Resilience of Mutual Exclusion Algorithms to
Transient Memory Faults

Thomas Moscibroda Rotem Oshman
Microsoft Research Computer Science and Al Laboratory, MIT
~ Redmond, WA Cambridge, MA
moscitho@microsoft.com rotem@mit.edu
ABSTRACT 1. INTRODUCTION

We study the behavior of mutual exclusion algorithms in the pres- ~ Mutual exclusion is among the most important and well-studied
ence of unreliable shared memory subject to transient memory faultoroblems in distributed computing. It is used in concurrent pro-
It is well-known that classical 2-process mutual exclusion algo- gramming to avoid the simultaneous use of shared data structures
rithms, such as Dekker and Peterson’s algorithms, are not fault- by pieces of computer code called critical sections. In a shared
tolerant; in this paper we ask what degree of fault tolerance can bememory environment, synchronization among processes trying to
achieved using the same restricted resources as Dekker and Petefccess a critical section is achieved via a small set of shared vari-
son’s algorithms, namely, three binary read/write registers. ables that can be accessed by the processes. Existing mutual exclu-
We show that if one memory fault can occur, it is not possible sion algorithms are based on the underlying assumption that these
to guarantee both mutual exclusion and deadlock-freedom usingshared variables are reliable: if a process sets a shared variable to
three binary registers; this holds in general when fewer #ah 1 a certain valuer, any subsequent read access to the variable will
binary registers are used arfdmay be faulty. Hence we focus returnz, until some other process overwrites the value.
on algorithms that guarantee (a) mutual exclusion and starvation- In this paper we study the implications of relaxing this assump-
freedom in fault-free executions, and (b) only mutual exclusion in tion, and consider mutual exclusion algorithms in the presence of
faulty executions. We show that using only three binary registers unreliable shared memory. Our motivation for this relaxation is
it is possible to design an 2-process mutual exclusion algorithm the observation that due to faster clock rates, increasing on-chip
which tolerates a single memory fault in this manner. Further, by transistor density, decreasing voltages and smaller hardware fea-
replacing one read/write register with a test&set register, we can ture sizes, the likelihood of encounteritignsient memory faults
guarantee mutual exclusion in executions where one variable expe-non-negligible in today’s computer systems, and is bound to rapidly
riences unboundedly many faults. increase in future systems. A transient memory fault, also known
In the more general setting where upftoegisters may be faulty, as asoft error, is a temporary hardware failure that alters a signal
we show that it is not possible to guarantee mutual exclusion using transfer, a register value, or some other processor component. Tra
2f 41 binary read/write registers if each faulty register can exhibit sient faults can occur due to many reasons; there are severa recen
unboundedly many faults. On the positive side, we show that an €xamples where they have caused substantial reliability problems,
n-variable single-fault tolerant algorithm satisfying certain condi- leading to costly failures in industrial high-end systems.
tions can be transformed into dtw — 1) f + 1)-variable f-fault In the context of mutual exclusion algorithms, the possibility of
tolerant algorithm with the same progress guarantee as the original.sudden changes to shared memory variables is particularly prob-
In combination with our three-variable algorithm, this implies that lematic, since it could result in a violation of the mutual exclusion
there is &2 + 1)-variable mutual exclusion algorithm toleratinga property. Indeed, none of the well-known existing mutual exclu-
single fault in up tof variables without violating mutual exclusion. Sion algorithms (e.g., Dekker’s algorithm, Peterson’s algorithm, or
Lamport’s Bakery algorithm) is designed to tesilientto transient

Categories and Subject Descriptors: faults. Each of these algorithms may fail to maintain mutual exclu-
D.4.1 [Operating Systems]: Process Managententsal exclu- sjon if a shared variable used for communication among the pro-
sion cesses suddenly changes. In fact, this holds even when processes
D.4.5 [Operating Systems]: Reliabilitfault tolerance always execute the entry and exit sections of the mutual exclusion
General Terms: Algorithms, Theory algorithms all by themselves (that is, no other process can take steps

when some process is in the entry or exit section).

Motivated by these observations, this paper investigates the ex-
tent to which 2-process mutual exclusion algorithms can withstand
transient memory faults. The paper is divided into three parts. In
the first part (Section 4) we give a basic characterization of fault-
resilient 2-process mutual exclusion algorithms. One basic obser-
Permission to make digital or hard copies of all or part of tharknfor vation is that anyf-fault-resilient 2-process mutual exclusion algo-
personal or classroom use is granted without fee providatidbpies are rithm must satisfy the following structural property: when a process
Em made or distributed for profit or commercial advantage aatidbpies "oy a0 tes the critical section by itself while the other process is

ear this notice and the full citation on the first page. Toyooiherwise, to ; . : .
republish, to post on servers or to redistribute to listguies prior specific in the remamqerpi mu_St changef + 1 shared V?'”ables before it
permission and/or a fee. enters the critical section. We use this observation to show that any

PODC’11,June 6-8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

Keywords: mutual exclusion, fault tolerance, transient memory
faults

algorithm that use8f + 1 binary read/write registers must exhibit 2. BACKGROUND & RELATED WORK

either deadlock or mutual exclusion violationfifault executions.

In the second part of the paper (Sections 5-7), we s“how thag,t aTransient faults.Transient faults (or “soft errors”) can occur in
certain level of fault-resilience to transient faults comes “for free”. different parts of the hardware stack in a computer system, and arise
we prese:nt anew starvation-free glgonthm tha,t' like De"ker.s O for various reasons, such as energetic particles that strike a transis-
Peterson’s algorithms, uses three binary read/write shared varlablest'or and cause it to change its state. In memory, for instance, alpha
unlike Dekker and Peterson’s algorithm, our algorithm guarantees : ' '

: - ; particles emitted by traces of radioactive elements present in the
mutual exclusion even in the presence of a single memory fault.

. ;) - packaging materials of the device can penetrate the die and generate
The algorithm only guarantees progress in fault-free executions; it 5 high gensity of holes and electrons in its substrate, thereby creat-
may deadlock in executions where memory faults occur. However, ing an imbalance in the electrical potential distribution and causing
given the above impossibility result, this is in some sense the beStstored data to be corrupted. A single alpha particle that possesses

olne_can do. G'an .thedChoc;fe ll()?tWe;n g_ue:(ranl’ieemg mt_utual ex'enough energy can cause a soft error all by itself. Transient faults
clusion or guaranteeing deadiock-reedom In faulty Executions, We g.e \;5ally random and non-recurring, and their rate of occurrence

choose the former in this paper. This seems to be the more naturaldepends on circuit sensitivity and the alpha flux emitted by the de-

choice in the context of mutual exclusion algorithms, and in many yice “gych faults have led to costly failures in high-end systems in
systems, deadlocks are arguably easier to detect and break, an centyears. For example, they are known to have caused cedshes

tthr ;:onser(]q_ue_ncis Iiss severe thzn mutual exEIusmn V|olat|ons.| Sun’s major customer sites including America Online and eBay [4],
n fact, this is the best we can do in more than one sense. In and HP's Los Alamos Labs supercomputers [21].

