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ABSTRACT
In traditional methods for noise robust automatic speech recogni-
tion, the acoustic models are typically trained using clean speech or
using multi-condition data that is processed by the same feature en-
hancement algorithm expected to be used in decoding. In this paper,
we propose a noise adaptive training (NAT) algorithm that can be
applied to all training data that normalizes the environmental distor-
tion as part of the model training. In contrast to the feature enhance-
ment methods, NAT estimates the underlying “pseudo-clean” model
parameters directly without relying on point estimates of the clean
speech features as an intermediate step. The pseudo-clean model pa-
rameters learned with NAT are later used with vector Taylor series
(VTS) model adaptation for decoding noisy utterances at test time.
Experiments performed on the Aurora 2 and Aurora 3 tasks, demon-
strate that the proposed NAT method obtain relative improvements
of 18.83% and 32.02%, respectively, over VTS model adaptation.

Index Terms— Noise adaptive training, model adaptation, ro-
bust automatic speech recognition, vector Taylor series.

1. INTRODUCTION
The performance of automatic speech recognition (ASR) in noisy
environments has not yet reached a desired level of performance de-
spite years of research. It remains a challenging problem since there
are many possible types of environmental distortion, and it is dif-
ficult to compensate for all of these distortions accurately. The pri-
mary reason for poor ASR performance is a mismatch between train-
ing and test conditions. As a result, many methods have been pro-
posed in the literature to reduce this mismatch and improve perfor-
mance. These methods can be grouped under two main categories:
feature enhancement methods and model adaptation methods. Meth-
ods in the former category aim to clean the features observed at test
time so that they better match the trained models, whereas methods
latter category adapt the acoustic models to the noise conditions of
the test utterance. Examples of the feature enhancement methods in-
clude spectral subtraction and cepstral mean normalization (CMN).
Examples of model adaptation methods include parallel model com-
bination (PMC), MAP adaptation, and vector Taylor series (VTS)-
based model adaptation [1, 2].

While feature enhancement methods can improve recognition
accuracy, they may also introduce undesirable residual error due to
the inaccurate nature of the noise reduction algorithms which causes
additional model mismatch. To tackle this problem, a training algo-
rithm was proposed for multi-condition data where both the training
and test data are processed in the same manner [3]. By processing
the training data with the enhancement algorithm that will be applied
at test time, the models can capture the effects of the residual error
expected to be seen at test time. While this results in improvements
over the conventional approach of simply compensating the test data
to match a clean acoustic model, it has the drawback that it relies
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on point estimates of the enhanced features in both training and test,
and no uncertainty about the denoising is reflected in the processing.

Model adaptation techniques have also been effective at improv-
ing recognition accuracy in noisy conditions and in fact, state-of-the-
art performance on the Aurora 2 corpus was recently obtained with
the VTS model adaptation proposed in [2]. One reason model do-
main can potentially be superior to feature domain methods is that
they do not rely on point estimates of the features themselves, but
rather compensate the probability distributions of the hidden Markov
models (HMMs) directly. While the method in [2] has been shown to
be highly effective, it has two main drawbacks: 1) it requires acous-
tic models trained from clean data, which makes it sub-optimal for
tasks for which such data does not exist and 2) the adaptation algo-
rithm still makes approximations that are not accounted for during
training.

In this paper, we propose a new algorithm called noise adaptive
training (NAT) to overcome the aforementioned weaknesses of the
previous methods. It is motivated by the multi-condition training al-
gorithm in [3] and the speaker adaptive training (SAT) algorithm in
[4]. The NAT algorithm integrates environmental distortion normal-
ization into the HMM training using a new formulation of the EM
algorithm that incorporates the same VTS approximation used in the
model adaptation technique in [2]. As an analogy, the proposed NAT
algorithm has the same relationship to VTS model adaptation as SAT
has to MLLR adaptation.

The rest of the paper is organized as follows. In Section 2, we
review HMM adaptation using a VTS approximation. The proposed
NAT algorithm for VTS model adaptation is detailed in Section 3.
We present experimental results in Section 4 and finally, some con-
cluding remarks in Section 5.

