
Efficient algorithms for some special cases of the polynomial equivalence
problem

Neeraj Kayal∗

Abstract

We consider the following computational problem. Let F be a field. Given two n-variate polynomials
f(x1, .., xn) and g(x1, .., xn) over the field F, is there an invertible linear transformation of the variables which
sends f to g? In other words, can we substitute a linear combination of the xi’s for each xj appearing in
f and obtain the polynomial g? This problem is known to be at least as difficult as the graph isomorphism
problem even for homogeneous degree three polynomials. There is even a cryptographic authentication scheme
(Patarin, 1996) based on the presumed average-case hardness of this problem.

Here we show that at least in certain (interesting) special cases there is a polynomial-time randomized
algorithm for determining this equivalence, if it exists. Somewhat surprisingly, the algorithms that we present
are efficient even if the input polynomials are given as arithmetic circuits. As an application, we show that
if in the key generation phase of Patarin’s authentication scheme, a random multilinear polynomial is used to
generate the secret, then the scheme can be broken and the secret recovered in randomized polynomial-time.

1 Introduction

We consider the task of understanding polynomials upto invertible linear transformations of the variables. We will
say that two n-variate polynomials f(X) and g(X) are equivalent (also sometimes called isomorphic), denoted
f ∼ g if there exists an invertible linear transformation A ∈ Fn×n such that f(X) = g(A · X). Does the
corresponding computational problem of determining whether two given polynomials are equivalent admit an
efficient (polynomial-time) algorithm? A naive method for finding such a matrix A would involve solving an
appropriate system of polynomial equations but this being a highly nonlinear task yields only an algorithm
with exponential running time. No efficient algorithm is known even if the two polynomials are given verbosely
as lists of coefficients and the task seems so difficult that there is even a cryptographic protocol based on the
presumed average-case hardness of this problem. We wish to emphasize here that in cryptographic applications,
the assumption is that even if the two polynomials have constant degree (say degree four) and are given verbosely
as a list of coefficients the polynomial equivalence problem is hard even in the average-case. Somewhat surprisingly,
we show that for certain special cases of this problem (these special cases we discuss and motivate below), the
problem admits a polynomial time randomized algorithm even when the input polynomials are given succinctly
as arithmetic circuits.

Motivation The following well-known lemma constructively classifies quadratic polynomials upto equivalence.

Lemma 1.1. (Structure of quadratic polynomials). Let F be an algebraically closed field of characteristic
different from 2. For any homogeneous quadratic polynomial f(X) ∈ F[X] there exists an invertible linear
transformation A ∈ Fn×n and a natural number 1 ≤ r ≤ n such that

f(A ·X) = x2
1 + x2

2 + . . .+ x2
r.

Moreover, the linear transformation A involved in this equivalence can be computed efficiently. Furthermore, two
quadratic forms are equivalent if and only if they have the same number r of variables in the above canonical
representation.

This lemma allows us to understand many properties of a given quadratic polynomial. We give one example.

∗Microsoft Research India.

Example 1. Formula size of a quadratic polynomial. Let Φ be an arithmetic formula. The size of the
formula Φ, denoted L(Φ) is defined to be the number of multiplication gates in it. For a polynomial f , L(f) is
the size of the smallest formula computing f . Then for a homogeneous quadratic polynomial f , we have that

L(f) =
⌈r

2

⌉
,

where r is as given by Lemma 1.1.

No generalization of the above example to higher degree polynomials is known. Indeed, no explicit family of cubic
(i.e. degree three) polynomials is known which has superlinear formula-size complexity. One might näıvely hope
that an appropriate generalization of Lemma 1.1 to cubic polynomials might shed some light on the formula size
complexity of a cubic polynomial. That is, one wants a characterization of cubic polynomials upto equivalence.
Despite intensive effort (cf. [MH74, Har75]), no ‘explicit’ characterization of cubic forms was obtained. In a
recent work, Agrawal and Saxena [AS06] ‘explained’ this lack of progress: they showed that the well-studied but
unresolved problem of graph isomorphism reduces to the problem of testing equivalence of cubic forms. A simpler
proof of a slightly weaker version of their result is presented in example 2. This means that the polynomial
equivalence problem is likely to be very challenging, even when the polynomials are given verbosely via a list of
coefficients. In this work, we do not tackle the general polynomial equivalence problem, but rather some special
cases of it which are motivated by the desire to present a given polynomial in an “easier way”. The “easier” ways
of presenting that we look at are motivated by the characterization of quadratic polynomials as given in Lemma
1.1 and example 1. Let us describe these special cases of polynomial equivalence.
The integer r of Lemma 1.1 is referred to in the literature as the rank of the quadratic form. Notice that upto
equivalence, it is the smallest number of variables which the given polynomial f depends on. One then asks
whether a given polynomial is equivalent to another polynomial which depends on a fewer number of variables.
Now the canonical form for a quadratic polynomial is as a sum of squares of linear forms. The natural question
for higher degree polynomials then is whether the given polynomial is a sum of appropriate powers of linear forms.
i.e whether a given polynomial of degree d is equivalent to

xd1 + xd2 + . . .+ xdn.

It should be noted that unlike quadratic forms, not every polynomial of degree d ≥ 3 can be presented in this
fashion. We devise an efficient randomized algorithm for this special case of equivalence testing. We then consider
some other classes of polynomials and do equivalence testing for those. In particular, we devise algorithms to
test whether the given polynomial is equivalent to an elementary symmetric polynomial. The algorithms that
we devise can be generalized quite a bit and these generalizations (which we call polynomial decomposition and
polynomial multilinearization) are explained in section 7 of this article. Before we go on let us motivate our
consideration of such special cases by obtaining a hardness result for polynomial equivalence.

Example 2. Graph Isomorphism many-one reduces to testing equivalence of cubic polynomials.

A proof is given in the appendix.

2 Previous work and our results

The mathematical subject of Geometric Invariant Theory is concerned with the properties of polynomial functions
which is independent of the choice basis - in other words properties of polynomials which are invariant under linear
transformations of the variables. This subject was at the forefront of nineteenth-century mathematics during which
time Hilbert and others completely characterized binary forms (i.e. homogeneous polynomials in two variables)
upto equivalence. Algorithmically, the problem has received much less attention - an exponential-time algorithm
(better than the trivial method though) is given for example in [FP06, PGC98]. It has also been noted that
the problem is in NP ∩ coAM and its not known to be in NP ∩ coNP. In his thesis [Sax06], Saxena notes
that the work of Harrison [Har75] can be used to solve certain special cases of polynomial equivalence but the
time complexity deteriorates exponentially with the degree. In particular, the techniques of Harrison imply that
one can deterministically test whether a given polynomial is equivalent to xd1 + . . . + xdn but the time taken is
exponential in the degree d. Here we give a randomized algorithm with running time polynomial in n, d and the

size of the input circuit. We also present a new randomized polynomial time algorithm to test whether a given
polynomial is equivalent to an elementary symmetric polynomial. Our algorithms generalize somewhat and we
obtain efficient randomized algorithms for polynomial decomposition and multilinearization. See theorems 7.2
and 7.1 for the precise statements of these generalizations and the degenerate cases which need to be excluded.

