node is equal to the sum of the

as compared to Ball-Larus profiling. o _ number of paths from each o% successor nodes to
This paper makes the following main contributions. First, we
describe a new algorithm, called preferential path profilinBR), Figure 2 illustrates howomputeBLIncrementsses this invari-

for compactly numbering arbitrary path subsets that improves upon ant to compute an edge assignment. Assume that the algorithm is
Ball-Larus numbering (Section 3). Next, we draw a parallel be- processing node with two successorsandc that haveV, and N,
tween arithmetic coding and path numbering, and use this connec-paths to the exit node Also assume that these paths have already
tion to prove an optimality result for the compactness of path num- been assigned identifiers frairo N, — 1 andN. — 1 respectively.
bering produced b®PP (Section 4). Finally, we present an exper- The algorithm assigns a weightto the edgga, b), and a weight
imental evaluation of ouPPP implementation that demonstrates N, to the edg€a, ¢). This ensures that the paths franto ¢ are

that it results in significantly lower overheads than Ball-Larus pro- assigned identifers frofto N, + N. — 1, which is also equal to
filing (Section 5). N, — 1 (from Lemma 1). In general, the weight assigned to an

BLID Counter

0l O freqo
1 1 freq
2| 5 freqs

Path Array

—O®

(b) (c)

Figure 3. Motivating example folPPP. (a) A DAG G with 6 paths with edges numbered using the Ball-Larus algorithmG(bjth edges
having onlyPPP assigned numbers for three interesting pdths {sacdt, sact, sbet}. (€) G with edges assigned two numbers?BP
number and a Ball-Larus number (in parenthesis). The path array is accessed uSiR§ tteunter.

procedure computePathldentifiefG;, W, p) Let us assume that we are interested in profiling only a sub-

Assume:) set] = {sacdt, sact, sbct} (interesting paths) of paths. The Ball-

(@G = (V,E, s,t) is aDAG. Larus identifiers for the pathsicdt, sact, sbet are0, 1 and5 re-

(b) The map’ : E — Z. spectively. This means that one would have to allocate a hash table

(c) A pathp is a sequence of nodes through even though there are onypaths of interest. In such a scenario, it

Returns: The path identifier for the path would be ideal if we could compute an edge assignment that allo-
Loreturny - e W(E); cates identifier§, 1 and2 to these paths, and identifiers2 to the

other paths. In Section 3, we show that computing an edge assign-

Figure 4. Computing the Ball-Larus identifier of a path from an menti¥ and a numbeg such that (ayp € I, pathid(p) < 3, and

edge assignment. (b) Vp & I, pathid(p) > B is not always feasible. Therefore, we
relax the constraints on this problem by eliminating condition (b)

)] (which is a condition over uninteresting paths), and ask the ques-
edge is equal to the sum of the number of paths from all previously tjon if it is possible to label the edges @ such that the paths in
processed successor nodes (bine 6). the setl have path identifiers if0, 1, 2}. Figure 3(b) shows that

_The Ball-Larus path profiler instruments the edges of@hé& such an assignment of weights to edges indeed exists, and this is
with instructions to increment a counter by the weight assigned to precisely the assignment computed by the preferential path profil-
the edge. When the instrumented program executes, it simulates thgng PPP algorithm described in Section 3. Therefore, our profiler

procedurecomputePathldentifie(Figure 4). When a path termi- jncurs lower overheads since we can now use an array to track fre-
nates, the value in the counter represents the path that just executegiyencies instead of a hash table. Note that while the interesting
and can be used for book-keeping. pathssacdt, sact, sbet have been assigned unique identifiers from

; . 0 to 2, the uninteresting pathsibct andsbedt alias with the inter-

2.3 Anillustrative example esting pathsacdt andsact respectively. We resolve these “aliases”
We start with an example that illustrates a drawback of the Ball- using Ball-Larus path identifiers, which are unique for every path.
Larus profiling scheme, and also shows how our profiler works In PPP, edges are annotated with a second weight computed using
on this example. Consider the function in Figure 3(a). THG the Ball-Larus algorithm (these weights are shown in parentheses
G in Figure 3(a) is obtained from théFG of the function. This in Figure 3(c)). The profiler also stores the Ball-Larus identifiers
figure also shows the weights assigned by the Ball-Larus algorithm of all interesting paths along with their counters. The occurrence
to edges ofG. Note that the sum of the weights of edges along of an interesting path can be detected by comparing the Ball-Larus
every path from the start nodeto the final node is unique, and identifier computed during the traversal with the Ball-Larus identi-
all paths are allocated identifiers frdirto N — 1, whereN is the fier stored in the array — a match indicates that an interesting path
total number of paths frona to ¢. If IV is reasonably small (less was just traversed and vice versa. For example, when the uninter-
than some threshold value), the profiler can allocate an array of esting pathsbedt (PPP identifier is 2 and Ball-Larus identifier is 4)
counters of sizeéV, and track path frequencies by indexing into the occurs, before incrementing the count at index 2 in the path array,
array using the path identifier and incrementing the corresponding the Ball-Larus identifier at index 2 is compared with the Ball-Larus
counter. However, the number of potential paths in a procedure identifier of sbcdt — since they are different, the profiler infers that
can be arbitrarily large (exponential in the number of nodes in the this path is not interesting (or it might be a residual path not exer-
graph) and allocating a counter for each path can be prohibitively cised by the test suite) and takes necessary action.

expensive, even infeasible in many cases. Path profilers overcome

this problem by using a hash table of counters instead of an array, . o

relying on the fact that only a small number of paths are traversed 3. Preferential Path Profiling

during any given execution. Therefore, a combination of a suitably We will now address the problem of encoding arbitrary subsets
sized hash table and a good hash function almost always guaranteesf paths over &AG G = (V, E,s,t). Informally, we wish to

the absence of conflicts. In the current example, if the threshold compute an edge assignment that allows us to uniquely identify
value is set tol, the Ball-Larus profiler would use a hash table paths as well as differentiate interesting paths from uninteresting
since there aré paths froms to ¢. ones. First, consider the possibility of finding an edge assignment

W@ ®)* u

OO x
®

Figure 5. A counterexample for separation of paths.

Figure 6. A counterexample for perfect edge assignment.

that separatesinteresting and uninteresting paths using a non-

negative integeB € Z=°. sider the sum of the identifiers of all these paths.

