
Image Segmentation Using Hardware Forest Classifiers

Neil Pittman, Alessandro Forin
Microsoft Research

Redmond, WA USA

pittman@microsoft.com,

sandrof@microsoft.com

Antonio Criminisi, Jamie Shotton
Microsoft Research

Cambridge, United Kingdom

antcrim@microsoft.com,

jamiesho@microsoft.com

Atabak Mahram

Boston University

Boston, MA USA

mahram@bu.edu

Abstract—Image segmentation is the process of partitioning an

image into segments or subsets of pixels for purposes of further

analysis, such as separating the interesting objects in the

foreground from the un-interesting objects in the background.

In many image processing applications, the process requires a

sequence of computational steps on a per pixel basis, thereby

binding the performance to the size and resolution of the

image. As applications require greater resolution and larger

images the computational resources of this step can quickly

exceed those of available CPUs, especially in the power and

thermal constrained areas of consumer electronics and mobile.

In this work, we use a hardware tree-based classifier to

solve the image segmentation problem. The application is

background removal (BGR) from depth-maps obtained from

the Microsoft Kinect sensor. After the image is segmented,

subsequent steps then classify the objects in the scene. The

approach is flexible: to address different application domains

we only need to change the trees used by the classifiers. We

describe two distinct approaches and evaluate their

performance using the commercial-grade testing environment

used for the Microsoft Xbox gaming console.

Keywords-NUI; FPGA; Smart Cameras; Computer Vision;

Kinect;

I. INTRODUCTION

The Microsoft Kinect is a Natural User Interface (NUI)

device that allows users to interact with computer systems

using their bodies. This technology involves depth sensing

cameras producing images at a rate of 30 frames per second,

and software to process those images. The software tracks

multiple human participants in a scene and identifies their

poses, down to their individual body-parts. This is a

computationally complex process that requires a tremendous

amount of compute resources on the host system, even with

GPU acceleration. The computational requirements limit the

applications and form factors where we can use NUI,

currently ruling out interesting cases such as mobile phones

and tablet computers. All these and more require a lower

power profile, and using dedicated hardware is one way to

handle this load with acceptable power usage.

The existing Microsoft Kinect software pipeline

illustrated in Figure 1 has four stages: Background Removal

(BGR), Body Part Classification, Centroid Calculation, and

Model Fitting.

BGR Image
Segmentation

Depth Image
Body Part

Classification
Centroid

Calculation
Model Fitting User Skeletons

Camera/Depth
Sensor

Kinect NUI Pipeline
User

Application

Figure 1. Microsoft Kinect NUI Pipeline.

The BGR step tags each pixel in the depth map as

belonging to a player or the background. Body Part

Classification further refines the player pixel classification

with the probability of belonging to one of 31 body parts

(head, neck, hands, etc.). This step has previously been

demonstrated in hardware [1]. The third step, Centroid

Calculation, aggregates the probability maps into one or

more centroids, e.g. the specific location of the center of

each body part, for each player. The last step, Model Fitting,

aggregates the centroids into human skeletons, dealing with

noise and occlusions. The Model Fitting step currently is not

computationally intensive and it is performed on the CPU.

Figure 2a shows how on the Microsoft Xbox console, the

first step is performed on the CPU, the second and third on

the GPU, and the last step again on the CPU. The new,

alternative pipeline proposed here is illustrated in Figure 2b.

BGR Image
Segmentation

Depth Image
Body Part

Classification

Centroid
Calculation

Model Fitting

User Skeletons

Camera/Depth
Sensor

Host
 (PC/Xbox)

FPGA/GPU

BGR Image
Segmentation

Depth Image

Body Part
Classification

Centroid
Calculation

Model Fitting

User Skeletons

Camera/Depth
Sensor

Host
 (SOC)

FPGA

a) b)

Figure 2. Comparison of a) the Split Software-hardware

Pipeline and b) the Mostly-hardware Pipeline.

The BGR stage simplifies the body part classification

problem by identifying the islands or subsets of pixels that

likely belong to players. This process is highly sequential,

involving comparison of each active pixel to its neighbors.

Effectively, the BGR job is to decide if each pixel is part of

a human player or not. If a tree based classifier [8] can

learn to identify parts of a body, it stands to reason that it

might also be able to learn to separate a human body from

other objects in the scene. This is the basic hypothesis that

we successfully investigated in this work.

mailto:pittman@microsoft.com
mailto:sandrof@microsoft.com
mailto:antcrim@microsoft.com
mailto:jamiesho@microsoft.com
mailto:mahram@bu.edu

To use NUI in a power-constrained environment we

would prefer to connect the camera directly to the pipeline

(instead of via USB), and to compute as much as possible

within the device before sending the result to the host CPU.