Finally, we mention that there is a cryptographic authentication scheme due to Patarin [Pat96] based on
the presumed average-case hardness of the polynomial equivalence problem. We describe Patarin’s authentication
scheme and then show how the algorithms above can be extended to break this scheme in randomized polynomial-
time if a random multilinear polynomial is chosen during the key-generation phase.

Organization The rest of this article is organized as follows. We fix some notation and terminology in section
3. We then develop some preliminary subroutines in section 4. Thereafter we consider polynomial equivalence
in sections 5, 6 and 7. We then discuss Patarin’s authentication scheme and discuss how it can be broken in
randomized polynomial time if a random multilinear polynomial is chosen during the key-generation phase. We
conclude by posing some new problems.

3 Notation

We will abbreviate the vector of indeterminates (x1, x2, . . . , xn) by X. The set {1, 2, . . . , n} will be abbreviated as
[n]. We will be consider polynomials in n variables over some field F. For convenience we will henceforth assume
that F = C although any field of characteristic larger than say d2 is good enough. A polynomial of degree one
is called an affine form. Affine forms whose constant term is zero are called linear forms. We will say that a
given polynomial f(X) is a low-degree polynomial if its degree is bounded above by a polynomial in the size of
the arithmetic circuit computing f(X).
For a linear transformation

A =


a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann

 ∈ Fn×n,

we shall denote by A ·X the tuple of polynomials

(a11x1 + . . .+ a1nxn, . . . , an1x1 + . . .+ annxn).

Thus, for a polynomial f(X) ∈ F[X], f(A·X) denotes the polynomial obtained by making the linear transformation
A on the variables in f .
Derivatives. We also set up a compact notation for partial derivatives. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a
polynomial. Then we shall use the following shorthand:

∂if
def=

∂f

∂xi
.

∂kf shall denote the set of k-th order partial derivatives of f . Thus ∂1f , abbreviated as ∂f , shall equal{
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

}
.

∂2f is the set {
∂2f

∂xi · ∂xj
: 1 ≤ i ≤ j ≤ n

}
,

and so on.

4 Preliminaries

Here we develop some useful subroutines. Although some of this is new, the observations here follow fairly easily
from known results and techniques.

4.1 Linear dependencies among polynomials In this section we isolate and study a subproblem which is
common to many of the problems studied here. We call it the problem of computing linear dependencies among
polynomials and denote it by POLYDEP.

Definition 3. Let f(X) def= (f1(X), f2(X), . . . , fm(X)) ∈ (F[X])m be a vector of polynomials over a field F. The
set of F-linear dependencies in f , denoted f⊥, is the set of all vectors v ∈ Fm whose inner product with f is the
zero polynomial, i.e.,

f⊥ def=
{

(a1, . . . , am) ∈ Fm : a1f1(X) + . . .+ amfm(X) = 0
}

If f⊥ contains a nonzero vector, then the fi’s are said to be F-linearly dependent.

The set f⊥ is clearly a linear subspace of Fm. In many of our applications, we will want to efficiently compute
a basis of f⊥ for a given tuple f = (f1(X), . . . , fm(X)) of polynomials. Let us capture this as a computational
problem.

Definition 4. The problem of computing linear dependencies between polynomials, denoted POLYDEP, is
defined to be the following computational problem: given as input m arithmetic circuits computing polynomials
f1(X), . . . , fm(X) respectively, output a basis for the subspace f⊥ = (f1(X), . . . , fm(X))⊥ ⊆ Fm.

POLYDEP admits an efficient randomized algorithm. This randomized algorithm will form a basic building block
of our algorithms

Lemma 4.1. Given a vector of m polynomials

f = (f1(X), f2(X), . . . , fm(X))

in which every fi is as usual specified by a circuit, we can compute a basis for the space f⊥ in randomized
polynomial time.

See appendix section A.1 for a proof.

4.2 Minimizing Variables In this section we study how to eliminate redundant variables from a polynomial.
In the subsequent sections we will assume that the input polynomial has no redundant variables. The problem of
minimizing the number of variables in a polynomial upto equivalence was considered earlier by Carlini [Car06].
An efficient algorithm for verbosely represented polynomial (i.e. polynomials given via a list of coefficients) was
devised by Carlini [Car06] and implemented in the computer algebra system CoCoA. We observe here that this
problem admits an efficient randomized algorithm even when the polynomial is given as an arithmetic circuit.

We adopt the following definition from Carlini [Car06]

Definition 5. Let f(X) ∈ F[X] be a polynomial. We will say that f(X) is independent of a variable xi if no
monomial of f(X) contains xi. We will say that the number of essential variables in f(X) is t if we can make
an invertible linear A ∈ F(n×n)∗ transformation on the variables such that f(A ·X) depends on only t variables
x1, . . . , xt. The remaining (n− t) variables xt+1, . . . , xn are said to be redundant variables. We will say that f(X)
is regular if it has no redundant variables.

We have:

Theorem 4.1. Given a polynomial f(X) ∈ F[X] with m essential variables, we can compute in randomized
polynomial time an invertible linear transformation A ∈ F(n×n)∗ such that f(A · X) depends on the first m
variables only.

The proof is given in appendix B.

5 Equivalence to sums of d-th powers

Consider the following problem: given a homogeneous polynomial f(X) ∈ F[X] of degree d, does there exist a
linear transformation A ∈ Fn×n and constants a1, . . . , an ∈ F such that

f(A ·X) = a1 · xd1 + a2 · xd2 + . . .+ an · xdn.

Equivalently, the problem can be restated as follows: given a homogeneous polynomial f(X) ∈ F[X] of degree d,
determine n independent linear forms `1, . . . , `n ∈ F[X] and constants a1, . . . , an ∈ F such that

f(X) = a1 · `1(X)d + . . .+ an · `n(X)d.

We will devise a randomized polynomial-time algorithm that given f(X), computes the constants and the set of
linear forms `1(X), . . . , `n(X). The key idea involved in this is the Hessian matrix.