LEMMA 2 (Separation of paths). Given aDAG G = (V, E, s,t) sum = (uty)+(u+t2)+(v+a)

and a set of interesting patisC paths(G), amapW : E — Z +(v+2)+w+z)+ (w+y)

that satisfies the following conditions may not always exist. = 2u+v+w+z+y+z)

1. uniqueness: Vp, g € I, pathid(p) # pathid(q). Hence, the sum of the path identifiers of these paths is necessarily

2. separation: 33 € Z=° such that even. However, for a perfect assignment, these paths must be allo-
(a) Vp € I, pathid(p) < B, and cated identifiers between 0 and 5. Since the sum of numbers from
(b) Vp ¢ I, pathid(p) N 3. 0 to 5 is odd, we conclude that a perfect edge assignment for this

' graph and set of interesting paths does not exist. |

Proof: Consider the simpl®AG in Figure 5. Assume that .) .)
we are interested in profiling patBacet and sbedt. Assume that Since a perfect edge assignment for interesting paths may not
there exists an edge assignmBnthat satisfies all conditionsinthe ~ always exist, even an optimal edge assignment may induce a path
lemma. Letw, z, y andz represent the cumulative weights of the ~assignment with “holes” in the interval of path identifiers. In light
sub-pathssac, sbe, cdt andcet respectively. From condition 2(a), ~ Of this lemma, we restate our problem as follows.
we havew + z < g andz + y < 3, and from condition 2(b), it

follows thatw + y > 3 andz + z > 8. This implies that Problem A (Optimal Edge Assignment): Given aDAG G =
(V, E, s,t) and a set of interesting patlisC paths(G), compute
r+y+w+z < 206 an edge assignmet’ : F — Z that satisfies the following
r+y+w+z > 20 conditions.
which is a contradiction and the lemma follows.] 1. uniqueness: Vp, q € I, pathid(p) # pathid(q),

) .) . . . 2. compactness: The compactness measurdefined by
We find that separating arbitrary sets of interesting and uninter-

esting paths is almost always infeasible, primarily due to the pres- 5 def (maxper pathid(p) — minyes pathid(p)) + 1
ence of many shared edges. We therefore simplify the problem by |

relaxing condition 2(b) in Lemma 2. Edge assignments that cause
interesting paths to alias with uninteresting paths are acceptable as
long as the interesting paths are assigned minimal unique identi- It is easy to see that > 1. A perfect edge assignmeRt in-

fiers. As described in Section 2.3, a second counter that computesduces & = 1. Lemma 3 shows that a solution with= 1 does

the Ball-Larus identifiers of all paths can be used to resolve the not always exist. Hence solutions with lower valuesiafre pre-
aliases. This relaxation allows us to reason about interesting pathsferred. We find that for arbitrary graphs and arbitrary set of paths,
only, an aspect critical to the solution we propose. However, it turns even characterizing the optimélseems to be a hard problem. In
out the even this simplified problem may not have a perfect solution the next section, we propose an algorithm that computes an edge

is minimized.

as the following lemma indicates. assignment that attempts to minimideand later prove an opti-
) mality result for this algorithm by establishing a connection with
LEMMA 3 (Perfect edge assignment). Given aDAG arithmetic coding.

G = (V, E, s, t) and a set of interesting paths C paths(G), a
mapW : E — Z that satisfies the following conditions may not 3.1 The Preferential Path Profiling Algorithm

always exist. The preferential path profilindPPP) algorithm is a generalization

1. uniqueness: Vp, q € I, pathid(p) # pathid(q), of the Ball-Larus algorithm with the added capability of biasing
2. perfect assignment: Vp € I, 0 < pathid(p) < |I]. the edge assignment towards an arbitrary set of interesting paths.
Before we describe the algorithm, we introduce some notation and
Proof: Consider the graph in Figure 6. Say we are interesting state some of the key observations that the algorithm is based on.
in profiling the pathsadft, sadgt, sbdet, sbdgt, scdet, andscdf't. Let G = (V,E,s,t) be aDAG, and let] C paths(G) be
For simplicity, we represent the sum of the edges along the sub-a set of interesting paths. Consider a nedee V and an edge
pathssad, sbd, scd, det, dft anddgt asw, v, w, z,y and z. Con- e € out(v). Let pathsi(e) represents the set of interesting paths

critical node
for p1 and p3

Figure 7. Critical nodes for pairs of paths.

that contain the edge. Let prefiz(p,e) denote the sequence
of nodes froms to src(e) along the pathp. Then prefizi(e)
denotes the set of all prefixdorefiz(p,e)}pecr. Given a pair
of interesting path®,p’ € I, icp(p,p’) represents the longest
common prefix ofp andp’ in G. Note thaticp(p, p’) is trivially
the start node if p andp’ are edge disjoint. We define theitical
nodefor a pair of interesting pathsandp’ as follows.

critical(p,p’) & the last node in lep(p,p')

For any pair of paths, the critical node is unique since the longest
common prefix is uniquely defined. For example, in Figure 7, node
a is the critical node for pathg; andp., whereas nodé is the
critical node for pathg, andps. Again, the critical node for a set
of paths is trivially the start node if the set of paths are edge
disjoint inG.

We also define a mapid : I — Z to trackpartial identifiers

allocated to paths during the execution of an edge assignment

algorithm. Assuming that all edges are initialized with a weight
L (this denotes the undefined value), the partial identifier of a path
is defined as follows.

pid(p) = W(e)
ecedges(p)AW (e)#L

From the statement of Problefy it is evident that an edge as-

ThePPP algorithm computes an edge assignment that attempts
to achieve the most compact path numbering (@#that maintains
this invariant at every node. However, to make the algorithm sim-
pler and more amenable for analysis (SectionPHP makes the
following approximation. Instead of explicitly checking the partial
identifiers of paths at a critical nodBPP works overintervalsof
path identifiers. Given an edgethe intervalint. , represents the
range of partial identifiers allocated to all interesting paths through
e that have a prefiy. Formally,

inte min id(p),
,q pEPathsI(e)/\prefix(p,e):qp (p)

max id
pEpathsI(e)/\prefiac(p,e):qp (p)]

At every node PPP computes an intervaht. , for every (edge,
prefix) pair, and assigns weights to the edges to maintain the fol-
lowing invariant.

