Differentially Private Aggregation of Distributed
Time-Series with Transformation and Encryption

Vibhor Rastogi *
University of Washington

Suman Nath
Microsoft Research

Seattle, WA, USA, 98105-2350
vibhor@cs.washington.edu

ABSTRACT

Redmond, WA, USA, 98052-6399
sumann@microsoft.com

General Terms

We propose PASTE, the first differentially private aggregation al- Algorithms, Performance, Security
gorithms for distributed time-series data that offer good practical
utility without any trusted server. PASTE addresses two important Keyword S
challenges in participatory data-mining applications where (i) in-

dividual users collect temporally correlated time-series data (such private data analysis, participatory data mining, output perturba-
as location traces, web history, personal health data), and (ii) antion, time-series data, distributed noise addition

untrusted third-party aggregator wishes to run aggregate queries on
the data. To address this, PASTE incorporates two new algorithms. 1

To ensure differential privacy for time-series data despite the
presence of temporal correlation, PASTE uses the Fourier Pertur-
bation Algorithm (FPA). Standard differential privacy techniques
perform poorly for time-series data. To answeiqueries, such
techniques can result in a noise ®(n) to each query answer,
making the answers practically uselessuiis large. Our FPA
algorithm perturbs the Discrete Fourier Transform of the query an-
swers. For answering queries, FPA improves the expected er-
ror from ©(n) to roughly©(k) wherek is the number of Fourier
coefficients that can (approximately) reconstruct all thguery
answers. Our experiments show thak n for many real-life-
data-sets resulting in a huge error-improvement for PA

INTRODUCTION

The ever increasing instrumentation of the physical and the vir-
tual world has given us an unprecedented opportunity to collect
useful data from diverse sources and to mine it for understanding
important phenomena. Consider the following examplgsaofic-
ipatory data mining applications

E1: In participatory sensing applications such as CarTel [16],
BikeNet [8], PEIR [25], WeatherUndergrouhdparticipants con-
tribute various time-series data, e.g., their current locations, speeds,
weather information, images, etc. These data can be aggregated
and mined for useful information such as community interests (e.g.,
popular places), congestion patterns in roads, micro-weather, etc.

To deal with the absence of a trusted central server, PASTE uses_ E2: A Web browser can install plug-ins to monitor users’ brows-

the Distributed Laplace Perturbation Algorithm (DLPA) that adds
noise in a distributed way in order to guarantee differential privacy.
To the best of our knowledge, DLPA is the first distributed differen-
tially private algorithm that can scale with a large number of users:
DLPA outperforms the only other distributed solution for differen-
tial privacy proposed so far, by reducing the computational load per
user fromO(U) to O(1) whereU is the number of users.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database applications—
Data Mining C.2.4 DISTRIBUTED SYSTEMS]: Distributed ap-
plications; G.3 PROBABILITY AND STATISTICS]: Time se-
ries analysis

*Work done while visiting Microsoft Research

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’10,June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

ing behaviors such as the numbers of different types of web pages
a user visits, the types of products he buys from online stores, etc.
Historical data from such plug-ins can be aggregated to understand
user behaviors for improving search results or for better targeted
advertisement delivery [14].

E3: Health-care applications such as Microsoft Health\zatid
Google Healtfallow users to periodically upload data such as their
weights, occurrences of diseases, amounts of exercise, food and
drug intake, etc. PIER [25] allows individual users to store such
data locally inpersonal data vaults Such data can be mined in
combination to understand disease outbreaks, distribution of weights,
relationship of weight gain and drug intake, etc.

As the above examples suggest, aggregate statistics computed
from data contributed by a large number of individual participants
can be quite useful. However, data owners or publishers may not
be always willing to reveal the true values due to various reasons,
most notably privacy considerations. The goal of our work is to
enable third parties to compute useful aggregate queries over, while
guaranteeing the privacy of, the data from individual publishers.

Random perturbation is a widely employed and accepted ap-
proach for partial information hiding, which works by introducing
uncertainty about individual values. Prior perturbation techniques
are designed primarily for relational data [7, 9, 19, 26]. However,

*ht t p: / / waw. weat her under gr ound. com
2htt p: // www. heal t hvaul t. com
Shtt ps:// www. googl e. conf heal th

Centralized Distributed . “User Month Weight
Eg.17.1527] | EQ. [6,9,12,28] Aggregator: Q = Latistheaverage o 5
Relational | Inaccurate for long| Either inefficient or inac- weight at Month i?
. . — ¥ N —
data time-series query curate [9] for a large num- Momth Welght Month Weight Month _ Weight
sequences ber of users R 1 184 0 ws
PASTE (thIS paper) 2 127 2 184 2 246
. . E.g., [11,20] Accurate & efficient I=All users’ data
Time-series | 5" formal privacy| answers for time-serieg ~ L=Userlsdata I=User2sdata - Iy=UserU’sdata Trusted Server
data guarantees query sequences under
differential privacy

Figure 1: System Model(Users with dataly, ..., Iy Aggrega-

Table 1: The design space and existing works tor issues recurring queryQ = Qq,...,Q, No trusted server has
I=1UIy...Uly toevaluateQ(l))

participatory data mining applications have two unique character-
istics that make existing privacy mechanisms inadequate for theseComputation [6,12, 28] can be used to compute accurate perturbed
applications. estimates in a distributed setting. However the computational per-
formance of such cryptographic techniques does not scale well with
e Time-series data: The applications generate time series numer- a large number of users.
ical or categorical data. Data at successive timestamps from the In this paper, we propo$@ASTEPrivate Aggregation of Signals
same source can be highly correlated. with Transformation and Encryption), a suite of algorithms that ad-
o Distributed sources: Data publishers may not trust any single dress these two challenges of distributed time-series data. We use
third party to see their true data. This means, the querier needs tothe state-of-the-art differential privacy as the privacy requirémen

be able to compute useful aggregates without seeing the true dattnd make the following contributions: , _
values. » To answer multiple queries over time-series data under dif-

ferential privacy, we propose the FRAlgorithm that perturbs the
The above characteristics make most existing privacy solutions, Discrete Fourier Transform (DFT) of the query answers. For an-
which assume relational data with negligible correlations across sweringn queries, FPA improves the error fron®(n) (error of
tuples [9, 19, 26] or existence of a central trusted entity for care- standard differential privacy techniques) to rougBiyk) wherek
fully introducing noise [7, 15, 27], inadequate for our target appli- is the number of DFT coefficients that can (approximately) recon-
cations (as summarized in Table 1). struct all then query answers. Our experiments show that a small

Thus, to realize widespread adoption of participatory data min- k& < n is sufficient for many real-life datasets, resulting in a huge
ing applications, one needs to address two challenges. The firsterror-improvement for FPA To the best of our knowledge, FRA
challenge is to ensure privacy for time-series data, which is prob- is the first differentially private technique (unlike [11, 20]) that of-
lematic due to the strong correlation among successive values infers practical utility for time-series data.
the series. This correlation makes answers to different queries over » We propose the DLPA algorithm that adds noise in a dis-
time-series data to also become correlated, e.g. a sequence of queritgstuted way for providing differential privacy. To the best of our
computing the average weight of a community at successive weeks.knowledge, DLPA is the first distributed differentially private algo-

One possible way for achieving privacy is to perturb the answers rithm that scales with a large number of users: DLPA outperforms
to such queries independently of one another, thereby ensuring thathe only other proposed distributed algorithm [6], by reducing the
even revealing a few true answers does not help infer anything computational load per user fro@(U) to O(1) whereU is the
about the perturbation of other answers. However, [20] pointed number of users.
out that if the time-series exhibit certain patterns, then independent » PASTE, our distributed solution, combines the kR#&d DLPA
perturbation of query answers can be distinguished from the origi- algorithms to get the accuracy benefits of the former and the scala-
nal answers and filtered out. Authors in[11,20] consider perturbing bility of the latter. We empirically evaluate our solution over three
time series data to defend against several privacy attacks, but theyreal time-series datasets, nameBRS tracesdaily body-weight
do not provide any formal privacy guarantee, without which data readings andtraffic volumes Our experiments show that our so-
owners may not publish sensitive data in the fear of unforeseen pri- lution improves accuracy of query answers by orders of magnitude
vacy attacks. and also scales well with a large number of users.

On the other hand, formal privacy guarantees like differential ~ We believe that PASTE is an important first step towards practi-
privacy that work well for relational data, seem too hard to achieve cal participatory data mining applications. We have implemented
for time series data. For instance, standard differentially private some of our techniques in Microsoft SensorMapreal online par-
techniques [7] can result in a noise®fn) to each query answer, ticipatory sensing application that has been publicly available for
wheren is the number of queries to answer, making the query an- last three years with several hundreds data publishers. PASTE now
swers practically useless if a long sequence of queries is to be an-allow users to publish private data without revealing the true values
swered. and SensorMap to compute useful aggregates over private data.