This demands a hardware implementation of BGR. The

existing Microsoft Xbox software implementation is

complex and has proven challenging to port to hardware. In

this work we propose the alternative, novel method of using

our algorithm (“Forest Fire”) [8] to perform the BGR step.

The input depth image is sent to a first classifier that

separates the interesting portions (e.g. the humans) from the

background. The regular second stage then operates on the

filtered image. Both stages are implemented in hardware,

using two replicas of the classifier each trained on different

data sets.

We also evaluate a second approach, whereby we fuse the

first and second phases together, and apply the body part

classifier directly to an un-segmented image. The single

classifier performs BGR and body part labeling at the same

time. This second approach is much simpler, but results in

lower quality and worse performance.

Section II presents some background material, including

related work. Section III describes the systems we realized,

and expands on specific problems like floor detection,

player tagging, and forest training. Section IV reports our

results, and Section V concludes.

II. BACKGROUND

A. Previous Work on Image Segmentation

Uses of hardware acceleration for the image

segmentation problem have been limited, with most of the

work surveyed focused on the acceleration of software

algorithms. Application domains include image quality,

general vision applications, player identification and body

tracking, medical imaging, and 3D world reconstruction.

Both our work and the work of Oberg et al. [1] are based

on Criminisi & Shotton [8], who use decision forest

classifiers in a range of computer vision applications,

including identifying body parts in the Microsoft Kinect.

We now further extend it to perform image segmentation in

hardware. Yin et al. [7] used a software classification forest

to perform image segmentation on non-depth sensing

webcams. This technique compares well to stereo camera

approaches but with a peak of 7.7 fps, lacks the performance

to be useful for our real-time application. Kinsella [2]

improves the image quality of webcams, realizing several

image segmentation algorithms on a Digilent Spartan 3

Evaluation board (Grey-Scale Histogram, Contrast

Stretching, Histogram Equalized Stretch, Bimodal

Distribution and Thresholding). Segmentation for object

classification requires a different approach; the most

successful so far is using a statistically trained tree

classifier. Yang & Welch [3] accelerates image

segmentation using NVIDIA GPUs, for background

removal in general computer vision applications. The

register combiners of the GPU are used to compute the

squared distance of all pixels, and thresholding then

separates objects in the scene. Some additional image

morphology is done using blending, such as erosion and

dilation of the edges of objects. Yang reports a 30%

improvement over software. While this work could

conceivably be used for our purposes, the power

requirements and limited speedup over CPU are a concern.

MacLean [6] provides an overview of the field, and

motivates the suitability of FPGAs for computer vision

applications in general.

B. Software BGR

Using motion between frames, the software version of

BGR used in the Microsoft Kinect product identifies pixels

as candidates for active player tagging. Using a Connected

Components algorithm, these active pixels are combined

with other nearby pixels into pixel islands, using a gradient

descent approach. In the ideal case, a player mask will then

emerge as a single island. However, it is often the case that

a player mask must be assembled from multiple islands.

This is accomplished using motion, history from previous

frames, and a fairly complex set of manually designed rules

for combining and splitting islands. This results in a

complex and entirely sequential software, making it

undesirable for implementation in FPGA. In this work, we

explore alternative approaches that can solve the problem

with acceptable quality and better performance.

Note that BGR does not simply separate players from

the background. Players are individually tagged,

consistently from frame to frame, and objects that only

vaguely resemble human shapes are rejected. Additionally,

the Model Fitting stage requires the identification of the

floor plane for a precise definition of the player’s position in

the world space. A hardware BGR implementation must

provide the same information with similar or better quality.

We have tested the possibility of running BGR in

software on an embedded processor. In a first test, we used

an Intel Atom processor at 1.6 GHz, which resulted in a

frame rate of approximately 14.3 fps. In a second test, we

used the ARM processor on the Microsoft Surface tablet

running at 1.2 GHz, resulting in a frame rate of

approximately 7 fps. The ARM on the Xilinx Zynq is

similar but runs at half that speed. While neither

implementation was well tuned, the distance to the minimal

acceptable frame rate of 30 fps is quite large, and does not

even take into account the remaining phases of the pipeline.

Note that in practice, the frame rate must be even higher,

possibly at 90+ fps, to allow end-user applications to run

concurrently.

