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Abstract

The most intuitive memory model for shared-memory multi-
threaded programming is sequential consistency (SC), but it disal-
lows the use of many compiler and hardware optimizations thereby
impacting performance. Data-race-free (DRF) models, such as the
proposed C++0x memory model, guarantee SC execution for data-
race-free programs. But these models provide no guarantee at all
for racy programs, compromising the safety and debuggability
of such programs. To address the safety issue, the Java memory
model, which is also based on the DRF model, provides a weak
semantics for racy executions. However, this semantics is subtle
and complex, making it difficult for programmers to reason about
their programs and for compiler writers to ensure the correctness
of compiler optimizations.

We present the DRFx memory model, which is simple for pro-
grammers to understand and use while still supporting many com-
mon optimizations. We introduce a memory model (MM) excep-
tion which can be signaled to halt execution. If a program exe-
cutes without throwing this exception, then DRFx guarantees that
the execution is SC. If a program throws an MM exception dur-
ing an execution, then DRFx guarantees that the program has a data
race. We observe that SC violations can be detected in hardware
through a lightweight form of conflict detection. Furthermore, our
model safely allows aggressive compiler and hardware optimiza-
tions within compiler-designated program regions. We formalize
our memory model, prove several properties about this model, de-
scribe a compiler and hardware design suitable for DRFx, and eval-
uate the performance overhead due to our compiler and hardware
requirements.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Concurrent, distributed, and parallel languages

General Terms Design, Languages

Keywords memory models, sequential consistency, data races,
memory model exception, soft fences

1. Introduction

A memory consistency model (or simply memory model) forms
the foundation of shared-memory multi-threaded programming. It
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defines the set of possible orders in which memory operations can
execute and the possible values a read can return, thereby providing
a contract that programmers can assume and that compilers and
hardware must obey. While it is desirable to provide programmers
with a simple and strong guarantee about the behavior of their
programs, doing so can reduce the flexibility of compilers and
hardware to perform optimizations and thereby negatively impact
performance.

A case in point is the memory model known as sequential con-
sistency (SC) [23], which requires all memory operations in an ex-
ecution of a program to appear to have executed in a global se-
quential order consistent with the per-thread program order. This
memory model is arguably the most simple for programmers, since
it matches the intuition of a concurrent program’s behavior as a set
of possible thread interleavings. However, many program transfor-
mations that are sequentially valid (i.e., correct when considered on
an individual thread in isolation) can potentially violate SC in the
presence of multiple threads. For example, reordering two accesses
to different memory locations in a thread can violate SC since an-
other thread could “view” this reordering via concurrent accesses
to those locations. As a result, SC precludes the use of common
compiler optimizations (code motion, loop transformations, etc.)
and hardware optimizations (out-of-order execution, store buffers,
lockup-free caches, etc.).

In recent years, there have been significant efforts to bring to-
gether language, compiler and hardware designers to standardize
memory models for mainstream programming languages. The con-
sensus has been around memory models based on the data-race-
free-0 (DRF0) model [1], which attempts to strike a middle ground
between simplicity for programmers and flexibility for compilers
and hardware. In the DRF0 model, a programmer explicitly dis-
tinguishes synchronization accesses from other data accesses (us-
ing type qualifiers such as volatile in Java [28] and atomic in
C++ [7].) The compiler and hardware are limited in the optimiza-
tions and reorderings they can perform across synchronization ac-
cesses, in order to ensure their semantics is properly respected. The
DRF0 model then guarantees SC for all properly synchronized pro-
grams (i.e., programs that are free of data races). Unlike the full SC
model, DRF0 can achieve good performance since many standard
sequentially valid compiler optimizations preserve SC for properly
synchronized programs.

The DRF0 model provides a simple and strong guarantee for
race-free programs, but it does not specify any semantics for pro-
grams that contain data races. While such programs are typically
considered erroneous, data races are easy for programmers to ac-
cidentally introduce and are difficult to detect. The DRF0 model
therefore poses two important problems for programmers:

• Since a racy execution can behave arbitrarily in DRF0, it can vi-
olate desired safety properties. For example, Boehm and Adve



show how a sequentially valid compiler optimization can cause
a program to jump to arbitrary code in the presence of a data
race [7].

• Debugging an erroneous program execution is difficult under
the DRF0 model, because the programmer must always assume
that there may have been a data race. Therefore, it may not be
sufficient to reason about the execution using the intuitive se-
quential consistency model in order to understand and identify
the error.

The recently proposed C++ memory model C++0x [7] is based
on the DRF0 model and shares these shortcomings. The Java mem-
ory model [28] addresses the first problem above by providing a se-
mantics for racy programs which is weaker than SC but still strong
enough to ensure a useful form of safety. However, this weaker
semantics is subtle and complex, so the debuggability problem de-
scribed above is not greatly improved. Further, proving the correct-
ness and safety of various compiler and hardware optimizations un-
der this memory model continues to be a challenge [10, 35].

Some researchers have proposed the use of dynamic data-race
detection to halt execution when it would become undefined by the
memory model [2, 6]. This approach would resolve the problems
with the DRF0 memory model, since a program execution would be
guaranteed to be SC unless the execution is halted. However, to be
useful such detection must be precise, neither allowing a program
to complete its execution after a data race nor allowing a race-free
execution to be erroneously rejected. Precise data-race detection in
software is very expensive even with recently proposed optimiza-
tions [14], and hardware solutions [2, 30] are quite complex.

1.1 The DRFx Memory Model

In this paper we introduce the DRFx memory model, which pro-
vides a simple and strong guarantee to programmers while support-
ing many standard compiler and hardware optimizations. We take
inspiration from the observation of Gharachorloo and Gibbons [16]
that to provide a useful guarantee to programmers it suffices to de-
tect only the data races that cause SC violations, and that such de-
tection can be much simpler than full-fledged race detection.

The DRFx model introduces the notion of a dynamic memory
model (MM) exception which halts a program’s execution. DRFx

guarantees two key properties for any program P:

• DRF: If P is data-race free then every execution of P is sequen-
tially consistent and does not raise an MM exception.

• Soundness: If sequential consistency is violated in an execu-
tion of P, then the execution eventually terminates with an MM
exception.

These two properties allow programmers to safely reason about all
programs, whether race-free or not, using SC semantics: any pro-
gram’s execution that does not raise an MM exception is guaranteed
to be SC. On the other hand, if an execution of P raises an MM ex-
ception, then the programmer knows that the program has a data
race.

While our Soundness guarantee ensures that an SC violation
will eventually be caught, an execution’s behavior is undefined be-
tween the point at which the SC violation occurs and the exception
is raised. The DRFx model therefore guarantees an additional prop-
erty:

• Safety: If an execution of P invokes a system call, then the
observable program state at that point is reachable through an
SC execution of P.

Intuitively the above property ensures that any system call in an
execution of P would also be invoked with exactly the same ar-

guments in some SC execution of P. This property ensures an im-
portant measure of safety and security for programs by prohibiting
undefined behavior from being externally visible.

1.2 A Compiler and Hardware Design for DRFx

Gharachorloo and Gibbons describe a hardware mechanism to de-
tect SC violations [16]. Their approach dynamically detects con-
flicts between concurrently executing instructions. Two memory
operations are said to conflict if they access the same memory lo-
cation, at least one operation is a write, and at least one of the
operations is not a synchronization access. While simple and ef-
ficient, this approach only handles hardware reorderings and does
not consider the effect of compiler optimizations. As a result, their
approach guarantees our DRF and Soundness properties with re-
spect to the compiled version of a program but does not provide any
guarantees with respect to the original source program [12, 16].

