
Resilience of Mutual Exclusion Algorithms to
Transient Memory Faults

Thomas Moscibroda
Microsoft Research

Redmond, WA
moscitho@microsoft.com

Rotem Oshman
Computer Science and AI Laboratory, MIT

Cambridge, MA
rotem@mit.edu

ABSTRACT
We study the behavior of mutual exclusion algorithms in the pres-
ence of unreliable shared memory subject to transient memory faults.
It is well-known that classical 2-process mutual exclusion algo-
rithms, such as Dekker and Peterson’s algorithms, are not fault-
tolerant; in this paper we ask what degree of fault tolerance can be
achieved using the same restricted resources as Dekker and Peter-
son’s algorithms, namely, three binary read/write registers.

We show that if one memory fault can occur, it is not possible
to guarantee both mutual exclusion and deadlock-freedom using
three binary registers; this holds in general when fewer than2f +1
binary registers are used andf may be faulty. Hence we focus
on algorithms that guarantee (a) mutual exclusion and starvation-
freedom in fault-free executions, and (b) only mutual exclusion in
faulty executions. We show that using only three binary registers
it is possible to design an 2-process mutual exclusion algorithm
which tolerates a single memory fault in this manner. Further, by
replacing one read/write register with a test&set register, we can
guarantee mutual exclusion in executions where one variable expe-
riences unboundedly many faults.

In the more general setting where up tof registers may be faulty,
we show that it is not possible to guarantee mutual exclusion using
2f +1 binary read/write registers if each faulty register can exhibit
unboundedly many faults. On the positive side, we show that an
n-variable single-fault tolerant algorithm satisfying certain condi-
tions can be transformed into an((n − 1)f + 1)-variablef -fault
tolerant algorithm with the same progress guarantee as the original.
In combination with our three-variable algorithm, this implies that
there is a(2f+1)-variable mutual exclusion algorithm tolerating a
single fault in up tof variables without violating mutual exclusion.

Categories and Subject Descriptors:
D.4.1 [Operating Systems]: Process Management–mutual exclu-
sion
D.4.5 [Operating Systems]: Reliability–fault tolerance

General Terms: Algorithms, Theory

Keywords: mutual exclusion, fault tolerance, transient memory
faults

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’11,June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

1. INTRODUCTION
Mutual exclusion is among the most important and well-studied

problems in distributed computing. It is used in concurrent pro-
gramming to avoid the simultaneous use of shared data structures
by pieces of computer code called critical sections. In a shared
memory environment, synchronization among processes trying to
access a critical section is achieved via a small set of shared vari-
ables that can be accessed by the processes. Existing mutual exclu-
sion algorithms are based on the underlying assumption that these
shared variables are reliable: if a process sets a shared variable to
a certain valuex, any subsequent read access to the variable will
returnx, until some other process overwrites the value.

In this paper we study the implications of relaxing this assump-
tion, and consider mutual exclusion algorithms in the presence of
unreliable shared memory. Our motivation for this relaxation is
the observation that due to faster clock rates, increasing on-chip
transistor density, decreasing voltages and smaller hardware fea-
ture sizes, the likelihood of encounteringtransient memory faultsis
non-negligible in today’s computer systems, and is bound to rapidly
increase in future systems. A transient memory fault, also known
as asoft error, is a temporary hardware failure that alters a signal
transfer, a register value, or some other processor component. Tran-
sient faults can occur due to many reasons; there are several recent
examples where they have caused substantial reliability problems,
leading to costly failures in industrial high-end systems.

In the context of mutual exclusion algorithms, the possibility of
sudden changes to shared memory variables is particularly prob-
lematic, since it could result in a violation of the mutual exclusion
property. Indeed, none of the well-known existing mutual exclu-
sion algorithms (e.g., Dekker’s algorithm, Peterson’s algorithm, or
Lamport’s Bakery algorithm) is designed to beresilientto transient
faults. Each of these algorithms may fail to maintain mutual exclu-
sion if a shared variable used for communication among the pro-
cesses suddenly changes. In fact, this holds even when processes
always execute the entry and exit sections of the mutual exclusion
algorithms all by themselves (that is, no other process can take steps
when some process is in the entry or exit section).

Motivated by these observations, this paper investigates the ex-
tent to which 2-process mutual exclusion algorithms can withstand
transient memory faults. The paper is divided into three parts. In
the first part (Section 4) we give a basic characterization of fault-
resilient 2-process mutual exclusion algorithms. One basic obser-
vation is that anyf -fault-resilient 2-process mutual exclusion algo-
rithm must satisfy the following structural property: when a process
pi executes the critical section by itself while the other process is
in the remainder,pi must changef + 1 shared variables before it
enters the critical section. We use this observation to show that any

algorithm that uses2f + 1 binary read/write registers must exhibit
either deadlock or mutual exclusion violation inf -fault executions.

In the second part of the paper (Sections 5–7), we show that a
certain level of fault-resilience to transient faults comes “for free”.
We present a new starvation-free algorithm that, like Dekker’s or
Peterson’s algorithms, uses three binary read/write shared variables;
unlike Dekker and Peterson’s algorithm, our algorithm guarantees
mutual exclusion even in the presence of a single memory fault.
The algorithm only guarantees progress in fault-free executions; it
may deadlock in executions where memory faults occur. However,
given the above impossibility result, this is in some sense the best
one can do. Given the choice between guaranteeing mutual ex-
clusion or guaranteeing deadlock-freedom in faulty executions, we
choose the former in this paper. This seems to be the more natural
choice in the context of mutual exclusion algorithms, and in many
systems, deadlocks are arguably easier to detect and break, and
their consequences less severe than mutual exclusion violations.

In fact, this is the best we can do in more than one sense. In
Section 6 we prove a lower bound showing that2f +1 binary vari-
ables are not sufficient to guarantee mutual exclusion whenf of
the variables can experience unboundedly many faults. Translated
to the 3 variable case, this implies that no algorithm that uses 3 bi-
nary read/write registers can tolerate a single “Byzantine variable”
which can flip unboundedly many times.

Given this gap, it is natural to ask if there is some relaxation of
the model that would allow us to achieve unbounded fault-resilience.
In Section 7, we give an answer to this question, by presenting a
mutual exclusion algorithm which uses test&set register instead of
one of the read/write registers, and is able to withstand unbounded
faults to one variable. Both this and the above algorithm are non-
trivial, and their structure is quite different from that of existing
mutual exclusion algorithms.

One reason we are interested in understanding the possibilities
and limitations of fault-resilience in the 3-variable, 1-fault setting
is that these results have implications for the ratio of faulty vari-
ables that can be tolerated in general. It is reasonable to expect
that the number of faults will increase with the amount of memory
used, and hence this ratio is interesting to study. In the third part
of the paper (Section 8), we show that our results for the 3-variable
case imply more general results form-variable algorithms tolerat-
ing f faults. We show that using(n− 1)f + 1 variables, of which
f can be faulty, one can simulate a “well-behaved”n-variable al-
gorithm that tolerates one fault. “Well-behaved” here means that
the algorithm contains no data races, and that if one process at-
tempts to read from a variable, the other process eventually stops
writing to it. This property, which is satisfied by many existing
mutual exclusion algorithms (including Dekker’s algorithm and the
algorithms we present in this paper), allows us to use a simple and
lightweight simulation ofn variables with one faulty variable from
(n−1)f+1 variables of whichf can be faulty. In conjunction with
the 3-variable algorithm from Section 5, this implies the existence
of a mutual exclusion algorithm using2f + 1 variables and toler-
ating f faulty variables, each of which can flip once. Moreover,
the same simulation can be used to transform Dekker’s algorithm
into a3(f + 1)-variable algorithm toleratingf “Byzantine” faulty
variables, which can each flip unboundedly many times.