The second challenge arises from the absence of a trusted aggre-
gator. Most previous works assume that a trusted aggregator, who2 . PRELIMINARIES
has access to the raw data, computes target functions on the data

and then perturbs the results [7,19, 26]. In the absence of atrusted? 1 Problem Setup and System Model
aggregator, users need to perturb their data before publishing it to . " . . .

. . Motivated by the participatory applications in Section 1, we con-
the aggregator [9]. However, if users perturb data independently, sider a systen)wl mogel aspshOV\)//n iFr)lpFigure 1. The system has o

the noise variance in the perturbed estimate grows linearly with the o .
number of users, reducing the utility of the aggregate information. types of parties involved: a set of usersand anaggregator The

To improve utility, cryptographic techniques like Secure Multiparty *ht t p: / / www. sensor map. or g

figure showsU users locally storing their personal weight time- On the other hand, to ensure a good utility guarantee for the ag-
series data. We will use the weight time-series as a running exam-gregator, we assume that the aggregator queries a set of users that

ple throughout the paper. In general, we model each wisetata it generally trusts. Of the users the aggregator chooses to query,
as a (uni- or multi-variate) time series data, and denotelii, agV/e there can be at mostiars (/ is small) and the remaining users are
also denotd = I, U I» ... U Iy the combined time-series data of either honest or colluding/collaborating with the aggregator. There
all users. There is no trusted central server, and hérisenever is fundamentally no way to ensure good utility if a large number of
computed. The aggregator, however, wishes to compute aggregataisers lie about their data.The same is true if even a single user in-
queries over. troduces an arbitrarily large noise. So we assume that there are no

Types of queries An aggregate query can besaapshotjuery that breakers: in practice, this can be arranged by ensuring _that users’
returns a single number, e.g., the current average weight over allMessages sent to the aggregator are generated and digitally signed
users. A query can also becurringand ask for periodic answers, ~ PY & trusted software implementing the protatol.

e.g., the average weight of all users computed once every month_ N Summary, our privacy guarantees hold even if a large num-
of the year. We model a recurring query as a sequence of queriesber of users are malicious. This is crucial to make new privacy-

Q = {Q,,...,Q,} where each Qis a snapshot query. We denote aware users feel comfortable to join the syst_em. Our utility guaran-
Q,(I) the value of the snapshot query @n inputZ, andQ(!) the tees .hold if a small< l).number of users lie an try to disrupt

vector{Q, (I),...,Q, (I)}. A recurring query can baistorical the final aggregate. This leaves the responsibility to the aggre-
that focuses on past data only, real-timethat runs on data as it ~ 9ator for choosing a good set of users to query. For example, if
arrives. the aggregator can identify a malicious user (e.g., via some out-of-

The data-mining applications we consider are primarily concerned?@nd mechanism), it can blacklist the user and exclude him from
with historical recurring queries, and we develop new algorithms to 'S queéries. Our attack model is stronger than many previous tech-
answer them accurately. Note that even though we consider time-Nidues [12] that use the honest-but-curious model and disallow ma-
series data in the paper, our techniques can be applied to any typedCious agents.
of input datal as long as the query answgr /) is numerical and Privacy Goals We aim to enable the aggregator to estimate an-
hence the vectaf) (/) is a sequence of numeric values. swers to aggregate queries. At the same time, an aggregator should
Distributed Computation. If a query Q contains predicates on N0t learn anything more, other than the aggregate answer, about
public static attributes, it can be forwarded only to users satisfying Nonest individual users. Moreover, no user should learn anything
the predicates. Otherwise, Q needs to be forwarded to all users.ab()“t the values of othe.r honest users, even if he coIIude§ with the
Upon receiving the query Q, a user evaluates Q on his own time ag_gregator or oth(_er mallc_lous_users. We forma_llze our privacy re-
series,/,., perturbs the result, and sends the perturbed results backduirement using differential privacy, which we discuss next.

to the aggregator. The aggregator combines the perturbed results) o Privacy Definition and Background

from all users to produce the final result.
P We now discuss differential privacy [5] that we use as our privacy

A prerequisite for such a distributed system is that the true query defini d al . h dard bati hni
answer, QI), is computable distributedly. Of all such queries, we d€finition and also review the standard perturbation technique [7]
used for achieving differential privacy.

consider only queries of the general forn{/Q = > fu(lu),
where f,, is an arbitrary function that maps uses data, I,,, to Differential Privacy . Informally, an algorithm is differentially pri-
numbers. Such queries, called aggregate-sum queries, are quitevate if its output is insensitive to changes in the dataf any sin-
general, and as explained in [3], are powerful tools for learning and gle useru. This provides privacy because if similar databases, say
statistical analysis: many algorithms like correlation, PCA, SVD, differing in the data of one user, produce indistinguishable outputs,
decision tree classification, etc. can be implemented using only then the adversary cannot use the output to infer any single user’s
aggregate-sum queries as a primitive. Queries not included in thisdata. To formalize this notion, denofe= I; U I ... U Iy the
class are queries that require a non-sum function to be evaluatedcombined data forni/ users anchbrs(I) the data obtained from
collectively over multiple users’ data (e.g., aggregate-max or min adding/removing one user’s data frami.e. nbrs(I) consists of
queries). I' suchthateithef’ = TU I, foru ¢ {1,...,U}lorl’ =1—1,

Attack Model. We allow both users and the aggregator to be ma- for someu € {1,...,U}.

lies about his values, but otherwise follows the protocol correctly, the output of an algorithmt on input datal. ThenA is e-differentially
or (i) Breaker: a user who breaks the protocol, e.g., sends wrong private if all 7, I’ such that!’ € nbrs(I), and any outputz, the
messages. A malicious aggregator can break the protocol. In addi-fo|lowing holds:

tion, it can collude with other malicious users.

To ensure privacy for users, we make a flexible assumption that PriA(I) = a] < e"Pr[A(I') =]
at least a fraction of users (e.g., a majority) are honest. The lower\yhere Py is a probability distribution over the randomness of the
bound’ of the number of honest users is known a priori during algorithm.
deciding the noise generation parameters of the system. Remain-
ing users and the aggregator can be arbitrarily malicious. (Similar Query Sensitivity. We now look at a standard technique proposed
assumption is generally made in cryptographic solutions.) The as-p pwork et al. [7] for differential privacy. It can be used to an-

sumption is practical and flexible—for a user to know that his true gy er any query whether it is just a single snapshot querypQa
values will remain private, he only needs to know that at least a recurring query sequence} = Q, Q
)) n*

certain fraction of other users are honest; he does not need to trust The technique works by adding random noise to the answers
any single entity such as the aggregator. where the noise distribution is carefully calibrated to the query.

SMany software security systems rely on trusted software, for
Our techniques can support arbitrary queries if run on a central- instance the clients’ antivirus software, to work with untrusted
ized server. clients [14].

The calibration depends on the quesgnsitivity—informally, the THEOREM2.2 (UTILITY [7]). Supposewe fix = A1(Q)/e
maximum amount the query answers can change given any changeso that LPAQ,)\) is e-differentially private. Then for ali €
to a single user’s datd,. If Q is a query sequenc&(/) and {1,...,n}, error;(LPA) = A1 (Q)/e.

Q(I') are each vectors. Sensitivity then measures the distance be-

tween the two vectors. This is typically done using fhedistance EXAMPLE 2.2. Recall the recurring queryQ of Eg. 2.1 that
metric, denoted agQ(1) — Q(I’)|,, that measures the Manhattan ~counts users having weight 200 in each monthi = {1,...,n}.

distance}_, |Q;(I) — Q;(I’)| between these vectors. In this paper, ThenA;(Q) = n and LPA gives arrror;(LPA) = n/c in each
we also use thé.; distance metric, denoted &Q(1) — Q(I)], query Q for e-differential privacy. Also, the RMSEyror(LPA),

that measures the Euclidean distaqe®”, (Q, (1) — Q,(1))>. is /> n2fe =n®?e

DEFINITION 2.2 (SENSITIVITY [7]). LetQ be any query se-
quence. Fop € {1,2}, the L, sensitivity ofQ, denotedA,(Q), 3. SKE_TCH_ OF THE PASTI_E SOL[_JTION)
is the smallest number such that for aland I’ € nbrs(I), Bef(.)re‘dlscus.smg PASTE, our solutlon for dlﬁerfentlal privacy
over distributed time-series data, we provide an outline for it in this
|Q(I) - Q(f')|p <A(Q) section. PASTE uses several existing primitives including Discrete
Fourier Transform (DFT), homomorphic encryption (that allows
aggregation of encrypted values without decryption), and threshold
encryption (that requires a threshold number of users for decryp-
ExAMPLE 2.1. Consider a query Q counting the number of tion). We will review these_ techniques in Sections 4 and 5. _
users whose weight in months greater than 200 Ib. TheA(Q) PASTE uses the following two protocol stages for answering a

is simply1 as Q can differ by at moston adding/removing a sin- ~ S€duence of n queries. The first stage is a method to improve
the accuracy of query answers and is described using a trusted cen-

For a single snapshot query,Qthe L, and L, sensitivities are the
same, and we writd (Q;) = A1(Q;) = A2(Q;).

gle user’s data. Now consid€&) = Q,,...,Q,,, where Q counts i k ol
users whose weight in montfis greater than 200 Ib. Thef; (Q) tral server. The second stage is then used to obtain a distributed
is n (for the pair 7,1’ which differ in a single user having weight > selution.