Our key contribution is the design and implementation of a de-
tection mechanism for SC violations that properly takes into ac-
count the effect of both compiler optimizations and hardware re-
orderings while remaining lightweight and efficient. Our approach
employs a novel form of cooperation between the compiler and the
hardware. We introduce the notion of a region, which is a single-
entry, multiple-exit portion of a program. The compiler partitions a
program into regions, and both the compiler and the hardware may
only optimize within a region. Each synchronization access must
be placed in its own region, thereby preventing reorderings across
such accesses. We also require each system call to be placed in its
own region, which allows us to guarantee the DRFx model’s Safety
property. Otherwise, a compiler may choose regions in any manner
in order to aid optimization and/or simplify runtime conflict detec-
tion. Within a region, both the compiler and hardware can perform
many standard sequentially valid optimizations. For example, un-
related memory operations can be freely reordered within a region,
unlike the case for the traditional SC model.

To ensure the DRFx model’s DRF and Soundness properties
with respect to the original program, we show that it suffices to de-
tect region conflicts between concurrently executing regions. Two
regions R1 and R2 conflict if there exists a pair of conflicting oper-
ations (o1, o2) such that o1 ∈ R1 and o2 ∈ R2. Such conflicts can
be detected using runtime support similar to conflict detection in
transactional memory (TM) systems [19]. As in TM systems, both
software and hardware conflict detection mechanisms can be con-
sidered for supporting DRFx. In this paper, we pursue a hardware
detection mechanism, since the required hardware logic is fairly
simple and is similar to that in existing bounded hardware transac-
tional memory (HTM) implementations such as Sun’s Rock proces-
sor [13]. In fact, our hardware design can be significantly simpler
than that of a TM system. Unlike TM hardware, which needs the
complex support for versioning and checkpointing to enable roll-
back on a conflict, a DRFx hardware only needs support for rais-
ing an exception on a conflict. Also, a DRFx compiler can bound
the number of memory bytes accessed in each region, enabling the
hardware to perform conflict detection using finite resources. While
small regions limit the scope of compiler and hardware optimiza-
tions, we discuss an approach in Section 4 that allows us to regain
most of the lost optimization potential.

1.3 Contributions

This paper makes the following contributions:

• We define the DRFx memory model for concurrent program-
ming languages via three simple and strong guarantees for pro-
grammers (Section 2). We describe a set of conditions on a com-
piler and hardware design that are sufficient to enforce the DRFx

memory model.



• We present a formalization of the DRFx memory model as well
as of our compiler and hardware requirements (Section 3). We
have proven that these requirements are sufficient to enforce
DRFx.

• We describe a concrete compiler and hardware instantiation
of the approach (Section 4) and have implemented a DRFx-
compliant compiler by modifying LLVM [24]. We discuss an
efficient solution for bounding region sizes so that a processor
can detect conflicts using finite hardware resources.

• We evaluate the performance cost of our compiler and hardware
instantiation in terms of lost optimization opportunity for pro-
grams in the Parsec benchmark suite (Section 5). We find that
the performance overhead is on average 3.25% when compared
to the baseline fully optimized implementation.

2. Motivation and Overview

This section motivates the problem addressed in the paper and
provides an overview of our solution through a set of examples.

2.1 Data Races

Two memory accesses conflict if they access the same location and
at least one of them is a write. A program state is racy if two
different threads are about to execute conflicting memory accesses
from that state. A program contains a data race (or simply a race) if
it has a sequentially consistent execution that reaches a racy state.
Consider the C++ example in Figure 1(a). After thread t executes
the instruction A, the program enters a racy state in which thread t

is about to write to init while thread u is about to read that same
variable. Therefore the program contains a data race.

2.2 Compiler Transformations in the Presence of Races

It is well known that sequentially valid compiler transformations,
which are correct when considered on a single thread in isolation,
can change program behavior in the presence of data races [1, 17,
28]. Consider the example in Figure 1(a) described above. Thread
t uses a Boolean variable init to communicate to thread u that
the object x is initialized. Note that although the program has a
data race, the program will not incur a null dereference on any SC
execution.

Consider a compiler optimization that transforms the program
by reordering instructions A and B in thread t. This transformation
is sequentially valid, since it reorders writes to two different mem-
ory locations. However, this reordering introduces a null derefer-
ence (and violates SC) in the interleaving shown in Figure 1(b).
The same problem can occur as a result of out-of-order execution
at the hardware level.

To avoid SC violations, languages have adopted memory mod-
els based on the DRF0 model [1]. Such models guarantee SC for
programs that are free of data races. The data race in our exam-
ple program can be eliminated by explicitly annotating the variable
init as atomic (volatile in Java 5 and later). This annotation
tells the compiler and hardware to treat all accesses to these vari-
ables as “synchronization”. As such, (many) compiler and hard-
ware reorderings are restricted across these accesses, and concur-
rent conflicting accesses to these variables do not constitute a data
race. As a result, the revised program shown in Figure 1(c) is data-
race-free and cannot be reordered in a manner that violates SC.

2.3 Writing Race-Free Programs is Hard

For racy programs, on the other hand, DRF0 models provide much
weaker guarantees than SC. For example, the proposed C++ mem-
ory model [7] considers data races as errors akin to out-of-bounds
array accesses and provides no semantics to racy programs. This

approach requires that programmers write race-free programs in
order to be able to meaningfully reason about their program’s be-
havior, which we argue is an unacceptable burden. As an example,
consider the program in Figure 3(a) in which the programmer at-
tempted to fix the data race in Figure 1(a) using locks. Unfortu-
nately, the two threads use different locks, an error that is easy to
make, especially in large software systems with multiple develop-
ers.

Unlike out-of-bounds array accesses, there is no comprehensive
language or library support to avoid data race errors in mainstream
programming languages. Further, like other concurrency errors,
data races are nondeterministic and can be difficult to trigger during
testing. Even if a race is triggered during testing, it can manifest it-
self as an error in any number of ways, making debugging difficult.
Finally, the interaction between data races and compiler/hardware
transformation can be counter-intuitive to programmers, who natu-
rally assume SC behavior when reasoning about their code.

2.4 Detecting Data Races Is Expensive

This problem with prior data-race-free models has led researchers
to propose to detect and terminate executions that exhibit a data
race in the program [2, 6]. Note that it is not sufficient to simply de-
tect executions that encounter a racy state as defined in Section 2.1.
While the existence of such an execution implies the existence of a
data race in the program, other executions can also be racy and can
suffer from SC violations. Informally, an execution is considered
racy if it has two conflicting accesses that are not properly synchro-
nized, regardless of how “far away” they are from one another.

The notion of a racy program execution is made precise by Lam-
port’s happens-before constraints [22], which define a partial order
on the operations in a concurrent execution. Operations within the
same thread are totally ordered by their program order. In addition,
synchronization operations on the same synchronization variable
induce inter-thread happens-before edges, depending on the order
in which the threads perform these operations. An execution is con-
sidered to be racy if two conflicting operations are not ordered in
this partial order.1 For example, consider the interleaving in Fig-
ure 3(b). Since the two threads acquire different locks, there are
no happens-before edges between operations belonging to differ-
ent threads. Therefore, the conflicting accesses to init and x each
constitute a race.