Definition 6. For a polynomial f(X) ∈ F[X], the Hessian Matrix Hf (X) ∈ (F [X])n×n is defined as follows.

Hf (X) def=


∂2f

∂x1·∂x1
. . . ∂2f

∂x1·∂xn

...
. . .

...
∂2f

∂xn·∂x1
. . . ∂2f

∂xn·∂xn


The most interesting property of the hessian matrix of a polynomial is the effect that a linear transformation of
the variables has on it.

Lemma 5.1. Let f(X) ∈ F[X] be an n-variate polynomial and A ∈ Fn×n be a linear transformation. Let
F (X) def= f(A ·X). Then,

HF (X) = AT ·Hf (A ·X) ·A.

In particular,
Det(HF (X)) = Det(A)2 ·Det(Hf (A ·X))

Proof. By the chain rule for differentiation we have for all 1 ≤ i ≤ n:

∂F

∂xi
=

n∑
k=1

aki ·
∂f

∂xk
(A ·X)

Therefore for all 1 ≤ i, j ≤ n:

∂2F

∂xi · ∂xj
=

n∑
k=1

aki · (
n∑
`=1

a`j
∂2f

∂xk · ∂xl
(A ·X))

=
∑

k∈[n],`∈[n]

aki ·
∂2f

∂xk · ∂xl
(A ·X) · a`j

Putting these equations into matrix form immediate gives us the lemma.

Now consider a homogeneous polynomial f(X) of degree d ≥ 3 which has the property that there exists a linear
transformation A of the variables such that

f(A ·X) = xd1 + xd2 + . . .+ xdn.

Set F (X) def= xd1 + xd2 + . . .+ xdn. Observe that

∂2F

∂xi · ∂xj
=

{
0 if i 6= j,

d(d− 1)xd−2
i if i = j.

Thus the matrix HF (X) is a diagonal matrix so that we have

Det(HF (X)) = d(d− 1) ·
n∏
i=1

xd−2
i .

By the Lemma 5.1 above we get that

Det(Hf (X)) = d(d− 1) ·Det(A)−2 ·
n∏
i=1

`i(X)d−2,

where the `i(X)’s are linear forms corresponding to the different rows of the matrix A−1. Let us record this as a
lemma.

Lemma 5.2. For a polynomial f(X) ∈ F[X] of degree d, if

f(X) =
n∑
i=1

ai · `i(X)d,

where `1(X), . . . `n(X) are independent linear forms then

Det(Hf (X)) = c ·
n∏
i=1

`i(X)d−2,

where c ∈ F is a nonzero constant.

Using Lemma 5.2 and applying unique factorization of polynomials to Det(Hf (X)), we immediately get the
following corollary.

Corollary 5.1. If
∑
i∈[n] x

3
i =

∑
i∈[n] `i(X)3, where the `i’s are independent linear forms then there exists a

permutation π ∈ Sn such that `i = ωj · xπ(i), where ω is a primitive third root of unity.

Lemma 5.2 combined with Kaltofen’s algorithm for polynomial factoring [Kal89] can be used to devise a
randomized polynomial-time algorithm for our problem. We now give the details of this algorithm.

5.1 The algorithm for equivalence to sums of powers We have seen that the determinant of the hessian
of a polynomial f ∼ xd1 + xd2 + . . . + xdn factors into product of powers of the appropriate linear forms. We now
give the details as to how this factorization can be used to determine this equivalence.
Input. An n-variate polynomial f(X) ∈ F[X] of degree d.

Output. A set of independent linear forms `1(X), . . . , `n(X) and constants a1, . . . , an such that

f(X) = a1 · `1(X)d + . . .+ an · `n(X)d,

if such a set of `i’s exist.

The Algorithm.

1. Compute an arithmetic circuit C(X) which computes Det(Hf (X)).

2. Use Kaltofen’s factorization algorithm [Kal89] to factor C(X) in random polynomial time. If it is not the
case that

C(X) =
n∏
i=1

`i(X)d−2,

where each `i(X) is a linear form then output No such forms. else (by solving a system of linear equations)
compute constants a1, . . . , an such that

f(X) =
n∑
i=1

ai · `i(X)d.

If no such constants ai’s exist then output No such forms. Else output (`1(X), . . . , `n(X)), (a1, . . . , an).

6 Equivalence to an elementary symmetric polynomial

The problem that we now tackle is the following — given an arithmetic circuit which computes an n-variate
homogeneous polynomial f(X) ∈ F[X], is there an invertible linear transformation A such that f(A ·X) is the
elementary symmetric polynomial of degree d? Recall that the elementary symmetric polynomial of degree d 1 is

SYMd
n

def=
∑

S⊆[n],|S|=d

∏
i∈S

xi.

Basic idea. We now give the basic idea underlying the algorithm. The key thing is to look at the second order
partial derivatives ∂2(f) of the given polynomial f . The dimension ∂2(f) is a quantity which is invariant under
a linear change of variables. For a random polynomial of degree d ≥ 4, all the second order partial derivatives
are linearly independent so that the dimension of ∂2(f) is the maximum possible, namely

(
n+1

2

)
. The nice thing

about SYMd
n is that its a multilinear polynomial and therefore we have

(6.1) ∂2
i SYMd

n = 0, for all i ∈ [n].

Since these second order derivatives of f vanish, the dimension of ∂2(f) is at most(
n+ 1

2

)
− n =

(
n

2

)
.

More interestingly, these are essentially the only second-order partial derivatives of SYMd
n which vanish. The

following lemma shows that most of the these second order partial derivatives are linearly independent.

Lemma 6.1. For d ≥ 4, we have

dim
(
∂2(SYMd

n)
)

=
(
n

2

)
.

Proof. See [KN97, pp.22–23].

This means that if f is equivalent to SYMd
n then ∂2(f) has dimension

(
n
2

)
. Indeed our method shows that for any

polynomial f ∈ F(X) which has the property that ∂2(f) has dimension
(
n
2

)
, we can efficiently determine whether

f is equivalent to a multilinear polynomial. When this happens, we also find an invertible matrix A such that
f(A ·X) is multilinear. Now let

g(X) def= f(A ·X)

be multilinear. It will also follow from our proof that this multilinear polynomial g(X) is equivalent to an
elementary symmetric polynomial if and only if there is a diagonal matrix B such that

g(B ·X) = SYMd
n.

It is then a relatively easy exercise to determine whether such a diagonal matrix B exists or not.

Proposition 6.1. Let g(X) be a homogeneous multilinear polynomial of degree d. Assume that there exist
λ1, . . . , λn ∈ F such that

g(λ1x1, . . . , λnxn) = SYMd
n(X).

Then once can efficiently compute the λi’s.