200 in each month) and A»(Q) = +/n (for the same paif,I’). 1) Fourier Perturbation Algorithm (FPA). To answer query se-

guenceQ of lengthn with small error under differential privacy,
Laplace Perturbation Algorithm (LPA) . To guarantee differen- we design the FPAalgorithm. FPA, is based on compressing the
tial privacy in presence of a trusted server, [7] proposes the LPA answersQ(I), of the query sequence using an orthonormal trans-
algorithm that adds suitably-chosen noise to the true answers. Theformation. Intuitively, this means finding flength compressed
noise is generated according to the Laplace distribution. Denote query sequencd* = F}, ... Ff, wherek < n, such that the an-
Lap()\) a random variable drawn from the Laplace distribution swers,F*(I), can be used to approximately comp@¢7). Then
with PDF: Pr(Lap()\) = Z) = %676\2\/& Lap()\) has mean we can perturti* (1) instead ofQ(I) using a lower noise (the

0 and variance2)\?. Also denoteLap™ () to be a vector of: noise actually reduces by a factorofk) while preserving differ-
independentap(\) random variables. ential privacy. An additional error creeps in sinE&(7) may not
The LPA algorithm takes as input a query seque@cand pa- be able to reconstru€(7) exactly, but for the right choice of the

rameter) controlling the Laplace noise. LPA first computes the COmpressed query sequendg;, this reconstruction error is sig-
true answersQ) (1), exactly and then perturbs the answers by adding Nificantly lower than the pirturbatlon error caused by adding noise
independentLap(\) noise to each query answer (7). More directly toQ(7). A goodF* can be found using any orthonormal
formally, it computes and outpu@® — Q(I) + Lap”()). Differ- transformation and we use the Discrete Fourier Transform (DFT) in
ential privacy is guaranteed if the parametef the Laplace noise our algo.rl.thm. The DFT cpmpressqd query seq.ueFlffehas. large
is calibrated according to the; sensitivity of Q. The following L, sensitivity and perturbing it for differential privacy requires new
theorem shown in [7] formalizes this intuition analysis that distinguishes our solution from other Fourier-based
' perturbation approaches [20]. We discuss this in detail in Sec. 4.

THEOREM2.1 (RRIVACY [7]). LPA(Q,)) is e-differentially 2) Distributed LPA (DLPA) . To answer an aggregate-sum query

private forA = A;(Q)/e. sequenc® distributedly under differential privacy, we propose the
DLPA algorithm, a distributed version of the LPA algorithm dis-

Analyzing accuracy. To analyze the accuracy of the perturbed cussed in Sec. 2.2. Our complete solution comprises of using FPA
estimates returned by an algorithm, we quantify their error in the for improving accuracy together with DLPA for distributed noise-
following way. addition. We describe how they are combined in a moment, but
. first we explain the DLPA algorithm. We explain DLPA for a sin-

DEFINITION 2.3 (UT_'L'TZ)' Le}A(Q) t~)e an algorlthm that gle aggreggte-sum query Q:gthe generalizat?on to the seq@izce
returns a perturbed estima® = Q,,...,Q, for an input se- straight-forward and just requiresseparate invocations, once for
quenceQ = Q,,...,Q,. We denoterrori(A) = EalQ; — each query Qin Q. Since Q is an aggregate-sum queryJ/R=
Qi({’)| the expecte.d error in the estimate qf e query Q. Here S°U_ | fu(L.) where the functiory,, maps usew’s data to num-
[E4 is the expectation taken over the possible randomneds @b bers. Denoter, = f.(I), so that @I) = 25:1 .

quantify error in the entire sequend® returned by algorithmA, . . .
we use the standard notion of Root Mean Square Error (RMSE). We .. The ba_S|c protoc_ol IS based on threshold homgmorphlc encryp-
tion and is shown in Fig. 2. To perturb(Q = > . _, =, each

denote it agrror(A); itis computed ai/]EA Yo Qs — Qu(I)|* useru adds a share of noise,,, to his private valuer,. To keep
_ the estimation error small, the noise shares are chosen such that
For examplegrror;(LPA) = E|Q; — Q;| = E|Lap(X\)| = A, SV n. is sufficient for differential privacy, but., alone is not
while the RMSEgrror(LPA), is /> 1, A? = /nA. sufficient: thus the value. + n. can not directly be sent to the

Next we discuss the utility of the LPA algorithm while satisfying aggregator. To address this, the usecomputes encryptions of
e-differential privacy. ., + n, and sends it to the aggregator. Due to encryption, the

Encrypt data and
noise to getE,

Aggregate E, of all
users to compute E

Compute decryption |
share of E to get D,

Combine decryption
shares to get result

User u Aggregator

Figure 2: Basic Distributed Protocol (homomorphic property ex-
ploited to aggregate users’ encryption & threshold propery to combine
users’ decryption shares)

aggregator can not learn anything abeyt However, using the
homomorphigroperty, it can compute the encryption of the sum

of all received values from all users thereby getting an encryption

Eof Q =Y, (. + ny). This encryption is then sent back to all
users who use ththresholdproperty to compute their respective

decryption shares. Finally, the decryption shares are sent to the ag-
gregator who combines them to compute the final decryption. The

end result is a noisy differentially private estim&ef Q(I).

There are two challenges with the basic protocol described above.,
Firstly, the noise shares have to be generated in a way so that thei

sum is sufficient for differential privacy. Secondly, the aggregator

can be malicious: the distributed protocol requires the aggregator

to compute an encryptiofl of Q = 3° (+ n.) and send a
decryption request to the users to help him dec#pBut, the ag-

gregator can cheat and request the decryption of wrong values, for
instance, the encrypted private value of a single user, in which case

the users will be inadvertently decrypting the private value of that
user. We discuss how to solve these challenges in Sec. 5.

Putting the two together into PASTE. Now we explain how FPA
and DLPA together give the complete solution in PASTE. To an-
swer a query sequen€g of n aggregate-sum queries, the aggrega-
tor first uses FPA to compute thek-length sequencEX. Due to
the linearity of the DFT transformatiof* is another aggregate-
sum query sequence. Now FPAequires to perturb the answers
of the query sequendgX in order to get differential privacy. This
is done by applying the DLPA algorithm dR¥. The end result
of DLPA is that the aggregator gets a noisy differentially estimate
F* of F¥(I). Then the aggregator computes the inverse DFT to
reconstruct an estima@® from F*. The final estimat€) has error
characteristics of the FRAalgorithm, but has been computed in a
distributed way using DLPA.

We discuss FPAand DLPA in detail in next two sections.

4. FOURIER PERTURBATION ALGORITHM

We now describe in detail the FRAalgorithm (the first stage
of PASTE) for improving accuracy of query answers for long se-

X (n=2000) ——
200

of users with weight > 200

Il Il Il Il Il Il Il
250 500 750 1000 1250 1500 1750
Time (# of days)

Figure 3: Reconstructed sequenc&’ vs. original X

Algorithm 4.1 FPA.(Inputs: sequenc&), parameten)
1: ComputeF* = DFT*(Q()).

2: ComputeF* = LPA(F¥, \)

3: ReturnQ = IDFT(PAD"(F*))

DenoteDFT*(X) as the firstk elements of DFT(X). The
elements o DFT*(X) are called the Fourier coefficients of the
k lowest frequencies and they compactly represent the high-level

'Irends inX. An approximationX’ to X can be obtained from

DFT*(X) as follows: Denotin®AD" (DFT* (X)) the sequence
of lengthn obtained by appending— k zeros taDFT* (X), com-
puteX’ = IDFT(PAD"(DFT"(X))). ObviouslyX’ may be
different fromX as ignoring the last — k Fourier coefficients may
introduce some error. We denote REX), short for reconstruction
error at thei* position, to be the valug’; — X;|.

ExamMPLE 4.1. To give a sense of the reconstruction error, we
consider a sequenck of lengthn = 2000 representing the num-
ber of people with weight 200 in a real dataset (more details in
Section 7), counted once every day over 2000 days. Fig. 3 shows
the reconstructed sequenc¥,/, usingk = 20 DFT coefficients
along with the original sequencX¥. X shows the temporal trend
in the # of overweight people in the dataset. As sha¥hgcap-
tures the trend accurately showing that the reconstruction error is
small even when compressing from= 2000 to & = 20 DFT
coefficients.