Section 6 we prove a lower bound showing Bt+ 1 binary vari- Unfortunately, while transient errors already cause substantial

ahbles allreblnot sufficient to guaraSteedmgltual excl;m(l)n "‘_I’_heh \ate €/12bility problems, current trends in hardware design suggest that
the variables can experience unboundedly many faults. Translatede, it rates will further increase in the future. Faster clock rates, in-

to the 3 variable case, this implies that no algorithm that uses 3 bi- ¢ 4jng transistor density, decreasing voltages and smaller feature
nary read/w_rlte registers can tolerqte a single “Byzantine variable” i, oc a1 contribute to increasing fault rates, e.g. [3, 22]. In fact,
Wh'C.h can fllp unbpu_ndedly many tlm_es. . . fault rates in modern processors have been increasing at a rate of
Given this gap, itis natural to asl_< ifthere is some relaxatl_qn of approximately 8% per generation [5]. To counter soft errors, com-
the model that would allow us to achieve unbounded fault-resmence.puter architects and compiler researchers have proposed various so

In Secltlon |7 we gllve Z.i?] anS\k/]v.eLto this question, by prgsentlr:jg ?Iutions, which usually involve adding redundancy to computations
mutual exclusion algorithm which uses test&set register instead of j, one way or another. For instance, there are proposals involving

one of the read/write registers, and is able to withstand ”nboundedhardware-only solutions such as error-correcting codes, watchdog

fqu_lts to one ve_lriable. Both this_ and_the above algorithm are non- co-processors or redundant hardware threads (e.g. [16ad !l
trivial, and their structure is quite different from that of existing software-only techniques that use both single and multiple cores

mutual exclusion algorithms. : ; « b
. (e.g.[20, 18]). These solutions are typically “heavy-weight” and
One reason we are interested in understanding the pOSSIbI|ItIeSéui%e [costly i]n)terms of memory and p)(;?form);nce. Vy-welg

and limitations of fault-resilience in the 3-variable, 1-fault setting
is that these results have implications for the ratio of faulty vari- o . . _—
ables that can be tolerated in general. It is reasonable to expectReSIIIent algorithmsin the area of algorithms, designing re-

- . silient algorithms for unreliable memories has also attracted inter-
that the number of faults will increase with the amount of memory est. Problems such as fault-resilient selection, sorting, and matrix
used, and hence this ratio is interesting to study. In the third part ~~" ! 9:

of the paper (Section 8), we show that our results for the 3-variable computations in various failure models have attracted a lot of inter-
case imply more general results far-variable algorithms tolerat- estin recgnt years (;ee [10] for a survey). .Fal.“.ty memory hag also
ing f faults. We show that usingz — 1) f + 1 variables, of which been studied in _mult_lprocessors. There is S|_gn|f|cant rese_arch in the
f can be faulty, one can simulate a “well-behavedvariable al- parallel pomputlng Ilteraturg devoted to dellver.general S|mulat|on
gorithm that tolerates one fault. “Well-behaved” here means that mechanisms of fully operational parallel machines on their faulty

the algorithm contains no data races, and that if one process at_counterparts, e.g.[7.8].
tempts to read from a variable, the other process eventually stops
writing to it. This property, which is satisfied by many existing
mutual exclusion algorithms (including Dekker’s algorithm and the
algorithms we present in this paper), allows us to use a simple an
lightweight simulation of. variables with one faulty variable from
(n—1) f+1 variables of whichf can be faulty. In conjunction with
the 3-variable algorithm from Section 5, this implies the existence
of a mutual exclusion algorithm usiriy + 1 variables and toler-
ating f faulty variables, each of which can flip once. Moreover,
the same simulation can be used to transform Dekker’s algorithm
into a3(f + 1)-variable algorithm tolerating “Byzantine” faulty
variables, which can each flip unboundedly many times.

Fault-tolerant simulationsin the shared memory distributed
computing literature, the problem of implementing fault-tolerant
gregisters (and other objects) from faulty objects under various fault
models was studied, e.g. in [1, 2, 13]. With regard to our simula-
tion in Section 8, the most relevant results are the ones given in [1]
and [13] on implementing various read/write registers from faulty
registers in the arbitrary, responsive failure modgor example,

in combination with earlier work [19, 24], it is shown that osefe
read/write register can be implemented fr@fiv 1 safe faulty reg-
isters, and onatomicread/write register usingf + 3 (8 f +4) safe
registers an@4 f + 12 (16 f + 8) safe binary registers, respectively,
Due to lack of space, the full proofs for some of the claims in if the f faulty registers can have infinitely many faults. A relevant

the paper are omitted here. The algorithms presented in Sections gesult from [1] shows that one reliable atomic register can be imple-

and 7 were model-checked using the NuSMV?2 finite-state model Mented fron20 7 +8 atomic registers if at mogt are faulty. In our
checker (in addition to a manual proof of correctness), to verify context, however, the simulation in Section 8 serves a different pur-
both starvation-freedom in fault-free executions and mutual exclu- POS€; we do not seek to mask faults completely, as the high-level

sion in faulty executions.

IMuch better results are known for more benign failure modes,
e.g. [13, 11]

mutual exclusion algorithm that uses the objects can tolerate someFault-tolerant mutual exclusionin the current paper we
degree of faulty behavior. Instead, we seek to redluéaults to a are concerned with algorithms that guarantee mutual exclusion in
single fault, which can then be handled by the algorithm. Together the face of memory faults. We say that an algorithn{ fsc)-

with the fact that we make assumptions about the behavior of the al- resilientif it guarantees mutual exclusion {if, c)-fault executions,
gorithm and do not require liveness in faulty executions, this allows and deadlock-freedom (or starvation-freedom) in admissible fault-

us to get away with a very lightweight simulation, wheg + 1 free executions. In the remainder of the paper, when we refer to
low-level registers simulate three high-level registers of which at deadlock- or starvation-freedom, these are restricted to fault-free
most one is faulty. executions (unless otherwise stated).

Fault-tolerant mutual exclusionThe issue of fault-tolerance Notation and terminologyA schedules a finite sequence
in mutual exclusion algorithms was one of the principal themes of « € ({po,p1} U {flip(z) | z € Var})* of process identifiers, in-
Lamport's paper on non-atomic algorithms [14]. Several failure terspersed with memory faultiép(z) in which a variable: changes
models are considered. Among many other malfunctions, one fail- its value. A schedule ig;-only if it does not contain any steps of
ure type studied are transient faults, which allows arbitrary changes p: ;. We useezec(o, «) to denote the execution fragment obtained
to the shared memory (and local) variables of the algorithm. A mu- by letting the system take the stepsdnstarting from configura-
tual exclusion algorithm tolerating all these types of failures was tion o, and we useonfig(o,) to denote the final configuration
presented in [25], but it requireti? binary shared variables. This reached irezec(o, o).
was subsequently improved to 8 binary variables for 2-process mu- A common lower bound technique is to maneuver the system
tual exclusion in [23]. These algorithms require more shared vari- into a configurationr where the next step of some processs to
ables than the algorithms we present here, but they do not deadlockwrite to a registetz, obliterating whatever value was stored there
in faulty executions. previously. In this case we say thatcoversz in o.
A configuratione = ({9, ¢1,v) is indistinguishable tg,; from

o' = (€y,01,7'), denotedr ~,,, o', if ¢; = £; andv = ¥'. It can
3. MODEL & DEFINITIONS be shown by induction on the length of the schedule that,,

o', then for anyp;-only schedulex we also haveonfig(o, o) ~p,

. . !
Mutual exclusion algorithmswe represent a 2-process mu- config(a’,).
tual exclusion algorithm as follows. LélCy, PC; be the control

locations (code lines) for processes 0 and 1 respectively, and let4, BASIC IMPOSSIBILITY RESULTS