Sketch of Proof : The λi’s can be obtained by solving an appropriate set of linear equations in (log λi)’s. Here
is how we obtain the appropriate set of linear equations to solve. We have

g(1, . . . , 1, 0, . . . , 0) = SYMd
n(λ−1

1 , . . . , λ−1
d , 0, . . . , 0)

= λ−1
1 · λ

−1
2 · . . . λ

−1
d

1SYMd
n can also be defined as the unique (upto scalar multiples) homogeneous multilinear polynomial of degree d in n variables,

which is invariant under every permutation of the variables.

Taking logarithm on both sides, we get one such equation:

log λ1 + . . .+ log λd = − log g(1, . . . , 1, 0, . . . , 0)

Choosing various subsets of size d we can obtain in this manner an adequate number of linearly independent
equations. Solving this system of linear equations gives us the logarithm of the λi’s. �

In the rest of this section, we will assume that f(X) ∈ F[X] is a polynomial that satisfies dim(∂2(f)) =
(
n
2

)
. We

will tackle the problem of finding an invertible matrix A such that f(A ·X) is multilinear, if such an A exists.
We will first observe that our problem boils down to finding an “nicer” basis for a given space of matrices. By
a “nicer” basis, we will mean a basis consisting of rank one matrices. We then devise an efficient randomized
algorithm for the latter problem.

6.1 Reduction to finding a good basis for a space of matrices. We first consider linear transformations
of the variables of a polynomial which make the polynomial multilinear. Let

g(X) = f(A ·X)

= f

∑
j

a1jxj ,
∑
j

a2jxj , . . . ,
∑
j

anjxj


be the polynomial obtained by applying the transformation A to the variables in f . Then ∂2

i g = 0 if and only if

(a1i∂1 + a2i∂2 + . . .+ ani∂n)2f = 0.

Therefore, if g(X) is multilinear then every column vector of A satisfies

(a1∂1 + a2∂2 + . . .+ an∂n)2f = 0,

and these n vectors are linearly independent since A is invertible.
We will apply the above observation algorithmically as follows. Given f , we first compute the set

∂2f
def= { ∂2f

∂i · ∂j
: i 6= j}

and then using the randomized algorithm for POLYDEP, we obtain a basis for the set of all quadratic differential
operators D(∂1, . . . , ∂n) such that Df = 0. Since dim(∂2(f)) =

(
n
2

)
we have dim(D(∂1, . . . , ∂n)) = n. By the

observation above our problem boils down to finding a basis for D(∂1, . . . , ∂n) such that every quadratic operator
in the basis has the following form:

(a1∂1 + a2∂2 + . . .+ an∂n)2f = 0.

Towards this end, we associate every n-variate quadratic operator D with an n × n symmetric matrix D̂ in the
following natural way. Let D ∈ F[∂1, . . . , ∂n] be a quadratic polynomial, where

D =
∑
i∈[n]

αi∂
2
i +

∑
1≤i<j≤n

βij∂i∂j .

The matrix D̂ associated with this operator D is the following:

(6.2) D̂
def=


α1

1
2β12 . . . 1

2β1n
1
2β12 α2 . . . 1

2β2n

...
...

. . .
...

1
2β1n

1
2β2n . . . αn

 .

This way of associating a quadratic differential operator with a symmetric matrix has the following property.

Property 6.1. Over an algebraically closed field F of characteristic different from 2, the quadratic polynomial D
is equivalent to a sum of r squares if and only if the corresponding symmetric matrix D̂ is of rank r. In particular,
the polynomial D is a perfect square if and only if D̂ is of rank one.

This property can be used to reduce our problem to the problem of finding “nice” basis of a given space of
matrices. More specifically, our problem boils down to finding a set of rank one matrices that span a given space
of matrices. The details are given in the algorithm below. It uses a subroutine which we will describe in the next
subsection.
Input. An n-variate polynomial f(X) ∈ F[X] of degree d.

Output. .

The Algorithm.

1. Given an arithmetic circuit of size s for the polynomial f(X) ∈ F[X], use the naive method of computing
derivatives to obtain a new circuit of size O(sn2), whose outputs are the second-order partial derivatives
∂2(f) of f .

2. Using the randomized algorithm for POLYDEP, obtain
a basis for (∂2(f))⊥. Each element in the basis of (∂2(f))⊥ is a homogeneous quadratic polynomial in
F[∂1, . . . , ∂n] in the natural way. Let this basis be

{D1, . . . , Dn} ⊂ F[∂1, . . . , ∂n].

3. From D1, . . . , Dn, obtain the corresponding symmetric matrices D̂1, . . . , D̂n. Using the randomized
algorithm described below, obtain another basis {Ê1, . . . , Ên} of the vector space generated by {D̂1, . . . , D̂n}
such that each Êi is a rank one symmetric matrix 2, if such a basis exists.

Their corresponding quadratic polynomials E1, . . . , En ⊂
F[∂1, . . . , ∂n] are then perfect squares. Let

Ei =

∑
j∈[n]

aij∂j

2

.

The matrix A = (aij)i,j∈[n] is then the required linear transformation which makes f multilinear.

We now present an efficient randomized algorithm that given n linearly independent matrices of dimension
n × n, finds a basis consisting of rank-one matrices, if such a basis exists. Our proof will also show that such a
basis, if it exists, is unique up to scalar multiples and permutations of the basis elements.

6.2 Randomized algorithm for finding a basis consisting of rank-one matrices. We are given n
symmetric matrices D̂1, . . . , D̂n, and we want to find another basis Ê1, . . . , Ên of the space generated by the
given matrices such that each Êi is of rank one. A rank one symmetric matrix is the outer product of a vector
with itself. So for each i ∈ [n], let Êi = vTi vi where vi ∈ Fn.

Lemma 6.2. Suppose that v1, . . . ,vn ∈ Fn are vectors. Then

(6.3) Det(z1vT1 · v1 + . . .+ znvTn · vn) = z1z2 . . . zn · (Det(V))2,

where V = [vT1 . . .v
T
n] is the matrix whose columns are the vi’s.

2Here we are thinking of matrices as n2-dimensional vectors

Proof. Let M(z) def= z1vT1 · v1 + . . . + znvTn · vn. Then Det(M(z)) is a polynomial of degree n in the formal
variables z1, . . . , zn. If zi = 0 then for every setting of the remaining variables, the matrix M is singular because
its image is spanned by the vectors v1, . . . ,vi−1,vi+1, . . . ,vn, and is of rank at most n − 1. Thus zi divides
Det(M(z)) for all i ∈ [n]. Using Chinese remaindering, we have that

∏
zi divides Det(M(z)). Because the

degree of Det(M(z)) is n, we have
Det(M(z)) = λ

∏
i∈[n]

zi,

for some scalar λ ∈ F. Setting all the zi’s to 1, we get

λ = Det

∑
i∈[n]

vTi · vi


= Det(V · V T)
= Det(V)2.