4.2 The Algorithm

FPAy; is shown in Algorithm 4.1. Given a query sequer@eit
begins by computing a compressed query sequ#igecompris-
ing the firstk Fourier coefficients in the DFT o®(I). Then it
perturbsF* using the LPA algorithm with paramet&rto compute
a noisy estimatd&”. This perturbation is done to guarantee dif-
ferential privacy. Finally, the algorithm computes the inverse DFT
of PAD"(F*) to getQ, an approximation to the original query
answerdQ(7).

guences. In this section, we assume a central trusted server: how to As with LPA, the parametex in FPA; needs to be adjusted in or-

distribute the algorithm using DLPA (the second stage of PASTE)

der to gete-differential privacy. Since FPAperturbs the sequence

was briefly mentioned in the solution sketch and will be discussed F*, X has to be calibrated according to the sensitivity, A, (F*),

in detail in Sec. 5. The FRAalgorithm is based on the Discrete
Fourier Transform, which we review briefly below.

4.1 The Discrete Fourier Transform

The DFT of an-dimensional sequenck is a linear transform
giving anothem-dimensional sequenc®FT(X), with j*" ele-
mentgivenas: DFIX); = > 7", I
compute the Inverse DFT as IDEX); = = >°" e
FurthermoreIDFT(DFT(X)) = X.

91X ;. Similarly one can
_2ny/—1 ..
X

of F¥. Analyzing this sensitivity is challenging as changing a sin-
gle user’s data can affect the entire sequei@gl), resulting in
large changes to each Fourier coefficient. Next we discuss how to
bound this change, and obtain a value\dhat makes FPA(Q, \)
differentially private.

THEOREM 4.1. DenoteF* = DFT*(Q([)) the firstk DFT
coefficients ofQ(I). Then, (i) theL; sensitivity, A;(F¥), is at
mosty/k times thel.» sensitivity A»(Q), of Q, and (ii) FPA, (Q, \)
is e-differentially private for\ = vkAs(Q)/e.

Proof (i) holds sinceAs(FX) < Ax(Q) (as then Fourier coef-
ficients have the samB, norm asQ, while F¥ ignores the last
n — k Fourier coefficients), and; (F*) < vkA2(F¥) (due to a
standard inequality between tlig and L, norms of a sequence).
(ii) follows since forA = VEA2(Q)/e > A1 (FX)/e, F*
LPA(F*, \) computed in Step 2 isdifferentially private, andl
in step 3 is obtained usirg* only.

4.3 Analyzing accuracy

Example 2.2 gives an instance ofidength query sequence for
which LPA results in an error of /e to each query answer, making
the answers useless for a large Intuitively speaking, FPA ap-
plies LPA on a lengthe sequence. Hence the noise added during
perturbation should be smaller. On the other hand, ignatirgk
DFT coefficients in FPA results in an additional (but often much
smaller) reconstruction error. Below we formalize this argument to
compare the errors for the two algorithms in greater detail.

In general, LPA results in a large noise wheneverkhesensi-
tivity of the query sequence is high. We define below irreducible
guery sequences that have the worst-posdibleensitivity behav-
ior.

DEFINITION 4.1 (IRREDUCIBLE QUERIEY. A query sequence
Q = Q,...,Q, is irreducible if its L, sensitivity,A1(Q), is
equal tothe sumy ", A(Q;), of the sensitivities of its constituent
queries Q's.

For all sequence®), A:1(Q) < >, A(Q;). Hence irre-
ducible queries have the worst-possilile sensitivities among all

is important in obtaining a good trade-off between the perturbation
error,k /¢, and the reconstruction error, REQ(I)). If k is too big,

the perturbation error becomes too big (giving the performance of
LPA), while if £ is too small the reconstruction error becomes too

high.

We can often choosk based on prior assumptions ab@(r).

For instance, ifQ(7) is such that the Fourier coefficients corre-
sponding toQ () decrease exponentially fast, then only a constant
number (sayt=10) of Fourier coefficients need to be retained dur-
ing perturbation. Our experiments show that this naive method is
applicable in many practical scenarios as Fourier coefficients of
many real-word sequences decrease very rapidly [1].

However, for optimal performance, we need to adjust the value
of k depending on the exact nature @f /). Computingk after
looking at QI), however, compromises differential privacy. An
algorithm to efficiently computé in a differentially private way is
described in Sec. 6.1.1.

5. DISTRIBUTED LPA (DLPA)

In both LPA and FPA, we assumed a trusted central server that
stores the entire databasecomputes the true answerg X, and
adds noise for privacy. Next we discuss how to adapt these algo-
rithms for the distributed setting, i.e. databdse [y Ul»...U Iy
wherel, is the data of useu that she keeps to herself. We restrict
ourselves to aggregate sum quefigise. Q is such that Q) =
25:1 fu(I,) wheref, is an arbitrary function that maps usés
databasd,, to numbers.

We first construct the distributed LPA algorithm (DLPA for short)

query sequences. Recurring queries over time-series data are ofgnq then use it to construct distributed RPAAs discussed in

ten irreducible: one instance is the recurring quéryf Exam-
ple 2.2. The improvement of FRAover LPA is the most on ir-

Sec. 2, our algorithms guarantee privacy even against a malicious
aggregator and malicious users as long as a majority of honest users

reducible query sequences (since LPA _has the _Ieast accuracy Torexist. For the utility of the aggregate estimate to be good, we as-
such queries). We compare the accuracies over irreducible queriessyme that among the malicious users, there are no breakers and at

below (note however that irreducibility is not required for FA

For simplicity, we assume W.L.O.G that the sensitivityQ,) =
1 for all Q, € Q. If not, we can rescale the queries by defining the
sequenc’ = {Q},...,Q,} given as Q = Q,/A(Q,). Then
A(Q) = A(Qi/A(Q)) = A(Q)/A(Q;) = 1. Furthermore,
Q(I) can be computed froi®’ (1) by just multiplying withA(Q,)

most! liars.

We explain DLPA over a single aggregate-sum query Q: the
generalization to query sequences is straight-forward and just re-
quires multiple invocation of the algorithm, once for each query in
the sequence. In this section, we also make a simplifying assump-
tion that there are no communication failures: all links between the

th e -
at the:™" position. We call such sequences as normalized query ysers and aggregator are maintained throughout the time required

sequences.

With this simplification, A1 (Q) = n (as irreducibility means
A1(Q) =>"", A(Q;) =>1, 1 =mn). Applying Theorem 2.2,
we know thaterror; (LPA) = n/e in each query Q On the other
hand the following theorem shows the error of the ER#gorithm.
Recall that RE(Q([)) is the reconstruction error for ti€" query,
Q,, caused by ignoring. — k DFT coefficients ofQ(7) and then
computing the inverse DFT.

THEOREM 4.2. Fix A = vVkA2(Q)/esothat FPA(Q, \) ise-
differentially private. Thenforall € {1,...,n}, theerror;(FPA,)
isk/e+ RE (Q(I)).

to answer the query. We relax this assumption and discuss fault
tolerance in Sec. 6.2.

LetQ= 25:1 fu(I.) be the aggregate-sum query that we wish
to answer. For simplicity of presentation, we assufpereturns
numbers in the s€fl, 2, ..., }: our techniques work for any finite
domainC R. Denotez, = f,(I.). Then Q= 3Y_ z,. For
privacy, each user adds a share of noise,,, to his private value
., such that""_ n, is sufficient for differential privacy, but.,
itself is small so that total noise is low as possible. Hence, the value
., + n,, can not directly be sent to the aggregator. To address this,
the useru computes encryptions af, + n, and sends it to the
aggregator, which performs aggregation over encrypted data. We

Due to lack of space, the proof of the above theorem is deferred Next review the cryptographic primitives that make this possible.

to the full version of the paper [22]. The theorem shows that the
error by FPA, for each query i&/e +REF (Q(T)), while we know
that LPA yields an error ofi/e. Since the reconstruction error,
REF(Q(I)), is often small even fok << n, we expect the error in

5.1 Basics: Encryption Scheme

DLPA is built upon the threshold Paillier cryptosystem [10]. The
cryptosystem is set up by choosing an integesuch thati) m =

FPA,, to be much smaller than in LPA. This hypothesis is confirmed Pg wherep and g are strong primes (i.p = 2p’ + 1 andq =

in our experiments that show that FPAives orders of magnitude
improvement over LPA in terms of error.

Choosing the Rightk. So far we have assumed thiais known to
us. Sinceerror;(FPA,) is k/e + REF(Q(I)), a good value ok

2q¢" + 1), and (ii) ged(m, ¢(m)) = 1. Oncem is chosen, any
number inZ,, (the sef{0, 1,...,m — 1}) can be encrypted. Also

"Note that FPA itself is more general and can support arbitrary
queries when used in a centralized setting.

Algorithm 5.1 Encrypt-Sumg.,, 7.,)
1: User u generates a random, € Z,, computesc,
Enc(z, + rv), and sends,, to the aggregator.
2: The aggregator computes= []"_, c..

denoteZ, the subset of numbers i, that have a multiplicative
inverse modulon (eg.0 does not have an inverse, luhas).

Key generation Choose a random elemefite Z;, and set\ =
Bxlem(p, q). Mis the private key. Also sgt= (1+m)“b™ mod m>
for some randomly chosén, b) € Z:, xZ%,. The triplet(m, g, g*)
forms the public key.