C. FPGA Forest Fire

Forest Fire is a random tree based classification

algorithm used by the Microsoft Kinect to classify pixels of

a depth image as human body parts. Each active pixel

traverses several binary trees. Starting at the root, a

decision is made to proceed to either left or right child based

on an evaluation function. Eventually, this traversal will

reach a leaf node where the probabilities the current pixel

belongs to a particular body part are stored. The results

from each tree are then aggregated together [8].

Oberg [1] produced a high performance hardware

implementation of the Forest Fire classifier, for body part

classification. Memory accesses are the primary bottleneck

for this type of system, and the tree traversal and the Sorting

FIFO produce the optimal memory access sequences. In

this work we reuse this core, with some modifications. The

system described in [1] is similar to the Microsoft Xbox

platform in that it splits the four steps of the pipeline

between hardware and software in the same manner, as

shown in Figure 2a.

The implementations described in this paper are shown

in Figure 2b. Our intended target is a SoC system similar to

the Xilinx Zynq. We timed the Model Fitting stage on the

Microsoft Surface tablet at less than 1 ms per frame,

confirming our estimates that this stage does not seriously

affect performance. Given the sequential nature of the

Model Fitting code, a hardware implementation will not

give any performance benefit, while the area cost could be

quite noticeable. The system in Figure 2b is therefore

preferable for a low-power, embedded realization.

III. HARDWARE BGR

Figure 3 is a composite block diagram of the three

solutions we evaluate in this paper. Baseline uses the BGR

software step, using the Connected Components algorithm

to create the foreground map, and RANSAC [4] to compute

the floor. In One-Stage we feed the input depth image

directly into a single classifier trained with an augmented

forest labeled with all the original 31 body parts, plus the

floor. An additional element handles the floor data to detect

the exact equation of the floor plane. Two-Stage uses two

instantiations of the Forest Fire classifier. The first instance

(left side) separates floors, humans, and ‘anything else’. We

then feed the ‘humans’ foreground map to the original

Microsoft Xbox body-part classifier for further

identification of the various body parts. Note that only the

Baseline solves the problem of player separation, e.g.

consistently over time assigning a given body part to a

specific player. The other two solutions require an

additional Pre-Model Fit module.

A. One Stage Classifier

The One-Stage forest classifier is simple and requires no

additional hardware other than what is being used for the

body part classification. The only difference is that we have

augmented the set of labels of interest with background

related ones. Furthermore, the use of a single classifier

minimizes the external memory requirement. The chief

disadvantage is that the classifier must operate on every

pixel of the image, without filtering. In contrast, the image

segmentation step (BGR) filters out background pixels and

the classifier only operates on the active foreground map. In

practice, the ratio of background to foreground pixels is 4:1

or more. Even if the classifier does not change, this at least

triples the processing time. In other words, the classifier

operates constantly in what [1] describes as “stress

performance”, leading to 56fps. And clearly the classifier

trees must now grow to accommodate the floor and still

produce the same original accurate results. Nonetheless, to

make for accurate comparisons we trained the forest to

mirror the original body part forest. The new forest also has

three trees, each 20 levels deep. The total size of the forest

is about 24 MB. The only difference is the additional class

label for the floor pixels. Performance is 56fps, for all

inputs.

B. Two Stage Classifier

A number of considerations led us to investigate the

Two-Stage approach, also represented in Figure 3, where

first we perform a coarse-grained classification into

foreground, background and floor, followed by a second,

more fine-grained classification just on the foreground

(player) pixels. Performance is one reason, e.g. we can use a

small and faster forest for the first step filtering and only

apply the heavy duty body part classification step to 1/4th –

1/5th of the entire image. This raises the average

performance back to over 200 fps. A second reason is that

the hardware resources required for implementing the

classifier on the FPGA is only a small percentage of those

available; replicating the entire unit is therefore quite

feasible. A third consideration is that we can reuse in the

second step the existing production Microsoft Xbox forest,

which was trained on millions of images. As it turns out, the

first forest does not require quite as much training data.

Moreover, the small number of classes can be progressively

augmented in the future with additional classes, e.g.

representing other scene features such as walls, sofas, etc.

In practice, the separation of background and foreground

can be done at a lower resolution than body parts: it is

possible to achieve reasonable results by subsampling the

images in the BGR step and then up-sample the resulting

mask for the body part classification step. The most

important consideration is performance. Producing good

K-means /
MeanShift
Centroids

Pre-ModelFit ModelFitDecimate

Centr. Centr.