2. HMM ADAPTATION USING VTS
Let us assume that in the time domain the clean speech x[m] is cor-
rupted by additive noise n[m] and channel distortion h[m]:

y[m]=x[m]*h[m]+n[m], (1)

and y[m] is the corrupted speech signal and ∗ represents convolution.
In the MFCC domain, this is equivalent to [1]

y = x + h + C log(1 + exp(C−1(n− x− h))), (2)

where C is the discrete cosine transform (DCT) matrix and C−1 is
its pseudo-inverse, y, x, n, h are the MFCC vectors corresponding to
distorted speech, clean speech, noise, and channel, respectively. The
noise n has a Gaussian probability density function (PDF) with mean
vector µn and covariance matrix Σn, and channel h has a PDF of the
Kronecker delta function δ(h−µh). The Jacobian of y in Eq. 2 with
respect to x, h and n evaluated at a fixed point (µx,0, µh,0, µn,0) can
be expressed as follows:

∂y

∂x
|(µx,0,µh,0,µn,0) =

∂y

∂h
|(µx,0,µh,0,µn,0) = G (3)

∂y

∂n
|(µx,0,µh,0,µn,0) = F = I −G (4)



where

G = C · diag

(
1

1 + exp(C−1(µn,0 − µx,0 − µh,0))

)
·C−1 (5)

and diag(.) in Eq. 5 represents the diagonal matrix whose elements
equal to the value of the vector in the argument. Then, the nonlinear
equation in Eq. 2 can be approximated by using a first order VTS
expansion around the point (µx,0, µh,0, µn,0) as follows:

y ≈ µx,0 + µh,0 + g0

+ G(x− µx,0) + G(h− µh,0) + F (n− µn,0), (6)

where
g0 = C log(1 + exp(C−1(µn,0 − µx,0 − µh,0))) (7)

By taking the expectation of Eq. 6, we can see that this expres-
sion is also valid in the model domain. Thus, we can write the mean
vector µysm of the mth Gaussian of the sth HMM state as follows:

µysm ≈ µxsm,0 + µh,0 + gsm,0 + Gsm(µxsm − µxsm,0)

+Gsm(µh − µh,0) + Fsm(µn − µn,0), (8)

Here, G, F and g0 are functions of the mean of the mth Gaussian
in the sth state of the generic HMM µxsm,0. Assuming x and n
are independent, and given the noise covariance Σn, the covariance
matrix of the adapted HMM, Σysm , can be computed as follows:

Σysm ≈ GsmΣxsmGT
sm + FsmΣnF T

sm (9)

Eq. 8 and 9 are applied only to the parameters that correspond to the
static MFCC features. For the dynamic portions of the features, the
following adaptation formulas have been used:

µ∆ysm ≈ Gsmµ∆xsm , (10)
µ∆∆ysm ≈ Gsmµ∆∆xsm , (11)

Σ∆ysm ≈ GsmΣ∆xsmGT
sm + FsmΣ∆nF T

sm (12)

Σ∆∆ysm ≈ GsmΣ∆∆xsmGT
sm + FsmΣ∆∆nF T

sm (13)

where the noise is assumed stationary so that µ∆n = 0, µ∆∆n = 0.
In the traditional VTS model adaptation, e.g. [1][2], it is

assumed that the HMMs are trained from clean speech. For a
given test utterance, maximum likelihood (ML) estimates of the
noise and channel parameters are computed with the expectation-
maximization (EM) algorithm using an iterative VTS approxima-
tion. These parameters are then used to adapt the clean speech
model parameters using Eq. 8-13 and the utterance is redecoded
with the adapted models. In this work, we use the VTS adaptation
algorithm in [2] as the basis of our approach. This work improves
on [1] in that the algorithm adapts both the means and variances of
full feature vector, i.e. the static, delta, and delta-delta parameters.