Due to lack of space, the full proofs for some of the claims in
the paper are omitted here. The algorithms presented in Sections 5
and 7 were model-checked using the NuSMV2 finite-state model
checker (in addition to a manual proof of correctness), to verify
both starvation-freedom in fault-free executions and mutual exclu-
sion in faulty executions.

2. BACKGROUND & RELATED WORK

Transient faults.Transient faults (or “soft errors”) can occur in
different parts of the hardware stack in a computer system, and arise
for various reasons, such as energetic particles that strike a transis-
tor and cause it to change its state. In memory, for instance, alpha
particles emitted by traces of radioactive elements present in the
packaging materials of the device can penetrate the die and generate
a high density of holes and electrons in its substrate, thereby creat-
ing an imbalance in the electrical potential distribution and causing
stored data to be corrupted. A single alpha particle that possesses
enough energy can cause a soft error all by itself. Transient faults
are usually random and non-recurring, and their rate of occurrence
depends on circuit sensitivity and the alpha flux emitted by the de-
vice. Such faults have led to costly failures in high-end systems in
recent years. For example, they are known to have caused crashesat
Sun’s major customer sites including America Online and eBay [4],
and HP’s Los Alamos Labs supercomputers [21].

Unfortunately, while transient errors already cause substantial
reliability problems, current trends in hardware design suggest that
fault rates will further increase in the future. Faster clock rates, in-
creasing transistor density, decreasing voltages and smaller feature
sizes all contribute to increasing fault rates, e.g. [3, 22]. In fact,
fault rates in modern processors have been increasing at a rate of
approximately 8% per generation [5]. To counter soft errors, com-
puter architects and compiler researchers have proposed various so-
lutions, which usually involve adding redundancy to computations
in one way or another. For instance, there are proposals involving
hardware-only solutions such as error-correcting codes, watchdog
co-processors or redundant hardware threads (e.g. [16, 17])as well
as software-only techniques that use both single and multiple cores
(e.g. [20, 18]). These solutions are typically “heavy-weight” and
quite costly in terms of memory and performance.

Resilient algorithms.In the area of algorithms, designing re-
silient algorithms for unreliable memories has also attracted inter-
est. Problems such as fault-resilient selection, sorting, and matrix
computations in various failure models have attracted a lot of inter-
est in recent years (see [10] for a survey). Faulty memory has also
been studied in multiprocessors. There is significant research in the
parallel computing literature devoted to deliver general simulation
mechanisms of fully operational parallel machines on their faulty
counterparts, e.g. [7, 8].

Fault-tolerant simulations.In the shared memory distributed
computing literature, the problem of implementing fault-tolerant
registers (and other objects) from faulty objects under various fault
models was studied, e.g. in [1, 2, 13]. With regard to our simula-
tion in Section 8, the most relevant results are the ones given in [1]
and [13] on implementing various read/write registers from faulty
registers in the arbitrary, responsive failure mode.1 For example,
in combination with earlier work [19, 24], it is shown that onesafe
read/write register can be implemented from2f+1 safe faulty reg-
isters, and oneatomicread/write register using6f+3 (8f+4) safe
registers and24f+12 (16f+8) safe binary registers, respectively,
if the f faulty registers can have infinitely many faults. A relevant
result from [1] shows that one reliable atomic register can be imple-
mented from20f+8 atomic registers if at mostf are faulty. In our
context, however, the simulation in Section 8 serves a different pur-
pose; we do not seek to mask faults completely, as the high-level

1Much better results are known for more benign failure modes,
e.g. [13, 11]

mutual exclusion algorithm that uses the objects can tolerate some
degree of faulty behavior. Instead, we seek to reducef faults to a
single fault, which can then be handled by the algorithm. Together
with the fact that we make assumptions about the behavior of the al-
gorithm and do not require liveness in faulty executions, this allows
us to get away with a very lightweight simulation, where2f + 1
low-level registers simulate three high-level registers of which at
most one is faulty.

Fault-tolerant mutual exclusion.The issue of fault-tolerance
in mutual exclusion algorithms was one of the principal themes of
Lamport’s paper on non-atomic algorithms [14]. Several failure
models are considered. Among many other malfunctions, one fail-
ure type studied are transient faults, which allows arbitrary changes
to the shared memory (and local) variables of the algorithm. A mu-
tual exclusion algorithm tolerating all these types of failures was
presented in [25], but it required17 binary shared variables. This
was subsequently improved to 8 binary variables for 2-process mu-
tual exclusion in [23]. These algorithms require more shared vari-
ables than the algorithms we present here, but they do not deadlock
in faulty executions.

3. MODEL & DEFINITIONS

Mutual exclusion algorithms.We represent a 2-process mu-
tual exclusion algorithm as follows. LetPC 0,PC 1 be the control
locations (code lines) for processes 0 and 1 respectively, and let
Var be the set of shared variables (in the current paper we assume
that the shared variables are binary). We assume thatPC 0,PC 1

each include two distinguished locationsN,C, representing the re-
mainder and the critical section, respectively.2

A configurationof the algorithm is a triplet(ℓ0, ℓ1, v̄), where
ℓ0 ∈ PC 0 and ℓ1 ∈ PC 1 are the control locations ofp0 and
p1 respectively, and̄v ∈ 2Var represents the state of the shared
variablesVar . A stepof the algorithm is a transition from one
global configuration to another, in which some processpi executes
either aread(x) or awrite(x, v) operation on some shared variable
x, and transitions to a new control location. If the control location
of a process isN orC, it can also take null-transitions, in which its
location and the values in shared memory do not change.

An executionof the algorithm is a sequenceσ0σ1 . . . of config-
urations, starting from the initial configurationσ0, in which each
configuration is obtained from the previous configuration by either
a step ofp0 or p1, or by amemory fault, in which the value of some
shared variablex ∈ Var changes from 0 to 1 or vice-versa. In
an (f, c)-fault execution, at mostf shared variables experience at
mostc memory faults each; in afault-free executionthere are no
memory faults. We are concerned only withadmissibleexecutions,
in which both processes take infinitely many steps. (This includes
idle steps in which a process that is currently in the remainder stays
in the remainder.)

The algorithms we present in this paper arestarvation-free: for
each processpi, if pi begins executing the entry section, thenpi
eventually enters the critical section. For our lower bounds we typi-
cally assumedeadlock-freedom, a weaker progress condition which
asserts that if some processpi is in the entry section, then eventu-
ally some process (eitherpi or p1−i) enters the critical section.

2For convenience we assume that the algorithm is memoryless, and
each process has a single control location that it returns to when-
ever it goes into the remainder. However, this assumption is not
necessary for our lower bounds.

