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Abstract—Image segmentation is the process of partitioning an 

image into segments or subsets of pixels for purposes of further 

analysis, such as separating the interesting objects in the 

foreground from the un-interesting objects in the background.  

In many image processing applications, the process requires a 

sequence of computational steps on a per pixel basis, thereby 

binding the performance to the size and resolution of the 

image.  As applications require greater resolution and larger 

images the computational resources of this step can quickly 

exceed those of available CPUs, especially in the power and 

thermal constrained areas of consumer electronics and mobile. 

In this work, we use a hardware tree-based classifier to 

solve the image segmentation problem. The application is 

background removal (BGR) from depth-maps obtained from 

the Microsoft Kinect sensor. After the image is segmented, 

subsequent steps then classify the objects in the scene. The 

approach is flexible: to address different application domains 

we only need to change the trees used by the classifiers. We 

describe two distinct approaches and evaluate their 

performance using the commercial-grade testing environment 

used for the Microsoft Xbox gaming console. 

Keywords-NUI; FPGA; Smart Cameras; Computer Vision; 

Kinect; 

I.  INTRODUCTION 

The Microsoft Kinect is a Natural User Interface (NUI) 

device that allows users to interact with computer systems 

using their bodies.  This technology involves depth sensing 

cameras producing images at a rate of 30 frames per second, 

and software to process those images.  The software tracks 

multiple human participants in a scene and identifies their 

poses, down to their individual body-parts. This is a 

computationally complex process that requires a tremendous 

amount of compute resources on the host system, even with 

GPU acceleration. The computational requirements limit the 

applications and form factors where we can use NUI, 

currently ruling out interesting cases such as mobile phones 

and tablet computers. All these and more require a lower 

power profile, and using dedicated hardware is one way to 

handle this load with acceptable power usage. 

The existing Microsoft Kinect software pipeline 

illustrated in Figure 1 has four stages: Background Removal 

(BGR), Body Part Classification, Centroid Calculation, and 

Model Fitting. 
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Figure 1.  Microsoft Kinect NUI Pipeline. 

The BGR step tags each pixel in the depth map as 

belonging to a player or the background. Body Part 

Classification further refines the player pixel classification 

with the probability of belonging to one of 31 body parts 

(head, neck, hands, etc.). This step has previously been 

demonstrated in hardware [1].  The third step, Centroid 

Calculation, aggregates the probability maps into one or 

more centroids, e.g. the specific location of the center of 

each body part, for each player. The last step, Model Fitting, 

aggregates the centroids into human skeletons, dealing with 

noise and occlusions. The Model Fitting step currently is not 

computationally intensive and it is performed on the CPU. 

Figure 2a shows how on the Microsoft Xbox console, the 

first step is performed on the CPU, the second and third on 

the GPU, and the last step again on the CPU. The new, 

alternative pipeline proposed here is illustrated in Figure 2b. 
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Figure 2.  Comparison of a) the Split Software-hardware 

Pipeline and b) the Mostly-hardware Pipeline. 

The BGR stage simplifies the body part classification 

problem by identifying the islands or subsets of pixels that 

likely belong to players.  This process is highly sequential, 

involving comparison of each active pixel to its neighbors.  

Effectively, the BGR job is to decide if each pixel is part of 

a human player or not.  If a tree based classifier [8] can 

learn to identify parts of a body, it stands to reason that it 

might also be able to learn to separate a human body from 

other objects in the scene. This is the basic hypothesis that 

we successfully investigated in this work. 
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To use NUI in a power-constrained environment we 

would prefer to connect the camera directly to the pipeline 

(instead of via USB), and to compute as much as possible 

within the device before sending the result to the host CPU.  

This demands a hardware implementation of BGR. The 

existing Microsoft Xbox software implementation is 

complex and has proven challenging to port to hardware.  In 

this work we propose the alternative, novel method of using 

our algorithm (“Forest Fire”) [8] to perform the BGR step. 

The input depth image is sent to a first classifier that 

separates the interesting portions (e.g. the humans) from the 

background. The regular second stage then operates on the 

filtered image. Both stages are implemented in hardware, 

using two replicas of the classifier each trained on different 

data sets. 

We also evaluate a second approach, whereby we fuse the 

first and second phases together, and apply the body part 

classifier directly to an un-segmented image. The single 

classifier performs BGR and body part labeling at the same 

time. This second approach is much simpler, but results in 

lower quality and worse performance. 