FLOOR

FOREGROUND MAP

Input from Camera BGR / NoBGR Block

Skeletons

Subsample

ForestFire
K-means

 Floor

RANSAC
Floor

Connected
Components

Upsample
And Tag

X

FLOOR

FLOOR MAP

Decimate

X

X
K-means/RANSAC

 Floor

X

FLOOR MAP

ForestFire X

Baseline One-Stage Two-Stage Common One+Two-Stage

Figure 3. Skeletal Tracking Hardware Pipeline Block Diagrams.

classification accuracy on fewer classes is achievable with

smaller forest depth. If the forest were small enough, it

would be possible to store it on chip rather than in external

memory. We evaluate a small forest of 24 KB (3 trees, 10

depth levels) and a larger 1.5 MB forest (3 trees, 16 levels).

Both will fit in the internal memory of many modern

FPGAs. Eliminating the external memory accesses reduces

the computational cost of this first step considerably.

C. Floor Computation

The Baseline system uses RANSAC [4] to find the

equation of the plane with the minimal distance from all the

pixels in the bottom 10% of the image. An additional step

refines the floor candidates to the one with the minimum

eigenvalues across all floor pixels. The algorithm checks

that the Microsoft Kinect sensor is placed to within ± 20

degrees of the floor normal. If we apply some other form of

filtering, such as a classifier, we can relax this vertical

orientation requirement and perform RANSAC on all floor

pixels. Note that on a mobile device the orientation

restriction cannot be enforced, floor pixels must be

classified regardless of the camera orientation. Both of the

hardware approaches described in this work can do this.

A RANSAC algorithm can provide a high degree of noise

reduction, e.g. mathematically any three ‘noise-less’ floor

points would lead to the same plane equation. Classification

and centroid computations are an alternative form of noise

filtering. This leads us to consider a simpler and more

efficient way to compute the floor plane equation. Just like

for body part pixels, we compute centroids for the floor

pixels using our hardware streaming k-means algorithm.

This generates a relatively large number of floor ‘centroids’,

but a much smaller number than the total number of floor

pixels (in practice, a hundred or so against a few thousands).

We then identify a bounding cube for the floor that is

defined by the six centroids on the faces of the bounding

box. From the 21 combinations of these points (taken 3 at a

time) we have 21 candidate planes with a normal pointing

out of the floor and up into the scene. Each candidate floor

is tested against all the remaining centroids to find the plane

with the best fit. Note that, by construction, each candidate

has a well-known orientation with respect to the coordinate

system. With RANSAC, points are selected randomly and

therefore both of the up/down planes are equally valid and

indistinguishable.

Both modules can be used in our system, as shown in

Figure 3. RANSAC offers better noise reduction; k-means is

more efficient and eliminates any up/down uncertainties.

Note that in a hardware implementation, RANSAC can

compensate for the performance advantage of k-means by

computing in parallel and asynchronously to the frame

stream. The floor orientation in practice will not change

very frequently, likely not at every frame.

D. Player Tagging and Model Fitting

Software BGR performs the necessary functions of player

labeling and player tracking. Different players must be

labeled differently in a frame, and the same player must be

assigned the same ID from frame to frame. The connected

components based approach naturally leads to player

separation, and remembering the center of body mass of a

player from frame to frame accomplishes the required

consistency in tagging. Since the Forest Fire classifier does

not provide this function, it must be implemented elsewhere

to maintain backward compatibility. This module is

identified as Pre-ModelFit in Figure 3. Through

experimentation we verified that the original Microsoft

Xbox body part forest and the Forest Fire hardware can

accurately classify pixels into body parts whether they are

pre-partitioned by player or not. The probability maps

simply indicate multiple hot spots corresponding to the

various instances of e.g. a left hand. Therefore in the two

stage classifier, all the foreground pixels are just labeled

‘player 1’ and passed to the second stage.

Unfortunately, the problem has only moved and the

Microsoft Xbox Model Fitting algorithm still needs the

centroids partitioned by players in order to properly

assemble skeletons. The Pre-Model Fit step (in software)

takes a single list of centroid candidates and splits it into

multiple per-player lists. The fine details of this step are out

of scope, but intuitively the problem must be solvable more

easily when handling 4-8 candidate centroids per body part

than when handling many thousands of raw, untagged

pixels. One approach is to use the same island-based

gradient descent algorithm used by software BGR, only at

the centroid level. A simpler approach (used in the

evaluation in Section IV) is as follows:

First partition the head centroids. Then looking at the

clusters of head centroids, estimate the number and location

of each head in the scene. Use the neck and left/right torso

candidates to verify the estimate of the number of players.