Fault-tolerant mutual exclusion.In the current paper we
are concerned with algorithms that guarantee mutual exclusion in
the face of memory faults. We say that an algorithm is(f, c)-
resilientif it guarantees mutual exclusion in(f, c)-fault executions,
and deadlock-freedom (or starvation-freedom) in admissible fault-
free executions. In the remainder of the paper, when we refer to
deadlock- or starvation-freedom, these are restricted to fault-free
executions (unless otherwise stated).

Notation and terminology.A scheduleis a finite sequence
α ∈ ({p0, p1} ∪ {flip(x) | x ∈ Var})∗ of process identifiers, in-
terspersed with memory faultsflip(x) in which a variablex changes
its value. A schedule ispi-only if it does not contain any steps of
p1−i. We useexec(σ, α) to denote the execution fragment obtained
by letting the system take the steps inα starting from configura-
tion σ, and we useconfig(σ, α) to denote the final configuration
reached inexec(σ, α).

A common lower bound technique is to maneuver the system
into a configurationσ where the next step of some processpi is to
write to a registerx, obliterating whatever value was stored there
previously. In this case we say thatpi coversx in σ.

A configurationσ = (ℓ0, ℓ1, v̄) is indistinguishable topi from
σ′ = (ℓ′0, ℓ

′

1, v̄
′), denotedσ ∼pi σ′, if ℓi = ℓ′i andv̄ = v̄′. It can

be shown by induction on the length of the schedule that ifσ ∼pi

σ′, then for anypi-only scheduleα we also haveconfig(σ, α) ∼pi

config(σ′, α).

4. BASIC IMPOSSIBILITY RESULTS
In this section, we derive a set of results that characterize the

resilience of mutual exclusion algorithms to a single memory fault.
These results have implications throughout the remainder of the
paper. We begin by observing that any(1, 1)-resilient algorithm
must have the following property.

DEFINITION 4.1 (HAMMING DISTANCE 2 PROPERTY, HD2).
Suppose thatσ = (ℓ0, ℓ1, v̄) andσ′ = (ℓ′0, ℓ

′

1, v̄
′) are reachable

configurations such thatσ is an idle configuration (ℓ0 = ℓ1 = N)
and for somei ∈ {0, 1}, ℓ′i = C andℓ′1−i = N . Then the Ham-
ming distance between̄v and v̄′ must be at least 2.

Algorithms that do not have theHD2 property can violate mutual
exclusion when a single memory fault occurs: ifσ andσ′ are con-
figurations as in the definition above, whose Hamming distance is
smaller than 2, then we can flip a single bit inσ′ to obtain a config-
urationτ that is indistinguishable top1−i from σ. Sinceσ is idle,
when we letp1−i run by itself fromτ (which p1−i cannot distin-
guish fromσ) it must eventually enter the critical section, violating
mutual exclusion.

If there are only two shared variables, then in order to satisfy the
HD2 property each process must modify both variables when it ex-
ecutes its entry section by itself; it can be shown that no algorithm
can accomplish this.

THEOREM 4.1. No deadlock-free mutual exclusion algorithm
that uses two binary variables can satisfy theHD2 property.

This result is similar in spirit to the lower bound of [6], which
shows thatn shared variables are necessary forn-process mutual
exclusion; each process must have a variable that it “owns”. Tech-
nically, however, the proof of Theorem 4.1 shares very little with
the lower bound of [6], because in our case the number of shared
variables does match the number of processes. The proof of The-
orem 4.1 is quite similar to the proof of Theorem 6.1 in Section 6,

and it is omitted here. In general, nof -binary variable mutex algo-
rithm can satisfy theHD-f property (the proof is again similar to
that of Theorem 6.1).

It follows from Theorem 4.1 that two binary variables cannot be
used to guarantee(1, 1)-resilience, even if only deadlock-freedom
is required, and even in executions where neither process takes
steps while the other process is in the entry or exit section. In
Section 5 we show that three binary variables suffice to guarantee
(1, 1)-resilience and starvation-freedom in fault-free executions.

Impossibility of achieving both safety and liveness.Our
definition ofresiliencefocuses on algorithms that guarantee mutual
exclusion, but sacrifice liveness in faulty executions; one might ask
whether it is possible to guarantee mutual exclusionanddeadlock-
freedom or even starvation-freedom. Unfortunately, for the case of
3 variables and one fault, the answer is negative. The following
theorem shows that in general, when fewer than2f + 1 registers
are used, liveness in faulty executions comes at the cost of violat-
ing mutual exclusion. If starvation-freedom is desired in fault-free
executions, then2f + 1 registers are also insufficient. This result
motivates our definition of resilience. Unlike the other negative re-
sults in this paper, the following theorem is not restricted to binary
registers, if one assumes that in the multi-valued case a faulty reg-
ister’s value can flip to any other value.

THEOREM 4.2. LetA be anm-variable deadlock-free mutual
exclusion algorithm. Ifm ≤ 2f , or if m ≤ 2f + 1 andA is also
starvation-free, thenA fails to satisfy either deadlock-freedom or
mutual exclusion in some(f, 1)-fault execution in which no process
takes steps while the other process is in the entry or exit section.

PROOF. Consider an execution fragment in which starting from
the initial configurationσ0, we let p0 run solo until it enters the
critical section. LetσC be the resulting configuration. Ifm ≤ 2f ,
then for any two states̄v, v̄′ ∈ {0, 1}m of the shared memory, there
is a third statēu whose Hamming distance from both̄v and v̄′ is
at mostf . Thus, we can flip no more thanf registers fromσC ,
and obtain a configurationτ whose Hamming distance from both
σ0 andσC is no more thanf (see Fig. 1).

Because the Hamming distance of the shared memory inτ from
that inσ0 is no more thanf , p1 cannot distinguishτ from a config-
urationτ ′ obtained fromσ0 by flipping no more thanf variables.
In τ ′ both processes are idle, so if the algorithm satisfies deadlock-
freedom in(f, 1)-fault executions where processes are not inter-
leaved in the entry and exit sections, when we letp1 run by itself
from τ ′ it will eventually enter the critical section. Butτ ∼p1 τ ′,
so the same is true forτ , and mutual exclusion is violated.

Next, suppose that the algorithm guarantees starvation-freedom
in fault-free executions, andm ≤ 2f +1. Letσ be a reachable idle
configuration such that whenp0 runs by itself fromσ, eventuallyσ
occurs again. Then there must exist some registerx thatp0 does not
write to in its solo run fromσ: if there is no such register, then we
can letp1 begin the entry section as well, but each timep1 covers
some registery, we letp0 run until it coversy as well. Then we let
p1 write to y, followed immediately byp0. All evidence thatp1 is
in the entry section is erased from the shared memory, sop0 cannot
distinguish this execution from the one in which it runs solo fromσ.
Continuing in this manner, we can construct an infinite admissible
execution in whichp1 remains in the entry section forever. Thus
there must be some register to whichp0 does not write.

Sincem ≤ 2f+1, p0 writes to at most2f registers when it runs
solo fromσ. We can repeat the argument we used form ≤ 2f to
show again that either deadlock-freedom or mutual exclusion must

σ0

(N,N, v̄) p0-only
σC

(C,N, v̄′)

flip ≤ f bits flip ≤ f bits

τ ′

(N,N, ū)
τ

(C,N, ū)
∼p1

p1-only p1-only

(N,C, ∗) (C,C, ∗)

Figure 1: Illustration for the proof of Thm. 4.2

be violated in some(f, 1)-fault execution where process steps are
not interleaved when a process is in the entry or exit section.