Precise dynamic data-race detection algorithms typically use
vector-clocks [22] to reason about the happens-before ordering
during executions. These algorithms are inherently costly, as they
require maintaining metadata per memory location and updating
this metadata at each memory access. Furthermore, an access may
participate in a data race with an access that occurred arbitrarily
far in the past, foiling attempts to discard metadata as the exe-
cution proceeds. Despite years of research, efficient and precise
dynamic data-race detection in software has not been achieved.
Even after recent optimizations, software-based data-race detec-
tion slows down the execution of the program by a factor of 8 or
more [14]. Proposed hardware mechanisms can be more efficient
but are complex and require significant changes to existing archi-
tectures [2, 30]. Also, hardware schemes cannot easily detect “far
away” races since such schemes are limited by bounded hardware
resources [30].

1 A program can then be considered to have a data race if it has an SC
execution that is racy. One can show that this definition is equivalent to our
simpler definition from Section 2.1, which is more convenient to use in our
formalism (Section 3).



X* x = null;
bool init = false;

// Thread t // Thread u
A: x = new X(); C: if(init)
B: init = true; D: x->f++;

X* x = null;
bool init = false;

// Thread t // Thread u
B: init = true;

C: if(init)
D: x->f++;

A: x = new X();

X* x = null;
atomic bool init = false;

// Thread t // Thread u
A: x = new X(); C: if(init)
B: init = true; D: x->f++;

(a) (b) (c)

Figure 1. (a) Original program. (b) Transformed program. (c) Data-race-free program.

Figure 2. The relationships among various properties of a program
execution.

2.5 Detecting SC Violations is Enough

The DRFx model is inspired by the observation that full happens-
before data-race detection is unnecessary [16]. While such detec-
tion can be quite useful for debugging purposes, it is overly strong
if our goal is to ensure that executions are SC. For example, even
though the interleaving in Figure 3(b) contains a data race, the exe-
cution does not result in a program error. The hardware guarantees
that all the memory accesses issued while holding a lock are com-
pleted before the lock is released. Since the unlock at D completes
before the lock at E, the execution is sequentially consistent even
though the compiler reordered the instructions B and C. Therefore,
the memory model can safely allow this execution to continue. On
the other hand, executions like the one in Figure 3(c) do in fact
violate SC and should be halted with a memory model (MM) ex-
ception.

The Venn diagram in Figure 2 clarifies this argument (ignore the
RCF and RS sets for now). SC represents the set of all executions
that are sequentially consistent with respect to a program P. DRF
is the set of executions that are data-race free. To satisfy the DRF
and Soundness properties described in Section 1, we must accept
all executions in DRF and terminate all executions that are not
in SC. However, our model allows flexibility for executions that
are not DRF but are SC: it is acceptable to admit such executions
since they are sequentially consistent, but it is also acceptable
to terminate such executions since they are racy. As we describe
below, this flexibility allows for a much more efficient detector than
full-fledged race detection.

Our memory model only guarantees that non-SC executions
eventually terminate with an exception. This allows us to perform
SC detection lazily, thereby further reducing the conflict detector’s
complexity and overhead. Nevertheless, the Safety property de-
scribed in Section 1 guarantees that an MM exception is thrown

before the effects of a non-SC execution can reach any external
component via a system call.

2.6 Enforcing the DRFx Model

The key idea behind enforcing the DRFx model is to partition a
program into regions. Each region is a single-entry, multiple-exit
portion of the program. Both the hardware and the compiler agree
on the exact definition of these regions and perform program trans-
formations only within a region. We require each synchronization
operation and each system call to be in its own region. For instance,
one possible regionization for the program in Figure 3 would make
each of {B,C} and {F,G} a region and put each lock and unlock
operation in its own region.

During execution, the DRFx runtime signals an MM exception
if a conflict is detected between regions that are concurrently ex-
ecuting in different processors. We define two regions to conflict
if there exists any instruction in one region that conflicts with any
instruction in the other region. More precisely, we only need to
signal an MM exception if the second of the two conflicting ac-
cesses executes before the first region completes. In the interleav-
ing of Figure 3(b), no regions execute concurrently and thus the
DRFx runtime will not throw an exception, even though the exe-
cution contains a data race. On the other hand, in the interleaving
shown in Figure 3(c), the conflicting regions {B,C} and {F,G} do
execute concurrently, so an MM exception will be thrown.

2.7 From Region Conflicts to DRFx

The Venn diagram in Figure 2 illustrates the intuition for why
our compiler and hardware design satisfies the DRFx properties.
If a program execution is data-race-free (DRF), then concurrent
regions will never conflict during that execution, i.e., the execution
is region-conflict free (RCF). Since synchronization operations are
in their own regions, this property holds even in the presence of
intra-region compiler and hardware optimizations, as long as the
optimizations do not introduce speculative reads or writes. If an
execution is RCF, then it is also region-serializable (RS): it is
equivalent to an execution in which all regions execute in some
global sequential order. That property in turn implies the execution
is SC with respect to the original program. This establishes the DRF
property of the DRFx model.

On the other hand, suppose that an execution is not SC. Then as
the Venn diagram shows, that execution is also not region-conflict
free, so an MM exception will be signaled. Again this property
holds even in the presence of non-speculative intra-region opti-
mizations. Therefore the Soundness property of the DRFx model
is enforced.

In general, each of the sets illustrated in the Venn diagram is dis-
tinct: there exists some element in each set that is not in any subset.
In some sense this fact implies that our notion of region-conflict de-
tection is just right to satisfy the two main DRFx properties. On the
one hand, it is possible for a racy program execution to nonetheless
be region-conflict free. In that case the execution is guaranteed to
be SC, so there is no need to signal an MM exception. This situation
was described above for the example in Figure 3(b). On the other



X* x = null;
bool init = false;

// Thread t // Thread u
A: lock(L); E: lock(M)
B: x = new X(); F: if(init)
C: init = true; G: x->f++;
D: unlock(L); H: unlock(M)

// Thread t // Thread u

A: lock(L);
C: init = true;
B: x = new X();
D: unlock(L);

E: lock(M)
F: if(init)
G: x->f++;
H: unlock(M)

// Thread t // Thread u

A: lock(L);
E: lock(M)

C: init = true;
F: if(init)
G: x->f++;

B: x = new X();
D: unlock(L);

H: unlock(M)
(a) (b) (c)

Figure 3. (a) Program with a data race. (b) Interleaving that does not expose the effect of a compiler reordering. (c) Interleaving that does.

for(i=0; i<n; i++)
sum += a[i];

(a)

reg = sum;
for(i=0; i<n; i++)
reg += a[i];

sum = reg;

if(n>0) {
reg = sum;
for(i=0; i<n; i++)
reg += a[i];

sum = reg;
}

(b) (c)

Figure 4. A transformation that introduces a read and a write.

hand, it is possible for an SC execution to have a concurrent region
conflict and therefore trigger an MM exception. Although the exe-
cution is SC, it is nonetheless guaranteed to be racy. For example,
consider again the program in Figure 3(a). Any execution in which
instructions B and C are not reordered will be SC, but with the re-
gionization described earlier some of these executions will trigger
an MM exception.