Double-check the estimate against the previous frame,

assuming the addition and deletion of a player is an

infrequent event. Use a combination of proximity and

connectivity tests to connect heads to necks, shoulders and

torsos. Finally, add limbs to each player’s centroid set.

Note that we should err on the side of caution; we can add

the same weak centroid to all player sets and let Model

Fitting sort it out. But we must assign a strong candidate to

the correct list. Consistent tagging works the same as in

software BGR, and we can track the head or torso centroids

from frame to frame. As for observed performance, the two

combined model fitting steps are still about 1ms per frame.

E. Forest Training

The Microsoft Xbox product is routinely tested against a

very large repository of clips, e.g. short depth-image movies

of about 200-500 frames each. We found a way to leverage

this data and generate the training sets for the two new

forests required by our experiment. We use the baseline

Microsoft Xbox pipeline to identify and eliminate the

players from the scenes, leaving only the background depth-

images. We then use computer generated human models of

various sizes, body types, and different poses and carefully

insert them into the ‘holes’ left by the original players.

This approach is automatic, can generate a large number

of training images, and lets us create the required variety in

the player’s poses which was somewhat missing in the

original clips. Since the CG players are computer-generated,

we know in advance where their body parts are and we can

automatically generate the ground-truth labels. Floor pixels

are labeled using the computed floor equations.

Additional work is necessary to refine this forest training

process and improve the size and quality of the training sets

beyond our current research prototype. We used small

training sets of 4000 images for the 32 class forest used by

the One-Stage version, due to the long time required to

perform training. We trained the 3 class forest used by first

step of the Two-Stage version on 10000 images. With these

set sizes we can produce a new forest in about 24 hours

using an Intel i7 hex core PC at 3.2 GHz with 64 GB of

memory. The current quality of this training data could be

improved: the technique of inserting computer generated

human figures into existing scenes produces artifacts,

especially for small body parts like hands, feet, wrists and

knees.

IV. RESULTS

We used the following setup for testing. A host PC

provides feeds from live cameras or clips saved on disk,

using the Simple Interface for Reconfigurable Computing

(SIRC) [5]. The FPGA returns centroids and the plane

coefficients of the floor to the PC, who then performs the

final Model Fit stage(s). We used a Xilinx Virtex6 240t

ML605 Evaluation Board (xv6vlx240t-1ff1156). We

evaluated the two hardware BGR approaches against three

Microsoft Xbox suites of test clips and compared them with

the original baseline system and with the ground truth. Each

suite is dominated by a different type of clips: Suite 94 is

mostly standing humans with a variety of backgrounds,

Suite 97 is standing humans with very similar backgrounds

and Suite 111 is dominated by seated humans with furniture.

The suites contain 193, 533, and 155 clips respectively.

Each clip includes hundreds of frames. We run each clip

through the system under test. The Baseline is the existing

Microsoft Kinect for Windows SDK, one-stage is the single

classifier system, and two-stage is the two-step classifier

system. For each frame we log and compare the final

skeleton’s joints positions from Model Fitting.

Figure 4. Results For Three Selected Images.

Figure 4 shows the results for one individual frame per

suite. The first column is the depth map. The second column

is the player tagged by the Baseline software BGR. The

third column is the foreground probability map from the

two-stage system. The fourth column is the floor probability

map. The fifth column is the final skeleton, superimposed

onto the player’s silhouette. This visual comparison is

impractical for millions of frames, and does not provide any

quantitative result.

Table 1. Results for Suite 94*, 97** and 111***.
 Suite 94 Suite 97 Suite 111
 RANSAC k-means RANSAC k-means RANSAC k-means

Diff. Joints and Limbs (%)
 Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

 95.07 97.85 97.08 95.07 97.96 97.22 46.79 68.77 54.58 46.79 68.76 54.62 79.14 94.70 79.02 78.93 94.61 78.54

 60.23 62.53 62.94 60.23 64.14 63.38 9.51 21.40 10.40 9.51 21.65 10.69 41.41 77.63 40.63 41.32 77.45 41.45

Average and Maximum Joint Difference X, Y, & Z (m)
 Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

 0.13 0.14 0.13 0.13 0.15 0.13 0.02 0.04 0.02 0.02 0.04 0.02 0.07 0.26 0.06 0.07 0.26 0.06

 0.75 0.80 0.77 0.75 0.81 0.80 0.18 0.40 0.20 0.21 0.40 0.22 0.41 1.51 0.47 0.41 1.51 0.48

Average Length (m), Inclination and Azimuth (degrees) Difference
 Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

Base

line

one

stage

two

stage

 0.05 0.07 0.05 0.05 0.07 0.06 0.02 0.03 0.03 0.02 0.03 0.03 0.05 0.35 0.05 0.05 0.34 0.05

 41.6 44.9 42.1 41.8 45.8 42.5 10.0 16.4 10.3 10.0 16.5 10.4 24.4 58.5 26.4 25.2 58.4 27.2

 17.9 18.6 17.7 17.9 19.1 17.7 9.0 12.1 8.9 9.0 12.1 8.9 16.5 28.9 16.7 16.4 28.7 16.8

*standing with varied scenes, **standing with similar scenes, ***seated and furniture.