Encryption The encryption functiorEnc maps a plaintext mes-
saget € Zn to ciphertextc € Z .. Enc(t) is computed as
g'r™ mod m* wherer € Z, is a randomly chosen number.
Decryption DenoteL the functionL(u) = (u — 1)/m for any
u = 1 mod m. The decryption of ciphertext € Z; . is the

H C>\ mo 777,2
function Dec(c) W

The encryption scheme has the following properties.

Homomorphic addition If ¢; is a ciphertext for message for
i € 1,2, thenc; - ¢z is a ciphertext for message + ¢-.

Distributed decryption Suppose the private keyis shared byJ
users as\ = > A, where), is the private key for uses. Then
decryption of a ciphertext can be done distributedly (i.e. without
any party knowing\) as:

e Each user computes his decryption shatg = ¢*«.
e The decryption shares are combined’as: [[7_, c,.
L(c’ mod m2)
L(g>» mod m?2)

e Finally the decryptiont = is computed.

5.2 Protocol for Computing Exact Sum

LetQ= 25:1 x,, be the query to be computed by the aggrega-
tor. We first start with a protocol for computing Q at the aggregator

exactly. We will subsequently enhance the protocol to include noise
addition. As discussed in the solution sketch (Sec. 3), computing
even exact sum is difficult against a malicious aggregator: instead
of the aggregator computing the encrypted sum and sending it to
the users for decryption, it can send false decryption requests (sa

the encrypted private value of a single user) and break privacy.

y

Sincer,,’s are not known to the aggregator, decryptingould not
reveal any information about Q. However, the following modifica-
tion of the distributed decryption protocol can be used to obtain Q
exactly. Note thag” is publicly known.

Algorithm 5.2 Decrypt-Sumg, r,)

1: The aggregator sendgo each uset for decryption.
2: Useru computes decryption sharg = ¢*v g~ ",
3: The aggregator collects, from each user, combines them to

getc¢ = [[_,c., and computes the final decrypti@) =
L(c’ mod m?)
L(g>» mod m?2)

The above protocol is a minor modification of distributed decryp-
tion: useru multiplies an additional factor of ~"+* while gener-
ating his decryption share (step 2). We call this protocol Decrypt-
sumg, ,,). The following proposition shows the correctness of the
protocol.

PROPOSITION 5.1. Letc = Encrypt-sumg.,, 7.,) aEdQ be the
decryption computed by Decrypt-sumf,). ThenQ = Q =
25:1 Lu-

Proof Sketch: The proof appears in the full version of the pa-
per [22]. Here we give a sketch. As mentioned eartiegbtained
from Encrypt-sumt,,, r,,) is an encryption of @ 25:1 r. Each
useru corrects for his-, in Step 2 of Decrypt-suma(r,,). Thus the
final Q obtained is equal to Q.

Finally, we show that even though the Encrypt-sum and Decrypt-
sum protocols can be used to compute the sulfj, , z., no other
linear combinations can be computed. We saw that to compute the
sum, the aggregator computed-] c., wherec, is the encryp-
tion received by the aggregator from usein the Encrypt-sum
protocol (Step 2). Next we show that virtually no other encryp-
tion computed from these,’s can be decrypted in order to breach
privacy.

THEOREM 5.1. Suppose that the aggregator runs the Encrypt-
sumfc,.,r.,) protocol followed by the Decrypt-sum(r,) proto-
col for somec’ of his choice. Let’ = [[V_, ¢ (wherec, are
the encryptions sent by userduring Encrypt-sum protocol) such
thata, — 1 has an inverse moeh? (which impliesa, # 1) for
someu. If the Decrypt-sum protocol decrypt$ correctly to give
SV, auxy, then there exists an attacker that breaks the security
of the original distributed Paillier cryptosystem.

Proof Sketch: The formal proof of security is quite involved and

We use the threshold Paillier scheme for the protocol. In a key appears in the full version [22]: here we just highlight the intu-

generation phase, the private kayis generated and distributed
among the users as = >_._ \,. Thus the users all together
can perform distributed decryption using their keys Note that

ition. Let ¢ = Encrypt-sumg,,, r,,). Suppose the aggregator runs
Decrypt-sum{’, r.,) for ¢’ # ¢, i.e. he sends wrong request for de-
cryption, say the encryption of a single user’s data (g.= 0 for

since the key generation needs to be done only once (irrespectiveall users but one). In Step 2 of Decrypt-sufg,,) protocol, other
of the # of queries to be answered), expensive secret-sharing pro-users will wrongly be correcting for their randorm’s that are not

tocols [24] can be used for this purpose.

present in’’, making the decrypted valu@ completely random and

The protocol executes in two phases. In the first phase, the ag-useless.

gregator computes the required Q in encrypted form. Then in the
second phase, a distributed decryption protocol is run to recover Q

from the encrypted form.

The first phase is shown in Algorithm 5.1. We call it Encrypt-
Sum.,, r,): each user encrypts his private value,,, added to a
randomly generatecd,. Note thatr,, is known only to uset:. The

5.3 Protocol for Computing Noisy Sum

Now we describe how to add noise in the distributed setting. As
mentioned earlier, LPA requires us to comp@e= Q + Lap()\)
whereLap()) is a Laplace random variable with me@@and vari-
ance2)\?. DenoteN (u, o) to be a Gaussian random variable with

aggregator obtains all the encryptions and multiples them to com- meany. and variancer®. We shall generate Laplace noise using 4
putec. Due to the homomorphic properties of the encryption, the Gaussian variables by exploiting the following property (proved in
obtainedc is an encryption op "7 (z, + 1) = Q+ 20 ru. the full version [22]).

Algorithm 5.4 Encrypt-Noisy-Sumg.,, 7.,) Next we state theorems showing the privacy and utility of the

1: Useru chooses five random numbers, 72, ..., 73 from Z, protocol. Due to space constraints, the proofs are deferred to the
and computes, = 7. + 72 — 13 —rt 445, full version of the paper [22].
2: ;Jlser uygenerates fourN(0,v/2X\/U) random variables THEOREM5.2 (Privac). Lete —Encrypt-Noisy-Sumi,)

andQ~ =decrypt-sum{, r,,). If there are at least/ /2 honest users,
thenQ = Q + Lap(\)+Extra-Noise, wherd.ap()) is the noise
A2 generated by honest users and the Extra-Noise is that generated by
5: Aggregator computes= . malicious users. Thus fox = A(Q)/e, e-differential privacy is
guaranteed independent of what the malicious users and aggrega-
tor choose to do.

. Letc! =Encrypt-Sum-Squarég’,, rJ,) for j € {1,2,3,4}.
. Letc® =Encrypt-Suntiz.,, %)

A w

PROPOSITION 5.2. LetY; ~ N(0,\) fori € {1,2,3,4} be
four Gaussian random variables. Théh= Y + Y5? — Y& — Y
is a Lap(2\?) random variable.

THEOREM5.3 (UTILITY). Lete =Encrypt-Noisy-Sumy,,r.,)
andQ =decrypt-sum{, r,,). If there are no malicious users, then
Q = Q+ Lap(2X). Finally, in presence of malicious users that

are all liars and no breakersQ can deviate from @ Lap(2X) by

The advantage of this decomposition is that Gaussian variables
at mostl x A(Q).

can be generated in a distributed fashion: To genera¥g@ \)
variable, each user can generat¥ @, \/h) variable ¢ = U /2 is))
alower bound on the number of honest users, i.e. a honest majorityPASTE. Now we explain how FPAand DLPA together give the
exists) and then the sum of theseN (0, A/k), random variables complete solutlon_ in PASTE. Above we discussed how to compute
gives the rightV (0, \) variable. However, to compute Bap()) the perturbed estimat@ for a single query Q. As mentioned ear-
variable by Theorem 5.2, we need to compute squares of Gaus-lier, extending distributed LPA for a-length query sequend®

sian random variables: for this we extend the Encrypt-Sum proto- IS Straightforward: apply the Encrypt-Noisy-Sum protoedimes,

col described in the previous section to compute the encryption of Once for each Qe Q. This works since LPA consists of inde-

(3Y_, yu)? wherey, is the privateN (0, \/h) of each user. pendent perturbations for each of thejueries in the sequence.
The protocol requires two randomly generated private keys., Implementing FPA over the distributed setting is slightly more

€ Z,, for each usen. The keysh, are such that their sum for all involved. Each uset first computes the answers @f over his

users,"U_, b, is 0. Denotea the sum>""_, a,. Enc(a?)is datal,. We denote the answers @ 1..) = Q, (1), - .-, Q, (1u).