We thus have Det(M(z)) = z1z2 . . . zn · (Det(V))2.

Corollary 6.1. Let D̂1, . . . , D̂n ∈ Fn×n be symmetric matrices. Suppose that there exist vectors v1, . . .vn such
that

(6.4) D̂i =
n∑
j=1

αijvTj · vj .

Then
Det(z1D̂1 + . . . znD̂n) = constant · `1`2 . . . `n,

where for all j ∈ [n], `j =
∑n
i=1 αijzi is a linear form over z1, . . . , zn.

Corollary 6.1 suggests an algorithm.

Theorem 6.1. There exists a randomized polynomial-time algorithm that given n symmetric matrices
D̂1, . . . , D̂n ∈ Fn×n, finds a basis for the space generated by them consisting of matrices of rank one, if such
a basis exists.

Proof. We write down an arithmetic circuit for the polynomial

F (z1, . . . , zn) def= Det(z1D̂1 + . . .+ znD̂n).

Then we use Kaltofen’s algorithm [Kal89] to factor F (z1, z2, . . . , zn) in randomized polynomial time. By Corollary
6.1, we can use the linear factors `1, `2, . . . , `n of this polynomial, which are unique up to scalar multiples and
permutations, to solve the equations (6.4), and get the rank one matrices as required.

This completes the description of our algorithm.

7 Generalizations of equivalence testing.

The algorithm presented in the previous section generalizes and we obtain:

Theorem 7.1. Multilinearization. Given a polynomial f ∈ F(X) which has the property that ∂2(f) has
dimension

(
n
2

)
, we can efficiently determine whether f is equivalent to a multilinear polynomial and if so, find an

invertible matrix A such that f(A ·X) is multilinear. 3

The algorithm for testing equivalence to sum of powers of linear forms also generalizes although certain degenerate
cases need to be ruled out.

3Notice that if f is equivalent to a multilinear polynomial then ∂2(f) can have dimension at most
(n
2

)
.

Theorem 7.2. Polynomial Decomposition There is a randomized polynomial-time algorithm that given an n-
variate polynomial f(X) as an arithmetic circuit, finds a decomposition of f(X), if it exists, provided Det(Hf (X))
is a regular polynomial, i.e. it has n variables upto equivalence.

We do not know whether there exists such an efficient polynomial decomposition algorithm for all polynomials.
We postpone this generalization to the appendix.

8 Breaking a multilinear variant of Patarin’s authentication scheme

We have already noted that the polynomial equivalence problem is at least as difficult as graph isomorphism.
However, unlike Graph Isomorphism which is believed to be easy on the average and therefore unsuitable for
cryptographic applications, no such heuristic average-case algorithms are known for the polynomial equivalence
problem. This, combined with the fact that just like graph isomorphism polynomial equivalence also admits
a perfect zero-knowledge proof led Patarin [Pat96] to propose an authentication scheme based on this problem.
Patarin [Pat96] has proposed an authentication scheme that allows perfect zero-knowledge authentication. It is
based on the presumed average-case hardness of the polynomial equivalence problem. In contrast to some earlier
authentication schemes which were based on the presumed average-case hardness of the integer factoring problem
or the discrete logarithm problem, the main attraction of the scheme is that the polynomial equivalence problem
is not known to have an efficient quantum algorithm, even in the average case.

In the key generation phase of Patarin’s scheme, a random n-variate polynomial f(X) of degree d is picked.
(For concreteness, we fix d to be 4 in the sequel. The results naturally generalize for higher values of d.) Then
two random invertible matrices A1, A2 ∈ Fn×n are chosen and

f1(X) := f(A1 ·X)
f2(X) := f(A2 ·X)

are computed. Then f1, f2 are made public while the secret is the linear transformation S := A−1
1 · A2 which

sends f1 to f2, i.e. f1(S ·X) = f2(X). In the appendix we show that if the polynomial f is chosen to be a random
multilinear polynomial of degree 4, then the scheme can be completely broken - the secret S can be recovered in
randomized polynomial time.

We first describe Patarin’s scheme in more detail.

8.1 The authentication scheme of Patarin. Alice (also sometimes called the prover) holds some secret s
and wishes to authenticate herself to Bob (also sometimes called the verifier) by proving that she does indeed
hold the secret. However she wishes to do it in such a manner that Bob (and also any eavesdropper) gains no
information at all about the secret s itself.

Public: Two n-variate polynomials f1(X) and f2(X) over a field F.

Secret: A linear map A ∈ F(n×n)∗ such that f2(X) = f1(A ·X).

Step 1. Alice chooses a random B ∈ F(n×n)∗ and computes g(X) := f1(B ·X).

Step 2. Alice gives the polynomial g(X) to Bob.

Step 3. Bob asks Alice either to

(a) Prove that f1 and g are equivalent; or,

(b) Prove that f2 and g are equivalent.

Moreover, Bob chooses to ask (a) or (b) randomly with the same probability 1
2 .

Step 4. Alice complies. If Bob asks (a) then Alice reveals B. If Bob asks (b) then Alice reveals A−1 ·B.

It is easy to prove that this protocol is perfect zero-knowledge and that if somebody doesnt know/cannot
compute an equivalence map from f1 to f2 then probability of success is at most 1

2 . In the key-generation phase,
one generates the public polynomials f and g and the secret map A as follows.

Key Generation. Choose a random n-variate polynomial h of constant degree d (say d = 4). Choose matrices
B and C uniformly at random from F(n×n)∗. Compute

f1(X) := h(B ·X)
f2(X) := h(C ·X)

A := B−1 · C

The public data f1 and f2 are then broadcast and the secret A is kept by Alice.
We now show that if in the key generation pase as described above, h is chosen to be a random multilinear

polynomial then with high probability (over the choise of h) one can recover the secret A from the public data f1
and f2 in randomized polynomial-time.

8.2 Cryptanalysis. We now give a randomized polynomial-time algorithm to break this scheme. The
algorithm is in two steps.

1. Multilinearization. We find invertible matrices B1 and B2 such that g1(X) := f1(B1 · X) and
g2(X) := f2(B2 ·X) are both multilinear polynomials.

2. Normalization. We find diagonal matrices C1 and C2 such that h1(X) := g1(C1 ·X) and h2(X) = g2(C2 ·X)
are equivalent via a permutation matrix P .