5. A (1,1)-RESILIENT THREE-VARIABLE
ALGORITHM

In this section we give a starvation-free mutex algorithm, Al-
gorithm HANDSHAKE, that uses three binary read/write registers
and guarantees mutual exclusion in the face of one memory fault.
The algorithm satisfies the Hamming Distance 2 property: when
a process executes the entry section solo, it sets two of the shared
variables to 1.

As in the Peterson and Dekker algorithms, two of the shared vari-
ables,c0 andc1, serve as flags indicating whetherp0 andp1 are
active. However, the function of the third variable is different. The
Peterson and Dekker algorithms achieve starvation-freedom by us-
ing the third shared variable as a “turn variable”, but the Hamming
Distance 2 property precludes this strategy; the third variable must
now be used more like alock: processes set it to 1 when they enter
the critical section by themselves and reset it to 0 when they leave.
Thus, if processpi executes its entry section by itself, before it en-
ters the ciritical section it sets both its flagci and the third variable
lock to 1, protecting itself by two bits in case of a single memory
fault. We use a different mechanism to guarantee fairness.

One major difficulty a(1, 1)-resilient algorithm must face is the
following. Suppose that the two processes begin executing their
entry section in lockstep, until the first time they write to the shared
memory. Assume they write to different variables (as eventually
they must); now the state of the shared memory is110. Both pro-
cesses are in the entry section, but neither process can distinguish
this configuration from the one in which the other process is in
the critical section and the third variable (lock) has flipped to 0.
Therefore neither process can enter the critical section until it has
verified that the other process is not in the critical section, by inter-
acting with the other process in a sequence of reads and writes that
we call ahandshake. The handshake is designed so that even if a
memory fault occurs, a process can never reach the end of the hand-
shake if the other process is in the critical section. This is achieved
by having each processpi go through a sequence of writes to shared
memory, leaving a unique footprint in shared memory that is never
encountered elsewhere in the algorithm; in particular, it cannot be
“faked” by the adversary using a memory fault, or by havingpi go
in and out of the critical section.

The handshake comprises lines 008–010 forp0 and lines 104–
106 for p1. At the end of the handshake,p0 enters the critical
section, andp1 waits in line 107 for a signal fromp0. Whenp0

Algorithm HANDSHAKE: code for process0

001 c0 := 1
002 wait until lock = 0
003 while c1 = 1 do
004 if c0 = 0 then goto009

005 lock := 1
006 if c1 = 1 then
007 lock := 0
008 wait until c0 = 0
009 c0 := 1
010 wait until c1 = 0

(enter critical section)
011 c0 := 0
012 c1 := 1
013 lock := 1

014 else
015 if c0 = 0 then // A fault occurred
016 lock := 0
017 goto 002

(enter critical section)
018 c0 := 0
019 lock := 0

Algorithm HANDSHAKE: code for process1

101 c1 := 1
102 wait until lock = 0
103 if c0 = 1 then
104 c0 := 0
105 wait until c0 = 1
106 c1 := 0
107 wait until c1 = 1
108 wait until lock = 1

109 else
110 lock := 1
111 if c0 = 1 then
112 lock := 0
113 goto 104

114 if c1 = 0 then // A fault occurred
115 lock := 0
116 goto 102

(enter critical section)
117 lock := 0
118 c1 := 0

exits the critical section, it hands the critical section over top1 by
setting bothc1 andlock to 1. Notice that (a)p1 must observe both
c1 andlock change to 1 in order to enter the critical section, so that
a single memory fault cannot cause it to enter; and (b) we achieve
starvation-freedom, because wheneverp0 andp1 contend in the en-
try section, eventually both processes enter the critical section.

The overall strategy for both processes is as follows:

(1) Set the flag,ci (lines 001 and 101).
(2) Check if the other process is present (lines 003 and 103), and

if so, try to engage in a handshake with it.
(3) If the other process is not around, setlock (lines 005, 110).

(4) Check again if the other process is present (lines 006, 111) if
so, releaselock and engage in a handshake.

(5) If the other process is still not around, enter the critical section.

The reason we require (4) is that ifp1−i begins the entry section
when pi is executing (2) or (3),p1−i may see eitherlock = 0
or lock = 1 when it executes its second line (line 002 or 102),
depending on the specific interleaving of process steps. Iflock =
1, thenp1−i becomes stuck in the second line; iflock = 0 then
p1−i falls through the second line and attempts to participate in
a handshake. Significantly,pi cannot tell whatp1−i saw when it
checkedlock . Thus, to make sure thatp1−i does not get stuck
waiting for a handshake that is never reciprocated,pi releaseslock ,
allowing p1−i to fall through the second line (if it has not done so
already). Then both processes engage in a handshake.

There are a few subtleties beyond this basic pattern. First, note
thatp0 does not necessarily engage in a handshake if it seesc1 = 1
in line 003 (it can fall through to line 005), butp1 always executes
a handshake if it seesc0 = 1 in line 103. This ties in to the dif-
ferent order of writes in the processes’ exit sections, lines 018–019
and 117–118: whenp0 exits, it releases first its flag and thenlock ,
whereasp1 releaseslock first and thenc1.

Informally, we wantp0 to releaselock last to make sure that
p1 cannot get past line 102 untilp0 has finished the exit section,
otherwise the sequence “observec0 = 1, set c0 := 0, observe
c0 = 1”, which getsp1 through lines 103–105, can also be created
by p0 being in the exit section (having already releasedlock) and
later beginning the entry section again and settingc0 := 1. That
creates mis-coordination from which the algorithm cannot recover.
On the other hand, ifp1 were to setlock to 0 after it setsc1 to 0,
then we would have a dangerous situation in whichp1 has already
setc1 to 0, erasing this evidence of its presence, and is covering
lock , about to write0. If c0 experiences a memory fault and flips
to 0, this situation can arise whenp0 is in the entry section, has
already setlock , and believes that it is protected by bothc0 = 1
andlock = 1. But when we letp1 take its next step, it writes0 to
lock , erasing all evidence ofp0’s presence and freeingp1 to enter
the critical section even thoughp0 is already critical. Consequently
we must ensure that wheneverp1 is about to setlock to 0, we allow
p0 to see that this may be the case by havingc1 = 1.

As a consequence of the different write order, whenp0 seesc1 =
1 in line 003, there are two cases: eitherp1 is in the entry section
(but has either not setlock yet, or has setlock and later released
it), or p1 is in the exit section, about to execute line 118. Thus,p0
waits to see whatp1 does: ifp1 setsc0 to 0 then it is in the entry
section and wants to execute a handshake, and ifp1 setsc1 to 0
then it is in the exit section. In this last casep0 continues as though
it never sawc1 = 1 when it executed line 003. As forp1, because
it cannot get past line 102 (where it waits to seelock = 0) until p0
has finished the exit section and gone into the remainder, ifp1 sees
c0 = 1 in line 103 then there is only one possibility:p0 is in the
entry section and will engage in a handshake.