computed and made public in a key generation phase. The keysNext the user, computes the firgt DFT coefficients of the answers
au, b, need to be generated only once and expensive secret sharin%lgu)- Let us denote these DFT coefficients by the sequence
protocols [24] can be used for this purpose. The protocol is shown F (1) Recall thatF™ (1) are thek DFT coefficients ofQ([),

below. whereQ(I) are the answers df) over the complete databage
By linearity of DFT, we know thaF* (1) = S-U_ F*(I,,): thus
Algorithm 5.3 Encrypt-Sum-Squaregy, .,) Protocol F* is another aggregate-sum query. Then distributed LPA can be
1 U tes, — I T a, +b,)and dsittoth used by Fhe aggregator to compute the .perturbed estiffater
agsgrrgg%?cr)r;pu e ne(yu + au + bu) and sends it to the Fk(I). Finally, the aggregator takes the inverse DFT transform of
. . - f
2: The aggregator computes= [[_, ¢, and sends itto each ¥ © computeQ, a perturbed estimate .
useru.
3: Each usewn generates a random, € Z,,, computes, = 6. EXTENSIONS
Tt Bne(ry). We now describe two useful extensions of our algorithm. The
4: Th%aggregator (;ollectst from each user and compute's= first extension enables us to choose a good value of the parameter
(ITa=1 cu)Enc(a”) k (# of DFT coefficients used in FRA if a central trusted server

exists, while the second extension allows us to tolerate failures of

usersduring the execution of the DLPA algorithm.
We call the above protocol Encrypt-Sum-Squagedt.,). Due

to the homomorphic properties of the encryption, the finab- 6.1 Choosing a Good Value of
tained in Encrypt-Sum-Squaregd(r..) can be showntobe anen- g4 far we have assumed that the vakuis known to us before
cryption of(X. y“_) + 2, T . executing FPA. This was unavoidable in the distributed setting as
Finally we can discuss the the noisy-sum protocol to Bdg()) each user needs to knawbefore computing his DFT coefficients
noise. The protocol is shown in Algorithm 5.4 Qnd is called Encrypt- FX(I,). However, assuming a central server holds all the data
Noisy-Sumf{.,r.): each user generatésSaussianV (0, vV2A/U), then the server can computedepending on the exact nature of
random variables in Step 2._ Each of thaseausswm_ variable is Q(I). Computingk after looking atQ(1), however, compromises
used to generate an encryption aVg0, \/A/2) Gaussian random jgerential privacy. We present here an algorithm to efficiently
variable in Step 3 using the Encrypt-Sum-Squared protocol. Then cqmpyter: in a differentially private way. This algorithm can be

the useru generates an encryption for his private vaiugusing used instead of LPA to accurately answer long query sequences in
the Encrypt-Sum protocol in Step 4. The random variabjgare the centralized setting.

generated so as to force the right encryption to be computed by the

aggregator in Step 5: the aggregator can only compete®-5-5"; 6.1.1 Differentially-private Sampling

all others would have somé, unbalanced. Due to the homomor- DenoteF = DFT(Q(I)), andF” (resp.F" %) the firstk (resp.
phic properties of the encryption, the obtaingd an encryption of lastn — k) Fourier coefficients ifF'. We want to choose a suitable
St (O, v+ (O, va)* = (2, va) = (2, vu) 4+ 20, T k, and an estimat&"* for the firstk Fourier coefficients in a dif-
Also thisc can be decrypted using decrypt-sumy,) protocol (Al- ferentially private way. One obvious method is to somehow com-

gorithm 5.2). pute k& under differential privacy, and then use FPfo compute

Algorithm 6.1 SPA(nputs: Q(I), parameteR)
ComputeF = DFT(Q(I))

Denotel/’ (k) the function|F™ %[5 + ky/n/e.

Sample & € {1,...,n} with probabilitycc e~ *)/*,
Letg be aG(1/A?, (k + 1)/2) random variable
ComputeF* = F* 4 N*(0, ,/9)

ComputeQ = IDFT(PAD"(F*)).

F*. However this two step procedure results in additional noise,
as computingc privately exhausts some privacy budget that could
have been used for computifitf using FPA,. Next we discuss a
differentially private sampling procedure that computes a suitable
k along withF* simultaneously.

THEOREM 6.1. Denotel/ (k, F*) the functionF™ |, +|[F* —
F*|,. Then sampling: and F* with probability proportional to

e~ UEN/X satisfies-differential privacy for\ = v2A,(Q) /e.

Theorem 6.1 (proved in the full version [22]) shows a differen-
tially private way of sampling: andF*. However, the sampling
may not be efficient. This is because, even assuminghthes
been sampled already, sampliR§ needs to be done with proba-

bility proportional toe®“~F"12/* " In other wordsF* has to be
sampled with probability based on ifs distance with another se-
quenceF*. This is difficult as now elements of the sequeiite
cannot be sampled independently:Af is the sampling distribu-
tion, thenPr(F; = z|F; = y) # Pr(F; =). Onthe other hand,

in FPA,,, F* was generated independently by addirgp” (\) ran-
dom variables td&*. Nevertheless we discuss next an efficient way
to sample froni/ (k, F*).

6.1.2 Sampling Perturbation Algorithm (SPA)

Before giving the algorithm, we recall two kinds of random vari-
ables: ()N (u, X), that represents a normal random variable with
meany and variances> (additionally, denoteN*(u, o) a vec-
tor of & i.i.d normal variables), and (ii§#(0, r), that represents a
Gamma random variable witP D F given asﬁl)mx’"*le”/e,
whereé > 0, andr > 0 are parameters, arld(.) is the gamma
function. This PDF is similar to the exponential distribution except
for an extra factor o&"*.

Our sampling-based perturbation algorithm (SPA) is shown in
Algorithm 6.1. In the first step it computes the entire DFTQf
Then in steps 2 and 3, it samples a valué ofntuitively speaking,
U'(k) = |[F"*|y + k/n/e computed in the step 2 is the sum of
the reconstruction errof?™~*|, (this is the loss incurred by ignor-
ing all elements ifF"~*), and the perturbation errak,/n/e (an
additional factor ofy/n appears as this is the perturbation error for
the whole sequence). In step 3, those valuek afe more likely
to be picked that give a lowdy’(k), i.e. give a better trade off
between the reconstruction error and the perturbation error.

_ Oncek has been sampled, the algorithm continues to sample
F*. This is done by first picking a gamma random variaplie
Step 4, and then perturbirgf* by addingN* (0, ,/g) noise vector

in Step 5. Even thoggh,\l"’ represents a vector @f independent
normal variables, th&"” vector has not been generated in an inde-
pendent fashiony generated in Step 4 makes all elementd6f
correlated (for instance i is picked to be), then allF* = FX).

This makes sure thd"* has been generated in the right way, con-
firmed by the following theorem proved in the full version of the
paper [22].

THEOREM6.2 (FRIVACY). SPAQ,) is e-differentially pri-
vate forh = v/2A2(Q)/e.

Finally, we show that it always makes sense to run our SPA al-
gorithm as opposed to LPA. @ is compressible, SPA will sample
a goodk << n decreasing the error significantly (as confirmed in
our experiments). However, @ is not compressible, the following
theorem (proved in the full version [22]) shows that no matter what
the total error of SPA would be at most a factg® log n times
worse than LPA for any normalized irreducible query sequénce

Q.

THEOREMG6.3 (UTILITY). LetQ be any normalized irreduc-
ible query sequence. Fix; = A;(Q)/e and X2 = v2A5(Q) /e
such that LPAQ, A1) and FPA;(Q, \2) are e-differentially pri-
vate. Thererror(SPA < /2 - (logn) - error(LPA).

6.2 Fault-tolerance

Our distributed protocol has two phases. In the Encrypt-Noisy-
Sumg.,, r,) phase, the aggregator computes an encryptitor
the noisy sum of the private values,, and the random values,
r., Of all users. Then in the Decrypt-Sum phase, all users need to
correct for their respective random valugs In addition, since the
secret ke is shared as the suﬁiffz1 Ay Of the private keys\,,’s,
all users need to send their decryption shares in order to decrypt.
This makes the protocol susceptible to failures: if a single user
does not respond in the decrypt-sum phase, no decryption can be
obtained.

The solutionis to (i) use €I, U)-threshold decryption [10] sche-
me in which anyT" valid decryption shares out &f possible ones
can be used to decrypt, and (ii) instead of choosing a completely
randomr, € Z,, during the encrypt-sum protocol, a user chooses
ru ~ Lap(A(Q)/e), i.e. r, is chosen from the Laplace distri-
bution sufficient for guaranteeing differential privacy. Thisis
sufficient: to minimize noise the aggregator has an incentive for
adding all users’ data when computing the aggregate encryption to
be sent back for decryption, and leaving out a single user’s data
results in a Laplace noise sufficient for differential privacy.

Having seen the extensions still ensure privacy, let us see how
they help in case of failures. Firstly, jf users fail to send their
decryption shares, thg’, U)-threshold property ensures that a de-
cryption can still be computed as long fs< U — T'. Furthermore,
not using the decryption share gfusers means that the random
valuer,, of each of thef users is left uncorrected for, at the end of
decryption. This results in an extra noisefoLap(A(Q)/e) vari-
ables. It can be shown that the expected sum of of tfiesgiables
increases a§/fA(Q)/e. In other words, the noise increases as the
square root of the number of user failurgas demonstrated in our
experiments. As long agis small, this behavior is acceptable. For
a largef, the distributed protocol for computation of Q has to be
repeated.