A. Skeletal Tracking Results

One quantitative approach is to compare each joint

location in space, then average and aggregate the results.

This is a probabilistic task and 100% accuracy is

impossible. Consequently, a large location error will not

correspond to a large visual error. A more consistent and

effective measure of accuracy is to look at the lengths and

especially the orientations of the skeleton’s limbs. Consider

the case of two small deltas in e.g. elbow and wrist position.

The resulting axis of the lower arm can be off by as much as

the sum of the two (opposite) deltas, or not at all. Visually,

we are much more affected by the angular differences.

In Table 1, we report the number of joints locations

different from the ground truth and their average and

maximum distance along each dimension (X, Y, Z). Lower

values are better. We calculate the number of limbs different

from the ground truth and the average differences in length,

inclination and azimuth. These statistics are then

aggregated per suite. Since we have two alternate algorithms

for floor calculation, we report statistics for both of

RANSAC and k-means, to evaluate the effects they have on

the rest of the pipeline. For the suites tested, both algorithms

are effective and their differences are small.

As Table 1 shows, most of the joints differ widely from

the ground truth, baseline included. For suite 94, the

versions using the hardware BGR instead of the software

BGR had between 2 and 3 percentage points more different

joints and between 3 and 4 percent more different limbs.

Overall, the two-stage classifier did slightly better than the

one-stage classifier. This is to be expected given the much

smaller training set for the forest. The two-stage classifier

was also much closer to the baseline in the average

difference along each dimension. In suite 97, the baseline

performed much better and thus the difference against

hardware BGR is more striking. Here the joint difference

from the baseline ranged from 12 percent for the one-stage

classifier to 8 percent for the two forest version. However,

in the case of the two-stage classifier the average limb

deviation from the ground truth is still very small. More

surprising are the results of Suite 111, the seated clips. Here

the baseline shows differences in over three fourths of the

joints and almost half the limbs. The one-stage classifier

came nowhere close missing 95 percent of the joints and 75

percent of the limbs. But again the two-stage classifier

showed close to the same number of correct joints and

limbs. The average difference was just a little larger than in

suites 94 and 97. This result is surprising since the training

data we used for our forests were standing humans only, no

seated positions at all.

Figure 5. Percent limbs that differ from ground-truth.

Figure 5 summarizes the limb comparisons, which is

better correlated to the visual outputs of Figure 4. Since the

choice of floor detection algorithm has a marginal effect on

the final accuracy, we only show the k-means results. In

addition to the systems of Table 1, we evaluate the Two-

Stage system using a smaller forest of three trees of depth

10 rather than 16, using the same test suites. Reducing the

depth from 16 to 10 levels reduces the size of the forest

from 1.5 MB to 25 KB, and with fewer levels to evaluate

each frame can be processed 50% faster in this stage.

Overall, Figure 5 shows that the Two-Stage/16 system is

almost identical to the baseline, for all test suites. The

reduced tree depth of Two-Stage/10 has a small negative

effect on suites 94 and 97, and a larger impact (+14%) on

suite 111. Given that suite 111 is dominated by seated

positions and there is additional noise from objects in the

background, this is not unexpected. The One-Stage system

is the worst performer in all cases, with differences against

baseline of 4%, 12%, and 36%.

B. Floor Computation Results

The effect on the skeleton pipeline is small, but the floor

computation accuracy (and latency) can be more relevant in

other scenarios, such as with mobile devices. We compare

the RANSAC and k-means solutions in the following way.

We use one frame each from the test clips, plus a number of

frames from other test clips. We establish the ground-truth

by running an unlimited number of RANSAC iterations on

each frame, stopping only when we have a stable result. We

discard 12% of images for which we cannot generate a

floor, resulting in a total of 2,922 test floors. Computations

are performed in double-precision floating point for the

ground truth. The RANSAC test case is then split into an

IntegerRansac and FloatRansac case, to reflect the hardware

and software implementations, respectively. These cases

differ from the ground truth RANSAC because of the

limited number of iterations allowed (within a single frame

time). K-means only has one (integer) test case.