Finally, when the processes believe they are about to enter the
critical section uncontended (line 015 forp0 and line 114 forp1),
they perform one final test, which is to check that their own flagci
has not flipped after they set it in the first line of the entry section.
If the test succeeds, it guarantees that the process has managed to
secure bothci and lock before the other process started its entry
section, so that if one of the two variables were to flip, the other
variable would remain non-faulty and block the other process from
entering the critical section. If the test fails, then a memory fault
has occurred; the process releaseslock and starts the entry section
from the beginning.

THEOREM 5.1. There is a two-process(1, 1)-resilient mutual
exclusion algorithm that uses three binary read/write registers, and
guarantees starvation-freedom in fault-free executions.

The correctness proof of algorithm HANDSHAKE is quite te-
dious, and we do not include it here. In addition to the manual
proof, the NuSMV2 model-checker was used to verify that the al-
gorithm is starvation-free and(1, 1)-resilient.

6. IMPOSSIBILITY OF (f,∞)-RESILIENCE
WITH 2f + 1 REGISTERS

We have shown that using three binary registers it is possible
to achieve(1, 1)-resilience; next we show that it is not possible to
guarantee(1,∞)-resilience using three variables. More generally,
we show that no algorithm using2f + 1 binary registers can be
(f,∞)-resilient.

We begin by giving a characterization off -resilience that is sim-
ilar to theHD2 property defined in Section 4; we show that in a
(f, 1)-resilient algorithm, each process must usef +1 variables to
protect itself whenever it enters the critical section. These variables
must be written when the process enters the critical section by it-
self, and restored to their initial value when the process exits the
critical section by itself.

DEFINITION 6.1 (FLAG REGISTERS). We say that registerx
is aflag register forpi in σ if

(a) σ is an idle configuration,

(b) Whenpi runs by itself fromσ in a fault-free execution it even-
tually writes both0 and1 to x, and

(c) Whenpi runs by itself fromσ in a fault-free execution, the sys-
tem eventually returns to configurationσ.

As with the HD2 property we saw in Section 4, in any algorithm
that toleratesf faulty variables (even restricted to a single fault in
each variable), each process that enters the critical section by itself
must protect itself byf + 1 bits.

LEMMA 6.1. In any(f, 1)-resilient algorithm, for each process
pi there is an idle configurationσ that is reachable in a fault-free
execution, such thatpi has at leastf + 1 flag registers inσ.

PROOF. From any idle configurationσ, if we let pi run by itself
until it enters the critical section, it must change the values of at
leastf + 1 shared registers; otherwise, oncepi enters the critical
section, we could flip the values of all shared registers thatpi mod-
ifies back to their values inσ, and obtain a configurationσ′

C that is
indistinguishable top1−i from σ. If we let p1−i run by itself from
σ′

C , it must eventually enter the critical section (as it would from
σ), violating mutual exclusion.

Since there are only finitely many configurations, there exists an
idle configurationσ, reachable by a fault-free execution fragment,
such that if we letpi run by itself in a fault-free execution fromσ
then eventually configurationσ occurs again. Butpi changes the
values of at leastf + 1 registers from their values inσ on its way
into the critical section, and when we return toσ these registers
have returned to their values inσ. Thereforepi must write both0
and1 to each of thesef + 1 registers at some point in its solo run
from σ beforeσ occurs again.

THEOREM 6.1. No 2-process mutex algorithm using2f +1 bi-
nary read/write registers is(f,∞)-resilient.

PROOF. Suppose for the sake of contradiction that an(f,∞)-
resilient algorithm that uses at most2f + 1 registers does exist.

Let σ be the idle configuration whose existence is guaranteed by
Lemma 6.1, such thatp1 has at leastf + 1 flag registers inσ. Let
Y denote the set ofp1’s flag registers inσ.

If we let p0 run solo fromσ it must eventually enter the critical
section. Letℓ0ℓ1 . . . ℓm ∈ PC ∗

0, whereℓ0 = N andℓm = C, be
the sequence of control locations thatp0 passes through on its way
into the critical section in a solo run fromσ. We show by induction
onk that for all0 ≤ k ≤ m, there is a configurationσk such that

(a) Inσk we havepc0 = ℓk,
(b) σk is reachable fromσ in an execution fragment where all the

register inY are non-faulty, and
(c) σk ∼p1 σ.

In other words, we can “sneakp0 into the critical section” step by
step, withoutp1 being able to distinguish any step from the idle
configurationσ. The contradiction follows immediately.

The base of the induction isk = 0, for which the claim holds
trivially. For the step, suppose that we have already shown that
there is a reachable configurationσk in which pc0 = ℓk and such
thatσk ∼p1 σ. Consider the step thatp0 takes to reach location
ℓk+1 from locationℓk. We will show that this step can be simulated
by an execution fragment fromσk in which we do not corrupt any
register inY (see Fig. 2 for an illustration).

There are two types of steps thatp0 can take. The first is awrite;
this operation has no return value, and control always passes to
ℓk+1 (i.e., the code does not branch atℓk). In this case we must
ensure thatp1 does not observep0’s write. On the other hand,p0
can execute aread operation, and then branch on the result. In this
case we must ensure that the valuep0 reads is the “right” value, the
one that will cause it to reachℓk+1.

Let us first handle the cases wherep0 accesses a variablex 6∈ Y ,
which we are allowed to corrupt. If the step is aread(x) step which
is expected to returnv, then we simulate the step by flippingx
to v (if its value is not alreadyv), letting p0 take its read step,
and flippingx back to its previous value. Similarly, if the step is
a write(x, v), then we letp0 take the step, and then flipx back
to its previous value before thewrite. Let σk+1 be the resulting
configuration. In both cases the values in shared memory are the
same inσk and inσk+1, andp1 does not take any steps between
σk andσk+1, soσk+1 ∼p1 σk ∼ σ.

Now suppose that some variabley ∈ Y is accessed. If the
step is aread(y) step expected to returnv, then we simulate the
step as follows. Becausey is a flag register ofp1 in σ, we know
that there is somep1-only scheduleα such that the last step in
exec(σ, α) is write(y, v), and there is anotherp1-only schedule
β such thatconfig(σ, αβ) = σ (that is,β returns us to config-
urationσ). Becauseσk ∼p1 σ, the last step inexec(σk, α) is
also awrite(y, v) by p1. Now we letp0 take its read(y) step,
which returnsv, and does not change the shared memory. Because
config(σk, α) ∼p1 config(σk, αp0), if we appendβ to the sched-
ule αp0, we obtain a configurationσk+1 in which pc0 = ℓk+1,
such thatσk+1 ∼p1 σ.

Finally, if the step is awrite(y, v) such thaty ∈ Y , then we
proceed as follows. Sincey is a flag register ofp1 in σ, there is a
p1-only scheduleα such that inconfig(σ, α), p1 coversy. Since
σk ∼p1 σ, the same holds forconfig(σk, α). Thus, fromσk, we let
p1 run until it coversy; then we letp0 take itswrite(y, v) step, fol-
lowed byp1’s step, which overwritesy. The resulting configuration
σ′

k is indistinguishable top1 from config(σ, αp1), so there is some
p1-only scheduleβ which returnsp1 to σ (config(σ, αp1β) = σ).
We haveconfig(σk, αp0p1β) ∼p1 σ, as required.