2.8 The Compiler and the Hardware Contract

The compiler and hardware are allowed to perform any transforma-
tion within a region that is consistent with the single-thread seman-
tics of the region, with one limitation: the set of memory locations
read (written) by a region in the original program should be a su-
perset of those read (written) by the compiled version of the region.
This constraint ensures that an optimization cannot introduce a data
race in an originally race-free program.

Many traditional compiler optimizations (constant propagation,
common subexpression elimination, dead-code elimination, etc.)
satisfy the constraints above and are thus allowed by the DRFx

model. Figure 4 describes an optimization that is disallowed by our
model. Figure 4(a) shows a loop that accumulates the result of some
computation in the sum variable. A transformation that allocates a
register for this variable is shown in Figure 4(b). The variable sum

is read into a register at the beginning of the loop and written back
at the end of the loop. However, on code paths in which the loop
is never entered, this transformation introduces a spurious read and
write of sum. While such behavior is harmless for sequential pro-
grams, it can introduce a race with another thread modifying sum.
One way to avoid this behavior is to explicitly check that the loop
is executed at least once, as shown in Figure 4(c). The DRFx model
allows the transformation with this modification, although our cur-
rent compiler simply disables the transformation. In spite of this,
the experimental results in Section 5 indicate that the performance
reduction due to lost optimization potential is quite reasonable, on
average 3.25% on our benchmarks.

In addition to obeying the requirement above, the hardware is
also responsible for detecting conflicts on concurrently executing
regions. While performing conflict detection in software would

avoid the need for special-purpose hardware, conflict detection in
software can lead to unacceptable runtime overhead due to the
need for extra computation on each memory access. On the other
hand, performing conflict detection in hardware is efficient and
lightweight. Sun’s TM support in the Rock processor has demon-
strated that conflict detection is feasible in hardware [13]. DRFx

hardware can actually be simpler than TM hardware, as we do not
require speculation support. Further, unlike in a TM system, the
DRFx compiler can partition a program into regions of bounded
size, thereby further reducing hardware complexity by safely al-
lowing conflict detection to be performed with fixed-size hardware
resources.

3. Formal Description of DRFx

In this section we describe our formalization of the DRFx model.
We introduce preliminary notation and definitions in Section 3.1.
Section 3.2 formally presents the requirements that DRFx places
on the compiler and establishes two key lemmas relating a source
program to the output of a DRFx-compliant compiler. In Section 3.3
we formalize the responsibilities of the execution environment and
establish two important properties of a DRFx-compliant execution.
Finally, Section 3.4 uses these results to establish the properties
of the DRFx model. We omit full proofs here but have made them
available in a companion technical report [29].

3.1 Preliminary Definitions

A program P is a set of threads T1, T2, · · · , Tn where each thread
is a sequence of deterministic instructions including:

• regular loads and stores (regular accesses)

• atomic loads and stores (atomic operations)

• branches and arithmetic operations on registers

• a special END instruction indicating the end of a thread’s exe-
cution

• a FENCE instruction used only in compiled programs

Note that we assume the source language and target language
are the same (actually the source language is a subset of the target
language), so both source programs and compiled programs are
represented in the same way. An argument extending the results
to a high-level source language will be presented later.

We assume the semantics of our language is given in terms
of how an instruction changes a machine state M that contains
shared global memory locations as well as a separate set of local
registers for each thread. This semantics dictates how a thread’s

abstract execution proceeds. We write (M, I) −→T (M̂, Î) to
mean that executing instruction I in machine state M results in

machine state M̂ with Î poised to execute next in thread T . We

write (M, I) −→∗
T (M̂, Î) to indicate several steps of execution

(transitive closure of above). A FENCE instruction behaves as a no-



op: (M, FENCE) −→T (M, I) where I is the next instruction in
program order in T .

We extend the notion of a thread’s abstract execution to a pro-
gram by having execution proceed by choosing any thread and ex-
ecuting a single instruction from that thread. We write:

(M, {I1, · · · , Ij , · · · , In}) −→P (M̂, {I1, · · · , Îj , · · · , In})

if and only if (M, Ij) −→Tj
(M̂, Îj). We call one or more of these

steps a (partial) abstract sequential execution:

(M, {I1, · · · , In}) −→
∗
P (M̂, {Î1, · · · , În}).

We define a behavior to be a pair of machine states and denote
it by Mstart  Mend. Intuitively, we use behaviors to describe
a starting machine state and a machine state that is arrived at
after executing some or all of a program. The standard notion of
sequential consistency can be phrased in terms of behaviors and
abstract sequential executions.

Definition 1. M0  M is a sequentially consistent behav-
ior for a program P , or M0  M is SC for P , if there ex-
ists an abstract sequential execution (M0, {I10, · · · , In0}) −→∗

P

(M, {END, · · · , END}) where each Ii0 is the first instruction in
thread Ti. We say that M0  M is a sequentially consistent par-
tial behavior for P if there is a partial abstract sequential execution
(M0, {I10, · · · , In0}) −→

∗
P (M, {I1, · · · , In}) where each Ii0 is

the first instruction in thread Ti.

We say that two memory access instructions u and v conflict if
they access the same memory location, at least one is a write, and
at least one is not an atomic operation. We say that a program has a
data race if it has a partial abstract sequential execution where two
conflicting accesses are ready to execute. More formally:

Definition 2. A program P has a data race if for some M0, u,
v, (M0, {I10, · · · , In0}) −→

∗
P (M, {I1, · · · , u, · · · , v, · · · , In})

where u and v are conflicting accesses. We shall say that such a
partial abstract sequential execution exhibits a data race.

3.2 DRFx-compliant Compilation

A partition Q of a thread T is a set of disjoint, contiguous sub-
sequences of T that cover T . Call each of these subsequences a
region. Regions will be denoted by the metavariable R.

Definition 3. A partition Q is valid if:

• each atomic operation and END operation is in its own region

• each region has a single entry point (i.e. every branch has a
target that is either in the same region or is the first instruction
in another region)

We extend the notion of abstract execution of a thread from
instructions to regions as follows. We write (M,R) −→T (M̂, R̂)
if (M, I1) −→T · · · −→T (M̂, In) where

• I1 is the first instruction in R,

• Ik 6= I1 for each 2 ≤ k ≤ n,

• I2, · · · , In−1 ∈ R, and

• In is the first instruction in region R̂ (it is possible that R̂ = R).

For threads with valid partitions, (M,R) −→T (M̂, R̂) intu-
itively means that beginning with memory in state M , executing
the instructions in R in isolation will result in memory having state

M̂ and T ready to execute the first instruction in region R̂. Extend-
ing this to programs, an abstract region-sequential execution is one
where a scheduler arbitrarily chooses a thread and executes a single
region from that thread. We define region-serializable behavior for
a program P in terms of an abstract region-sequential execution.

Definition 4. We say M0  M is region-serializable behavior,
or RS, for P with respect to thread partitions Qi if there is an ab-
stract region-sequential execution (M0, {R10, · · · , Rn0}) −→∗

P

(M, {R1, · · · , Rn}) where each Ri0 is the first region given by

partition Qi for thread Ti.

Now let us introduce notation for the read and write sets for
a region given a starting memory state. read(M,R) is the set of
locations read when executing R in isolation starting from memory
state M . write(M,R) is defined similarly. Note that these are sets
and not sequences.