LEMMA 5 (Invariant for uniqueness over intervals). Consider a
nodewv being processed byPP. Assume that a prefixinduces a
set of intervalsS, , = {int.q | e € out(v)} on the outgoing
edges ob. To ensure uniqueness, the intervalsSin, should not
overlap afterv has been processed. Furthermore, this condition
must hold for every prefix € U, ¢, (.) Prefizi(e).

Proof: Itis easy to see that if a prefixinduces an interval at
two or more outgoing edges of a nodgthenw is the critical node
for all pathsp with the prefixq. By preventing overlap between
all such intervals for a given prefiRPP automatically ends up
separating all paths with prefixfor which nodev is critical. If this
condition is satisfied for all prefixes, all interesting paths for which
nodevw is critical are distinguished, and hence the Lemma 4 holds.

[|

Compactness. We will now describe howPPP ensures compact-
ness. At any node € V, consider the set of intervalS, , =
{[mini, mami}ie[uout(vm} induced on edgesl, €2 ... € out(v)|

by a prefixq. If ¢ is the only valid prefix aty, PPP usescom-
pactionto compute aninimaledge assignmet’ (e:)ic(1,jout(v)[]
which ensures that these intervals do not overlap. To achieve com-
paction, each¥ (e;) is computed as follows:

Wie) = Z (max; —min; + 1) —min; (1)
Je[,(i-1)]
= cisi—1 —min; (2)

wherecis;—1 represents the cumulative interval size of all inter-

signment must simultaneously satisfy two constraints, uniquenessyg|s induced on previous edges. However, this simple compaction

and compactness of path identifiers. We now describe RB®R
satisfies these constraints.

Uniqueness. We first define an invariant thainy algorithm com-

method cannot be used if multiple prefixes induce intervals on the
outgoing edges of a node. In such situatid?BP performs goin
operation over the intervals at all edges with two or more inter-
vals. Thejoin operation computes the weights induced by different

puting an edge assignment by processing nodes in reverse topologpyefixes on the edge, and conservatively assigns a weight equal to

ical order must satisfy, in order to ensure that all interesting paths
are allocated unique identifiérs

LEMMA 4 (Invariant for uniqueness). Consider a nodey being
processed by the algorithm.afis the critical node for any pair of
interesting pathg andp, thenp andp’ should be assigned different
partial identifiers after the node has been processed.

Proof: Follows from the definition of critical nodes, and the

fact that the algorithm assigns weights to edges in reverse topolog-

ical order. |

1A similar invariant based on suffixes can be defined if the algorithm were
to perform a top-down traversal, processing nodes in topological order.

the maximum among all these weights. Due tojtie, interesting
paths associated with all but one of the prefixes will be assigned
a weight higher than what is required to separate its intervals, cre-
ating holes in the path numbering. However, it is easy to see that
this choice of weight leads to the most compact numbering that is
feasible.

Figure 8 illustrates the scenarios ti#RP deals with. In Fig-
ure 8(a), all interesting paths through the nedeave the same
prefix g1 and traverse the edge (represented by the shaded re-
gion). Since the intervaht., 4, is the only interval in the sef, 4, ,
no overlap between intervals exist and the invariant for uniqueness
(Lemma 5) is trivially satisfied. A similar situation occurs in Figure
8(b), where paths through the edges do not share any prefixes. The
interval setsS, 4, andS,, 4, are singletons and no conflicts occur.

O] (&) O] O}

/ \ / \ / \ / \

q1< 102 q1 ,' ‘, Q2 q1 /’ \1 Q2 Q1/’ \IQZ

/ \ / \\ ! \ !
AU \ |
e e e e (2] €1 e €2

(a) (b)

Figure 8. The assignment of weights to edges under four scenarios

Figure 8(c) represents a scenario where the interesting paths induc@rocedure ComputePPPIncrementér)

two intervals for the prefix;;. PPP uses Equation 1 to compute ~ Assume:)

weights and ensures that these intervals do not overlap. Finally, Fig-(@) G = (V, E, 5, t) is aDAG.

ure 8(d) illustrates the scenario where the interesting paths through(b) a mappathsI E — 2%,

edges: ande, share prefixeg, andgs. Figure 9 illustrates the ef- (c) pid : P — Z=° initialized to 0 for all interesting paths.

fect of a join on two sets of intervals induced by prefigegndg.. (d) cis : prefiz — 72°, initialized to O for all prefixes of
Since we need a larger weight (saycomputed by Equation 1) to interesting paths.

separate intervals induced by prefix(as compared to the weight Returns: A edge assignme : E — Z.

w’ required to separate intervals induced by prefix PPP assigns 1: for all nodesv € V in reverse topological ordeio
w t0 ez, leading to a hole in the interval for the prefix. 2. forall edgese € out(v) s.t.e € edges(p) for somep € I
do
w 3 for all prefixq € prefiz(e) do
4 /I compute the beginning of the intervait. 4
. edge e | . 5: MiNe,q := MiNpepaths (e) Apre fiz(p,e)=q PIA(P);
prefix g [6: /I compute weight induced by prefix
edge e v 7 wetghty := cis(q) — mine,q;
W 8: I/ the join: compute the maximum weight
w 9: if (W(e)=1)V (W(e) < weight,)) then
— 1 10: W (e) := weightg;
w- W'ﬁ r» 11: end if
prefix g, edge e | 4 12: end for
edge e, N ' 13: /I update partial identifers of all paths through
14: for all pathsp € paths;(e) do
hd 15: pid(p) := pid(p) + W(e);
(a) (b) 16: end for _ .

17: for all prefixesq € prefiz(e) do

18: /I determine new cumulative interval size for prefix
Figure 9. The effect of using thgoin operator to conservatively — 1g. ¢i5(q) = MaXpepaths (e)Aprefin(p.e)—q Pid(D) + 1;
aSS|gn weights to edges. (a) Intervals induced by the prefixes beforey. end for ’
the join, and (b) effective intervals after the join. 21: end for

22: end for

Figure 10 describes tHePP algorithm in detail. For each node - - — -
v € V and each outgoing edgec out(v), the algorithm iterates Figure 10. The prefere_nnal path proﬂlmgP_@DP) alg_orlthm for
over all prefixes and computes the beginning of the inteival , computing an edge assignment for a set of interesting paths.
(mine,q at Line 5). It uses an auxiliary mags to determine the
cumulative interval size of intervals through previously processed
outgoing edges ob with the prefixg (as per Equation 1) and 32 Example
computes the weight induced lgyon the edge (Line 7). Finally, ~ We now walk-through an example illustrating how tREP algo-
the join operation (Lines 10 and 11) selects the maximum over rithm works. Let us assume that we are interested in profiling the
the weights induced by each prefix and assigns this weight to the pathssacdt, sact andsbct in the DAG from Figure 3. The follow-
edge. After the edge is assigned a weidttP updates the partial ing steps trace the manner in whiBRP assigns weights to edges
identifiers of all paths through the edge and also computes the newof the DAG.Step n; denotes that at stepPPP processes node.
cis(q) for the next iteration on this edge.