Var be the set of shared variables (in the current paper we assume In this section, we derive a set of results that characterize the

that the shared variables are binary). We assumeRiiaf, PC resilience of mutl’JaI exclusion algorithms to a single memory fault

each include two distinguished locatioNs C, representing the re- T . :
These results have implications throughout the remainder of the

mainder and the critical section, respectivély.
A configurationof the algorithm is a triplg(éo £1,7), where paper. We begin by_ observing that af, 1)-resilient algorithm
o must have the following property.

lo € PCp and¥y € PC; are the control locations gf, and

p1 respectively, andi € 2V°" represents the state of the shared
variables Var. A stepof the algorithm is a transition from one Suppose that = (o, £1,5) ando’ = (£, ¢,) are reachable
global configuration to another, in which some progessxecutes o nfig rations such that is an idle configl’Jraiioné(o — 6 = N)
either aread(z) or awrite(z, v) operation on some shared variable 4 tor some € {0,1}, ¢, = C and?,_, = N. Then the Ham-
x, and transitions to a new control location. If the control location ming distance betwyeeT;ar:df/ must beialt least 2.

of a process igV or C, it can also take null-transitions, in which its

DEFINITION 4.1 (HAMMING DISTANCE 2 PROPERTY, HD2).

location and the values in shared memory do not change. Algorithms that do not have thdD2 property can violate mutual
An executiorof the algorithm is a sequenego . . . of config- exclusion when a single memory fault occursziindo’ are con-
urations, starting from the initial configuratiam, in which each figurations as in the definition above, whose Hamming distance is

configuration is obtained from the previous configuration by either smajier than 2, then we can flip a single bitihto obtain a config-

a step ofpo or 1, or by amemory faultin which the value of some rationr that is indistinguishable tp;_; from o. Sinceo is idle,
shared variable: € Var changes from 0 toll or vice-versa. In" when we letp;_; run by itself fromr (which p;_; cannot distin-

an (f, c)-fault executionat most/ shared variables experience at gyish fromo) it must eventually enter the critical section, violating
mostc memory faults each; in &ault-free executiorthere are no mutual exclusion.

memory faults. We are concerned only wttimissibleexecutions, If there are only two shared variables, then in order to satisfy the
in which both processes take infinitely many steps. (This includes Hp2 property each process must modify both variables when it ex-
idle steps in which a process that is currently in the remainder stays gcutes its entry section by itself; it can be shown that no algorithm

in the remainder.) o _ can accomplish this.
The algorithms we present in this paper atarvation-free for
each procesgp;, if p; begins executing the entry section, then THEOREM 4.1. No deadlock-free mutual exclusion algorithm

eventually enters the critical section. For our lower bounds we typi- that uses two binary variables can satisfy thB2 property.

cally assumeleadlock-freedorra weaker progress condition which

asserts that if some processis in the entry section, then eventu- This result is similar in spirit to the lower bound of [6], which

ally some process (eithgt or p;_;) enters the critical section. shows that, shared variables are necessaryeprocess mutual
exclusion; each process must have a variable that it “owns”. Tech-

2For convenience we assume that the algorithm is memoryless, anomca”y’ however, the proof of Thgorem 4.1 shares very little with
each process has a single control location that it returns to when-th€ lower bound of [6], because in our case the number of shared

ever it goes into the remainder. However, this assumption is not variables does match the number of processes. The proof of The-
necessary for our lower bounds. orem 4.1 is quite similar to the proof of Theorem 6.1 in Section 6,

and it is omitted here. In general, rfebinary variable mutex algo- oo
rithm can satisfy thédD- f property (the proof is again similar to (N, N,?) W (C,N,¥)
that of Theorem 6.1).

It follows from Theorem 4.1 that two binary variables cannot be
used to guaranted, 1)-resilience, even if only deadlock-freedom flip < f bits flip < f bits
is required, and even in executions where neither process takes ,
steps while the other process is in the entry or exit section. In L mmm———— _
Section 5 we show that three binary variables suffice to guarantee (N, N,) (€, N,a)
(1, 1)-resilience and starvation-freedom in fault-free executions.

Impossibility of achieving both safety and livenessr (N, C, %) (C,C, %)
definition ofresiliencefocuses on algorithms that guarantee mutual o o
exclusion, but sacrifice liveness in faulty executions; one might ask
whether it is possible to guarantee mutual exclusiod deadlock-
freedom or even starvation-freedom. Unfortunately, for the case of Figure 1: lllustration for the proof of Thm. 4.2

3 variables and one fault, the answer is negative. The following

theorem shows that in general, when fewer tBgn+ 1 registers

are used, liveness in faulty executions comes at the cost of violat- be violated in somé¢f, 1)-fault execution where process steps are
ing mutual exclusion. If starvation-freedom is desired in fault-free not interleaved when a process is in the entry or exit sectiad.
executions, theg f + 1 registers are also insufficient. This result

motivates our definition of resilience. Unlike the other negative re-

sults in this paper, the following theorem is not restricted to binary 5. A (1,1)-RESILIENT THREE-VARIABLE
registers, if one assumes that in the multi-valued case a faulty reg- ALGORITHM

ister's value can flip to any other value. In this section we give a starvation-free mutex algorithm, Al-
gorithm HANDSHAKE, that uses three binary read/write registers
THEOREM 4.2. Let A be anm-variable deadlock-free mutual ~ and guarantees mutual exclusion in the face of one memory fault.
exclusion algorithm. Iin < 2f, orif m < 2f + 1 and A is also The algorithm satisfies the Hamming Distance 2 property: when
starvation-free, therd fails to satisfy either deadlock-freedom or a process executes the entry section solo, it sets two of the shared
mutual exclusion in song, 1)-fault execution in which no process ~ variables to 1.
takes steps while the other process is in the entry or exit section. Asin the Peterson and Dekker algorithms, two of the shared vari-
ables,co and ¢y, serve as flags indicating whethey andp, are
PrROOF Consider an execution fragment in which starting from active. However, the function of the third variable is different. The
the initial configurationo, we letpy run solo until it enters the Peterson and Dekker algorithms achieve starvation-freedom by us-

critical section. Let ¢ be the resulting configuration. #f < 2f, ing the third shared variable as a “turn variable”, but the Hamming
then for any two states, v’ € {0,1}™ of the shared memory, there Distance 2 property precludes this strategy; the third variable must
is a third state; whose Hamming distance from bothandv’ is now be used more likelack processes set it to 1 when they enter
at mostf. Thus, we can flip no more thah registers fromoc, the critical section by themselves and reset it to 0 when they leave.
and obtain a configuration whose Hamming distance from both Thus, if proces®; executes its entry section by itself, before it en-
oo ando¢ is no more thary (see Fig. 1). ters the ciritical section it sets both its flagand the third variable
Because the Hamming distance of the shared memaryfriom lock to 1, protecting itself by two bits in case of a single memory
that inog is no more tharyf, p; cannot distinguish from a config- fault. We use a different mechanism to guarantee fairness.
urationt’ obtained fromo by flipping no more thary variables. One major difficulty &1, 1)-resilient algorithm must face is the