We can now describe the requirements our model places on a
compiler. Consider a compilation P y P ′ where each thread Ti

in P is partitioned into some number, mi, of regions by Qi. So we
have, P = {T1, · · · , Tn} = {R11 · · ·R1m1

, · · · , Rn1 · · ·Rnmn}.
Furthermore, the compiled program has the same number of
threads and each is partitioned by some Q′

i into the same num-
ber of regions as in the original program. So we have, P ′ =
{R′

11 · · ·R
′
1m1

, · · · , R′
n1 · · ·R

′
nmn

}.
We consider such a compilation to be DRFx-compliant if:

(C1) The partitions Qi and Q′
i are valid.

(C2) For all i, j,M , we have (M,Rij) −→∗
Ti

(M̂ ,Rik) ⇐⇒

(M,R′
ij) −→

∗
T ′
i
(M̂,R′

ik)

(C3) For all i, j,M , we have read(M,Rij) ⊇ read(M,R′
ij) and

write(M,Rij) ⊇ write(M,R′
ij)

(C4) Each region R′
ij in the compiled program contains exactly

one FENCE operation and it is the first instruction.

Intuitively, the above definition of a DRFx-compliant compila-
tion requires that a DRFx-compliant compiler choose valid parti-
tions for a program’s threads, perform optimizations only within
regions, maintain the read and write sets of each region, and in-
troduce FENCE instructions to demarcate region boundaries. These
FENCE instructions communicate the thread partitions chosen by a
DRFx-compliant compiler to the execution environment. In the next
section, we will refer to these as the fence-induced thread partitions
of a program.

We now state the two key lemmas we have proven for DRFx-
compliant compilations.

Lemma 1. If P y P ′ is a DRFx-compliant compilation and
M0  M is a region-serializable behavior for P ′ with respect
to its fence-induced thread partitions, then M0  M is a (partial)
sequentially consistent behavior for P .

Proof Sketch. We can transform an abstract region-sequential
execution of P ′ to an abstract region-sequential execution of P due
to (C2). Clearly an abstract region-sequential execution qualifies as
an abstract sequential execution. �

Lemma 2. If P y P ′ is a DRFx-compliant compilation and P ′

has a data race, then P has a data race.

Proof Sketch. Essentially, we take a partial abstract sequential
execution of P ′ that exhibits the data race and reorder the trace
maintaining program dependencies to achieve a trace with a region-
sequential prefix and a suffix containing the race. The reordering
relies on (C1). We then use (C2) and (C3) to construct an abstract
sequential execution of P exhibiting a data race. �

3.3 DRFx-compliant Execution

We now formally specify the requirements that the DRFx model
places on a machine executing a program. We will represent a
(partial) relaxed execution, E, of a program as a 5-tuple E =
(M0, T , EO, FO, err) where M0 is the initial machine state, T is
the set of individual thread traces (T = {dT1, · · · , dTn}), EO



is a relation on operations that specifies the order in which each
pair of conflicting operations occurs, FO is a global, total order on
FENCE operations, and err is either ∅ or a single element of EO,
u <EO v. Intuitively, a non-empty err will indicate a conflicting
pair of accesses in concurrently executing regions. We require that
EO and FO are each consistent with each thread trace. In particular,
if u <EO v for two operations u and v in the same thread trace, then
u must occur before v in that thread trace, and similarly for each
pair f <FO f ′ from the same thread trace.

We say that an execution E = (M0, T , EO, FO, err) is well-
formed for a program P if each operation in a thread trace dTi is
an operation from thread i in P and each thread trace dTi satis-
fies intra-thread data, control, and fence dependencies. The fence
dependencies ensure that all operations program-ordered before
a FENCE complete before it, and all operations program-ordered
after a FENCE complete after it. We model all of these depen-
dencies as a partial order D on operations from the same thread
trace. Well-formedness also requires that EO|wr ∪ D is acyclic,
where EO|wr is the subset of EO containing only write-to-read (i.e.
read-after-write, or true) dependencies (u <EO|wr

v ⇐⇒ u <EO

v ∧ u a write ∧ v a read). This ensures that E has a unique, well-
defined behavior M0  M .

Before defining the restrictions we place on a relaxed execution,
we define an order on memory accesses that is derived from E. For
a memory access u ∈ dTi ∈ T , define postFence(u) to be the
closest FENCE operation that executed after u in dTi, or ∅ if no such
operation exists. We use this notion to induce an order on memory
accesses based on the fence order FO. Two memory accesses are
weakly-fence-ordered, u <WFO v, if postFence(u) 6= ∅ and either
postFence(u) ≤FO postFence(v) or postFence(v) = ∅.

We also define an operator on a partial relaxed execution that
truncates incomplete thread traces to their most recent FENCE op-
eration, removes pairs from EO if at least one operation in the pair
has been truncated from its thread trace, and sets err to ∅. We no-
tate this as follows:
⌊(M0, T , EO, FO, err)⌋ = (M0, ⌊T ⌋, ⌊EO⌋, FO, ∅)

We call an execution E = (M0, T , EO, FO, err) DRFx-compliant
if E satisfies one of the following conditions, which formalize our
notion of region-conflict detection:

(E1) err = ∅ and for all operations u and v, u <EO v ⇒ u <WFO v
or

(E2) All of the following conditions hold:

• err = u <EO v

• u and v are from different threads

• postFence(u) = ∅ and postFence(v) = ∅

• for all operations w and z we have w <WFO z ⇒ z ≮EO w

• ⌊E⌋ DRFx-compliant

We refer to a DRFx-compliant execution satisfying (E1) as exception-
free and one satisfying (E2) as exceptional.

We have proven two key results for DRFx-compliant executions.

Lemma 3. Given a well-formed exception-free DRFx-compliant
execution E = (M0, T , EO, FO, ∅) of a program P with valid
fence-induced thread partitions, ⌊E⌋ exhibits region-serializable
behavior w.r.t. to the fence-induced partitions.

Proof Sketch. The total order on fences FO can be viewed as
a “commit” order for fence-induced regions where a region R1

commits before R2 if the fence following R1 is ordered by FO

before the fence following R2. From (E1) we know that, even
if portions of R1 and R2 executed concurrently, any conflicting
accesses between them are ordered by EO in one direction, from
the access in R1 to the access in R2. This allows us to ensure that

the EO relation lifted to regions is acyclic, which implies that the
execution is serializable w.r.t. to the regions. �

Lemma 4. If there is a well-formed exceptional DRFx-compliant
execution of a program P with valid fence-induced thread parti-
tions, then P has a data race.

Proof Sketch. From (E2) we have two conflicting accesses in
regions that are not yet committed in the sense that no FENCE has
executed after the access in either thread. Also from (E2) we can
show that the execution has a region-serializable prefix. This allows
us to construct an abstract sequential execution in which the two
conflicting accesses are both ready to execute, thereby exhibiting a
data race in P . �

3.4 DRFx Guarantees

Putting together the lemmas from Sections 3.2 and 3.3, we can
prove the following theorem, which ensures that a DRFx-compliant
compiler along with a DRFx-compliant execution environment en-
force our DRF and Soundness properties.

Theorem 1. If P y P ′ is a DRFx-compliant compilation, and
E is a complete DRFx-compliant execution of P ′ with behavior
M0  M , then either:

• E is exception-free and M0  M is sequentially consistent
behavior for P
or

• E is exceptional and P contains a data race.