In summary, at every node € V, computePPPIncrements
recursively merges intervals of each prefiito the most compact
single intervalint, 4. At the start node s, this interval defines the Step 2, Noded is not a critical node for any pair of paths since it
range of identifiers allocated to the interesting paths. The time has only one outgoing edge. The prefitcd induces an interval
complexity of PPP is O(|E| x |I|), whereFE is the set of edges [0,0] on the edgdd, t). Sincecis(sacd) = 0, W((d,t)) =
in G, andI is the set of interesting paths. 0-0=0.

Step 1. Initialize the partial identifiers of all paths tband cumu-
lative interval sizes of all prefixes to

Step 3. Nodec is a critical node for pathsacdt and sact. Say
the edge(c, d) is processed first. Both prefixesc and sbe
induce an interval0, 0] on this edge. Henc@PP assigns a
weight W((c,d)) = 0 — 0 = 0 to this edge PPP updates
the mapcis as follows— cis(sac) = 1 andcis(sbc) = 1.
Next PPP processes the edde, ¢). The prefixsbc induces an
interval [0, 0] on this edge. Sinceis(sbc) = 1, PPP assigns a
weightW ((c,t)) = 1 — 0 = 1 The partial identifiers of paths
sact andsbct are also updated tb

Step 4, Node b has one outgoing edg@, c¢). The prefixsb in-
duces an intervall, 1] on this edgePPP assigns a weight
W((b,c)) = 0 —1 = —1 to this edge sinceis(sb) = 0. The
partial identifier of the pathbct is now updated ta + —1 = 0.

Step 5, Nodea has two outgoing edges, but only the edgec)
has interesting paths through it. The prefix induces an in-
terval [0, 1] at this edgePPP assigns a weightV ((a,c)) =
0 — 0 = 0 to the edge.

Step 6, Node s has two outgoing edges with three paths, all
sharing a common prefix. This prefix induces an interval
[0,1] at the edge(s,a), and the intervall0,0] at the edge
(s, b). PPP processes the edge, o) first and assigns a weight jnstance of arithmetic coding. After drawing this connection, we
W((s;a)) = 0 —0 = 0 to the edge. ThePP updates reformulateProblem A described in Section 3 so that it is more

Figure 11. Figure illustrating a scenario in whidiPP assigns a
sub-optimal numbering but an optimal numbering clearly exists.

cis(s) = 1+ 1 = 2, and processes the edge b). Since amenable to analysis, and provide a theoretical analysis of our al-

cis(s) = 2, the edge(s, b) is assigned a weight/ ((s, b)) = gorithm for preferential path profiling.

2 — 0 = 2. The partial identifier of the patfbct is also updated

to 2. 4.1 Arithmetic Coding
On termination,PPP assigns the identifier§, 1 and 2 to the Arithmetic coding [13, 15, 7] is a well-known universal, lossless
interesting pathsacdt, sact andsbct respectively. compression technique that achieves close-to-optimal compression

. . rates. Much like other compression schemes, arithmetic coding re-

3.3 Discussion lies on the observation that in any given input stream, a small frac-

In summary,PPP attempts to achieve a compact path numbering tion of characters/substrings are likely to occur frequently. Arith-
by (1) only numbering the edges required to distinguish interest- metic coding achieves compression by encoding these frequently
ing paths, and (2) computing the smallest weights such that the occurring characters/substrings using a smaller number of bits. An
interesting paths are assigned unique identifiers. Our experimentsarithmetic coder usesgobability modeto identify frequent char-
suggest thaPPP achieves good compactness measures for a vastacters. In the simplest of cases, the probability mddés an as-
majority of the procedures, even when a large number of interesting signment of probabilities to characters of the input alphabetnd

paths are specified. However, despite its best effBiRE, does not is easily obtained from the frequency counts of characters in a rep-
always achieve the best possible compactness measure. Figure lfesentative string.
illustrates one scenario in whidAPP fails to assign an optimal An arithmetic coder encodes strings into a single positive num-

numbering although such a numbering clearly exists. Consider the ber less than. To compute this number, the arithmetic coder main-
graphG: and assume th&PP has assigned identifiers to a set of tains arangeor aninterval, which is set 0f0, 1) at the beginning of
interesting paths. Also assume that the interval of allocated identi- the coding process. As each symbol of the input string is processed,
fiers contains two holes of siZg and k- respectively. As shown the coder iteratively narrows the range based on the probability of
in the figure, we can construct a new gra@hand select a set of the symbol. After the last symbol is read, any number within the
interesting paths such that there exists an edge assignment whichiesulting range uniquely represents the input string. Moreover, this
achieves thé = 1. Here(is obtained via a parallel composition = number can be uniquely decoded to create the exact stream of sym-
of three graph€7:, G2 andGs such thatipaths(Gz)| = k1 and bols that went into its construction. We illustrate the encoding an
|paths(Gs)| = ke. Furthermore, the set of interesting paths now decoding process by way of an example (adapted from [15]).
includes all paths througéy'y andG>. An optimal numbering for
this set of interesting paths is obtained by assigning a wdigta [Symbol | Probability [Range |
the edge(s, s2) and I to the edg€(s, s3), filling up the holes in a 0.2 [0,0.2)
the interval of graplG:. However, PPP fails to compute such as- b 0.3 0.2,0.5)
signments since we restrict ourselves to the class of solutions where P 0.1 0.5,0.6)
edge intervals do not overlap. As we show in the next section, this d 0.2 0.6,0.8)
€)
|

constraint allows us to establish an optimality condition by drawing 01 0.8.0.9
a connection with arithmetic coding. 0.1 [0 é 1)
. .9,

4. Path Profiling - an information theoretic Table 1. A sample probability model for the alphab& =
perspective {a,b,c,d,e,!}.