In 7" both processes are idle, so if the algorithm satisfies deadlock- following. Suppose that the two processes begin executing their
freedom in(f, 1)-fault executions where processes are not inter- entry section in lockstep, until the first time they write to the shared

leaved in the entry and exit sections, when wepletun by itself memory. Assume they write to different variables (as eventually
from 7' it will eventually enter the critical section. But~,, 7/, they must); now the state of the shared memorlis. Both pro-
so the same is true for, and mutual exclusion is violated. cesses are in the entry section, but neither process can distinguish

Next, suppose that the algorithm guarantees starvation-freedomthis configuration from the one in which the other process is in
in fault-free executions, and. < 2f + 1. Leto be areachable idle the critical section and the third variabl&d¢k) has flipped to 0.
configuration such that when runs by itself fromos, eventuallyo Therefore neither process can enter the critical section until it has
occurs again. Then there must exist some registleatp, does not verified that the other process is not in the critical section, by inter-
write to in its solo run fronmy: if there is no such register, then we acting with the other process in a sequence of reads and writes that

can letp;, begin the entry section as well, but each timecovers we call ahandshake The handshake is designed so that even if a
some registey, we letpo run until it coversy as well. Then we let memory fault occurs, a process can never reach the end of the hand
p1 write to y, followed immediately by,. All evidence thap, is shake if the other process is in the critical section. This is achieved
in the entry section is erased from the shared memony, sannot by having each procegs go through a sequence of writes to shared

distinguish this execution from the one in which it runs solo from memory, leaving a unique footprint in shared memory that is never
Continuing in this manner, we can construct an infinite admissible encountered elsewhere in the algorithm; in particular, it cannot be
execution in whichp; remains in the entry section forever. Thus “faked” by the adversary using a memory fault, or by havingo

there must be some register to whijghdoes not write. in and out of the critical section.
Sincem < 2f+1, po writes to at mos2 f registers when it runs The handshake comprises lines 008—010gprand lines 104—
solo fromo. We can repeat the argument we usedrfoK 2f to 106 for p;. At the end of the handshake, enters the critical

show again that either deadlock-freedom or mutual exclusion must section, and; waits in line 107 for a signal fronpg. Whenpg

Algorithm HANDSHAKE: code for proces8 (4) Check again if the other process is present (lines 006, 111) if
so, releaséock and engage in a handshake.

001 ¢p :=1

002 V\?ait until lock = 0 (5) Ifthe other process is still not around, enter the critical section.
003 while ¢; = 1do The reason we require (4) is thatyf_; begins the entry section
004 | if co = 0then gotooo9 when p; is executing (2) or (3)p1—; may see eithefock = 0

or lock = 1 when it executes its second line (line 002 or 102),
depending on the specific interleaving of process stepkckf =
1, thenp,_,; becomes stuck in the second line;létk = 0 then
p1—; falls through the second line and attempts to participate in
a handshake. Significantly; cannot tell whaip;_; saw when it
checkedlock. Thus, to make sure that_; does not get stuck
waiting for a handshake that is never reciprocatedeleasesock,
allowing p; —; to fall through the second line (if it has not done so
012 o =1 already). Then both processes engage in a handshake.

1 .=
013 lock — 1 There are a few subtleties beyond this basic pattern. First, note
— thatpo does not necessarily engage in a handshake if iteesl

005 lock : =1

006 if c; = 1then

007 lock :=0

008 wait until ¢ =0

009 co:=1

010 waituntil ¢; =0
(enter critical section)
011 co:=0

014 else in line 003 (it can fall through to line 005), bpt always executes

015 | if co = O then// Afault occurred a handshake if it sees = 1 in line 103. This ties in to the dif-

016 L lock :=0 ferent order of writes in the processes’ exit sections, lines 018-019
017 goto 002 and 117-118: whep, exits, it releases first its flag and themnk,

(enter critical section) wherea® releasedock first and thenc; .
018 co:=0 Informally, we wantp to releaselock last to make sure that
019 lock :=0 p1 cannot get past line 102 untib has finished the exit section,
— otherwise the sequence “obserse = 1, setcy := 0, observe

co = 1", which getsp; through lines 103—-105, can also be created

by po being in the exit section (having already released) and
Algorithm HANDSHAKE: code for process later beginning the entry section again and setting= 1. That
creates mis-coordination from which the algorithm cannot recover.
On the other hand, if; were to seflock to 0 after it setsc; to 0,
then we would have a dangerous situation in whicthas already
setc; to 0, erasing this evidence of its presence, and is covering

101 ¢c1 :=1
102 wait until lock =0
103 if cg = 1 then

104 | co:=0 lock, about to write0. If ¢, experiences a memory fault and flips
105 | waituntil co = 1 to 0, this situation can arise whem is in the entry section, has
106 | c1:=0 already setock, and believes that it is protected by bath = 1
lo7 | waituntil ¢; =1 andlock = 1. But when we lep; take its next step, it write§ to
108 | waituntil lock =1 lock, erasing all evidence gfy’s presence and freeing to enter
109 else the critical section even though is already critical. Consequently
110 lock :=1 we must ensure that wheneysris about to sefock to 0, we allow
111 if co = 1then po to see that this may be the case by having- 1.
112 lock :==0 As a consequence of the different write order, whesees:; =
113 goto 104 1 in line 003, there are two cases: eithgris in the entry section
114 if ¢; = 0 then // A fault occurred (but has either not sébck yet, or has setock and later released
115 lock ‘= 0 it), or p; is in the exit section, about to execute line 118. Thus,
116 L goto 102 waits to see whap, does: ifp; setscy to 0 then it is in the entry
L section and wants to execute a handshake, apg #fetsc; to 0
(enter critical section) then it is in the exit section. In this last cgsecontinues as though
117 lock :=0 it never sawe; = 1 when it executed line 003. As for, because
118 ¢ :=0 it cannot get past line 102 (where it waits to $e€x = 0) until po

has finished the exit section and gone into the remainder,sees

co = 1in line 103 then there is only one possibilityy is in the

entry section and will engage in a handshake.

exits the critical section, it hands the critical section oveptdy Finally, when the processes believe they are about to enter the
setting both:; andlock to 1. Notice that (ap: must observe both Critical section uncontended (line 015 fas and line 114 fomp,),

¢1 andlock change to 1 in order to enter the critical section, so that they perform one final test, which is to check that their own éiag

a single memory fault cannot cause it to enter; and (b) we achieve has not flipped after they set it in the first line of the entry section.
starvation-freedom, because whenexgandp: contend in the en- If the test succeeds, it guarantees that the process has managed to

try section, eventually both processes enter the critical section. ~ S€cure botre; andlock before the other process started its entry
The overall strategy for both processes is as follows: seqtlon, so that if one of the two variables were to flip, the other
. variable would remain non-faulty and block the other process from
(1) Setthe flage: (lines 001 and 101). entering the critical section. If the test fails, then a memory fault
(2) Check if the other process is present (lines 003 and 103), andhas occurred:; the process releakes and starts the entry section
if so, try to engage in a handshake with it. from the beginning.