We have now shown that fromσ, which is reachable in a fault-
free configuration, there is an execution fragment in which no regis-

ter inY is corrupted, and mutual exclusion is violated. Since|Y | ≥
f+1, the number of faulty variables is at most2f+1−(f+1) = f .
Hence the algorithm is not(f,∞)-resilient.

We remark that the proof of Theorem 6.1 does not extend to
registers that can take more than two values. The majority of the
proof relies only on the fact that the algorithm must have theHD-
(f + 1) property, i.e., any process that enters the critical section
uncontended must write to at leastf + 1 registers; this holds for
multi-valued registers as well as for binary ones. The one part of
the proof that fails is the case in the induction step wherep0 reads
a variabley ∈ Y , which we cannot corrupt. In the proof we handle
this case by maneuveringp1 into writing the value thatp0 expects
to read fromy. In the multi-valued case we cannot do this, as there
is no necessity for a process to write all possible values into its flag
variables (it still must write at least two different values, but now
there can exist values it does not write at any point). In fact,p0 can
detectp1’s presence by writing some unique value which is never
written byp1 into a flag registery ∈ Y . On its way into the critical
section (and possibly back out),p1 must then write some different
value intoy. If p0 later checksy again, it can detect that it is not
alone, because its value has been overwritten. Thus it is entirely
conceivable that an(f,∞)-resilient algorithm using2f + 1 multi-
valued registers does exist.

7. A (1,∞)-RESILIENT THREE-VARIABLE
ALGORITHM USING TEST&SET

As we saw above, there does not exist a(1,∞)-resilient algo-
rithm that uses three binary read/write registers. In particular, Algo-
rithm HANDSHAKE also does not tolerate more than a single fault
in any variable. For example, consider an execution where

1. p0 runs by itself until it enters the critical section.
2. p1 begins the entry section, and becomes stuck in line 102.
3. The value ofc1 flips from1 to 0.
4. p0 exits the critical section and releaseslock .
5. p1 progresses to line 105, where it waits forp0 to begin its

part of a handshake by settingc0 to 1.
6. p0 starts the entry section again, settingc0 to 1 in line 001.

This is mis-interpreted byp1 as the start of a handshake.
7. p0 continues to run until it enters the critical section (recall

thatc1 has flipped to0, sop0 does not seep1), andp1 runs
until it reaches thewait statement in line 107.

8. The value ofc1 flips from0 to 1, freeingp1 to enter the crit-
ical section and violate mutual exclusion. (Note thatlock =
1, becausep0 setslock in line 005.)

This scenario illustrates two problems that render Algorithm HAND-
SHAKE susceptible to multiple faults. First, the processes can “sneak
past each other”: it is possible for a processpi to complete its entry
section withoutp1−i noticing thatpi has taken any steps. Indeed,
the proof of Theorem 6.1 shows that this is unavoidable if only
read/write registers are used. Therefore we replacelock with a
test&set register, and have processes test&setlock instead of writ-
ing 1 to it. In the original algorithm, both processes setlock during
the entry section only when they believe they are about to enter
the critical section uncontended; in particular, the value oflock

should always be 0 when a process writes 1 to it. Thus, ifpi tries to
test&setlock and fails,pi backs off and re-starts the entry section.

Replacinglock with a test&set register does not resolve the error
scenario above, due to a second problem with Algorithm HAND-
SHAKE: a change oflock from 0 to 1 is interpreted byp1 (in
line 108) as a signal to enter the critical section. This seems like

p0 readsx 6∈ Y and expects to seev:

σ0

(N,N, v̄0)
I.H. σk

(ℓk, N, v̄0)

∼p1

∼p1

flip x to v r

p0 readsx

r

flip x back

σk+1

(ℓk+1, N, v̄0)

p0 writes tox 6∈ Y :

σ0

(N,N, v̄0)
I.H. σk

(ℓk, N, v̄0)

∼p1

∼p1

p0 writes tox r

flip x back

σk+1

(ℓk+1, N, v̄0)

p0 readsy ∈ Y and expects to seev:

σ0

(N,N, v̄0)
I.H. σk

(ℓk, N, v̄0)

∼p1

∼p1

p1 runs alone until
it writesv to y r

p0 readsy

(ℓk+1, ∗, ∗)

p1 runs
alone,
becomes
idle

σk+1

(ℓk+1, N, v̄0)

p0 writes toy ∈ Y :

σ0

(N,N, v̄0)
I.H. σk

(ℓk, N, v̄0)

∼p1

∼p1

p1 runs alone until
it coversy r

p0 writes toy

(ℓk+1, ∗, ∗)

p1 writes toy

r

p1 runs
alone,
becomes
idle

σk+1

(ℓk+1, N, v̄0)

Figure 2: The induction step in the proof of Thm. 6.1. The fig-
ures illustrates the four possibilities for the step thatp0 takes to
move from location ℓk in its code to locationℓk+1. Here, “I.H.”
stands for the execution fragment whose existence is guaran-
teed by the induction hypothesis.

a bad idea, because a value oflock = 1 generally indicates that
p0 is interested in the critical section (and may already believe it
has secured access to it, as in the trace above). We can get away
with it when only one fault is possible; with multiple faults we must
be more careful. Thus, we modify the handshake so thatp1 must
observelock = 0 before it can enter the critical section.

These changes yield Algorithm T&S-HANDSHAKE, given be-
low. The algorithm incorporates an extended handshake in which
p1 test&setslock before it enters the critical section. Unfortunately,
there is a cost to havingp1 setlock itself instead of waiting forp0
to do so: we cannot allowp0 to exit into the remainder until it
observeslock change to 1, to ensure that two bits (c1 and lock)
witnessp1’s presence in the critical section. Hence, replacing one
read/write register with a test&set register is not the only price we
pay for the extra degree of resilience; the(1,∞)-resilient algorithm
also does not have a wait-free exit section.

Finally, the algorithm also incorporates a number of further “san-
ity checks” in which processes verify that a variable’s value has
not changed when they were not expecting it to. For example, if
the processes execute the entry section without observing the other
process’s presence, in lines 025 and 119 (respectively) they check
that their flag has not been reset since they began the entry section.

THEOREM 7.1. There is a two-process(1,∞)-resilient mutual
exclusion algorithm that uses two binary read/write variables and
one test&set variable, and guarantees starvation-freedom in fault-
free executions.

The code uses the test&set(x) atomic instruction. Ifx = 0, the
instruction setsx to 1 and returns1; otherwisex is left unchanged
and a value of0 is returned. We assume that in addition to the
test&set operation, test&set registers can be read and written like a
read/write register.

8. TRANSFORMING 1-RESILIENCE INTO
f -RESILIENCE

So far we have focused on algorithms that tolerate a single faulty
variable, using as few variables as possible. We now turn to con-
sider the more general case off faulty variables. We show that
under a certain “well-behavedness” condition on the algorithm, a
(1, c)-resilient algorithm usingn variables (forc ∈ N ∪ {∞}) im-
plies an(f, c)-resilient algorithm using(n−1)f+1 registers. Fur-
ther, even a non-resilient (but correct) mutual exclusion algorithm
that is “well-behaved” can be transformed into an(f,∞)-resilient
using(f + 1)n registers. The property we require of the original
1-resilient or non-resilient algorithm is the following. (The results
in this section apply to generalm-process mutual exclusion algo-
rithms, but for simplicity we present the results for two processes.)