In this section, we give an information theoretic characterization

of the preferential path profiling algorithm. We begin by intro-

ducing the notion of arithmetic coding and context modeling. We Example.LetX = {a,b,¢,d,e,!} be the finite alphabet, and let
then show that the Ball-Larus path profiling algorithm is a special a fixed model that assigns probabilities to symbols fiBrbe as

shown in Table 1. Suppose we wish to send the mesbagsé. procedure computeBLMode(G)

Initially, both the encoder and the decoder know that the range Assume:)

is [0, 1). After seeing the first symbdl the encoder narrows it ()G = (V, E, s,t) is aDAG. o .
down t0[0.2,0.5) (this is the range that the model allocates to (P) Vv € V,amapD : E — [0, 1] that is initially undefined.
symbol b). For the second symbal, the interval is further nar- ~ Returns: amodelD such that/v € V, 3= ., D(e) = 1.

rowed to one-fifth of itself, since has been allocatefd), 0.2). 1. Ny = 1;

Thus the new interval if).2, 0.26). After seeing the first the nar- 2: for all nodesv € V in reverse topological ordeio
rowed interval is[0.23,0.236), and after seeing the secondhe 3 No= 3 cour(w) Nest(e);

new interval |s[0.233, 0‘2336)._ Finally on sgelng, the interval is 4: forall edges: € out(v) do

[0.23354, 0.2336); knowing this to be the final range, the decoder . D(€) = Naear(e)/Noi

can immediately deduce that the first character tvé¢ow the de- - end for
coder simulates the action of the encoder, since the decoder knows 7: end for
that the interval0.2,0.5) belonged ta, the range is expanded to
[0.2,0.26). Continuing this way, the decoder can completely de- Figure 12. The Ball-Larus algorithm as a model computation
code the transmitted message. It is not really necessary for the dejprocess.

coder to know both ends of the range produced by the encoder.

Instead, a single number in the range (8833355 in our example)

will suffice.

Note thatthe ranges for any probability model (for example, the Example. For the modelD described in Table 1, the entropy
one in Table 1) are non-intersecting; this condition is critical for H(D) = —P(a) log, |P(a)|—P(b) log, |P(b)|—P(c) log, |P(c)|—
arithmetic coding to work. If the ranges associated with the input P(d) log, |P(d)| — P(e) log, |[P(e)| — P(!) log, |[P(!)| =
symbols were intersecting, two or more strings could map to the —(0.2log, [0.2| 4 0.3 log, [0.3| +0.11og, |0.1|+0.2log, |0.2| +
same interval and the decoder has no way of distinguishing these0.1log, |0.1| + 0.11og, |0.1]) = 2.45 bits.
strings

From the discussion, it should be clear that for arithmetic cod-
ing to be effective, the frequency of occurrence of characters inthe 4.2 The Ball-Larus algorithm and Arithmetic coding
input string must be skewed and the skew must be accurately re-
flected in the probability model. In other words, better compression
rates are achieved if the model makes accurate predictions abou
the nature of the input string. We now describe a technique known
as finite context modeling, which is commonly used to obtain more
accurate probability models.

We will now show that the Ball-Larus profiling algorithm is
in fact an instance of arithmetic coding for paths inDAG

= (V, E, s,t). We first observe that both path numbering and
arithmetic coding have similar objectives, i.e.,dompactly and
uniquelyencode strings from an input alphabet. In path numbering,
the input alphabet is the set of edges throud&;, and the input
strings are paths through tH®AG. We also find that the process
of assigning weights to the edges of the DAG corresponds to the
process of computing a probability model. However, unlike arith-
metic coding where computing an optimal model is undecidable in
general, an optimal model for paths through a DAG can in fact be
computed for the following reasons: (a) the set of strings that can

Finite context modeling.In a finite context scheme, the probabili-
ties of each symbol are calculated based orctieexithe symbol
appears in. In its traditional setting, the context is just the sym-
bols that have been previously encountered. drder of the model
refers to the number of previous symbols that make up the context.

One way of compressing data is to make a single pass over the,eq . is knowra priori; this is precisely the set of all paths through
symbols to be compressed (to gathgr_statlstlcs), and then enche[he DAG, and (b) the order in which edges can occur in paths is
the data in a second pass. The statistics collected are the relat'v%eterminéd by the structure of the graph, which is also knawn
f_requenues Qf occurrences of the respective symbols. These rela, riori. Based on these observations, we aerive a model computa-
tive frequencies are then used to encode/decode the symbol as exg,, hrocedure for paths through a DAG that is equivalent to the
plained in earlier. Essentially, the model in this setting consists of Ball-Larus algorithm. The procedumputeBLModelshown in

a set of tables for every possible context up to gider any order_ Figure 12, takes ®AG G as an input and assigns a probability
k model. Each context is a state, and each entry corresponding tOD(e) to every edge in the graph. The resulting model is a finite

a symbol frequency is indicative of its probability of occurrence in - o, eyt model, where the context of an edge is its source node, and
that context. Aroptimalmodel is one that represents the best pos- the probability assigned to an edge is the probability of the edge

sible statistics for the actual data that is to be compressed. Unfortu-being traversed given that the source node has been reached. One
nately, computing an optimal model in general is undecidable [9]. can easily verify thatv € V ’

It can be shown that arithmetic coding achieves optimal com-
pressioR for a given probability modeD [7]. Specifically, if X is

a random variable representing events over atstith a proba- Z D(e) =1
bility distribution D, then the average number of bits required to e€out(v)
encode any event frot¥’ using arithmetic coding is equal to the For every pathp € paths(G), the probabilityP(p) induced by the
entropy[7] of D which is defined as follows. modelD is defined as follows.
Pp)E T Pl

H(D) = — " P(X =) log, |P(X = z)|

reX

eCedges(p)

Note: (D) is thebinary entropy functionandP (X) is the It also follows by a simple counting argument that for every
ote: =X _ —
probability of occurrenc{e of thgyevem =z paths(G), P(p) = 1/Ipaths(G)| and) e oins(c) PP) = 1.