(3) If the other process is not around, &tk (lines 005, 110).

THEOREM 5.1. There is a two-procesgl, 1)-resilient mutual Let o be the idle configuration whose existence is guaranteed by
exclusion algorithm that uses three binary read/write registers, and Lemma 6.1, such that; has at leasf + 1 flag registers irr. Let

guarantees starvation-freedom in fault-free executions. Y denote the set gf; s flag registers ir.
If we let po run solo frome it must eventually enter the critical
The correctness proof of algorithmANDSHAKE is quite te- section. Letlgl; ... 4L, € PC§, wherely = N and/,, = C, be

dious, and we do not include it here. In addition to the manual the sequence of control locations tatpasses through on its way

proof, the NuSMV2 model-checker was used to verify that the al- into the critical section in a solo run from We show by induction

gorithm is starvation-free and, 1)-resilient. onk that for all0 < k < m, there is a configuratiosy, such that
(a) Inox we havepc, = i,

6. IMPOSSIBILITY OF (-f’ OO)'RES”—IENCE (b) oy is reachable frona in an execution fragment where all the
WITH 2f + 1 REGISTERS register inY” are non-faulty, and
We have shown that using three binary registers it is possible (C) ok ~p, 0.
to achieve(l, 1)-reSi|ienC€; next we show that it is not pOSSib'e t0 |n other words, we can “sneaj@ into the critical section” step by
guaranteg1, co)-resilience using three variables. More generally, step, withoutp; being able to distinguish any step from the idle
we show that no algorithm using)f + 1 binary registers can be configurations. The contradiction follows immediately.
(f, 00)-resilient. The base of the induction is = 0, for which the claim holds
We begin by giving a characterization pfresilience thatis sim- trivially. For the step, suppose that we have already shown that
ilar to theHD2 property defined in Section 4; we show that in a there is a reachable Configura’[ia@ in which pey = U and such
(f, 1)-resilient algorithm, each process must yse 1 variablesto thato;, ~,, o. Consider the step tha takes to reach location
protect itself whenever it enters the critical section. These variables {41 from location?;. We will show that this step can be simulated
must be written when the process enters the critical section by it- by an execution fragment fromk in which we do not Corrupt any
self, and restored to their initial value when the process exits the register iny” (see Fig. 2 for an illustration).
critical section by itself. There are two types of steps thatcan take. The first is @arite;
this operation has no return value, and control always passes to
lr+1 (i.e., the code does not branch/a). In this case we must
ensure thap; does not observgy’s write. On the other handy

DEFINITION 6.1 (FLAG REGISTERY. We say that register
is aflag register fomp; in o if

(@) o is an idle configuration, can execute aad operation, and then branch on the result. In this

(b) Whenp; runs by itself fronv in a fault-free execution it even- case we must ensure that the valyaeads is the “right” value, the
tually writes both0 and1 to z, and one that will cause it to readh, ;1.

(c) Whenp; runs by itself fromy in a fault-free execution, the sys- Let us first handle the cases whegeaccesses a variableg Y,
tem eventually returns to configuratien which we are allowed to corrupt. If the step isead(z) step which

is expected to returm, then we simulate the step by flipping

As with the HD2 property we saw in Section 4, in any algorithm to v (if its value is not already), letting po take itsread step,
that toleratesf faulty variables (even restricted to a single faultin - and flippingz back to its previous value. Similarly, if the step is
each variable), each process that enters the critical section by itselfg write(z, v), then we letp, take the step, and then flip back
must protect itself by + 1 bits. to its previous value before therite. Let o4.; be the resulting
configuration. In both cases the values in shared memory are the
same inoy, and inok41, andp; does not take any steps between
Ok and0k+1, SO0k+1 ~py Ok ~ 0.

Now suppose that some variabje € Y is accessed. If the

LEmMmMA 6.1. Inany(f, 1)-resilient algorithm, for each process
p; there is an idle configuration that is reachable in a fault-free
execution, such that; has at leastf + 1 flag registers iro.

PROOF. From any idle configuratios, if we letp; run by itself step is aread(y) step expected to retumn then we simulate the
until it enters the critical section, it must change the values of at step as follows. Becausgis a flag register op; in o, we know
leastf + 1 shared registers; otherwise, ongeenters the critical that there is some;-only schedulex such that the last step in
section, we could flip the values of all shared registersjhatod- exec(o, a) is write(y, v), and there is another-only schedule
ifies back to their values ir, and obtain a configuratiar; that is B such thatconfig(o,a) = o (that is, 8 returns us to config-
indistinguishable tg, _; from o. If we let p; _; run by itself from urationo). Becauser, ~p, o, the last step irezec(ox, o) is
o, it must eventually enter the critical section (as it would from also awrite(y,v) by p1. Now we letp, take itsread(y) step,

o), violating mutual exclusion. which returnsy, and does not change the shared memory. Because

Since there are only finitely many configurations, there exists an config(ox, a) ~py config(ow, apq), if we append3 to the sched-
idle configurations, reachable by a fault-free execution fragment, ule apo, we obtain a configuration 1 in which pcy = fx11,

such that if we lep; run by itself in a fault-free execution from such thatrg 1 ~p, 0.
then eventually configuratiom occurs again. Bup; changes the Finally, if the step is awrite(y,v) such thaty € Y, then we
values of at leasf + 1 registers from their values in on its way proceed as follows. Sincgis a flag register op; in o, there is a
into the critical section, and when we returndathese registers p1-only schedulex such that inconfig(o, o), p1 coversy. Since
have returned to their values in Thereforep; must write both) o ~p, 0, the same holds fatonfig(o, «). Thus, fromoy,, we let
and1 to each of thes¢ + 1 registers at some point in its solo run p1 run until it coversy; then we letpo take itswrite(y, v) step, fol-
from o befores occurs again. [J lowed byp,'s step, which overwriteg. The resulting configuration
o7, is indistinguishable tg, from config(o, api1), so there is some
THEOREM 6.1. No 2-process mutex algorithm usiag + 1 bi- p1-only schedules which returng; to o (config(o, ap1f) = o).
nary read/write registers if, co)-resilient. We haveconfig(ox, apop18) ~p, o, as required.