Section II presents some background material, including 

related work. Section III describes the systems we realized, 

and expands on specific problems like floor detection, 

player tagging, and forest training. Section IV reports our 

results, and Section V concludes.  

II. BACKGROUND 

A. Previous Work on Image Segmentation 

Uses of hardware acceleration for the image 

segmentation problem have been limited, with most of the 

work surveyed focused on the acceleration of software 

algorithms.  Application domains include image quality, 

general vision applications, player identification and body 

tracking, medical imaging, and 3D world reconstruction. 

Both our work and the work of Oberg et al. [1] are based 

on Criminisi & Shotton [8], who use decision forest 

classifiers in a range of computer vision applications, 

including identifying body parts in the Microsoft Kinect.  

We now further extend it to perform image segmentation in 

hardware.  Yin et al. [7] used a software classification forest 

to perform image segmentation on non-depth sensing 

webcams.  This technique compares well to stereo camera 

approaches but with a peak of 7.7 fps, lacks the performance 

to be useful for our real-time application.  Kinsella [2] 

improves the image quality of webcams, realizing several 

image segmentation algorithms on a Digilent Spartan 3 

Evaluation board (Grey-Scale Histogram, Contrast 

Stretching, Histogram Equalized Stretch, Bimodal 

Distribution and Thresholding). Segmentation for object 

classification requires a different approach; the most 

successful so far is using a statistically trained tree 

classifier.  Yang & Welch [3] accelerates image 

segmentation using NVIDIA GPUs, for background 

removal in general computer vision applications.  The 

register combiners of the GPU are used to compute the 

squared distance of all pixels, and thresholding then 

separates objects in the scene.  Some additional image 

morphology is done using blending, such as erosion and 

dilation of the edges of objects.  Yang reports a 30% 

improvement over software. While this work could 

conceivably be used for our purposes, the power 

requirements and limited speedup over CPU are a concern.   

MacLean [6] provides an overview of the field, and 

motivates the suitability of FPGAs for computer vision 

applications in general.  

B. Software BGR 

Using motion between frames, the software version of 

BGR used in the Microsoft Kinect product identifies pixels 

as candidates for active player tagging.  Using a Connected 

Components algorithm, these active pixels are combined 

with other nearby pixels into pixel islands, using a gradient 

descent approach.  In the ideal case, a player mask will then 

emerge as a single island.  However, it is often the case that 

a player mask must be assembled from multiple islands.  

This is accomplished using motion, history from previous 

frames, and a fairly complex set of manually designed rules 

for combining and splitting islands. This results in a 

complex and entirely sequential software, making it 

undesirable for implementation in FPGA.  In this work, we 

explore alternative approaches that can solve the problem 

with acceptable quality and better performance. 

Note that BGR does not simply separate players from 

the background. Players are individually tagged, 

consistently from frame to frame, and objects that only 

vaguely resemble human shapes are rejected. Additionally, 

the Model Fitting stage requires the identification of the 

floor plane for a precise definition of the player’s position in 

the world space. A hardware BGR implementation must 

provide the same information with similar or better quality.  

We have tested the possibility of running BGR in 

software on an embedded processor.  In a first test, we used 

an Intel Atom processor at 1.6 GHz, which resulted in a 

frame rate of approximately 14.3 fps.  In a second test, we 

used the ARM processor on the Microsoft Surface tablet 

running at 1.2 GHz, resulting in a frame rate of 

approximately 7 fps. The ARM on the Xilinx Zynq is 

similar but runs at half that speed. While neither 

implementation was well tuned, the distance to the minimal 

acceptable frame rate of 30 fps is quite large, and does not 

even take into account the remaining phases of the pipeline. 

Note that in practice, the frame rate must be even higher, 

possibly at 90+ fps, to allow end-user applications to run 

concurrently. 



C. FPGA Forest Fire 

Forest Fire is a random tree based classification 

algorithm used by the Microsoft Kinect to classify pixels of 

a depth image as human body parts.  Each active pixel 

traverses several binary trees.  Starting at the root, a 

decision is made to proceed to either left or right child based 

on an evaluation function.  Eventually, this traversal will 

reach a leaf node where the probabilities the current pixel 

belongs to a particular body part are stored.  The results 

from each tree are then aggregated together [8]. 