3. NOISE ADAPTIVE TRAINING
Let us assume that there are I utterances in the multi-condition train-
ing set Y = {Y (i)}I

i=1, and Y (i) is a sequence of Ti observations
corresponding to ith utterance. In traditional ML HMM training, the
parameters are estimated such that the resulting generic model ΛY

maximizes the likelihood of the multi-condition training data.
In NAT, we assume that each utterance in the training set has an

associated distortion model Φ(i) = {µ(i)
n , Σ

(i)
n , µ

(i)
h } that describes

the additive noise and channel. The NAT algorithm seeks to find
the distortion model parameters for all utterances Φ = {Φ(i)}I

i=1,
and the underlying “pseudo-clean” model parameters ΛX that jointly
maximize the likelihood of the multi-condition data when the model
ΛX is transformed to the adapted HMM of Λ

(i)
Y . This can be written

in the ML sense as:

(ΛX , Φ) = argmax
(ΛX ,Φ)

I∏
i=1

L(Y (i); Λ
(i)
Y ) (14)

where Λ
(i)
Y = V TS(ΛX , Φ

(i)
) is the adapted HMM using the VTS

as detailed in Section 2. In Eq 14, (Φ, ΛX ) and (Φ, ΛX ) are the
old and new parameters set, respectively. The term “pseudo-clean”
is used to indicate that the model defined by ΛX is not necessarily
equivalent to models trained with clean speech, but rather the model
that maximizes the likelihood of the multi-condition training data
when processed by the same VTS adaptation scheme that will be
used at runtime.

In the NAT, we use a new EM algorithm that learns the distortion
model parameters and the pseudo-clean speech model parameters
iteratively. Thus, we start with the following EM auxiliary function:

Q(Φ, Λ, Φ, Λ) =

I∑
i=1

∑
t,s,m

γ
(i)
tsm log(p(y

(i)
t |st = s, mt = m, Λ, Φ))

(15)
where

∑
t,s,m represents summation over frames, states, and Gaus-

sians, and γ
(i)
tsm is the posterior probability of the mth Gaussian in

the sth state of the HMM for frame t of the ith utterance

γ
(i)
tsm = p(st = s, mt = m|Y (i), Λ, Φ). (16)

In Eq. 15, p(y
(i)
t |st = s, mt = m, Λ, Φ) ∼ N (y

(i)
t ; µ

(i)
ysm , Σ

(i)
ysm).

Note that µ
(i)
ysm , Σ

(i)
ysm are actually utterance-dependent since they

are functions of distortion parameters for that utterance Φ(i).
To update the mean values of the distortion parameters Φ(i) in

the M-step of the EM algorithm, we take the derivative of Q with
respect to µn and µh and set the result to zero. Then, the update
formulas in Eq. 17 and 18 are obtained. It is assumed that the noise
is stationary, hence µ∆n = 0 and µ∆∆n = 0.

There is no closed form solution for the noise covariance ma-
trices, so they are optimized iteratively using Newton’s method ac-
cording to the following update equation:

Σ(i)
n = Σ

(i)
n,0 −

[(
∂2Q

∂2Σ
(i)
n

)−1 (
∂Q

∂Σ
(i)
n

)]

Σ
(i)
n =Σ

(i)
n,0

(22)

The noise covariance matrices for dynamic features Σ
(i)
∆n, Σ

(i)
∆∆n,

are computed in a similar manner to Eq. 22 by replacing the static
parameters with dynamic parameters. It is assumed that the noise
covariance matrix is diagonal.

The pseudo-clean model parameters ΛX are updated in a similar
way to the distortion parameters except they are computed based on
all utterances. Again, we take the derivative of Q with respect to
µxsm for static features (or µ∆xsm , µ∆∆xsm for dynamic features)
and set the result to zero. The update formulas in Eq. 19-21 are
obtained to compute the model mean parameters. As with the noise
covariance, since there is no closed form solution for computing the
covariances of the HMM distributions, Newton’s method is used to
estimate them iteratively as follows:

Σxsm = Σxsm,0 −
[(

∂2Q

∂2Σxsm

)−1 (
∂Q

∂Σxsm

)]

Σxsm=Σxsm,0

(23)
The covariance matrices for dynamic features Σ∆xsm , Σ∆∆xsm are
computed in a similar way to Eq. 23 by replacing the static param-
eters with the dynamic parameters. Here, it is assumed that the co-
variance matrix is diagonal as in traditional acoustic model training.