We have now shown that from, which is reachable in a fault-

PROOF Suppose for the sake of contradiction that(gioo)- free configuration, there is an execution fragment in which no regis-

resilient algorithm that uses at masf + 1 registers does exist.

terinY is corrupted, and mutual exclusion is violated. Sifice>
f+1, the number of faulty variables is atmast+1—(f+1) = f.
Hence the algorithm is ndtf, co)-resilient. [J

We remark that the proof of Theorem 6.1 does not extend to
registers that can take more than two values. The majority of the
proof relies only on the fact that the algorithm must haveHize
(f + 1) property, i.e., any process that enters the critical section
uncontended must write to at least+ 1 registers; this holds for
multi-valued registers as well as for binary ones. The one part of
the proof that fails is the case in the induction step whegreeads
avariabley € Y, which we cannot corrupt. In the proof we handle
this case by maneuvering into writing the value thap, expects
to read fromy. In the multi-valued case we cannot do this, as there
is no necessity for a process to write all possible values into its flag
variables (it still must write at least two different values, but now
there can exist values it does not write at any point). In factan
detectp:’s presence by writing some unique value which is never
written byp; into a flag registey € Y. On its way into the critical
section (and possibly back out), must then write some different
value intoy. If po later checkgy again, it can detect that it is not
alone, because its value has been overwritten. Thus it is entirely
conceivable that afif, oo)-resilient algorithm usin@f + 1 multi-
valued registers does exist.

7. A(1,00)-RESILIENT THREE-VARIABLE
ALGORITHM USING TEST&SET

As we saw above, there does not exigtlaco)-resilient algo-
rithm that uses three binary read/write registers. In particular, Algo-
rithm HANDSHAKE also does not tolerate more than a single fault
in any variable. For example, consider an execution where

1. po runs by itself until it enters the critical section.

2. p1 begins the entry section, and becomes stuck in line 102.

3. The value ot flips from1to 0.

4. po exits the critical section and releadesk.

5. p1 progresses to line 105, where it waits f@y to begin its

part of a handshake by settingto 1.
6. po Starts the entry section again, settiragto 1 in line 001.
This is mis-interpreted by, as the start of a handshake.

o0 I.H. on it coversy
7. po continues to run until it enters the critical section (recall (N, N, o) -_— (¢, N, 1_10)—>l
thatc; has flipped td), sopo does not se@,), andp; runs I~ - po Writes toy
until it reaches thevait statement in line 107. \T = —N;I/
8. The value ot flips from0 to 1, freeingp; to enter the crit- \\ (Lg%, %)
ical section and violate mutual exclusion. (Note that = \\
1, becausey setslock in line 005.) \ p1 writes toy
This scenario illustrates two problems that render AlgorithanE- AN
SHAKE susceptible to multiple faults. First, the processes can “sneak AN n
past each other”: it is possible for a procgs$o complete its entry AN p1 runs
section withoutp; —; noticing thatp; has taken any steps. Indeed, REZIRN alone,
the proof of Theorem 6.1 shows that this is unavoidable if only o becomes
read/write registers are used. Therefore we replack with a SNl idle
test&set register, and have processes test&sétinstead of writ- S~ Okt
ing 1 toit. In the original algorithm, both processesiet during T _
(ek-t,-l, N, ’U())

the entry section only when they believe they are about to enter
the critical section uncontended; in particular, the valudoof
should always be 0 when a process writes 1 to it. Thys,tifies to
test&setlock and fails,p; backs off and re-starts the entry section.
Replacingock with a test&set register does not resolve the error

scenario above, due to a second problem with Algorithanbl-
SHAKE: a change oflock from 0 to 1 is interpreted by, (in

line 108) as a signal to enter the critical section. This seems like

po readse ¢ Y and expects to see

0o I.H. Ok flip x towv .
(N, N, o) (x, N, 7o)
__,/// lporeadSa:
N P1
N
N
\\
SO flip « back
~p1 \\\
\‘\\§ Ok+1
(k+1, N, o)
po Writes tox € Y':
o0 I.H. Ok po Writes tox .
(N1N77_)0) (€k7N71_}0)
S~ 7 \flipxback
———
S~
\~_ Ok+1
~p1 - (Zk_»,_l,N, ’Uo)

po readsy € Y and expects to see

p1 runs alone until

oo ILH. on Itwritesvtoy .
(N,Nﬂjo) (&“N,Q_}o)
S~ ___--7 po readsy
\ ~p1
\\ (£k+17 *, *)
\\ p1 runs
AN alone,
SO becomes
~ .
~~ R idle
T~— Ok+1
(x+1, N, %0)

po Writes toy € Y p1 runs alone until

Figure 2: The induction step in the proof of Thm. 6.1. The fig-
ures illustrates the four possibilities for the step thatp, takes to
move from location ¢, in its code to locationéy, ;. Here, “l.H.”
stands for the execution fragment whose existence is guaran-
teed by the induction hypothesis.

a bad idea, because a valuelofk = 1 generally indicates that Algorithm T&S-HANDSHAKE: code for process
po is interested in the critical section (and may already believe it 1
has secured access to it, as in the trace above). We can get awgy co '.; il lock —
with it when only one fault is possible; with multiple faults we must 202 Wait until lock =0
be more careful. Thus, we modify the handshake soghahust 003 Wh”.e c1 = 1do
observelock = 0 before it can enter the critical section. 004 | if co = 0then goto010
These changes yield Algorithm T&SAMDSHAKE, given be- 005 if test&setfock) = 0then
low. The algorithm incorporates an extended handshake in whicho6é L goto 001
p1 test&setdock before it enters the critical section. Unfortunately, g7 if ¢; = 1 then
there is a cost to having, setlock itself instead of waiting fopo 008 lock := 0
to do so: we cannot allow, to exit into the remainder until it oo9 | wait until co = 0
observesgock change to 1, to ensure that two bits @ndlock) 010 | ¢o:=1
witnessp;’s presence in the critical section. Hence, replacing oneyps1 | wait until ¢; = 0
read/write register with a test&set register is not the only price wep12 | if test&set{ock) = 0 then
pay for the extra degree of resilience; fheco)-resilient algorithm ;3 | gotooo1
also does not have a wait-free exit section.
Finally, the algorithm also incorporates a number of further “san-
. - . . . , 015 lock :=0
ity checks” in which processes verify that a variable’s value has L
not changed when they were not expecting it to. For example, i goto002
the processes execute the entry section without observing the othe¥? if c1 = 1then
process’s presence, in lines 025 and 119 (respectively) they ched#8 L lock :== 0
that their flag has not been reset since they began the entry sectioh? goto 002
. o (enter critical section)
THEOREM 7.1. There is a two-procesd , oo)-resilient mutual 5 lock = 0
exclusion algorithm that uses two binary read/write variables and,, o =0
one test&set variable, and guarantees starvation-freedom in faulty,,, wait until lock = 1
free executions. 023

014 if co = 0then

C1 =1

The code uses the test&sef@tomic instruction. Itz = 0, the ~ 024 else
instruction setg: to 1 and returns; otherwisez is left unchanged 025 if co = 0then// Afault occurred

and a value of) is returned. We assume that in addition to the 026 L lock := 0
test&set operation, test&set registers can be read and written like &7 goto 002
read/write register. (enter critical section)

028 | co:=0
8. TRANSFORMING 1-RESILIENCEINTO 029 | lock:=0
f-RESILIENCE

So far we have focused on algorithms that tolerate a single faulty
variable, using as few variables as possible. We now turn to con- jnterference, and this allows us to use a simple simulation (instead
sider the more general case pffaulty variables. We show that of e g., a linearizable snapshot object, which would require much
under a certain “well-behavedness” condition on the algorithm, a yore memory and may itself be vulnerable to memory faults).