Oberg [1] produced a high performance hardware 

implementation of the Forest Fire classifier, for body part 

classification.  Memory accesses are the primary bottleneck 

for this type of system, and the tree traversal and the Sorting 

FIFO produce the optimal memory access sequences.  In 

this work we reuse this core, with some modifications. The 

system described in [1] is similar to the Microsoft Xbox 

platform in that it splits the four steps of the pipeline 

between hardware and software in the same manner, as 

shown in Figure 2a. 

The implementations described in this paper are shown 

in Figure 2b. Our intended target is a SoC system similar to 

the Xilinx Zynq. We timed the Model Fitting stage on the 

Microsoft Surface tablet at less than 1 ms per frame, 

confirming our estimates that this stage does not seriously 

affect performance. Given the sequential nature of the 

Model Fitting code, a hardware implementation will not 

give any performance benefit, while the area cost could be 

quite noticeable. The system in Figure 2b is therefore 

preferable for a low-power, embedded realization. 

III. HARDWARE BGR 

Figure 3 is a composite block diagram of the three 

solutions we evaluate in this paper. Baseline uses the BGR 

software step, using the Connected Components algorithm 

to create the foreground map, and RANSAC [4]  to compute 

the floor. In One-Stage we feed the input depth image 

directly into a single classifier trained with an augmented 

forest labeled with all the original 31 body parts, plus the 

floor. An additional element handles the floor data to detect 

the exact equation of the floor plane. Two-Stage uses two 

instantiations of the Forest Fire classifier. The first instance 

(left side) separates floors, humans, and ‘anything else’. We 

then feed the ‘humans’ foreground map to the original 

Microsoft Xbox body-part classifier for further 

identification of the various body parts. Note that only the 

Baseline solves the problem of player separation, e.g. 

consistently over time assigning a given body part to a 

specific player. The other two solutions require an 

additional Pre-Model Fit module. 

A. One Stage Classifier 

The One-Stage forest classifier is simple and requires no 

additional hardware other than what is being used for the 

body part classification.  The only difference is that we have 

augmented the set of labels of interest with background 

related ones.  Furthermore, the use of a single classifier 

minimizes the external memory requirement.  The chief 

disadvantage is that the classifier must operate on every 

pixel of the image, without filtering. In contrast, the image 

segmentation step (BGR) filters out background pixels and 

the classifier only operates on the active foreground map.  In 

practice, the ratio of background to foreground pixels is 4:1 

or more.  Even if the classifier does not change, this at least 

triples the processing time.  In other words, the classifier 

operates constantly in what [1] describes as “stress 

performance”, leading to 56fps. And clearly the classifier 

trees must now grow to accommodate the floor and still 

produce the same original accurate results.  Nonetheless, to 

make for accurate comparisons we trained the forest to 

mirror the original body part forest.  The new forest also has 

three trees, each 20 levels deep.  The total size of the forest 

is about 24 MB.  The only difference is the additional class 

label for the floor pixels. Performance is 56fps, for all 

inputs. 

B. Two Stage Classifier 

A number of considerations led us to investigate the 

Two-Stage approach, also represented in Figure 3, where 

first we perform a coarse-grained classification into 

foreground, background and floor, followed by a second, 

more fine-grained classification just on the foreground 

(player) pixels. Performance is one reason, e.g. we can use a 

small and faster forest for the first step filtering and only 

apply the heavy duty body part classification step to 1/4th – 

1/5th of the entire image. This raises the average 

performance back to over 200 fps. A second reason is that 

the hardware resources required for implementing the 

classifier on the FPGA is only a small percentage of those 

available; replicating the entire unit is therefore quite 

feasible.  A third consideration is that we can reuse in the 

second step the existing production Microsoft Xbox forest, 

which was trained on millions of images. As it turns out, the 

first forest does not require quite as much training data. 

Moreover, the small number of classes can be progressively 

augmented in the future with additional classes, e.g. 

representing other scene features such as walls, sofas, etc. 

In practice, the separation of background and foreground 

can be done at a lower resolution than body parts: it is 

possible to achieve reasonable results by subsampling the 

images in the BGR step and then up-sample the resulting 

mask for the body part classification step.  The most 

important consideration is performance. Producing good  
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Figure 3.  Skeletal Tracking Hardware Pipeline Block Diagrams. 

classification accuracy on fewer classes is achievable with 

smaller forest depth.  If the forest were small enough, it 

would be possible to store it on chip rather than in external 

memory. We evaluate a small forest of 24 KB (3 trees, 10 

depth levels) and a larger 1.5 MB forest (3 trees, 16 levels). 