) Denote byD¢, the probability distribution over the sptiths(G)
— it follows immediately that the entrop${(D¢) is equal to

21n order to achieve optimal overall compression of data, the model must log, \N|
be an optimal model for that data.

e er
=(b)

€4 (ST

€ ez

Figure 13. Example for the procedurmputeBLModel

[Symbol [Probability [Range |
1 2/3 0,2/3)
es 1/3 2/3,1)
es 12 0,1/2)
es 1/2 1/2,1)
es I [0,1)
e6 12 0,1/2)
er 1/2 1/2,1)
es 1 [0,1)

Table 2. The Ball-Larus probability modeD¢ for the graphG in
Figure 13 computed byomputeBLModel

procedure pathEncode(p, D, N)
Assume:
G = (V,E,s,t) is aDAG andp = (v1,...
{vi € V}ici<k.
Returns: path identifier forp.
1: in = [0, N);
cforall i =1tok —1do
: €= (vi,vi+1);
[x,y) :=in;
n:i=y-—ux;
let [r,7") be the range foe defined byD;
in:= [z + |rn],z + [r'n]);
: end for
Dz,) i=ing
: returnz;

,Uk) € paths(G),

2
3
4
5:
6:
7
8
9
10

Figure 14. The coding algorithm that takes a modeland path
p € paths(G) as input, and returns the path identifier or the
encoding fomp.

Example. Consider the graptr shown in Figure 13. The modé}
computed by the proceducemputeBLModek given in Table 2.

We will now describe the procedupathEncodetthat takes a
pathp € paths(G), the modelD computed bycomputeBLModel
andN = |paths(G)| as input, and computes its Ball-Larus iden-
tifier. This is the analogous to the procedammputePathldentifier
in Section 2.2.

Since arithmetic coding is optimal [7], that is, it achieves the
entropy of the input modepathEncoder(which is an arithmetic
coder) is also optimal. We will make this connection explicit in the
following example.

Example. Consider the graplds shown in Figure 13. LeD be
the model computed by the procedw@mputeBLModehs given

in Table 2. For an input pathbedt, pathEncodefsbedt, D, N)
works as follows. We havév = 6, and the algorithm starts by
assigningin := [0, 6). The first edge encountered along this path
is e2, and therefore the intervah is set to[4, 6). After seeing the
next edgees, pathEncoderchooses the same intendal = [4, 6).
For the next edges, the interval is narrowed down t& = [4, 5),
and finally for the last edges, the interval is set tan = [4,5).
Therefore pathEncodereturns4 as the path identifier for the path
sbedt. Note that this is precisely the Ball-Larus identifier for this
path as is evident from Figure 3.

4.3 ThePPP algorithm and arithmetic coding

In Section 3.1, we described an algorithm that compactly num-
bers a subset of interesting patlis C paths(G) in a DAG

G = (V, E, s,t). We now show that th®PP algorithm is equiv-
alent to an arithmetic coding scheme that usemaximal con-
text model for encoding paths i&#. As described in Section 3.1,
the procedurecomputePPPIncrementsomputes for every pair
(e,q) € E x prefiz(p,e), an intervalint. , that represents the
range of partial identifiers of interesting paths througlt every
nodev € V, these intervals are used to compute the weights as-
sociated with edges emanating framlt can be shown that this
procedure is equivalent to computing a finite context model with
prefixes as the context. Consider the simple case of a nedéh

two outgoing edges; ande2. Assume that a single prefi@dnduces
intervalsint., 4 andint., on the edges; andex respectively.

Define cisy,q = inte,,q + iNtey,q, aNdp = Mle1:a Then the
model D, 4 at nodev is defined as follows.

Cisy,q

[Symbol | Probability | Range]

el p 0,p)
€2 1_p pal)

Computing the model is more involved when multiple prefixes in-
duce intervals on the outgoing edges of a node. The problem arises
because each outgoing edge may be associated with multiple prob-
abilities, one for each valid prefix at node However, unlike tra-
ditional context models, an edge in tBAG cannot be associated
with multiple probabilities. We overcome this problem by using the
join operator (defined in Section 3.1) to compute a conservative ap-
proximation of the individual models (which we refer to Bs).

Due to thgoin, certain edges may be assigned smaller probabilites
than required. Consequently, the number of bits required to encode
interesting paths through those edges may increase. The final model
D¢ is a combination of all model®,,v € V.

Finally, the process of computing tHePP identifier for an
interesting pattp € I corresponds to calling the procedyse-
thEncoder with parameterg, De and N = |int, ;| (assigned to
the start node € V).

Example. Consider the grapt¥ shown in Figure 13. Let the set of
interesting paths bé = {sacdt, sact, sbct}. Then the probability
model D computed bycomputePPPIncrements shown in Ta-
ble 3. For the input pathact, pathEncodefsact, Dg, N) works
as follows. We havéV = 3, and the algorithm starts by assigning
in = [0, 3). The first edge encountered along this pathiémodel

= D,), and therefore the intervah is set to[0, 2). After seeing
the next edges (model =D, _,,), pathEncoderchooses the same
intervalin = [0, 2). For the next edge; (model =D s..), the
interval is narrowed down ton = [1,2), and thereforgpathEn-
coderreturnsl as the path identifier for the pattact. Note that

[Model | Symbol| Probability | Range |
O e1 2/3 0,2/3)
es 1/3 2/3,1)
es 0 empty
Da, sa e4 1 0,1)
Db,sb €5 1 07].)
5 c6 /3 0,1/3)
csac er 2/3 1/3,1)
e 1/3 0,1/3)
Desbe | ¢, 2/3 1/3,1)
Dd,sacd €8 1 [O, 1)

Table 3. The PPP probability model Dg for the graphG in
Figure 13 computed byomputePPPIncrements

this is precisely thé>PP identifier for this path as is evident from
Figure 3.

This characterization d?PP as a model computer and encoder of
paths works due to the fundamental invariant that the intervals in
PPP do not overlap (this follows from Lemma 5).