(1, ¢)-resilient algorithm using, variables (forc € N U {oo}) im- The idea of the simulation is to implement one high-level register
plies an(f, c)-reS|I|en.t.aIgor|thm usingn—1)f+1 registers. Fur- x using f low-level registerses , .. ., z ¢, in such a way that only
ther, even a non-resilient (but correct) mutual exclusion algorithm eypibits a fault ifz1,z all experience a memory fault. In the
that is “well-behaved” can be transformed into (gfpoc)-resilient sequel we us&ead andWrite to denote high-level operations on

using(f + 1)n registers. The property we require of the original . (a5 opposed to low-level operations:n . . .,)

L-resilient or non-resilient algorithm is the following. (The results T pe useful, our implementation should keearizable[12]:

in this section apply to generat-process mutual exclusion algo- the operations invoked an should appear to take place instanta-
rithms, but for simplicity we present the results for two processes.) pegusly, as though the algorithm were accessing an atomic faulty
read/write register. However, unlike many fault-tolerant simula-
tions (see Section 2), the simulation we give here exposes some
subset of the low-level faults, instead of masking them completely.
The standard notion of linearizability does not completely char-

DEFINITION 8.1 (BOUNDED INTERFERENCH. An algorithm
is said to have thbounded-interference propeiifyin all configu-
rations reachable in a fault-free execution,

() Both processes never cover the same register, and acterize the behavior we require. A linearizable implementation

(b) If one procesy; is about to read from a register;, then the takes high-level operations as external input, and maps them into
other proces®:—; can only write tox; a bounded number of |ow-level operations; in contrast, with memory faults, we wish to
times beforg; executes its read. take thelow-levelfaults of z1, . . . , z as (adversarially controlled)

input and generatkigh-levelfaults of z as output. To complicate
matters further, we wish to expose only a subset of faults. To cap-
ture this behavior we introduce the following definitidn.

Many mutual exclusion algorithms (e.g., Dekker and Burns’ algo-
rithms) enjoy the bounded-interference property; however, not all
do. For example, Peterson’s algorithm and Lamport's fast mutual
exclusion algorithm both contain a data race, violating requirement 3y s a|so possible to take a more ad-hoc approach and use the stan-
(a). We are not aware of examples in which requirement (b) is vi- dard definition of linearizability, treating low-level faults as high-
olated. The algorithms we present in this paper do have boundedlevel operations and high-level faults as low-level operations.

Algorithm T&S-HANDSHAKE: code for proces$

101
102
103
104

105
106
107
108
109
110
111

112

113
114
115

116
117
118

119
120
121

122
123

C1 = 1
wait until lock =0
if c1 = 0then

| goto101

if co = 1then

co:=0

wait until ¢cg =1

Cl1 = 0

wait until co =1

if test&set(ock) = 0then
| goto101

| waituntil ¢; =1
else
if test&set{ock) = 0then

| goto101

if co = 1then
lock := 0
goto 106

if c; = 0then// A fault occurred
lock :=0
goto 102

(enter critical section)

lock :=0
c1:=0

(b) Insert high-leveFlip events foi© coinciding with some subset
such that the following conditions are satisfied:
(a) Each high-level operation @ is linearized at some point be-

tween its invocation and its return (or after its invocation, for

(b) If ¢ high-levelFlip events are inserted, then each low-le¢l

DEFINITION 8.2 (FAULT LINEARIZABILITY). Animplemen-
tation of a high-level objec® from low-level objectg)’ is fault
linearizableif in every execution, one can

(@) Embedlinearization pointsfor all the operations on® that
complete and some subset of the operations that do not COM-tars 2,

plete, and

of low-levelflip events of?’,

operations that do not complete);

to the points where; flips; i.e., each segment ends with a flimof

and does not contain any other flipsagf We linearize each high-
level operation at the point where it last accesser at the only
point where it accesses, in case of aVrite). Note that the value
associated with each high-level operation is the value it reads from
or writes tox; for the last time; sinca; does not flip inside each
segment, the linearization points of all the operations linearized in
a particular segment form a valid sequential history fragment. To
complete the picture we insert a high-le¥ip at the end of each
segment. It is not hard to verify that the sequential history thus
obtained is valid. Note also that the numberFdips inserted is
exactly the number of times that flips. If we chooser; to be one

of the registers that display the minimum number of faults in the
execution, we obtain a linearization that satisfies condition (b).

A linearization can be viewed as a mapping from low-level ex-
ecutions to high-level executions, which annotates each low-level
configuration with a configuration of the high-level algorithm (for-
mally, the linearization induces a trace simulation between the low-
level implementation to the high-level algorithm. The relation-
ship between linearizability and refinement was already explored
in [12], where the notion of linearizability was first introduced, and
it has also been extensively studied in the formal methods com-
munity recently, e.g., [9, 15]). We saw above that we can choose
any register and linearize all operations when they last access it.
In particular, we can choose the last register accessedWhen
we embed linearization points using, any low-level configura-
tion where aWrite(z, v) operation is in progress corresponds to a
high-level configuration where the invoking process cowers

The implementation does not, in general, guarantee liveness of
any sort. However, when the implementation is used by a bounded-
interference algorithm in a fault-free execution, we are guaranteed
that no twoWrite operations overlap: if they did, then the config-
uration where the secondrite is invoked corresponds to a con-
figuration of the algorithm where both processes cawerThis
guarantees that whenevelérite completes, all low-level regis-
..,x¢ contain the same value. Furthermore, if a process
invokes aRead(x), we are guaranteed that eventually the other pro-
cess will cease writing to. Therefore all operations completel]

Using the implementation above we can transforth,a)-resilient
algorithm usingn registers into ar f, c)-resilient algorithm using
(n — 1)f + 1 registers. In conjunction with Algorithm AND-
SHAKE, we obtain the following general result.

COROLLARY 1. Foranyf > 1, thereis a starvation-fregf, 1)-

object experiences at leasfaults in the execution; and resilient mutual exclusion algorithm usir2g +1 binary read/write
(c) The sequential history obtained by the linearization points and registers.
Flip events represents a valid history of a faul?yobject. PROOF SKETCH We use2f low-level registers to implement

two high-level registers using Lemma 8.1, and the last high-level

LEMMA 8.1. There is a fault linearizable implementation of a register is simulated by the remaining single low-level register. Since
faulty read/write register frony faulty read/write registers, such [faulty low-level registers are required to corrupt either of the first
that when used in an fault-free execution of a bounded-interference two high-level registers, the adversary cannot cause more than one

algorithm, all operations of the high-level register complete. high-level register to exhibit faulty behavior. Further, if each low-
] o) . level register flips at most once, then the high-level registers also
PROOF SKETCH The implementation is very simple: to write 4o not flip more than once. In fault-free executions the simulation

a valuev to the high-level register, a process writes to each guarantees liveness, so the overall algorithm is starvation-fiiee.

of the low-level registers:,...,zs. To read fromz, a process

readszi,...,zs, and if all registers contain the same value, that Unfortunately we do not obtain a similar result for tfig co)-
value is returned as the result of tRead. Otherwise the process resilient algorithm, because it uses a test&set register. However,
reads again, until it makes a full pass ower . ..,z in which all if we use more thary low-level registers to simulate each high-
registers are observed to have the same value. This value is therevel register, we can use the simulation from Lemma 8.1 to mask
returned as the result of tikead. faults completely (though the implementation may still deadlock in

To show that the implementation is fault linearizable, fix a low- executions that contain memory faults). In conjunction with, e.g.,
level registerz;, and divide the execution into segments according Dekker’s algorithm, we obtain the following result.