Both will fit in the internal memory of many modern 

FPGAs. Eliminating the external memory accesses reduces 

the computational cost of this first step considerably. 

C. Floor Computation 

The Baseline system uses RANSAC [4] to find the 

equation of the plane with the minimal distance from all the 

pixels in the bottom 10% of the image. An additional step 

refines the floor candidates to the one with the minimum 

eigenvalues across all floor pixels. The algorithm checks 

that the Microsoft Kinect sensor is placed to within ± 20 

degrees of the floor normal. If we apply some other form of 

filtering, such as a classifier, we can relax this vertical 

orientation requirement and perform RANSAC on all floor 

pixels. Note that on a mobile device the orientation 

restriction cannot be enforced, floor pixels must be 

classified regardless of the camera orientation.  Both of the 

hardware approaches described in this work can do this. 

A RANSAC algorithm can provide a high degree of noise 

reduction, e.g. mathematically any three ‘noise-less’ floor 

points would lead to the same plane equation. Classification 

and centroid computations are an alternative form of noise 

filtering. This leads us to consider a simpler and more 

efficient way to compute the floor plane equation. Just like 

for body part pixels, we compute centroids for the floor 

pixels using our hardware streaming k-means algorithm.  

This generates a relatively large number of floor ‘centroids’, 

but a much smaller number than the total number of floor 

pixels (in practice, a hundred or so against a few thousands). 

We then identify a bounding cube for the floor that is 

defined by the six centroids on the faces of the bounding 

box.  From the 21 combinations of these points (taken 3 at a 

time) we have 21 candidate planes with a normal pointing 

out of the floor and up into the scene.  Each candidate floor 

is tested against all the remaining centroids to find the plane 

with the best fit. Note that, by construction, each candidate 

has a well-known orientation with respect to the coordinate 

system. With RANSAC, points are selected randomly and 

therefore both of the up/down planes are equally valid and 

indistinguishable.  

Both modules can be used in our system, as shown in 

Figure 3. RANSAC offers better noise reduction; k-means is 

more efficient and eliminates any up/down uncertainties. 

Note that in a hardware implementation, RANSAC can 

compensate for the performance advantage of k-means by 

computing in parallel and asynchronously to the frame 

stream. The floor orientation in practice will not change 

very frequently, likely not at every frame. 

D. Player Tagging and Model Fitting 

Software BGR performs the necessary functions of player 

labeling and player tracking.  Different players must be 

labeled differently in a frame, and the same player must be 

assigned the same ID from frame to frame. The connected 

components based approach naturally leads to player 

separation, and remembering the center of body mass of a 

player from frame to frame accomplishes the required 

consistency in tagging. Since the Forest Fire classifier does 

not provide this function, it must be implemented elsewhere 

to maintain backward compatibility. This module is 

identified as Pre-ModelFit in Figure 3. Through 

experimentation we verified that the original Microsoft 

Xbox body part forest and the Forest Fire hardware can 

accurately classify pixels into body parts whether they are 

pre-partitioned by player or not.  The probability maps 

simply indicate multiple hot spots corresponding to the 

various instances of e.g. a left hand. Therefore in the two 

stage classifier, all the foreground pixels are just labeled 

‘player 1’ and passed to the second stage.  



Unfortunately, the problem has only moved and the 

Microsoft Xbox Model Fitting algorithm still needs the 

centroids partitioned by players in order to properly 

assemble skeletons.  The Pre-Model Fit step (in software) 

takes a single list of centroid candidates and splits it into 

multiple per-player lists. The fine details of this step are out 

of scope, but intuitively the problem must be solvable more 

easily when handling 4-8 candidate centroids per body part 

than when handling many thousands of raw, untagged 

pixels. One approach is to use the same island-based 

gradient descent algorithm used by software BGR, only at 

the centroid level. A simpler approach (used in the 

evaluation in Section IV) is as follows: 

First partition the head centroids. Then looking at the 

clusters of head centroids, estimate the number and location 

of each head in the scene. Use the neck and left/right torso 

candidates to verify the estimate of the number of players. 

Double-check the estimate against the previous frame, 

assuming the addition and deletion of a player is an 

infrequent event. Use a combination of proximity and 

connectivity tests to connect heads to necks, shoulders and 

torsos.  Finally, add limbs to each player’s centroid set. 