The arguments presented above were developed entirely in the
context of a low-level machine language. The results can how-
ever be extended to a high-level source language in the follow-
ing way. Imagine a “canonical compiler” that translates each high-
level statement into a series of low-level operations that read the
operands from memory into registers, perform appropriate arith-
metic operations on the registers, and then store results back to
memory. Any optimizations are then applied after this canonical
compiler is run. We can extend our results to the high-level lan-
guage simply by requiring that the compiler choose a region par-
tition that does not split up instructions that came from the same
high-level source language expression or statement.

The definition of a DRFx-compliant execution and Lemma 3
establish that all DRFx-compliant executions are region-serializable
up to the latest completed region in each thread. Combining this
fact with Lemma 1, we can see that, up to the completed regions,
an execution is SC with respect to the original source program.
Therefore, if we require that system calls are placed in their own
region and that they are only passed thread-local data, we ensure
that whatever behavior they exhibit would have been reachable in
an SC execution of the original program. This establishes the Safety
property of our DRFx model.

4. Compiler and Hardware Design

There are several possible compiler and hardware designs that
meet the requirements necessary to ensure the DRFx properties
as described in the previous section. In this section we describe
one concrete approach, which is evaluated in the next section. Our
approach is based on two key ideas crucial for a simple hardware
design.
Bounded regions: First, the compiler bounds the size of each re-
gion in terms of number of memory bytes it can access using a
conservative static analysis. Bounding ensures that the hardware
can perform conflict detection with fixed-size data structures. De-
tecting conflicts with unbounded regions in hardware would require
complex mechanisms, such as falling back to software on resource
overflow, that are likely to be inefficient.



Soft fences: When splitting regions to guarantee boundedness,
the compiler inserts a soft fence. We distinguish this from regu-
lar fences discussed in Section 3, and call the latter hard fences in
the rest of the paper. Hard fences are necessary to respect the se-
mantics of synchronization accesses and guarantee the properties of
DRFx. Soft fences merely convey to the hardware the region bound-
aries across which the compiler did not optimize. These smaller,
soft-fence-delimited regions ensure that the hardware can soundly
perform conflict detection with fixed-size resources. But, we ob-
serve that it is in fact safe for the hardware to reorder instructions
across soft fences whenever hardware resources are available, es-
sentially erasing any hardware performance penalty due to our use
of bounded-size regions.

4.1 Compiler Design

We have modified the LLVM compiler [24] to be DRFx-compliant.
As specified by the requirements (C1)-(C4) in the previous section,
to ensure the DRFx properties the compiler must simply partition
the program into valid regions, optimize only within regions, avoid
inserting speculative memory accesses, and insert fences at region
boundaries.

4.1.1 Inserting Hard Fences for DRF and Safety

A hard fence is similar to a traditional fence instruction. The hard-
ware ensures that prior instructions have committed before allow-
ing subsequent instructions to execute. To guarantee SC for race-
free programs, the compiler must insert a hard fence before and
after each synchronization access. On some architectures, the syn-
chronization access itself can be translated to an instruction that has
hard-fence semantics (e.g., the atomic xchg instruction in AMD64
and Intel64 [7]), obviating the need for additional fence instruc-
tions. In our current implementation, the compiler treats all calls
to the pthread library and lock-prefixed memory operations as
“atomic” accesses. In addition, since the LLVM compiler does not
support the atomic keyword proposed in the new C++ standard,
we treat all volatile variables as atomic. All other memory oper-
ations are treated as data accesses.

To guarantee DRFx’s Safety property, the compiler also inserts
hard fences for each system call invocation, one before entering the
kernel mode and another after exiting the kernel mode. Any state
that could be read by the system call is first copied into a thread-
local data structure before the first hard fence is executed. This
approach ensures that the external system can observe only portions
of the execution state that are reachable in some SC execution.

To insert a hard fence, we used the llvm.memory.barrier

intrinsic in LLVM with all of its parameters set to true. This ensures
that the LLVM compiler passes do not reorder memory operations
across the fence. Also, the LLVM’s code generator translates it
correctly to an mfence instruction in x86 which restricts hardware
optimizations across the fence.

4.1.2 Inserting Soft Fences to Bound Regions

In addition to hard fences, the compiler inserts soft fences to bound
the number of memory operations in any region. We employ a sim-
ple and conservative static analysis in the compiler to bound the
number of memory operations in a region. While overly small re-
gions do limit the scope of compiler optimizations, our experiments
in Section 5 illustrate that the performance loss due to this limita-
tion is about 1.7% on average. After inserting all the hard fences
described earlier, the compiler performs function inlining. We then
insert soft fences on the inlined code. A soft fence is conservatively
inserted before each function call and return, and before each loop
back-edge. Finally, we insert additional soft fences in a function
body as necessary to bound region sizes. The compiler performs a
conservative static analysis to ensure that no region contains more

than R memory operations, thereby bounding the number of bytes
that can be accessed by any region. The constant R is determined
based on the size of hardware buffers provisioned for conflict de-
tection.

The above algorithm prevents compiler optimizations across
loop iterations, since a soft fence is inserted at each back-edge.
However, we could apply a transformation analogous to loop tiling
which has the effect of placing a soft fence only once every R/L
iterations, where L is the maximum number of memory operations
in a single loop iteration. Restructuring loops in this way would
allow us to safely perform compiler optimizations across each
block of R/L iterations.

4.1.3 Compiler Optimization

After region boundaries have been determined, the compiler may
perform its optimizations. By requirements (C2) and (C3), any se-
quentially valid optimization is allowed within a region, as long as
it does not introduce any speculative reads or writes. As such, in our
current implementation, we explicitly disable all speculative opti-
mizations in LLVM.2 We note, however, that there are several use-
ful speculative optimizations that have simple variants that would
be allowed by our model. For example, instead of inserting a spec-
ulative read, the compiler could insert a special prefetch instruction
which the hardware would not track for purposes of conflict de-
tection. The Itanium ISA has support for such speculation [38] in
order to hide the memory latency of reads. Also, as shown earlier
in Figure 4, loop-invariant code motion is allowed by our model, as
long as the hoisted reads and writes are guarded to ensure that the
loop body will be executed at least once.

4.2 Hardware Support

The hardware support required for DRFx is similar to conflict de-
tection in hardware transactional memory (HTM) systems, such as
Sun’s Rock processor [13]. Our basic hardware design adapts the
lazy conflict detection approach of Hammond et al. [18]. Our sup-
port is in some ways simpler than that of HTM, since we throw an
exception upon detecting a conflict rather than performing rollback
and re-execution. On the other hand, our conflict detection must be
precise since a false conflict would result in a false MM exception,
while a false conflict in an HTM system is acceptable as it simply
causes an unnecessary re-execution.

4.2.1 Basic Hardware Design

HTM systems commonly detect conflicts by maintaining read and
write access bits per cache line. However, this approach can lead to
false conflicts if two different memory words accessed concurrently
in different threads happen to be assigned to the same cache line. To
address this problem, we track read and write accesses of a region
using a circular queue buffer that we call a region buffer and employ
lazy conflict detection.

At the beginning of a region, a region-start record is inserted
into the region buffer along with the current timestamp of the
processor (obtained by executing the x86 RDTSC instruction). On
committing a read or a write operation, the processor core inserts an
entry into the buffer consisting of the memory operation’s address
along with a bit indicating whether the operation was a read or a
write, and three bits indicating the number of bytes accessed by
the operation (for a total of 68 bits per buffer entry). At the end of
a region, a region-end log is inserted into the region buffer along
with the current timestamp.