COROLLARY 2. Forall f > 1, there is a starvation-fregf, co)-
resilient mutex algorithm using(f + 1) binary registers.

PROOF We usef + 1 low-level registers to simulate each of

the three high-level registers used by Dekker’s algorithm. The ad-

versary cannot corrupt any simulated register, becgusé faulty

registers are required to do so. As before, in fault-free executions

the simulation is live and starvation-freedom is satisfied]

9. CONCLUSION

There has been a growing interest in various communities to un-
derstand the impact of increasingly unreliable hardware on soft-

ware in general, and on algorithms in particular. Mutual exclusion

is a particularly interesting problem, because the consequences of

failure could be dramatic. Off-the-shelf solutions, such as error-

[8] B. S. Chlebus, L. Gasieniec, and A. Pelc. Deterministic
Computations on a PRAM with Static Processor and
Memory FaultsFundamenta Informatica®003.

[9] J. Derrick, G. Schellhorn, and H. Wehrheim. Proving

linearizability via non-atomic refinement. In J. Davies and

J. Gibbons, editorsFM, volume 4591 of_ecture Notes in

Computer Sciencgages 195-214. Springer, 2007.

I. Finocchi, F. Grandoni, and G. F. Italiano. Designing

Reliable Algorithms in Unreliable Memories. Proceedings

of European Symposium on Algorithms (ES#&ges 1-8,

2005.

R. Guerraoui and M. Raynal. From Unreliable Objects to

Reliable Objects: The Case of Atomic Registers and

Consensus. IProceedings of PaCT2007.

[10]

[11]

correcting codes and specialized hardware, tend to be heavy-weighti12] M- P. Herlihy and J. M. Wing. Linearizability: a correctness

and it is not clear that the extra cost is always necessary.

In this paper we have introduced a new variant of fault-tolerance,

condition for concurrent object&CM Trans. Program.
Lang. Syst.12:463-492, July 1990.

safefault-tolerance, under which an algorithm must be safe even [13] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant

when memory faults occur, but not necessarily live. The conse-

wait-free shared objectdournal of the ACM1998.

quences of violating liveness are often less sever than those of vio-[14] L. Lamport. The Mutual Exclusion Problem: Part Il —

lating safety, and in many cases there are already systems in place
to detect and resolve deadlock. Sacrificing liveness in faulty execu-
tions allowed us to design two-process mutual exclusion algorithms

that tolerate a faulty variable, at the cost of no extra memory.
It is clear that our work is only a first step; many problems re-
main open. Our results in this paper focus mostly on the two-

process case; in follow-up work we intend to extend the results

to n-processes. Also, we focus in this paper primarily on binary

shared variables, i.e., the type of variable used in Peterson’s and

Dekker’s algorithms. Our results show that even in this restricted

setting, a significant degree of fault-resilience can be achieved; nev-
ertheless, it is interesting to consider whether the lower bound from

Section 6 continues to hold for general multi-valued registers, or

whether a2 f + 1)-variable(f, co)-resilient algorithm exists.
Acknowledgement. We are indebted to John Douceur and to

Karthik Pattabiraman for fruitful early discussions on the problem.

10. REFERENCES

[1] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld.

Computing with Faulty Shared Memory. Rroceedings of
Symposium on Principles of Distributed Computing
(PODC) 1992.

[2] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld.
Computing with Faulty Shared Objectmurnal of the ACM
1995.

R. C. Baumann. Soft Errors in Advanced Semiconductor

Devices — Part I: The Three Radiation SourdEEE

Transactions on Device and Materials Reliabili001.

R. C. Baumann. Soft Errors in Commercial Semiconductor

Technology: Overview and Scaling TrendlSEE 2002

Reliability Physics Tutorial Notes, Reliability Fundamentals

2002.

[5] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
DegradationlEEE Micro, 2005.

[6] J. E. Burns and N. A. Lynch. Bounds on shared memory for
mutual exclusioninf. Comput. 107:171-184, December
1993.

[7] B. S. Chlebus, A. Gambin, and P. Indyk. Shared-Memory
Simulations on a Faulty-Memory DMM. IRroceedings of
23rd Colloquium on Automata, Languages and
Programming (ICALP)1996.

(3]

(4]

Statement and Solutiondournal of the ACM1986.

[15] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking

linearizability via refinement. IiRroceedings of the 2nd

World Congress on Formal MethodsM '09, pages

321-337, Berlin, Heidelberg, 2009. Springer-Verlag.

T.N. V. M. Gomaa, C. Scarbrough and I. Pomeranz.

Transient-fault Recovery for Chip Multiprocessors. In

Proceedings of 30th Symposium on Computer Architecture

(ISCA) pages 98-109, 2003.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed

Design and Evaluation of Redundant Multithreading

Alternatives. InProceedings of 29th Symposium on

Computer Architecture (ISCApages 99-110, 2002.

N. Oh, P. P. Shirvani, and E. J. McCluskey. Error Detection

by Duplicated Instructions in Super-Scalar ProcessBisE

Transactions on Reliability2002.

[19] G. L. Peterson. Concurrent Reading while Writing.
Transactions on Programming Languages and Systems
1983.

[20] G. A. Reis, J. Chang, and D. I. August. Automatic

Instruction-Level Software-Only Recovery MethotiSEE

Micro Top Picks 2007.

N.W. H. B. E. T. S. E. Michalak, K. W. Harris and S. A.

Wender. Predicting the Number of Fatal Soft Errors in Los

Alamos National Labratory’s ASC Q ComputdEEE

Transactions on Device and Materials Reliabii005.

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and

L. Alvisi. Modeling the Effect of Technology Trends on the

Soft Error Rate of Combinational Logic. Proceedings of

the Conference on Dependable Systems and Netwuages

389-388, 2002.

B. K. Szymanski. Mutual Exclusion Revisited. In

Proceedings of 5th Jerusalem Conference on Information

Technology1990.

[24] J. Tromp. How to Construct an Atomic Variable. In
Proceedings of 3rd Workshop on Distributed Algorithms
1989.

[25] K. Truuvert. A Self-Stabilizing First-Come-First-Serve

Mutual Exclusion Algorithm with Small Shared Variables.

Technical Note, University of Torontt989.

[16]

[17]

[18]

[21]

[22]

(23]