DEFINITION 8.1 (BOUNDED INTERFERENCE). An algorithm
is said to have thebounded-interference propertyif in all configu-
rations reachable in a fault-free execution,

(a) Both processes never cover the same register, and

(b) If one processpi is about to read from a registerxi, then the
other processp1−i can only write toxi a bounded number of
times beforepi executes its read.

Many mutual exclusion algorithms (e.g., Dekker and Burns’ algo-
rithms) enjoy the bounded-interference property; however, not all
do. For example, Peterson’s algorithm and Lamport’s fast mutual
exclusion algorithm both contain a data race, violating requirement
(a). We are not aware of examples in which requirement (b) is vi-
olated. The algorithms we present in this paper do have bounded

Algorithm T&S-HANDSHAKE: code for process0

001 c0 := 1
002 wait until lock = 0
003 while c1 = 1 do
004 if c0 = 0 then goto010

005 if test&set(lock) = 0 then
006 goto 001

007 if c1 = 1 then
008 lock := 0
009 wait until c0 = 0
010 c0 := 1
011 wait until c1 = 0
012 if test&set(lock) = 0 then
013 goto 001

014 if c0 = 0 then
015 lock := 0
016 goto 002

017 if c1 = 1 then
018 lock := 0
019 goto 002

(enter critical section)
020 lock := 0
021 c0 := 0
022 wait until lock = 1
023 c1 := 1

024 else
025 if c0 = 0 then // A fault occurred
026 lock := 0
027 goto 002

(enter critical section)
028 c0 := 0
029 lock := 0

interference, and this allows us to use a simple simulation (instead
of, e.g., a linearizable snapshot object, which would require much
more memory and may itself be vulnerable to memory faults).

The idea of the simulation is to implement one high-level register
x usingf low-level registersx1, . . . , xf , in such a way thatx only
exhibits a fault ifx1, . . . , xf all experience a memory fault. In the
sequel we useRead andWrite to denote high-level operations on
x (as opposed to low-level operations onx1, . . . , xf).

To be useful, our implementation should belinearizable [12]:
the operations invoked onx should appear to take place instanta-
neously, as though the algorithm were accessing an atomic faulty
read/write register. However, unlike many fault-tolerant simula-
tions (see Section 2), the simulation we give here exposes some
subset of the low-level faults, instead of masking them completely.
The standard notion of linearizability does not completely char-
acterize the behavior we require. A linearizable implementation
takes high-level operations as external input, and maps them into
low-level operations; in contrast, with memory faults, we wish to
take thelow-levelfaults ofx1, . . . , xf as (adversarially controlled)
input and generatehigh-levelfaults ofx as output. To complicate
matters further, we wish to expose only a subset of faults. To cap-
ture this behavior we introduce the following definition.3

3It is also possible to take a more ad-hoc approach and use the stan-
dard definition of linearizability, treating low-level faults as high-
level operations and high-level faults as low-level operations.

Algorithm T&S-HANDSHAKE: code for process1

101 c1 := 1
102 wait until lock = 0
103 if c1 = 0 then
104 goto101

105 if c0 = 1 then
106 c0 := 0
107 wait until c0 = 1
108 c1 := 0
109 wait until c0 = 1
110 if test&set(lock) = 0 then
111 goto 101

112 wait until c1 = 1

113 else
114 if test&set(lock) = 0 then
115 goto 101

116 if c0 = 1 then
117 lock := 0
118 goto 106

119 if c1 = 0 then // A fault occurred
120 lock := 0
121 goto 102

(enter critical section)
122 lock := 0
123 c1 := 0

DEFINITION 8.2 (FAULT L INEARIZABILITY). An implemen-
tation of a high-level objectO from low-level objectsO′ is fault
linearizableif in every execution, one can

(a) Embedlinearization pointsfor all the operations onO that
complete and some subset of the operations that do not com-
plete, and

(b) Insert high-levelFlip events forO coinciding with some subset
of low-levelflip events ofO′,

such that the following conditions are satisfied:

(a) Each high-level operation ofO is linearized at some point be-
tween its invocation and its return (or after its invocation, for
operations that do not complete);

(b) If c high-levelFlip events are inserted, then each low-levelO′

object experiences at leastc faults in the execution; and

(c) The sequential history obtained by the linearization points and
Flip events represents a valid history of a faultyO object.

LEMMA 8.1. There is a fault linearizable implementation of a
faulty read/write register fromf faulty read/write registers, such
that when used in an fault-free execution of a bounded-interference
algorithm, all operations of the high-level register complete.

PROOF SKETCH. The implementation is very simple: to write
a valuev to the high-level registerx, a process writesv to each
of the low-level registersx1, . . . , xf . To read fromx, a process
readsx1, . . . , xf , and if all registers contain the same value, that
value is returned as the result of theRead. Otherwise the process
reads again, until it makes a full pass overx1, . . . , xf in which all
registers are observed to have the same value. This value is then
returned as the result of theRead.

To show that the implementation is fault linearizable, fix a low-
level registerxi, and divide the execution into segments according

to the points wherexi flips; i.e., each segment ends with a flip ofxi,
and does not contain any other flips ofxi. We linearize each high-
level operation at the point where it last accessesxi (or at the only
point where it accessesxi, in case of aWrite). Note that the value
associated with each high-level operation is the value it reads from
or writes toxi for the last time; sincexi does not flip inside each
segment, the linearization points of all the operations linearized in
a particular segment form a valid sequential history fragment. To
complete the picture we insert a high-levelFlip at the end of each
segment. It is not hard to verify that the sequential history thus
obtained is valid. Note also that the number ofFlips inserted is
exactly the number of times thatxi flips. If we choosexi to be one
of the registers that display the minimum number of faults in the
execution, we obtain a linearization that satisfies condition (b).

A linearization can be viewed as a mapping from low-level ex-
ecutions to high-level executions, which annotates each low-level
configuration with a configuration of the high-level algorithm (for-
mally, the linearization induces a trace simulation between the low-
level implementation to the high-level algorithm. The relation-
ship between linearizability and refinement was already explored
in [12], where the notion of linearizability was first introduced, and
it has also been extensively studied in the formal methods com-
munity recently, e.g., [9, 15]). We saw above that we can choose
any register and linearize all operations when they last access it.
In particular, we can choose the last register accessed,xf . When
we embed linearization points usingxf , any low-level configura-
tion where aWrite(x, v) operation is in progress corresponds to a
high-level configuration where the invoking process coversx.

The implementation does not, in general, guarantee liveness of
any sort. However, when the implementation is used by a bounded-
interference algorithm in a fault-free execution, we are guaranteed
that no twoWrite operations overlap: if they did, then the config-
uration where the secondWrite is invoked corresponds to a con-
figuration of the algorithm where both processes coverx. This
guarantees that whenever aWrite completes, all low-level regis-
tersx1, . . . , xf contain the same value. Furthermore, if a process
invokes aRead(x), we are guaranteed that eventually the other pro-
cess will cease writing tox. Therefore all operations complete.