Note that we should err on the side of caution; we can add 

the same weak centroid to all player sets and let Model 

Fitting sort it out. But we must assign a strong candidate to 

the correct list. Consistent tagging works the same as in 

software BGR, and we can track the head or torso centroids 

from frame to frame. As for observed performance, the two 

combined model fitting steps are still about 1ms per frame. 

E. Forest Training 

The Microsoft Xbox product is routinely tested against a 

very large repository of clips, e.g. short depth-image movies 

of about 200-500 frames each. We found a way to leverage 

this data and generate the training sets for the two new 

forests required by our experiment. We use the baseline 

Microsoft Xbox pipeline to identify and eliminate the 

players from the scenes, leaving only the background depth-

images. We then use  computer generated human models of 

various sizes, body types, and different poses and carefully 

insert them into the ‘holes’ left by the original players.  

This approach is automatic, can generate a large number 

of training images, and lets us create the required variety in 

the player’s poses which was somewhat missing in the 

original clips. Since the CG players are computer-generated, 

we know in advance where their body parts are and we can 

automatically generate the ground-truth labels. Floor pixels 

are labeled using the computed floor equations. 

Additional work is necessary to refine this forest training 

process and improve the size and quality of the training sets 

beyond our current research prototype.  We used small 

training sets of 4000 images for the 32 class forest used by 

the One-Stage version, due to the long time required to 

perform training.  We trained the 3 class forest used by first 

step of the Two-Stage version on 10000 images.  With these 

set sizes we can produce a new forest in about 24 hours 

using an Intel i7 hex core PC at 3.2 GHz with 64 GB of 

memory.  The current quality of this training data could be 

improved: the technique of inserting computer generated 

human figures into existing scenes produces artifacts, 

especially for small body parts like hands, feet, wrists and 

knees. 

IV. RESULTS 

We used the following setup for testing. A host PC 

provides feeds from live cameras or clips saved on disk, 

using the Simple Interface for Reconfigurable Computing 

(SIRC) [5].  The FPGA returns centroids and the plane 

coefficients of the floor to the PC, who then performs the 

final Model Fit stage(s). We used a Xilinx Virtex6 240t 

ML605 Evaluation Board (xv6vlx240t-1ff1156).  We 

evaluated the two hardware BGR approaches against three 

Microsoft Xbox suites of test clips and compared them with 

the original baseline system and with the ground truth.  Each 

suite is dominated by a different type of clips:  Suite 94 is 

mostly standing humans with a variety of backgrounds, 

Suite 97 is standing humans with very similar backgrounds 

and Suite 111 is dominated by seated humans with furniture.  

The suites contain 193, 533, and 155 clips respectively.  

Each clip includes hundreds of frames. We run each clip 

through the system under test.  The Baseline is the existing 

Microsoft Kinect for Windows SDK, one-stage is the single 

classifier system, and two-stage is the two-step classifier 

system.  For each frame we log and compare the final 

skeleton’s joints positions from Model Fitting.  

 
Figure 4. Results For Three Selected Images. 

Figure 4 shows the results for one individual frame per 

suite. The first column is the depth map. The second column 

is the player tagged by the Baseline software BGR. The 

third column is the foreground probability map from the 

two-stage system. The fourth column is the floor probability 

map. The fifth column is the final skeleton, superimposed 

onto the player’s silhouette. This visual comparison is 

impractical for millions of frames, and does not provide any 

quantitative result. 



Table 1.  Results for Suite 94*, 97** and 111***. 
 Suite 94 Suite 97 Suite 111 
 RANSAC k-means RANSAC k-means RANSAC k-means 

Diff. Joints and Limbs (%) 
 Base 

line 

one  

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

 95.07 97.85 97.08 95.07 97.96 97.22 46.79 68.77 54.58 46.79 68.76 54.62 79.14 94.70 79.02 78.93 94.61 78.54 

 60.23 62.53 62.94 60.23 64.14 63.38 9.51 21.40 10.40 9.51 21.65 10.69 41.41 77.63 40.63 41.32 77.45 41.45 

Average and Maximum Joint Difference X, Y, & Z (m) 
 Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

 0.13 0.14 0.13 0.13 0.15 0.13 0.02 0.04 0.02 0.02 0.04 0.02 0.07 0.26 0.06 0.07 0.26 0.06 