4.4 Analysis of thePPP algorithm

The Ball-Larus algorithm computes an edge weight assignment
such that (the objective function foProblem A) is equal to 1.
Therefore, it is an optimal algorithm for thopeoblem A instances

for which the interesting paths are all paths, thaf is; paths(G).
Information theoretically, this corresponds to saying that all paths
in the graph are equally likely (and there is no bias towards any
set of paths) — from the previous section, the entropy for such a
distribution (say D) is equal ttog, |paths(G)| = paths(G)
2M(D),

In the previous section, we also saw that the procedore-
putePPPIncrementsomputes a probability model for BAG G
and a set of interesting patisC paths(G). Intuitively, this cor-
responds to computing a probability distributidhthat is biased

towards the interesting paths over the uninteresting ones. Since

PPP essentially mimics an arithmetic coder, the total number of
bits required to represent the set of paths distributed according to
the modelD is equal to the entrop§<{(D) = the interval size
that PPP computes is equal t62H<D)1. Therefore, the compact-
ness thaPPP achieves is#, and this is parameterized over
how “precise” the modeD is. In Theorem 1, we show that this
model D computed bycomputePPPIncremenis indeed optimal.

We now state a variant ¢froblem A and prove thaPPP computes

the optimal solution to this problem.

Problem B (Optimal Edge Assignment): Given aDAG G =
(V, E, s,t) and a set of interesting pattisC paths(G), compute
an edge assignmeit’ : E — Z that satisfies the following
conditions.

1. uniqueness: Vp, q € I, pathid(p) # pathid(q),
2. compactness: The compactness measureefined by
def 2H<D)
LT
is minimized, whereD is any probability distribution on
paths(G) induced by a modeD¢.

We now state and prove the main result in our analysis.

THEOREM 1. Given aDAG G (V,E,s,t) and a setl C
paths(G), the procedure computePPPIncrements computes the
optimal solution tdProblem B

Proof: It follows from Section 4.3 that th®PP algorithm
computes anaximalcontext modelD for a given set of interest-
ing paths inG. The model is a precise context model because it
uses the largest context possible, which is the entire prefix. Since

. . 2" DPpaths(a))
the modelD¢ is optimal,y = 7] (whereDpqihs(a)
is the probability model ovepaths(G) induced byDg) is also
optimal (this follows from the optimality of thpathEncoderpro-
cedure, which essentially mimics an arithmetic coder), and the

theorem follows. |

From Section 3.3, it is clear that any algorithm (suctP&$)
that maintains the invariant stated in Lemma 5 will not be able com-
pute an optimad. On the other hand, our experiments described in
Section 5 also indicate that the objective functipminimized by
our algorithm is close to the minimal(the objective function for
Problem A) for most graphs and their associated interesting paths,
and the interval size is small enough for the path profiler to use an
array to track interesting paths.

5. Experimental evaluation

We have implemented the preferential path profiling algorithm
using the Scale compiler infrastructure [10]. A few key features
of our implementation are listed below.

¢ Representing paths and prefix&ghile a user is free to specify
the set of interesting paths in several ways, we choose to rep-
resent the interesting paths using their Ball-Larus identifiers.
Similarly, we represent a prefix using the cumulative sum of
the Ball-Larus weights along the edges of the prefix. It is easy
to see that this sum is unique for each prefix leading to a given
node.

Register usageUnlike traditional path profiling, preferential
path profiling requires two registers, one PP counts and

one for Ball-Larus counts. Our experiments suggests that the
use of two registers instead of one does not add to the overheads
of profiling.

Counter optimizationsAll counter placement optimizations [3]
used in the Ball-Larus algorithm also apply to AP counter.
These include reducing the number of initialization and incre-
ment operations by placing weights only on the edges that do
not belong to a maximal spanning tree of the DAG, pushing
counter initialization downwards along the edges of the DAG
and merging the initializations with the first increments. In
our implementation, we ensure that b&®RP and Ball-Larus
counter updates occur on the same edges.

Hash table usage policf¥he default Ball-Larus profiler is con-
figured to use a hash table instead of an array when the total
number of paths through the procedure exceeds a threshold.
However, the policy for hash table use in preferential path pro-
filing depends on the specific scenario in which the profiler is
used. For instance, in residual path profiling, where the goal
is to detect the occurrence of untested (uninteresting) paths, a
hash table may never be used, even whenPRe identifers
allocated to the tested (interesting) paths are large. Here, the
profiler implementation may decide to ignore all tested paths
with PPP identifiers greater than a threshold, in essence treat-
ing them as untested paths. As a result, a few of the tested paths
may appear as untested during program execution. Such false
positives may be acceptable sifRBP ensures that interesting
paths are assigned compact numbers. In addition, they can be

easily weeded out off-line. A policy that switches to using hash s ; : : ; : : : : :
tables when th@PP identifiers are large may also be used in .

other applications. Although our implementation supports both ~ “*° ¥ * —
modes, we report our results using the former policy.

400+ + : / .

¢ Additional checksBefore indexing the path array usifPP
identifiers, our profiler must check for an underflow/overflow,
which can result when an uninteresting path occurs. Our exper- g,

350 —

e
T
+
i

iments suggest that these additional checks do not add to the & + H

cost of preferential profiling since they are highly biased and 2ot = % 1

easy to predict. = g k

200 PR 1

We evaluated our profiler implementation using benchmarks O
from the SPEC CPU2000 suite. We simulated a realistic residual b 1
profiling scenario. We first collected a path profile of the bench- | +} S i
marks using the Ball-Larus profiler for the standard reference in- +

put. We then assumed that all paths exercised during the reference so- : 1
run were interesting (including procedures where several hundred 1 : 1 1 : 1 1 J 1
paths were exercised). These were fed to the preferential profiler, % 5 100 150 200 250 300 350 400 450 500
which generated a new instrumented binary. All binaries were run Number of interesting paths
to completion using the reference input on an Alpha 21264 proces-
sor running Digital OSF 4.0. Each binary was executed 5 times and Figure 16. ¢ values achieved by preferential path profiling.
the minimum of the execution times (measured using hardware cy-
cle counts) was used for comparison.

Figure 15 shows the percentage overheads of the two scheme®s. Related work
relative to execution time of the un-instrumented binary. We find
that Ball-Larus profiling incurs an average overhead of 50% with a
maximum of 132%. On the other hand, the preferential path profiler
incurs an average overhead of 15%, with a maximum of 26%. We
attribute the low profiling overheads 8PP to (a) elimination of
expensive hash operations, and (b) judicious allocation of counters
for profiling (the size of the counter array is proportional to the
number of interesting paths and not the number of potential paths).