3. Permutation. We find a permutation matrix P such that h1(P · X) = h2(X). The secret S equals
C−1

2 ·B−1
2 ·B1 · C1 · P .

In carrying out these two steps we will be crucially using the fact that f(X) was chosen randomly. It implies
the following facts:

Fact 8.1. 1. With high probability, the secret S is unique, i.e. there is a unique matrix S such that

f2(X) = f1(S ·X).

2. With high probability, the polynomials g1 and g2 are unique upto permutations of variables and scalar
multiplications of variables. i.e. if h1(X) is another multilinear polynomial which is equivalent to g1(X)
then h1 can be obtained from g1 by sending every variable to a scalar multiple of some other variable.

3. With high probability, the matrix P is unique.

4. With high probability, the set of second order partial derivatives of f has dimension
(
n
2

)
(and therefore so

do f1 and f2).

Step One: Multilinearization Step One of the algorithm is accomplished using the following theorem from
section 7.

Theorem 8.1. Let f1(X) ∈ F[X] be a polynomial whose second order partial derivatives has dimension
(
n
2

)
. Then

given f1, we can efficiently compute a matrix B such that f1(B1 ·X) is multilinear.

Using this, our problem boils down to finding an equivalence between two given multilinear polynomials,
where the equivalence itself sends every variable to a scalar multiple of some other variable.

Step Two: Normalization Let F (X) ∈ F[X] be a multilinear polynomial. We say that F (X) ∈ F[X] is
normalized if the product of its nonzero coefficients is 1. We say that F is normalized with respect to the variable
x1 if F0(x2, . . . , xn) is normalized, where

F (X) = F1(x2, x3, . . . , xn) · x1 + F0(x2, x3, . . . , xn).

The idea of the second step is that we find λ1, λ2, . . . , λn such that g1(λ1x1, . . . , λnxn) is normalized with respect
to each variable xi. We do the same thing for g2. Finding these λi’s amounts to solving a system of equations of
the form

λe111 · λe122 · . . . · λe1n
n = α1

λe211 · λe222 · . . . · λe2n
n = α2

...
...

λen1
1 · λen2

2 · . . . · λenn
n = αn

By taking logarithms, finding the solution to equations of the form above basically amounts to solving a set of
linear equations and thus this step can be done efficiently. The key thing is:

Fact 8.2. If the multilinear polynomials g1(X) and g2(X) are equivalent via a transformation that sends every
variable to a scalar multiple of another variable then their normalized counterparts h1 and h2 are equivalent via
a permutation of the variables.

Step Three: Permutation We are given h1, h2 ∈ F[X] and we want to find a permutation matrix P such
that h1(P · X) = h2(X). We are given h1, h2 ∈ F[X] and we want to find a permutation matrix P such that
h1(P ·X) = h2(X). We associate the polynomial hi(X) with a weighted hypergraph Hi (i ∈ [2]) in the natural way.
There are n nodes in each Hi, with each of the nodes correponding to a variable xj . The hyperedges correspond
to subsets of size d = 4 of the variables. The weight of the hyperedge corresponding to the set of variables
{xj1 , xj2 , xj3 , xj4} is the coefficient of the corresponding monomial xj1 · xj2 · xj3 · xj4 . In this way our problem
boils down to finding an isomorphism between two hypergraphs. Hypergraph isomorphism is a special case of
graph isomorphism and therefore it can be solved efficiently on the average. To be more concrete, the required
hypergraph isomorphism algorithm can be obtained in the f following manner. Miller [Mil79] gives a reduction
from hypergraph isomophism to graph isomorphism. This reduction combined with the appropriate average case
algorithms for graph isomorphism, such as for example the algorithm of Babai [Bab86], gives an average case
algorithm that suits our purpose. This completes our description of the cryptanalysis of the aforesaid variant of
Patarin’s authentication scheme.

9 Discussion and open problems

A randomized polynomial-time algorithm for polynomial equivalence remains an open problem, even in the
average-case and even when the polynomials are given verbosely as a list of coefficients rather than as arithmetic
circuits. As intermediate steps towards this goal and as interesting mathematical tasks in themselves, we would
like to pose the following two problems which are special cases of polynomial equivalence testing: devise an
efficient algorithm (if such an algorithm exists) to test if a given polynomial is equivalent to

1. The Determinant

2. The Permanent.

References

[AS06] M. Agrawal and N. Saxena. Equivalence of F-algebras and cubic forms. In Proceedings of the 23rd Annual
Symposium on Theoretical Aspects of Computer Science, pages 115–126, 2006.

[Bab86] László Babai. A las vegas-nc algorithm for isomorphism of graphs with bounded multiplicity of eigenvalues. In
FOCS, pages 303–312, 1986.

[BS83] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer Science, 22(3):317–330,
1983.

[Car06] E. Carlini. Reducing the number of variables of a polynomial, Algebraic geometry and geometric modelling, pages
237–247. Mathematics and Visualization. Springer, 2006.

[FP06] Jean-Charles Faugere and Ludovic Perret. Polynomial equivalence problems: Theoretical and practical aspects. In
Proceedings of the 25th EUROCRYPT, pages 30–47, 2006.

[Har75] D. K. Harrison. A grothendieck of higher degree forms. Journal of Algebra, 35:123–128, 1975.
[Kal89] E. Kaltofen. Factorization of polynomials given by straight-line programs. Randomness and Computation, 5:375–

412, 1989.
[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press Cambridge, 1997.
[MH74] Y. I. Manin and M. Hazewinkel. Cubic forms: algebra, geometry, arithmetic. North-Holland Publishing Co.,

Amsterdam, 1974.
[Mil79] Gary L. Miller. Graph isomorphism, general remarks. J. Comput. Syst. Sci., 18(2):128–142, 1979.
[Pat96] J. Patarin. Hidden field equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric

algorithms. In Advances in Cryptology — EUROCRYPT 1996, pages 33–48, 1996.
[PGC98] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Improved algorithms for isomorphisms of polynomials. In

EUROCRYPT, pages 184–200, 1998.
[Sax06] N. Saxena. Automorphisms of rings and applications to complexity. PhD thesis, Indian Institute of Technology

Kanpur, 2006.

A Examples 1 and 2.

Recall the following statements from the introduction.

Example: Formula size of a quadratic polynomial. Let Φ be an arithmetic formula. The size of the formula
Φ, denoted L(Φ) is defined to be the number of multiplication gates in it. For a polynomial f , L(f) is the size of
the smallest formula computing f . Then for a homogeneous quadratic polynomial f , we have that

L(f) =
⌈r

2

⌉
,

where r is as given by Lemma 1.1.