 0.75 0.80 0.77 0.75 0.81 0.80 0.18 0.40 0.20 0.21 0.40 0.22 0.41 1.51 0.47 0.41 1.51 0.48 

Average Length (m), Inclination and Azimuth (degrees) Difference 
 Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

Base 

line 

one 

stage 

two 

stage 

 0.05 0.07 0.05 0.05 0.07 0.06 0.02 0.03 0.03 0.02 0.03 0.03 0.05 0.35 0.05 0.05 0.34 0.05 

 41.6 44.9 42.1 41.8 45.8 42.5 10.0 16.4 10.3 10.0 16.5 10.4 24.4 58.5 26.4 25.2 58.4 27.2 

 17.9 18.6 17.7 17.9 19.1 17.7 9.0 12.1 8.9 9.0 12.1 8.9 16.5 28.9 16.7 16.4 28.7 16.8 

*standing with varied scenes, **standing with similar scenes, ***seated and furniture. 

A. Skeletal Tracking Results 

One quantitative approach is to compare each joint 

location in space, then average and aggregate the results. 

This is a probabilistic task and 100% accuracy is 

impossible. Consequently, a large location error will not 

correspond to a large visual error. A more consistent and 

effective measure of accuracy is to look at the lengths and 

especially the orientations of the skeleton’s limbs.  Consider 

the case of two small deltas in e.g. elbow and wrist position. 

The resulting axis of the lower arm can be off by as much as 

the sum of the two (opposite) deltas, or not at all. Visually, 

we are much more affected by the angular differences. 

In Table 1, we report the number of joints locations 

different from the ground truth and their average and 

maximum distance along each dimension (X, Y, Z).  Lower 

values are better. We calculate the number of limbs different 

from the ground truth and the average differences in length, 

inclination and azimuth.  These statistics are then 

aggregated per suite. Since we have two alternate algorithms 

for floor calculation, we report statistics for both of 

RANSAC and k-means, to evaluate the effects they have on 

the rest of the pipeline. For the suites tested, both algorithms 

are effective and their differences are small. 

As Table 1 shows, most of the joints differ widely from 

the ground truth, baseline included.  For suite 94, the 

versions using the hardware BGR instead of the software 

BGR had between 2 and 3 percentage points more different 

joints and between 3 and 4 percent more different limbs.  

Overall, the two-stage classifier did slightly better than the 

one-stage classifier.  This is to be expected given the much 

smaller training set for the forest.  The two-stage classifier 

was also much closer to the baseline in the average 

difference along each dimension. In suite 97, the baseline 

performed much better and thus the difference against 

hardware BGR is more striking.  Here the joint difference 

from the baseline ranged from 12 percent for the one-stage 

classifier to 8 percent for the two forest version.  However, 

in the case of the two-stage classifier the average limb 

deviation from the ground truth is still very small. More 

surprising are the results of Suite 111, the seated clips.  Here 

the baseline shows differences in over three fourths of the 

joints and almost half the limbs.  The one-stage classifier 

came nowhere close missing 95 percent of the joints and 75 

percent of the limbs.  But again the two-stage classifier 

showed close to the same number of correct joints and 

limbs.  The average difference was just a little larger than in 

suites 94 and 97.  This result is surprising since the training 

data we used for our forests were standing humans only, no 

seated positions at all.  

 
Figure 5.  Percent limbs that differ from ground-truth. 

Figure 5 summarizes the limb comparisons, which is 

better correlated to the visual outputs of Figure 4. Since the 

choice of floor detection algorithm has a marginal effect on 

the final accuracy, we only show the k-means results. In 

addition to the systems of Table 1, we evaluate the Two-

Stage system using a smaller forest of three trees of depth 

10 rather than 16, using the same test suites. Reducing the 

depth from 16 to 10 levels reduces the size of the forest 

from 1.5 MB to 25 KB, and with fewer levels to evaluate 

each frame can be processed 50% faster in this stage. 

Overall, Figure 5 shows that the Two-Stage/16 system is 

almost identical to the baseline, for all test suites.  The 



reduced tree depth of Two-Stage/10 has a small negative 

effect on suites 94 and 97, and a larger impact (+14%) on 

suite 111.  Given that suite 111 is dominated by seated 

positions and there is additional noise from objects in the 

background, this is not unexpected.  The One-Stage system 

is the worst performer in all cases, with differences against 

baseline of 4%, 12%, and 36%. 