Several researchers have proposed a variety of techniques to re-
duce the overhead of Ball-Larus style path profiling [2, 8, 6]. Selec-
tive path profiling uses a variation of Ball-Larus numbering where
edges are visited in a specific order to ensure that interesting paths
are assigned a unique number that is higher than the non-unique
numbers assigned to other paths, while minimizing the number of
counter updates needed to compute the path number. However, they
found that once the number of interesting paths was five or larger,
their edges covered most of tlBAG and their technique offered

® Ball-Larus little advantage over Ball-Larus numbering. In addition, they made
no attempt to ensure that the interesting paths are compactly num-

140.00 7

120.00
Preferential

100.00 bered. Instead of minimizing the number of counter updates needed

R to compute a path number, we optimize the compactness of num-

G bers assigned to interesting paths. This reduces overhead by en-

) abling the use of a path array in place of a hash table. Our compact
HS B __;_[__;_I_.,_I_,]__,._l_ij_

% overheads

A8 numbering scheme is effective even when the number of interesting
paths is large.

o Bothtargeted path profilin@ndpractical path profilingattempt

to efficiently profile hot program paths starting from an edge profile

by eliminating unneeded instrumentation. Targeted path profiling

20.00

0.00 -

-20.00 -

PR R S R L P e o ;
P G A S eliminates profiling cold paths by excluding cold edges and not
& ¥ g o » N ¥ h . . .
~ A N instrumenting paths that the edge profile predicts well. It uses Ball-

Larus numbering for labelling the remaining paths. Practical path
profiling attempts to improve over targeted path profiling using
a variety of techniques to eliminate a larger number of paths.
Figure 15. Overheads of preferential path profiling. It also performs intelligent instrumentation placement to further
reduce overhead. To minimize overhead, practical path profiling
Although reflected in the overheads, the real efficacy of the may need to classify warm edges as cold and consequently could
preferential profiling algorithm lies in the compactness meadure compromise the quality of the path profile. It also uses Ball-Larus
that it achieves. We illustrate the compactness measure achievechumbers to uniquely identify the remaining paths. Our technique is
by our algorithm in Figure 16, which plots the size of the interval orthogonal to both as it proposes a new dense numbering scheme
allocated to interesting paths vs. the number of interesting pathsfor interesting paths that minimizes the overhead of profiling these
for procedures from programs in t&EC CPU2000 benchmark paths. It is also more general as it can be applied to scenarios such
suite. As aforementioned, all paths exercised during one referenceas residual path profiling (detecting paths not exercised by a test
run were selected as interesting paths. The figure suggests that ousuite), where the techniques that targeted/practical path profiling
profiling scheme achieves @close to 1 for a vast majority of use to reduce instrumentation overheads do not apply.
the procedures, although the value tends to increase for procedures Other work in path profiling has focused on collecting richer
with a large number of paths (100-300). We also found a very small path profiles. Interprocedural path profiling extends Ball-Larus pro-
number of cases withh > 10 (not shown in this figure), most filing beyond intraprocedural paths [11]. Tallam et al. proposed a
of them in the benchmarérafty, a chess program known to have technique to profile overlapping path fragments from which inter-
complex control flow. procedural and cyclic paths can be estimated [14]. Both these tech-

benchmark

nigues have considerably higher overhead than the Ball-Larus tech-
nique for profiling intraprocedural, acyclic paths and our scheme
can potentially help reduce this overhead.

7. Conclusion

This paper presents preferential path profiling, a new technique
that profiles a specified subset of all program paths with very low
overhead. Preferential path profiling labels the paths of interest
compactly using a novel numbering scheme. By drawing parallels
between arithmetic coding and path numbering we establish an
optimality result for our compact path numbering scheme. This
compact path numbering allows our implementation to use array-
based counters instead of hash table-based counters for gathering
path profiles and significantly reduces execution time overhead.

Acknowledgments

We thank Sriram Rajamani, Stefan Schwoon and Aditya Thakur for
helpful comments on this work. Special thanks are due to Stefan for
proving Lemma 3.

References

[1] G. Ammons and J. R. Larus. Improving data-flow analysis with path
profiles. INACM SIGPLAN Symposium on Programming Language
Design and Implementation (PLDIpages 72—-84, 1998.

[2] T. Apiwattanapong and M. J. Harrold. Selective path profiling. In
Workshop. on Program Analysis for Software Tools and Engineering
(PASTE) pages 35-42, 2002.

[3] T. Ball and J. R. Larus. Efficient path profiling. International
Symposium on Microarchitecture (MICR@gges 46-57, 1996.

[4] T. Ball and J. R. Larus. Programs follow paths. Technical Report
MSR-TR-99-01, Microsoft Research, 1999.

[5] T. Ball, P. Mataga, and S. Sagiv. Edge profiling versus path profiling:
The showdown. IPACM SIGPLAN Symposium on Principles of
Programming Languages(POPLlpages 134-148, 1998.

[6] M. D. Bond and K. S. McKinley. Practical path profiling for dynamic
optimizers. Ininternational Symposium on Code Generation and
Optimization (CGO)pages 205-216, 2005.

[7] T. M. Cover and J. A. Thoma£lements of Information Thearyohn
Wiley & Sons, Inc., N. Y., 1991.

[8] R. Joshi, M. D. Bond, and C. B. Zilles. Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems. In
International Symposium on Code Generation and Optimization
(CGO), pages 239-250, 2004.

[9] A. Kolmogorov. Three approaches to the quantitative definition of
information. Prob. Peredach Informl(1):3-11, 1965.

[10] K. S. McKinley, J. Burrill, M. D. Bond, D. Burger, B. Cahoon,
J. Gibson, J. E. B. Moss, A. Smith, Z.Wang, and C. Weems. The
Scale compilerhttp://ali-www.cs.umass.edu/Scak905.

[11] D. Melski and T. W. Reps. Interprocedural path profiling. In
Proceedings of the 8th International Conference on Compiler
Construction (CC)pages 47-62, 1999.

[12] E. Perelman, T. M. Chilimbi, and B. Calder. Variational path profiling.
In Parallel Architectures and Compilation Techniques '05 (PACT)
pages 7-16, 2005.

[13] J. Rissanen and G. G. Langdon. Arithmetic codinBM J. Res.
Develop, 23(2):149-162, 1979.

[14] S. Tallam, X. Zhang, and R. Gupta. Extending path profiling
across loop backedges and procedure boundariemtdmational
Symposium on Code Generation and Optimization (CG@yes
251-264, 2004.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compressionCommunications of the ACN80(6):520-540, 1987.