Note that in the above solution, we are concerned about fail-
ures of users that happen after the first phase and before thalsecon
phase of our protocol. Failures that happen before or after the com-
plete execution of the protocol for a query do not affect the accu-
racy of our protocol. Since execution of our protocol for a single
query takes less than a few seconds in practice, failures within this
small time window is rare and are of small size. In Section 7.4, we
experimentally show that the impact of such failures is small.

8Recall that normalized query sequences have individual query
sensitivities rescaled tbwhile irreducible sequences hallg sen-
sitivity equal to the sum of individual query sensitivities.

7. EXPERIMENTS

We have implemented PASTE in Java, using the Biglinteger li-
brary for cryptographic components of the algorithms. This sec-
tion evaluates our prototype using a 2.8 GHz Intel Pentium PC with
1GB RAM.

Data sets We use three real data sets in our evaluation.

e GPS:This is the GPS trace from Microsoft's Multiperson Local
Survey (MLS) project [17]. The GPS trace was collected from
253 voluntary drivers, mostly in the Seattle, Washington area,
covering about 135,000 kilometers of driving. The entire trace
has approximately 2.3 million timestamped latitude/longitude points
comprising about 16,000 discrete trips. The median interval be-

50

. - = T |
tween recorded points on a trip is 6 seconds and 62 meters. Thus, 2 4 Reconstructon ES%)SA{ o i
successive points on a trip are highly correlated. § 20 &
e Weight: This is trace of body weights, collected from an online § 20 k g
weight-monitoring websife The trace contains daily weight data € 104\ g
of about 300 users for a period of upiyears. 2 e ¢
. . . 0 10 20 30 40 50 60 70 80
e Traffic: This data, collected from Department of Transportation K
of San Antonio, Texd$, reports volume and speed data at about (a) FPA, with different (b) First vs. Topk coefficients

30 intersections in the city. We use a 6-months long trace, where
data is reported once every 15 minutes. Figure 6: Effect of DFT parameters
Queries. For evaluating utility, we consider the following 6 query
sequences. The first two queries are on@RS data set, the next
two queries are on thé/eight data set, and the last two queries are
on theTraffic dataset.

As shown, FPA has orders of magnitude better error percentage
than LPA (graph shows y-axis using a log-scale). In fact, LPA has
an error percentage> 100% showing that estimates obtained are

e Query G1: A query sequence whose value at each timestamp completelyfgnea;mgle%.On thel ather hanéil, E%astgrror per-
is an histogram over locations counting the number of people at celr;_tagessod 207 that are ?OSW accefpgathe Iln pr_?r(]: Ice. .
each location. The locations are obtained by dividing the map into igure 5 demonstrates the errors of both algorithms more visu-

id. Th diff tti t aI_Iy. Fig 5(a) and (c) plot outputs of the FRAalgorithm along
25?623%%2; Ormlyeo?/lgr\)llvzgck}:ence 00 different imestamps with the exact answers a1 and G2. Fig 5(b) and (d) plot the

i) estimates obtained by LPA for the same two queries for the same

2000 different timestamps spread uniformly over 2 weeks. the curve of the exact answer very closely, while LPA results in
e QueryW1: Number of people with weight 200 Ib on each day estimates that are practically meaningless.

for a total of 2000 days. 70 Eff fDET P
e QueryW2: A query sequence whose value at each timestamp is - ecto arameters

the correlation coefficient between two month-long time-series: Value of k. To understand the impact bfon the accuracy of FRA
(i) people with weight> 200 on day: of the month, and (ii) we vary the value ofc in evaluating the query¥’1. Fig. 6(a)

people with weight decreasing on dagf the month. demonstrates the results. It shows thatkamcreases the total
e QueryT'1 and QueryI'2: Occupancy at two different city inter- ~ rror decreases at first, then reaches a minimum, and finally in-
sections with an interval df5 minutes for a total o6 months. creases. This is because the total error of FB®Aa combination

of reconstruction error and perturbation error. Reconstructiom erro
As the examples suggest, our algorithm can support a wide vari- decreases with increasing valueskofalso shown in Figure 6(a)),

ety of queries. Unless otherwise stated, we bse 30 for the while perturbation error increases with increasingThe total er-
FPA, algorithm andi-differential privacy ¢ = 1) as the privacy ror is minimized for an optimal value df that finds a sweet spot
requirement in our experiments. between these two types of errors. This highlights the importance

of choosing a good value @ffor FPA.

7.1 Accuracy of Answers In the distributed case, there is no way to choose the bégt

We first evaluate the accuracy of outputs of our FRAgorithm looking at query answers. Thishas to be predetermined, which
and compare it with the LPA algorithm. We report error percentage is the reason we used a fixed valuekof= 30 in our previous ex-
of a sequence of output estimate, which is the tétakrror in the periments (and it worked reasonably well for all queries). However
estimate (See Def. 2.3) normalized by the maximum posdible the graph shows that for tH& 1 query,k = 10 would have given
value of a query answer. a better trade-off, and the results of FP#ould have been better
Figure 4 reports the average error percentage of,Fitfd LPA if we usedk = 10. In a centralized setting, our sampling perturba-

algorithms for the 6 query sequences. Average error percentagetion algorithm (SPA) can be used to privately sample the value of
is computed as the average ou@0 runs of each algorithm, the
variance in the error percentages are represented by the error bar§'Laplace noise can send query answers outside their range making
5 the error> 100%. Truncation at range boundaries can make error

http://ww. hacker sdata. com = 100%, but is not done here to reflect the true magnitude of the
©ht t p: // www. t ransgui de. dot . st at e. t x. us/ noise.

5 120 Exact answer S 2000 } N + § 300 Exact answer §
2 110 FPA, output -----eveee 2 + - A 250 | Perturbed answer - A
8 ‘< 8 1000 ki g - 5
[© 3 2
£ £ 0 s s
o o £ £
g § -1000 " z z
5 %0 S 2000} g g
200 600 1000 1400 1800 200 600 1000 1400 1800 * 200 600 1000 1400 1800 * 200 600 1000 1400 1800
Time (interval of 15 minutes) Time (interval of 15 minutes) Time (# of days since beginning) Time (# of days since beginning)
(a) G2 output with FPA, (b) G2 output with LPA (c)W'1 output with FPA, (d) W1 output with LPA
Figure 5: Point-wise errors of FPA, and LPA over time
g 500 ————— i . —— sured the communication overhead of our prototype and found that
§ 400} Aggregmar tme 1 £ 07 the algorithm has a small overhedi5 Kb for each user (consid-
$ 300} & 20f g ering both incoming and outgoing messages) @hKb times the
E 200 T s # of users for the aggregator.
g 100f L g 101
£ A X X X o .
= oo a0 o0 o0 1000 0 7.4 Effect of Failures
of users Percentage User Failures Fig. 7(b) shows the fault-tolerance behavior of our algorithm
(a) Computation cost (b) Errors for user failures based on the extensions described in Sec. 6.2. The fault-tolerant
algorithm is implemented and used to answer Wié query of
Figure 7: Evaluation of Distributed LPA lengthn = 2000 usingk = 30 DFT coefficients. We again report

the percentage error: the totB}b error in the computed estimate
normalized by the maximum value ofQ. The percentage user
failure is the percentage of users who fail during the protocol.

The graph shows that the error increases with the square root of
) o) the number of users failing and is quite reasonable with even say
First-k vs. Top+ DFT coefficients Our algorithms, both FPA 5% failure rate. Note that the accuracy of our algorithm is affected
and SPA, choose the firstDFT coefficients, for a given value of opy py the failures that happeduring execution of the algorithm
k. The choice of leading coefficients is unavoidable in a distributed 5 answer a query, which is typically less than a few seconds in a

k. The error for that algorithm is also shown in the figure by the
horizontal line and it is quite near the optimal error ko= 10.

setting since all the users need to pick the sarB¥ T coefficients gistributed system. Failure within this short time should be rare and
for our algorithms to work. Even in the presence of the centralized gma)| in size in practice. In a very rare occasion, if a large number
server, choosing the best set/oDFT coefficients in a differen- of ysers fail during this small time window, the algorithm should

tially private way is inefficient. However, if possible, it is always e started from the beginning.
better to choose thk largest DFT coefficients (i.e., top-coeffi-

cients), since they give lower reconstruction error than the first-

coefficients. This leads to the natural question: how much do we 8. RELATED WORK
sacrifice in accuracy for using the firBtbFT coefficients (which
gives us differential privacy) instead of using the topeefficients
(which does not give differential privacy)?

Figure 6(b) answers the above question. It shows the errors of
FPA, for different queries and compares it with the errors of a
hypothetical algorithm that uses the tbpPFT coefficients (but
may not necessarily be differentially private). Both the algorithms
usek = 30 coefficients. The graph shows (with a linear scale
for y-axis) that we do not lose much even if we just pick the first
k coefficients (indicating that they generally are the largest coeffi-
cients). A substantial difference occurs onlylih and72 queries
since they have periodic behavior at slightly higher frequencies in-
dicating there largest coefficients are not the firsEven for these
queries, the difference is less thaf.