B. Floor Computation Results 

The effect on the skeleton pipeline is small, but the floor 

computation accuracy (and latency) can be more relevant in 

other scenarios, such as with mobile devices. We compare 

the RANSAC and k-means solutions in the following way. 

We use one frame each from the test clips, plus a number of 

frames from other test clips. We establish the ground-truth 

by running an unlimited number of RANSAC iterations on 

each frame, stopping only when we have a stable result. We 

discard 12% of images for which we cannot generate a 

floor, resulting in a total of 2,922 test floors. Computations 

are performed in double-precision floating point for the 

ground truth. The RANSAC test case is then split into an 

IntegerRansac and FloatRansac case, to reflect the hardware 

and software implementations, respectively. These cases 

differ from the ground truth RANSAC because of the 

limited number of iterations allowed (within a single frame 

time). K-means only has one (integer) test case. 

Table 2. Floor detectors performance & accuracy. 
Algorithm Floors 

Detected 

Percent of 

Total (%) 

Inclination 

(degrees) 

Azimuth 

(degrees) 

FloatRansac 2,366 80.9 20.5 9.9 

IntegerRansac 2,483 84.9 2.5 6.3 

k-means 2,912 99.6 11.0 11.8 

As shown in Table 2, k-means can find a valid floor in 

the allotted time in a higher number of cases. As for 

accuracy, the angular deviations from ground-truth indicate 

that these results are close, but not as accurate as with 

IntegerRansac. Interestingly, FloatRansac produces the 

worst results both in performance and accuracy.  This 

version generates a larger number of invalid point 

selections, resulting in less iteration in the allotted time.  

C. Device Utilization 

We implemented two hardware prototypes of the system.  

For the one stage classifier, the system is quite similar to the 

one in [1], and therefore worth comparing to.  For the two 

stage classifier, the Forest Fire module is instantiated twice, 

and to save memory the foreground image data is written 

back into the same input buffer after the first stage 

completes.  As mentioned, it is possible to store the first 

stage image segmentation forest on chip, but for simplicity 

we stored both forests in DDR3 memory. We did not 

investigate pipelining the two classifiers. 

Table 3 shows the utilization of the Virtex 6 240t 

(xv6vlx240t-1ff1156) for the One-Stage system.  The 

utilization reported in [1] for the same chip was 7.5% LUTs 

and 30% BRAMs.   Our implementation now returns the 

centroids of the body parts instead of pointers to the forest 

leaves for each pixel.  In other words, each Forest Fire core 

now includes an additional k-means centroid computation 

unit that was previously absent. This has tripled the LUTs 

while cutting the block rams to a fifth.  This also 

significantly reduces the output bandwidth requirement.  

The size of the Sorting FIFO is reduced to 2 block rams 

rather than 33.  The Forest Fire core now performs 

processing in batches of 1024 pixels rather than loading the 

entire foreground image, but the effect of this batching on 

the frame rate is negligible. The implementation of the 

DDR3 Controller and PC Interface are largely unchanged, 

they only appear to have changed because synthesized with 

the 14.2 release of the Xilinx IDE. 

Table 3.  FPGA Utilization of the One-Stage Prototype. 
 LUTs FF BRAM 

Full System 37470 

(24.86%) 

31796 

(10.55%) 

27 

(6.49%) 

  Forest Fire Core 30129 

(19.99%) 

23198 

(7.69%) 

5 

(1.2%) 

     Sorting FIFO 425 

(0.28%) 

428 

(0.14%) 

2 

(0.48) 

  DDR3 Controller 5488 

(3.64%) 

7496 

(2.49%) 

0 

(0%) 

  PC Interface 1852 

(1.23%) 

1101 

(0.37%) 

22 

(5.29%) 

     Input Buffer 76 

(0.05%) 

42 

(0.01%) 

11 

(2.64%) 

     Output Buffer 0 

(0%) 

0 

(0%) 

8 

(1.92%) 

The operation of the One-Stage system is as follows. The 

depth image is downloaded to the FPGA over Ethernet 

using SIRC. The pixels are classified by the random 

decision tree classifier using the forest stored in the DDR3.  

The centroids of each body part type are calculated and 

written to the output buffer.  The results are transmitted 

back to the host using Ethernet. 