2 The LLVM implementation has functions called
isSafeToSpeculativelyExecute, isSafeToLoadUnconditionally
and isSafeToMove, which we modified to return false for both loads
and stores.



We perform conflict detection lazily, only once when all of a
region’s instructions have completed. At that point, the processor
core P broadcasts the region’s read/write sets along with the start
and end timestamps to all the other processor cores. Each remote
processor core checks if there is any read-write or write-write con-
flict with its region buffer. On detecting a conflict, an MM excep-
tion is thrown. Otherwise, each core sends an acknowledgment to
P . On receiving acknowledgments from all the processor cores, P
commits its region by clearing its entries in the region buffer.

Because we detect conflicts lazily, it is possible that the execu-
tion is in a non-SC state for some time before the violation is de-
tected. This could lead to two problems which we need to address.
First, it is possible for a non-SC execution to cause an exception
other than an MM exception (e.g., a null dereference) to be thrown,
halting the program before we detect the conflict and violating the
DRFx’s Soundness property. To prevent this problem, the hardware
performs conflict detection immediately when an instruction in a
region encounters an exception. If a conflict is detected, then an
MM exception is thrown instead of the original exception. Oth-
erwise, the execution is SC and we can safely throw the original
exception.

Second, a non-SC execution might enter a non-terminating loop
that is not possible in an SC execution. Therefore, the hardware
eagerly performs conflict detection if a region has executed for
more than some constant C cycles. If a conflict is detected, an MM
exception is thrown. Otherwise, execution continues as usual and
the hardware waits another C cycles or until the end of the region,
whichever comes first, to perform conflict detection. Note that our
use of bounded regions does not solve this problem, as we only
bound the number of memory operations performed rather than the
number of instructions.

4.2.2 Handling Hard and Soft Fences

The current region ends whenever either a hard or soft fence in-
struction is encountered. If the fence terminating a region is a hard
fence, the processor core that executed the region stalls until all the
memory operations executed as part of the region completes, which
requires it to wait for all the outstanding coherence operations to
finish. Once they finish, conflict detection is initiated as described
above.

The hardware cannot safely reorder memory operations across
hard fences since that could violate the semantics of a synchro-
nization access and introduce a false race. However, the hardware
can safely reorder memory operations across regions delimited by a
soft fence. Because the two adjacent regions have no synchroniza-
tion accesses or system calls, it is impossible for such reordering
to introduce a false race: if a reordering causes a conflict with a
concurrent region on another processor, then the original program
must have a data race.

Therefore, on encountering a soft fence the processor immedi-
ately continues its execution of the next region without stalling.
When all the outstanding coherence operations for the first region
finish, its end time is recorded in the region buffer, and then the
processor core follows the same protocol as described earlier to
commit that region. To commit a region, a processor core deletes
all the entries corresponding to that region from its region buffer,
making space for recording future memory operations.

A processor core can only run out of region buffer space due to
the overlapped execution of multiple regions, since our approach
to bounding regions prevents conflict detection of any single re-
gion from overflowing hardware resources. When this situation is
encountered, the core simply has to stall and wait for the earliest
uncommitted region to complete, which will happen once all out-
standing coherence operations for that region are finished.

In this way, the hardware can overlap the execution of most re-
gions, achieving performance close to that of DRF0 relaxed mem-
ory models while maintaining the DRFx guarantees.

4.2.3 Optimizing Conflict Detection

There are opportunities for optimizing the above hardware design
in several ways. First, we can avoid inserting the same address re-
dundantly into the region buffer. This can be achieved by keeping
track of a read conflict bit and a write conflict bit for each byte in
each processor core’s L1 cache. Second, we can use a read and a
write bloom filter [34] to accelerate conflict detections. To com-
mit a region, only the bloom filters’ signatures are broadcasted to
the remote processors. On detecting a potential conflict, a precise
conflict detection is initiated to avoid false conflicts. Third, if there
were no cache miss, cache evictions, and coherence downgrade re-
quests (invalidate or request for shared access) during the execution
of a region, then it implies that no other processor core has a con-
flict. Therefore, it is safe to commit that region without checking
for conflicts with other processors. We expect this to be a common
case.

5. Evaluation

We implemented a DRFx-compliant compiler using LLVM [24],
evaluated the compiler with programs from the Parsec [4] bench-
mark suite, and developed a profiling tool using Pin [27] to study
the properties of regions created by this compiler. We used Parsec’s
sim-large input set for our evaluation, and each program was con-
figured to use four threads. To perform our experiments, we used
a 64-bit machine with Intel Core-2 2.40 GHZ Quad CPU, 4MB
cache size, and 4GB RAM. For each experiment, we executed each
program 35 times and took an average of their execution times.

Figure 5 shows the performance overhead due to several restric-
tions imposed on the compiler and hardware optimizations. The
overheads are normalized to the performance of a binary that is
compiled with the unmodified LLVM compiler at -O3 optimization
level.

The first overhead we study is due to disabling compiler opti-
mizations and hardware reorderings when we insert hard fences for
synchronization calls and system calls but without soft fences. The
overhead includes that from restricting the scope of optimizations
as well as from turning off all speculative optimizations done in
LLVM. This experiment measures the overhead we would incur if
we had “ideal” hardware with support for unbounded regions. We
can see that the compiler cost due to hard fences is about 0.3% on
average (maximum 2.53% for facesim). When we add the hard-
ware cost for executing hard fences, the average overhead increases
to about 1.55%.

Next we measured the cost of inserting soft fences to bound
the region sizes. We used the static analysis described in Section 4
with a bound of 512 memory operations per region, which would
require each processor core to have a region buffer of roughly 4KB
or larger (512 entries * 68 bits/entry). Bounding the regions using
soft fences incurs an additional 1.7% overhead which is caused
by restricting compiler optimizations to smaller regions. The soft
fences were translated to nops in the compiled binary and thus did
not restrict hardware optimization.

To measure the importance of distinguishing soft fences, we
also evaluated a version that executes soft fences as hard fences
(using mfence) on our Intel Core-2 machine. This version suffered
a significant performance degradation, about 92% on average (max-
imum is 145.5% for facesim). The main reason for this overhead
is that the hardware is now restricted from reordering and overlap-
ping memory operations from soft-fence delimited regions. How-
ever, as discussed in Section 4.2.2, we can indeed allow hardware
to optimize across soft fences. Thus, if we have efficient hardware
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Figure 7. Average number of instructions executed in a region.

support for conflict detection, we expect that the only main sources
of performance overhead in DRFx would be the compiler and hard-
ware cost due to hard fences (1.55%), plus the compiler cost of soft
fences (1.7%) which sums up to a total of about 3.25% overhead
on average.

Figure 6 shows the maximum number of unique memory bytes
(footprint) accessed in any region. The graph shows results for two
configurations. One is for binaries that contains only hard fences,
with no soft fences inserted, while the other is for binaries that ad-
ditionally contain soft fences used to bound regions. As we can see,
without region bounding there can be regions that access over 34
million unique memory bytes (ferret), and the average footprint
of a region (not shown in the figure) is as high as about 800,000
memory bytes for blacksholes. With soft fences inserted, the
maximum footprint is bounded within 776 memory bytes (ferret)
(the upper limit was set to 512*8 bytes in the static analysis). The
large size of unbounded regions implies that hardware detection
with unbounded regions is likely to be inefficient.