Relational Data. Many approaches for relational data have been
proposed that support formal definitions of privacy such as differ
ential privacy [7, 15, 27]p1 p2 breach [9], adversarial privacy [21,
23], etc. Among these, most relevant to our work are those that fo-
cus on query answering [7, 15, 27]. [7] proposes the LPA algorithm
that adds independent Laplace noise to each query answer. The
noise is calibrated according to tlie sensitivity. Recurring query
sequences over time-series data have Rigkensitivity (O (n) for
an length sequence) and thus LPA does not accurately answer such
queries.

To improve accuracy of query answers under differential pri-
vacy, [27] focuses on range-count queries, i.e. count queliesev
the predicate on each attribute is a range. The main idea is to take
a sequence of range-count queries that are disjoint and then perturb
. . . the entire Discrete Wavelet Transform of the sequence. Such dis-
7.3 Computation & Communication Overhead gint range-count queries havela sensitivity ofO(1) and can be

Fig. 7(a) shows the computational overhead of our algorithm for accurately answered using their technique. However the technique
computing a single aggregate-sum query. The graph shows thecan not be used to answer recurring sequences over time-series data
computation times (averaged over 100 runs) at a user and at the agaccurately, owing to their high; sensitivity.
gregator, as a function of the number of users involved in the query. Another approach for answering query sequences accurately is
The average computation time at a user is independent of the num-proposed in [15], where constraints over the answers of multiple
ber of users and remains nearly constant. On the other hand, thequeries are exploited to improve accuracy. Usually no constraints
time required by the aggregator increases linearly with the number exist over recurring query sequences and thus the method is largely
of users. In all cases, the computation overhead is quite small, mostinapplicable for time-series data. Simlarly, [2] uses Fourier analysis
of which is spent for cryptographic operations. We have also mea- to enforce constistency in query answers. Their Fourier analysis

uses a different perturbation algorithm whose goal is to computate [2]
consistent solutions efficienty, which is different from our goal of

compressing time-series data.

Distributed protocols. Many Secure Multiparty Computation (SMC)
techniques have been proposed to evaluate functions securely over
data from multiple users [12]. In general, such techniques are [4]
slow [28] and infeasible for practical scenarios. However, if the
function to be evaluated is a sum function, then efficient techniques
using threshold homomorphic functions have been proposed [4,13].
Such techniques often require a communication mechanism with [6]
a broadcast facility, or a mechanism enabling a user to verify the
computation done by other users. This is not possible in our set-
ting where the aggregator does all the computations and the users [7]
do not have enough resources to check whether those computations
are correct. In addition, we need to compute noisy sum (in order
to guarantee differential privacy) which is more difficult than com-
puting just the sum of the inputs. To the best of our knowledge, [6]
is the only known technique that computes noisy sum. However,
it uses expensive secret-sharing protocols leading to a computation
load of O(U) per user, wher# is the number of users. This makes

the technique infeasible for lardé.

Techniques for Time-series data Most work on time-series data
assume the centralized setting: a trusted server publishes an anony
ized version of the data of all users and aggregate queries can then
be run on the published data. [11] publishes data by adding a virtual [12]
user whose data is sampled from a public noise distribution. [20] [13]
works on a single time-series data by obtaining an orthonormal [14]
transform (such as DFT), then adding noise only to large coeffi-
cients of the transform, and finally obtaining the inverse transform.
The main difference between our technique and theirs is the lack [
of formal privacy guarantee. Techniques [11, 20] show privacy
by protecting against specific attacks (such as linear Ieast-square[16]
regression or linear filtering in [20]), however no formal privacy
guarantee (such as differential privacy) is provided. Furthermore

no distributed solution is discussed. Same holds for most works on

location data privacy (See [18] and the references therein).

9. CONCLUSION

BARAK, B., CHAUDHURI, K., DWORK, C., KALE, S.,

MCSHERRY, F.,AND TALWAR, K. Privacy, accuracy, and
consistency too: a holistic solution to contingency taklease. In

PODS(2007).

BLum, A., DWORK, C., MCSHERRY, F., AND Nissim, K. Practical
privacy: The suLQ framework. IRODS(2005).

CRAMER, R., DAMGARD, |., AND NIELSEN, J. B. Multiparty
computation from threshold homomorphic encryption. In
EUROCRYPT2001).

DwoRK, C. Differential privacy: A survey of results. lFAMC
(2008).

DwoRK, C., KENTHAPADI, K., MCSHERRY, F., MIRONOV, I.,
AND NAOR, M. Our data, ourselves: Privacy via distributed noise
generation. IEUROCRYPT2006).

DwORK, C., MCSHERRY, F., NissiM, K., AND SMITH, A.
Calibrating noise to sensitivity in private data analygisTCC
(2006).

EISENMAN, S. B., MiLUZZO, E., LANE, N. D., PETERSON R. A.,
AHN, G.-S.,AND CAMPBELL, A. T. The bikenet mobile sensing
system for cyclist experience mapping AGM SenSyg&007).
EVFIMIEVSKI, A., GEHRKE, J.,AND SRIKANT, R. Limiting
privacy breaches in privacy preserving data mining?@DS(2003).
FOUQUE, P., POUPARD, G.,AND STERN, J. Sharing decryption in
the context of voting or lotteries. IRC: International Conference on
Financial Cryptography(2000), LNCS, Springer-Verlag.

GANTI, R. K., PHAM, N., TsAl, Y.-E., AND ABDELZAHER, T. F.
PoolView: stream privacy for grassroots participatorysseg. In
ACM SenSyg008).

GOLDREICH, O. Secure multi-party computation.

GRITZzALIS, D. Secure electronic voting.

GUHA, S., REZNICHENKO, A., HADDADI, H., AND FRANCIS, P.
Serving ads from localhost for performance, privacy, andipia
HotNets(2009).

HAY, M., RASTOGI, V., MIKLAU, G.,AND Suclu, D. Boosting the
accuracy of differentially-private histograms through sistency. In
VLDB 2010

HuLL, B., BYCHKOVSKY, V., ZHANG, Y., CHEN, K., GORACZKO,
M., Miu, A., SHIH, E., BALAKRISHNAN, H., AND MADDEN, S.
Cartel: a distributed mobile sensor computing systerAQM
SenSy$2006).

KRumMM, J. A survey of computational location privadersonal
and Ubiquitous Computing, 20q8008).

[18] KRuMM, J.,AND HORVITZ, E. Predestination: Where do you want

to go todaydEEE Compute2007).

We have proposed PASTE, a suite of novel algorithms to pri- [19] MACHANAVAJJHALA, A., GEHRKE, J., KIFER, D., AND

vately answer queries on distributed time-series data. PASTE uses
the FPA, algorithm to answer long query sequences over corre-
lated time series data in a differentially private way. ER&rturbs

k DFT coefficients of an answer sequence, thereby improving the
accuracy for am-length query sequence fro@i(n) of existing al-
gorithms to roughly® (%), if the k DFT coefficients can accurately
reconstruct all the query answers. For achieving differential pri-
vacy in distributed setting, PASTE uses the DLPA algorithm that
implements Laplace noise addition in a distributed way 1)
complexity per user. Our experiments with three real data sets show
that PASTE improves accuracy of query answers by orders of mag- [24]

nitude and also scales well with a large number of users.

Acknowledgments We would like to thank Josh Benaloh, Melissa
Chase, Seny Kamara, Frank McSherry, and Mariana Raykova for
many helpful discussions. Eric Horvitz, John Krumm, and Paul [26]

Newson kindly gave us access to tBPS dataset.

10. REFERENCES

[1] AGRAWAL, R., FaALouTsOs, C.,AND SwAMI, A. N. Efficient
similarity search in sequence database$@DO (1993).

VENKITASUBRAMANIAM , M. |-diversity: Privacy beyond
k-anonymity. InICDE (2006).

PapADIMITRIOU, S., L, F., KoLLIOS, G.,AND YU, P. S. Time
series compressibility and privacy. YL.DB (2007).

RASTOG], V., HAY, M., MIKLAU, G.,AND Suclu, D. Relationship
privacy: Output perturbation for queries with joins.RODS 2009

] RASTOG], V., AND NATH, S. Differentially private aggregation of

distributed time-series with transformation and encryptiech.

Rep. MSR-TR-2009-186, Microsoft Research, 2009.

RASTOG], V., Suclu, D., AND HONG, S. The boundary between
privacy and utility in data publishing. IMLDB (2007).

SHAMIR, A. How to share a secreEommunications of the ACM 22
11 (1979).

SHILTON, KATIE, B. J., ESTRIN, D., GOVINDAN, R., ,AND

KANG, J. Designing the personal data stream: Enabling partmmipat
privacy in mobile personal sensing. 3@th Research Conference on
Communication, Information and Internet Policy (TPR2009).
SWEENE, L. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Syste(@2§02).

X1A0, X., WANG, G.,AND GEHRKE, J. Differential privacy via
wavelet transforms. IWCDE 2010

[28] Yao, A. C.-C. Protocols for secure computations (extended

abstract). IFOCS(1982).