Table 2. Floor detectors performance & accuracy.
Algorithm Floors

Detected

Percent of

Total (%)

Inclination

(degrees)

Azimuth

(degrees)

FloatRansac 2,366 80.9 20.5 9.9

IntegerRansac 2,483 84.9 2.5 6.3

k-means 2,912 99.6 11.0 11.8

As shown in Table 2, k-means can find a valid floor in

the allotted time in a higher number of cases. As for

accuracy, the angular deviations from ground-truth indicate

that these results are close, but not as accurate as with

IntegerRansac. Interestingly, FloatRansac produces the

worst results both in performance and accuracy. This

version generates a larger number of invalid point

selections, resulting in less iteration in the allotted time.

C. Device Utilization

We implemented two hardware prototypes of the system.

For the one stage classifier, the system is quite similar to the

one in [1], and therefore worth comparing to. For the two

stage classifier, the Forest Fire module is instantiated twice,

and to save memory the foreground image data is written

back into the same input buffer after the first stage

completes. As mentioned, it is possible to store the first

stage image segmentation forest on chip, but for simplicity

we stored both forests in DDR3 memory. We did not

investigate pipelining the two classifiers.

Table 3 shows the utilization of the Virtex 6 240t

(xv6vlx240t-1ff1156) for the One-Stage system. The

utilization reported in [1] for the same chip was 7.5% LUTs

and 30% BRAMs. Our implementation now returns the

centroids of the body parts instead of pointers to the forest

leaves for each pixel. In other words, each Forest Fire core

now includes an additional k-means centroid computation

unit that was previously absent. This has tripled the LUTs

while cutting the block rams to a fifth. This also

significantly reduces the output bandwidth requirement.

The size of the Sorting FIFO is reduced to 2 block rams

rather than 33. The Forest Fire core now performs

processing in batches of 1024 pixels rather than loading the

entire foreground image, but the effect of this batching on

the frame rate is negligible. The implementation of the

DDR3 Controller and PC Interface are largely unchanged,

they only appear to have changed because synthesized with

the 14.2 release of the Xilinx IDE.

Table 3. FPGA Utilization of the One-Stage Prototype.
 LUTs FF BRAM

Full System 37470

(24.86%)

31796

(10.55%)

27

(6.49%)

 Forest Fire Core 30129

(19.99%)

23198

(7.69%)

5

(1.2%)

 Sorting FIFO 425

(0.28%)

428

(0.14%)

2

(0.48)

 DDR3 Controller 5488

(3.64%)

7496

(2.49%)

0

(0%)

 PC Interface 1852

(1.23%)

1101

(0.37%)

22

(5.29%)

 Input Buffer 76

(0.05%)

42

(0.01%)

11

(2.64%)

 Output Buffer 0

(0%)

0

(0%)

8

(1.92%)

The operation of the One-Stage system is as follows. The

depth image is downloaded to the FPGA over Ethernet

using SIRC. The pixels are classified by the random

decision tree classifier using the forest stored in the DDR3.

The centroids of each body part type are calculated and

written to the output buffer. The results are transmitted

back to the host using Ethernet.

Table 4. FPGA Utilization of the Two-Stage Prototype.
 LUTs FF BRAM

Full System 67236

(44.61%)

55405

(18.38%)

32

(7.69%)

 Forest Fire Two
 Instantiations

60611

(40.21%)

46614

(15.46%)

10

(2.4%)

 Forest Fire Core0 29888

(19.83%)

23275

(7.72%)

5

(1.2%)

 Forest Fire Core1 29773

(19.75%)

23337

(7.74%)

5

(1.2%)

 DDR3 Controller 4746

(3.15%)

7686

(2.55%)

0

(0%)

 PC Interface 1876

(1.24%)

1101

(0.37%)

22

(5.29%)

 Input Buffer 76

(0.05%)

42

(0.01%)

11

(2.64%)

 Output Buffer 0

(0%)

0

(0%)

8

(1.92%)

Table 4 reports the utilization for the Two-Stage system,

after adding the second instantiation of the Forest Fire core.

While the first stage forest could be stored on chip, for

simplicity we chose to store it in the DDR3 along with the

other forest. Some additional control logic was required to

chain the two classifier cores, to store and reload the data

from DDR3, and to route the data accordingly. With two

instances of the classifier core we double area use, but the

entire design is well under half of this midrange FPGA. In

this scenario Core0 performs the BGR image segmentation

and Core1 performs the body part classification on the

foreground pixels (see Figure 3). From Core0 the classified

pixels are dumped to the DDR3 and those tagged as floor

are passed to the centroid and floor calculation modules.