Sketch of Proof : Let f(X) be equivalent to x2
1 + . . .+x2

r. Using the identity y2 +z2 = (y+
√
−1z) · (y−

√
−1z),

we can replace the sum of squares representation above with a sum of products of pairs. That is,

f(X) ∼

{
x1x2 + x3x4 + . . .+ xr−1xr if r is even,
x1x2 + x3x4 + . . .+ xr−2xr−1 + x2

r if r is odd,

Let g(X) def= x1x2 + x3x4 + . . . + xr−1xr. For any homogeneous quadratic polynomial, there is a homogeneous
ΣΠΣ (sum of product of sums) formula of minimal formula size for computing that polynomial. Using this the
formula size for g(X) can be deduced to be r

2 and furthermore that L(f) is exactly
⌈
r
2

⌉
. �

Example: Graph Isomorphism many-one reduces to testing equivalence of cubic polynomials. 4

Sketch of Proof : Let the two input graphs be G1 = (V1, E1) and G2 = (V2, E2). Let |V1| = |V2| = n. Define
the cubic polynomial fG1 as follows:

fG1(X) def=
n∑
i=1

x3
i +

∑
{i,j}∈E1

xi · xj .

Polynomial fG2 is defined analogously. It suffices to prove that G1 is isomorphic to G2 if and only if fG1 is
equivalent to fG2 . The forward direction is easy. For the other direction, assume that fG1 is equivalent to fG2

4Agrawal and Saxena [AS06] showed the stronger result that graph isomorphism reduces to testing equivalence of homogeneous
cubic polynomials, also known as cubic forms .

via the matrix A. i.e.
fG1(A ·X) = fG2(X).

Then the homogeneous cubic part of fG1 must be equivalent, via A, to the homogeneous cubic part of fG2 and
the same thing holds for the homogeneous quadratic part. Corollary 5.1 describes the automorphisms of the
polynomial x3

1 + . . .+ x3
n and it says that there exists a permutation π ∈ Sn and integers i1, i2, . . . , in ∈ {0, 1, 2}

such that
A ·X = (ωi1 · xπ(1), ω

i
2 · xπ(2), . . . , ω

i
n · xπ(n)).

Using the equivalence via A of the homogeneous quadratic parts of fG1 and fG2 , we obtain that π in fact describes
an isomorphism from G1 to G2.

�

A.1 A randomized algorithm for POLYDEP. Recall the following lemma:

Lemma: Given a vector of m polynomials f = (f1(X), f2(X), . . . , fm(X)) in which every fi is as usual specified
by a circuit, we can compute a basis for the space f⊥ in randomized polynomial time.

Proof. We will prove this by showing that f⊥ is actually the nullspace of a small, efficiently computable matrix.
Suppose that f⊥ is spanned by b1, . . . ,bt. Pick m points a1, . . . ,am in Fn and consider the m ×m matrix M
defined as follows:

(A.1) M
def=


f1(a1) f2(a1) . . . fm(a1)
f1(a2) f2(a2) . . . fm(a2)

...
...

. . .
...

f1(am) f2(am) . . . fm(am)


Notice that for each bi in the basis of f⊥, we always have M · bi = 0 by definition. We now claim that with high
probability over a random choice of the points a1, . . . ,am ∈ Fn, the matrix M has rank (m− t). If this happens,
then it means that the nullspace of M is exactly the space spanned by b1, . . . ,bt, thereby enabling us to compute
a basis of f⊥ efficiently. Towards this end, it is sufficient to prove the following claim:

Claim 7. Let P (X1, . . . ,Xm) be the m×m matrix with entries in F(X1, . . . ,Xm) defined as follows:

(A.2) P (X1, . . . ,Xm) def=


f1(X1) f2(X1) . . . fm(X1)
f1(X2) f2(X2) . . . fm(X2)

...
...

. . .
...

f1(Xm) f2(Xm) . . . fm(Xm)

 .

Then P has rank (m− t).

Proof of Claim 7: Without loss of generality we can assume that the polynomials f1(X), f2(X), . . . , fm−t(X) are
F-linearly independent and the rest of the polynomials are F-linear combinations of these first (m−t) polynomials.
It is then sufficient to prove that the submatrix

Q
def=


f1(X1) f2(X1) . . . fm−t(X1)
f1(X2) f2(X2) . . . fm−t(X2)

...
...

. . .
...

f1(Xm−t) f2(Xm−t) . . . fm−t(Xm−t)


has full rank, or equivalently, the determinant of Q is a nonzero polynomial. Now, expanding Det(Q) along the
first row we have

Det(Q) =
m−t∑
j=1

(−1)j+1fj(X1) ·Q1j ,

where Qij is the determinant of the ij-th minor.
Notice that every Q1k, k ∈ [m − t], is a polynomial in the set of variables X2, . . . ,Xm−t. By induction, every
Q1k is a nonzero polynomial (since every subset of a set of F-linearly independent polynomials is also F-linearly
independent). If Det(Q) was the zero polynomial then plugging in random values for X2, . . . ,Xm−t would give
us a nonzero F-linear dependence among f1(X1), f2(X1), . . . , fm−t(X1), which is a contradiction. Hence Det(Q)
must be nonzero, proving the claim. �

This also completes the proof of Lemma 4.1.

B Minimizing variables

This section is devoted to a proof of theorem 4.1. But first we give an example of a polynomial with redundant
variables.

Example 8. The number of essential variables in the quadratic polynomial f(x1, x2, x3) = x2
1 + 2x1x2 + x2

2 + x2
3

is just two because notice that f = (x1 + x2)2 + x2
3 and thus after making the invertible linear transformation

x1 + x2 7→ x1

A : x3 7→ x2

x2 7→ x3

we get that f(A ·X) = x2
1 + x2

2 is just a function of two variables x1 and x2.

The vanishing of partials. We now reprove a lemma due to Carlini [Car06]. Let us examine the situation
when a variable is redundant. Let g(X) = f(A ·X) where A is an n× n invertible matrix. If g does not depend
upon xi then

∂g

∂xi
= 0 ⇔

n∑
k=1

aki ·
∂f

∂xk
(A ·X) = 0

Thus there exists a vector a ∈ Fn such that a · ∂(f) = 0, where ∂(f) def= (∂1f, ∂2f, . . . , ∂nf). Using the notation
of section 4.1, this can be written succintly as

a ∈ ∂(f)⊥

Suppose that b1, . . . ,bt ∈ Fn is a basis of the space ∂(f)⊥. Now there exists n−t independent vectors a1, . . . ,an−t
such that the vector space Fn is spanned by a1, . . . ,an−t,b1, . . . ,bt. Consider the invertible matrix whose columns
are a1, . . . ,an−t,b1, . . . ,bt respectively. Let g(X) def= f(A ·X). Then for n− t+ 1 ≤ i ≤ n,

∂g

∂xi
= bi−n+t · ∂(f)(A ·X)

= 0 (since bi−n+t · ∂(f)(X) = 0)

We thus have:

Lemma B.1. (Carlini [Car06]) The number of redundant variables in a polynomial f(X) equals the dimension
of ∂(f)⊥. Furthermore, given a basis of ∂(f)⊥, we can easily come up with a linear transformation A on the
variables such that the polynomial f(A ·X) depends on only the first (n− dim(∂(f)⊥)) variables.