Figure 7 shows the average number of instructions executed in
a region. With soft fences inserted, the regions are much smaller, as
expected. While soft fences allow for bounded conflict detection,
the hardware may still freely reorder instructions across them. The
hardware may not reorder instructions across hard fences, but as we
can see the number of instructions between consecutive hard fences

is sufficiently large to allow for memory-level parallelism close to
that of a relaxed memory model implementation.

6. Related Work

6.1 Reducing the Cost of Sequential Consistency

Weak memory models are not necessary if both the compiler and
the hardware can guarantee SC without prohibitive performance
cost. Prior work has explored this possibility.

Several static analyses insert fences in a program to guarantee
SC. Shasha and Snir proposed the delay sets algorithm for this pur-
pose [36]. Krishnamurthy and Yelick [21] proved that computing a
minimal delay set (i.e., set of fences) for a program is NP-complete.
Two recent projects, Titanium [20] and Pensieve [37], extend the
delay set algorithm to reduce the number of fences needed to guar-
antee SC. These analyses leverage a number of techniques to deter-
mine whether a memory location can potentially be involved in a
race, including sharing inference [25], pointer alias analysis, and
thread escape analysis. These techniques require fairly-complex
whole-program analyses that are difficult to scale to large pro-
grams, especially for languages like C++. In contrast, our DRFx

model allows the compiler and hardware to freely perform sequen-
tially valid reorderings (other than speculative accesses) within a
region (in addition, hardware can optimize across regions delim-
ited by soft fences) without requiring any additional static analysis.



On the other hand, DRFx only guarantees SC for data-race free pro-
grams.

At the hardware level, various forms of speculation have been
proposed to reduce the performance overhead of SC [5, 11, 33].
Of course, these techniques can only guarantee SC of the com-
piled program and cannot detect the non-SC behavior introduced by
the compiler. Recent work on the BulkCompiler [3] addresses this
problem in the context of Java programs that use locks. Even then,
all these hardware proposals above require speculative execution,
checkpointing, and rollback in case of conflicts, which tremen-
dously increases the hardware complexity. Unlike ours, these pro-
posals require possibly unbounded resources and thus have to in-
clude appropriate mechanisms to handle overflow cases.

6.2 Support for a Memory Model Exception

Adve et al. [2] proposed to detect data races at runtime using hard-
ware support. Recently, Boehm [6] provided an informal argument
for integrating an efficient always-on data-race detector to extend
the DRF0 model by throwing an exception on a data race. How-
ever, detecting data races either incurs 8x or more performance
overhead in software [14] or incurs significant hardware complex-
ity [30, 32] despite many proposed optimizations to the basic tech-
nique. The large overhead comes from the need to dynamically
build the happens-before relation [22] between pairs of memory
operations. Furthermore, when a memory operation occurs, it may
need to be compared with other memory operations that occurred
arbitrarily “far” in the past (which means that a hardware detec-
tor would have to somehow maintain information for evicted cache
blocks as well). In contrast, the hardware support required for DRFx

is much simpler as it requires only that we maintain a set of ac-
cesses per region and only compare two regions’ sets if the regions
execute concurrently. The complexity is further simplified by en-
suring that the sizes of regions are bounded.

Our work builds on that of Gharachorloo and Gibbons [16], who
recognized that it suffices to detect SC violations directly rather
than data races. They describe a simple conflict detection algorithm
that ensures our DRF and Soundness properties, but only with
respect to the compiled version of a program. Their detection is not
sufficient to guarantee SC in terms of the original program, because
it ignores the effects of possible compiler reorderings [12, 16]. We
extend their approach with a notion of regions to safely allow such
compiler reorderings while still detecting all SC violations.

In concurrent work to ours, Lucia et al. [26] have also pro-
posed a hardware exception mechanism to simplify memory con-
sistency models for programming languages. Lucia et al. ensure a
stronger property than SC, namely atomicity of synchronization-
free regions, which are maximal regions of code delimited by syn-
chronization operations. This property can be quite useful for un-
derstanding and debugging concurrent programs. However, it in-
troduces additional complexity for conflict detection as they have
to deal with unbounded regions. Also, conflicts must be caught as
soon as they occur to prevent non-SC state being exposed to sys-
tem calls. Finally, like DRFx, they too have to avoid false conflicts.
Performing precise and eager conflict detection at byte granular-
ity for unbounded-size regions is arguably more complex than our
lazy conflict detection with bounded regions. We achieve efficiency
in spite of smaller bounded regions by distinguishing soft fences
from hard fences and allowing the hardware to optimize across soft
fences.

6.3 Data-Race Freedom by Construction

Rather than signaling a run-time memory model exception, the lim-
itations of the DRF0 model could be resolved by preventing racy
programs from being written in the first place. Several static type
systems have been proposed for this purpose (e.g., [8, 9, 15]). While

type systems provide a useful discipline on programmers to ensure
race-freedom, they typically only account for lock-based synchro-
nization and will reject race-free programs that use other synchro-
nization mechanisms. Further, many correct programs that employ
locks will be conservatively rejected due to imprecise information
about pointer aliasing. More precision in static race detection can
be achieved through interprocedural analysis [31], but such whole-
program analyses tend to be heavyweight.

6.4 Transactional Memory Systems

Hammond et al. [18] proposed a memory consistency model based
on a transactional programming model [19]. In their approach, the
programmer and compiler cooperate to ensure that each instruction
is part of some transaction. The hardware then ensures that each
transaction executes atomically, which in turn guarantees SC. This
approach is applicable for programs written using explicit transac-
tions, whereas DRFx is useful for programs written using locks and
other traditional forms of synchronization.

Our hardware conflict detection algorithm is similar to the one
proposed by Hammond et al. [18] but is simplified in a few ways.
First, transactions require additional runtime support for versioning
and rollback, which adds overhead and is difficult across system
events such as I/O. Second, because programmers define their own
transactions, the system cannot bound their size, whereas regions
in DRFx are constructed by the compiler and so are easily bounded.
However, transactional memory systems can incur false conflicts at
the expense of extra overhead, while conflict detection in the DRFx

model must be precise, which adds some extra complexity in the
hardware.

7. Conclusion

We have proposed the DRFx memory model for concurrent pro-
gramming languages. Like prior data-race-free memory models,
DRFx guarantees that all executions of a race-free program will be
sequentially consistent. However, while data-race-free models typ-
ically give no or weaker guarantees for racy programs, DRFx guar-
antees that the execution of a racy program will also be sequentially
consistent as long as a memory model exception is not thrown. In
this way, DRFx guarantees safety, allows compiler writers to ensure
correctness of their optimizations, and also enables programmers to
easily reason about all programs using the intuitive SC semantics.

We described an approach to ensuring the DRFx properties
through a novel form of cooperation between the compiler and the
hardware. The compiler partitions a program into regions and can
only optimize within a region. By communicating these regions
to the hardware (via fences), we can ensure that both compiler
optimizations and hardware reorderings preserve SC for race-free
programs. We formalized a set of requirements on the compiler and
the hardware and proved that they are sufficient to obey the DRFx

model. We also described a concrete instantiation of the approach,
whereby the compiler creates bounded-size regions and employs
a form of soft fences to allow the hardware more flexibility for
performing its optimizations.
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