The foreground pixels are loaded from DDR3 to Core1 for

body part classification.

D. Power Measurements

In order to provide an idea to the potential power

advantages of a hardware solution, in Table 5 we present a

series of power measurements for consideration. All values

are power measurements taken from the wall socket, thus

they are power measurements for the entire system.

Table 5. System Power of NUI Implementations.
Platform Power (W)

PC w/Kinect 162.6

Xbox w/Kinect 92.1

Xilinx ML605 w/Kinect 25.7

Digilent ZedBoard w/Kinect 9.0

Kinect Alone 3.5

In the case of the Xbox, the Kinect sensor is powered

through the USB by the host. For the other platforms, the

Kinect sensor powered by a separate power supply and is

added to that of the host. The average power utilization of

the Kinect sensor alone is 3.5 watts.

These measurements demonstrate that all of the

processing required can be implemented in hardware with

significant power savings using a high end FPGA. This also

suggests the Xilinx Zynq, a SOC with a microprocessor and

FPGA, could run NUI interface and the application code

within a much lower power budget than the Xbox or PC.

V. CONCLUSIONS

The main contribution of this work is a complete, fully-

embedded realization of the Microsoft Kinect pipeline,

without using powerful CPUs or GPUs, at a very low

power, using commercially available FPGAs. To realize the

system in hardware, we tested the novel idea of using a

classification forest for image segmentation. Rather than

segmenting connected objects and tagging pixels, we

directly classify them into human body parts and floors.

A straightforward realization with a single classifier does

not perform well compared to the commercial grade Xbox

baseline. This system is compact, but the excessive noise

and limited forest training are negative factors.

Performance is also negatively affected by the lack of

filtering. A two-stage approach instead performs acceptably.

A first classifier detects the foreground and floor data, and a

second classifier performs the actual body part extraction.

This system is no worse than 7% of the baseline on the

entire Xbox production test suites, and only 1% worse on

average. Additionally, we can leverage the shipping main

forest and augment it with a second, much smaller forest

acting as filter. The hardware implementation reduced the

overall latency of the system, with a frame rate in excess of

200 fps.

We have considered a number of alternative algorithms

for the segmentation task. None meets all of the

requirements, especially the separation of players from each

other. We reduce the separation problem to the assigning of

the identified body parts to the correct players, which is

computationally easier. Training of the forests requires

some creativity: we use a number of scalable techniques to

leverage a large amount of unreliable data in effective ways.

For evaluation, the best metric is to use the final skeleton’s

limb orientations. In addition to the players, the system must

correctly identify the floor location, e.g. the world-space

coordinates. We have described and evaluated both a

RANSAC-based and a novel k-means based approach.

VI. REFERENCES

[1] J. Oberg, K. Eguro, R. Bittner and A. Forin. “Random

Decision Tree Body Part Recognition Using FPGAs.”

The 22nd International Conference on Field

Programmable Logic and Applications (FPL 2012).

August 2012.

[2] B. Kinsella. “Embedded Image Segmentation on an

FPGA”. National University of Ireland. Galway,

Ireland. April 2008.

[3] R. Yang and G. Welch. “Fast Image Segmentation and

Smoothing Using Commodity Graphics Hardware.”

Journal of Graphics Tools – Special Issue on Hardware

Accelerated Rendering Techniques. Volume 7. Issue

4. December 2002.

[4] M. A. Fischler and R. C. Bolles. “Random sample

consensus: a paradigm for model fitting with

applications to image analysis and automated

cartography“. Communications of the ACM 1981,

24:381-395.

[5] K. Eguro. "SIRC: An extensible reconfigurable

computing communication API." Field-Programmable

Custom Computing Machines (FCCM), 2010 18th

IEEE Annual International Symposium on. IEEE, 2010.

[6] W. J. MacLean. “An Evaluation of the Suitability of

FPGAs for embedded Vision Systems.” IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition Workshop. June 2005.

[7] P. Yin, A. Criminisi, J. Winn and I. Essa. “Bilayer

Segmentation of Webcam Videos Using Tree-based

Classifiers.” IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), IEEE, 2010.

[8] A. Criminisi and J. Shotton. “Decision Forests for

Computer Vision and Medical Image Analysis”.

Springer. 2013. ISBN 978-1-4471-4928-6.