Notice that arithmetic circuits for each polynomial in ∂(f) can be easily computed in poly(|f |) time, where |f | is
the size of the circuit for f . This computation can be made even more efficient using the algorithm of Baur and
Strassen [BS83]. Thereafter, a basis for the space ∂(f)⊥ can be efficiently computed using Lemma 4.1. In this
way we have:

Theorem Given a polynomial f(X) ∈ F[X] with m essential variables, we can compute in randomized polynomial
time an invertible linear transformation A ∈ F(n×n)∗ such that f(A ·X) depends on the first m variables only.

C Polynomial Decomposition

We are now set to generalize the sum of powers problem considered in section 5. Given a polynomial f(X), we
want to write it as the sum of two polynomials on disjoint sets of variables. That is, our aim is to find an invertible
linear transformation A on the variables such that

f(A ·X) = g(x1, . . . , xt) + h(xt+1, . . . , xn)

We first consider the special case of the above we just want to partition the set of variables X = Y] Z so that
f(X) = g(y) + h(z).

Lemma C.1. Given a low-degree polynomial f(X), we can efficiently compute a partition X = Y] Z of the
variables such that f(X) = g(y) + h(z), if such a partition exists.

Proof. Observe that given f(X) and two variables xi and xj we can efficiently determine whether there is any
monomial in f which contains both these variables by plugging in randomly chosen value for the remaining
variables and determining whether the resulting bivariate polynomial has any such monomial or not. Now create
an undirected graph Gf whose nodes are the variables and there is an edge between the nodes xi and xj if and
only if there is a monomial in f(X) which contains both xi and xj . We find the connected components of Gf .
The partitioning of the set of variables induced by the connected components of Gf gives the required partition
of variables needed for decomposition.

Our main interest though is in devising an algorithm for polynomial decomposition that allows arbitary invertible
linear transformations of the variables. Now let f(X) be a regular polynomial. Suppose that for some invertible
linear transformation A ∈ F(n×n)∗:

f(A ·X) = g(x1, . . . , xt) + h(xt+1, . . . , xn)

Without loss of generality, we can assume that Det(A) = 1. Let F (X) = f(A ·X). Then observe that

Det(HF)(X) = Det(Hg)(X) ·Det(Hh)(X)

Now by Lemma 5.1 we have

Det(Hf)(A ·X) = Det(Hg)(A ·X) ·Det(Hh)(A ·X).

Also observe that Det(Hg)(X) is in fact a polynomial in the variables x1, . . . , xt whereas Det(Hh)(X) is a
polynomial in the remaining (n− t) variables xt+1, . . . , xn. This motivates us to look at a multiplicative version
of the polynomial decomposition problem. Let D(X) be the polynomial Det(Hf)(X). Then we want to make
an invertible linear transformation on the variables and write D as the product of polynomials on disjoint sets of
variables.

A multiplicative version of polynomial decomposition We are given a polynomial D(X) and we want to
make a linear transformation B on the variables to get a factorization of the form

D(B ·X) =
k∏
i=1

Ci(x1, . . . , xt1),

where the individual Ci’s are ‘multiplicatively indecomposable’.
Towards this end, let us make a definition. For a polynomial f(X), we denote by f⊥⊥ the vector space orthogonal
to ∂(f)⊥. That is,

f⊥⊥
def= {a ∈ Fn|a · v = 0 ∀v ∈ ∂(f)⊥}

Intuitively, a basis for f⊥⊥ corresponds to the essential variables of f(X). Let us note down some basic properties
of f⊥⊥.

Property C.1. Let f(X) = g(A ·X). Then

g⊥⊥ = {(AT)−1 · v : v ∈ f⊥⊥}

Notice that any factor C(X) of the multivariate polynomial D(X) depends on a subset of the variables which
D(X) itself depends upon. Furthermore D(X) does depend on all the variables in any divisor C(X).

Lemma C.2. If a polynomial D(X) has the factorization

D(X) = C1(X)e1 · C2(X)e2 · . . . · Ck(X)ek ,

then the space D⊥⊥ is the linear span of the spaces C1
⊥⊥, C2

⊥⊥, . . . , Ck
⊥⊥.

Lemma C.2 together with Kaltofen’s algorithm for factoring low-degree polynomials allows us to devise an efficient
algorithm for a multiplicative version of polynomial decomposition.

Theorem C.1. There exists an efficient randomized algorithm that given a regular low-degree polynomial D(X) ∈
F[X], computes an invertible linear transformation A ∈ F(n×n)∗ such that

D(A ·X) =
k∏
i=1

Ci(x1, . . . , xt1),

where the individual Ci’s are multiplicatively indecomposable, if such a transformation A exists.

Polynomial Decomposition Algorithm We now give the algorithm for the usual notion of decomposition of
polynomials. Input. A regular low-degree n-variate polynomial f(X) ∈ F[X].

Output. An invertible linear transformation A such that f(A ·X) is the sum of two polynomials on disjoint sets
of variables.

The Algorithm.

1. Compute an arithmetic circuit D(X) which computes Det(Hf (X)).

2. Use the multiplicative polynomial decomposition algorithm of theorem C.1 to determine a linear transfor-
mation A ∈ F(n×n)∗ such that

D(A ·X) =
k∏
i=1

C1(x1, . . . , xt1),

where the individual Ci’s are multiplicatively indecomposable. If no such A exists then output no
decomposition exists.

3. Use the algorithm of Lemma C.1 check if f(A ·X) can be written as the sum of two polynomials on disjoint
sets of variables. If so output A else output no such decomposition exists.

The following theorem summarizes the conditions under which the above algorithm is guaranteed to give the
right answer.

Theorem C.2. Given a n-variate polynomial f(X) ∈ F[X], the algorithm above finds a decomposition of f(X),
if it exists, in randomized polynomial time provided Det(Hf (X)) is a regular polynomial, i.e. it has n variables
upto equivalence.