Table 4.  FPGA Utilization of the Two-Stage Prototype. 
 LUTs FF BRAM 

Full System 67236 

(44.61%) 

55405 

(18.38%) 

32 

(7.69%) 

  Forest Fire Two  
  Instantiations 

60611 

(40.21%) 

46614 

(15.46%) 

10 

(2.4%) 

     Forest Fire Core0 29888 

(19.83%) 

23275 

(7.72%) 

5 

(1.2%) 

     Forest Fire Core1 29773 

(19.75%) 

23337 

(7.74%) 

5 

(1.2%) 

  DDR3 Controller 4746 

(3.15%) 

7686 

(2.55%) 

0 

(0%) 

  PC Interface 1876 

(1.24%) 

1101 

(0.37%) 

22 

(5.29%) 

     Input Buffer 76 

(0.05%) 

42 

(0.01%) 

11 

(2.64%) 

     Output Buffer 0 

(0%) 

0 

(0%) 

8 

(1.92%) 

Table 4 reports the utilization for the Two-Stage system, 

after adding the second instantiation of the Forest Fire core.  

While the first stage forest could be stored on chip, for 

simplicity we chose to store it in the DDR3 along with the 

other forest. Some additional control logic was required to 



chain the two classifier cores, to store and reload the data 

from DDR3, and to route the data accordingly.  With two 

instances of the classifier core we double area use, but the 

entire design is well under half of this midrange FPGA. In 

this scenario Core0 performs the BGR image segmentation 

and Core1 performs the body part classification on the 

foreground pixels (see Figure 3).  From Core0 the classified 

pixels are dumped to the DDR3 and those tagged as floor 

are passed to the centroid and floor calculation modules.  

The foreground pixels are loaded from DDR3 to Core1 for 

body part classification. 

D. Power Measurements 

In order to provide an idea to the potential power 

advantages of a hardware solution, in Table 5 we present a 

series of power measurements for consideration.  All values 

are power measurements taken from the wall socket, thus 

they are power measurements for the entire system. 

Table 5.  System Power of NUI Implementations. 
Platform Power (W) 

PC w/Kinect 162.6 

Xbox w/Kinect 92.1 

Xilinx ML605 w/Kinect 25.7 

Digilent ZedBoard w/Kinect 9.0 

Kinect Alone 3.5 

In the case of the Xbox, the Kinect sensor is powered 

through the USB by the host.  For the other platforms, the 

Kinect sensor powered by a separate power supply and is 

added to that of the host.  The average power utilization of 

the Kinect sensor alone is 3.5 watts. 

These measurements demonstrate that all of the 

processing required can be implemented in hardware with 

significant power savings using a high end FPGA.  This also 

suggests the Xilinx Zynq, a SOC with a microprocessor and 

FPGA, could run NUI interface and the application code 

within a much lower power budget than the Xbox or PC.   

V. CONCLUSIONS 

The main contribution of this work is a complete, fully-

embedded realization of the Microsoft Kinect pipeline, 

without using powerful CPUs or GPUs, at a very low 

power, using commercially available FPGAs. To realize the 

system in hardware, we tested the novel idea of using a 

classification forest for image segmentation. Rather than 

segmenting connected objects and tagging pixels, we 

directly classify them into human body parts and floors. 

A straightforward realization with a single classifier does 

not perform well compared to the commercial grade Xbox 

baseline. This system is compact, but the excessive noise 

and limited forest training are negative factors.  

Performance is also negatively affected by the lack of 

filtering. A two-stage approach instead performs acceptably. 

A first classifier detects the foreground and floor data, and a 

second classifier performs the actual body part extraction. 

This system is no worse than 7% of the baseline on the 

entire Xbox production test suites, and only 1% worse on 

average. Additionally, we can leverage the shipping main 

forest and augment it with a second, much smaller forest 

acting as filter.  The hardware implementation reduced the 

overall latency of the system, with a frame rate in excess of 

200 fps. 

We have considered a number of alternative algorithms 

for the segmentation task. None meets all of the 

requirements, especially the separation of players from each 

other. We reduce the separation problem to the assigning of 

the identified body parts to the correct players, which is 

computationally easier.  Training of the forests requires 

some creativity: we use a number of scalable techniques to 

leverage a large amount of unreliable data in effective ways. 

For evaluation, the best metric is to use the final skeleton’s 

limb orientations. In addition to the players, the system must 

correctly identify the floor location, e.g. the world-space 

coordinates. We have described and evaluated both a 

RANSAC-based and a novel k-means based approach.  
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