Using the implementation above we can transform a(1, c)-resilient
algorithm usingn registers into an(f, c)-resilient algorithm using
(n − 1)f + 1 registers. In conjunction with Algorithm HAND-
SHAKE, we obtain the following general result.

COROLLARY 1. For anyf ≥ 1, there is a starvation-free(f, 1)-
resilient mutual exclusion algorithm using2f+1 binary read/write
registers.

PROOF SKETCH. We use2f low-level registers to implement
two high-level registers using Lemma 8.1, and the last high-level
register is simulated by the remaining single low-level register. Since
f faulty low-level registers are required to corrupt either of the first
two high-level registers, the adversary cannot cause more than one
high-level register to exhibit faulty behavior. Further, if each low-
level register flips at most once, then the high-level registers also
do not flip more than once. In fault-free executions the simulation
guarantees liveness, so the overall algorithm is starvation-free.

Unfortunately we do not obtain a similar result for the(1,∞)-
resilient algorithm, because it uses a test&set register. However,
if we use more thanf low-level registers to simulate each high-
level register, we can use the simulation from Lemma 8.1 to mask
faults completely (though the implementation may still deadlock in
executions that contain memory faults). In conjunction with, e.g.,
Dekker’s algorithm, we obtain the following result.

COROLLARY 2. For all f ≥ 1, there is a starvation-free(f,∞)-
resilient mutex algorithm using3(f + 1) binary registers.

PROOF. We usef + 1 low-level registers to simulate each of
the three high-level registers used by Dekker’s algorithm. The ad-
versary cannot corrupt any simulated register, becausef +1 faulty
registers are required to do so. As before, in fault-free executions
the simulation is live and starvation-freedom is satisfied.

9. CONCLUSION
There has been a growing interest in various communities to un-

derstand the impact of increasingly unreliable hardware on soft-
ware in general, and on algorithms in particular. Mutual exclusion
is a particularly interesting problem, because the consequences of
failure could be dramatic. Off-the-shelf solutions, such as error-
correcting codes and specialized hardware, tend to be heavy-weight,
and it is not clear that the extra cost is always necessary.

In this paper we have introduced a new variant of fault-tolerance,
safefault-tolerance, under which an algorithm must be safe even
when memory faults occur, but not necessarily live. The conse-
quences of violating liveness are often less sever than those of vio-
lating safety, and in many cases there are already systems in place
to detect and resolve deadlock. Sacrificing liveness in faulty execu-
tions allowed us to design two-process mutual exclusion algorithms
that tolerate a faulty variable, at the cost of no extra memory.

It is clear that our work is only a first step; many problems re-
main open. Our results in this paper focus mostly on the two-
process case; in follow-up work we intend to extend the results
to n-processes. Also, we focus in this paper primarily on binary
shared variables, i.e., the type of variable used in Peterson’s and
Dekker’s algorithms. Our results show that even in this restricted
setting, a significant degree of fault-resilience can be achieved; nev-
ertheless, it is interesting to consider whether the lower bound from
Section 6 continues to hold for general multi-valued registers, or
whether a(2f + 1)-variable(f,∞)-resilient algorithm exists.

Acknowledgement. We are indebted to John Douceur and to
Karthik Pattabiraman for fruitful early discussions on the problem.

10. REFERENCES
[1] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld.

Computing with Faulty Shared Memory. InProceedings of
Symposium on Principles of Distributed Computing
(PODC), 1992.

[2] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld.
Computing with Faulty Shared Objects.Journal of the ACM,
1995.

[3] R. C. Baumann. Soft Errors in Advanced Semiconductor
Devices – Part I: The Three Radiation Sources.IEEE
Transactions on Device and Materials Reliability, 2001.

[4] R. C. Baumann. Soft Errors in Commercial Semiconductor
Technology: Overview and Scaling Trends.IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals,
2002.

[5] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation.IEEE Micro, 2005.

[6] J. E. Burns and N. A. Lynch. Bounds on shared memory for
mutual exclusion.Inf. Comput., 107:171–184, December
1993.

[7] B. S. Chlebus, A. Gambin, and P. Indyk. Shared-Memory
Simulations on a Faulty-Memory DMM. InProceedings of
23rd Colloquium on Automata, Languages and
Programming (ICALP), 1996.

[8] B. S. Chlebus, L. Gasieniec, and A. Pelc. Deterministic
Computations on a PRAM with Static Processor and
Memory Faults.Fundamenta Informaticae, 2003.

[9] J. Derrick, G. Schellhorn, and H. Wehrheim. Proving
linearizability via non-atomic refinement. In J. Davies and
J. Gibbons, editors,IFM, volume 4591 ofLecture Notes in
Computer Science, pages 195–214. Springer, 2007.

[10] I. Finocchi, F. Grandoni, and G. F. Italiano. Designing
Reliable Algorithms in Unreliable Memories. InProceedings
of European Symposium on Algorithms (ESA), pages 1–8,
2005.

[11] R. Guerraoui and M. Raynal. From Unreliable Objects to
Reliable Objects: The Case of Atomic Registers and
Consensus. InProceedings of PaCT, 2007.

[12] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects.ACM Trans. Program.
Lang. Syst., 12:463–492, July 1990.

[13] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant
wait-free shared objects.Journal of the ACM, 1998.

[14] L. Lamport. The Mutual Exclusion Problem: Part II –
Statement and Solutions.Journal of the ACM, 1986.

[15] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking
linearizability via refinement. InProceedings of the 2nd
World Congress on Formal Methods, FM ’09, pages
321–337, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] T. N. V. M. Gomaa, C. Scarbrough and I. Pomeranz.
Transient-fault Recovery for Chip Multiprocessors. In
Proceedings of 30th Symposium on Computer Architecture
(ISCA), pages 98–109, 2003.

[17] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
Design and Evaluation of Redundant Multithreading
Alternatives. InProceedings of 29th Symposium on
Computer Architecture (ISCA), pages 99–110, 2002.

[18] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error Detection
by Duplicated Instructions in Super-Scalar Processors.IEEE
Transactions on Reliability, 2002.

[19] G. L. Peterson. Concurrent Reading while Writing.
Transactions on Programming Languages and Systems,
1983.

[20] G. A. Reis, J. Chang, and D. I. August. Automatic
Instruction-Level Software-Only Recovery Methods.IEEE
Micro Top Picks, 2007.

[21] N. W. H. B. E. T. S. E. Michalak, K. W. Harris and S. A.
Wender. Predicting the Number of Fatal Soft Errors in Los
Alamos National Labratory’s ASC Q Computer.IEEE
Transactions on Device and Materials Reliability, 2005.

[22] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the Effect of Technology Trends on the
Soft Error Rate of Combinational Logic. InProceedings of
the Conference on Dependable Systems and Networks, pages
389–388, 2002.

[23] B. K. Szymanski. Mutual Exclusion Revisited. In
Proceedings of 5th Jerusalem Conference on Information
Technology, 1990.

[24] J. Tromp. How to Construct an Atomic Variable. In
Proceedings of 3rd Workshop on Distributed Algorithms,
1989.

[25] K. Truuvert. A Self-Stabilizing First-Come-First-Serve
Mutual Exclusion Algorithm with Small Shared Variables.
Technical Note, University of Toronto, 1989.