The transition probabilities, the initial probabilities, and the mix-
ture weights for the pseudo-clean model are computed in the same
way as traditional ML training of the HMMs but using the new pos-
terior probability as defined in Eq. 16. The NAT algorithm is sum-
marized in the next section.
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3.1. NAT Algorithm
Step 1 Train the HMMs from multi-condition training data to ini-

tialize ΛX . Initialize distortion parameters for each utterance
such that the channel mean is set to zero and the noise mean
and covariance are estimated from the first and last N = 20
frames (non-speech frames) of the utterance. Write distortion
parameters, Φ(i), for each utterance into a file.

Step 2 Read Φ(i) from a file. Set VTS expansion point as µxsm,0 =

µxsm , µn,0 = µ
(i)
n , µh,0 = µ

(i)
h . Adapt the HMM parame-

ters with Eq. 8-13 to obtain Λ
(i)
Y .

Step 3 Compute the posterior probability in Eq.16.
Step 4 Update the distortion parameters Φ(i) using Eq. 17-18 and

22, write them to a file.
Step 5 Accumulate the statistic for computing ΛX : the matrix and

the vector terms in Eq. 19-21 and 23 are updated for each
utterance.

Step 6 If there are more utterances, go to Step 2, otherwise go to
next step.

Step 7 Update ΛX HMM parameters using Eq. 19-21 and 23.
These steps represent one iteration of the NAT algorithm. If the
likelihood of all training data is increasing, we continue running
additional iterations of training by going back to Step 2 until the
likelihood converges. Once the pseudo-clean model parameters are
learned, the distortion parameters Φ be discarded and the HMM pa-
rameters ΛX are ready to be used with VTS adaptation at test time.

3.2. Discussion
In this section, we first compare the NAT with the SAT algorithm
presented in [4]. The problem formulation of these two algorithms
are quite similar with the following main difference: the SAT algo-
rithm searches for a compact model Λc that will maximize the ex-
pected likelihood of the data from multiple speakers after performing
MLLR transformation on Λc, whereas the NAT algorithm seeks for
the pseudo-clean model Λx that will maximize the expected likeli-
hood of the multi-condition data after adapted with the VTS algo-
rithm. The variances are not updated in the SAT, hence we only
focus on the comparison of the mean update equations here. The
mean adaptation formula given in Eq. 8 can be written in the form
of MLLR transformation as follows:

µ(i)
ysm

= W (i)
sm ∗ µxsm + β(i)

sm (24)

where W
(i)
sm = G

(i)
sm and β

(i)
sm = µxsm,0 + µh,0 + gsm,0 −

Gsmµxsm,0, when the VTS expansion point is µh,0 = µ
(i)
h and

µn,0 = µ
(i)
n . Then, the model mean update equations for the SAT

and NAT algorithms are in the same form of
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{
I∑
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Ti∑
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γ
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sm)T (Σ(i)
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)−1W (i)
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}−1

·
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I∑
i=1

Ti∑
t=1

γ
(i)
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}
(25)

with the following key exception: whereas SAT utilizes an uncon-
trained transformation matrix per speaker, NAT uses a matrix W

(i)
sm

that is specific to each Gaussian that is highly constrained by the
utterance-specific distortion parameters.

Two other independent algorithms have been proposed previ-
ously with the motivation of training acoustic models using both
clean and corrupted speech in [5] and [6]. In [5], a joint adaptive
training (JAT) algorithm was proposed which was based on noise
normalization using joint transforms for training models from noisy
data. The formulation of the problem in JAT is different than ours,
and does not take advantage of the well known nonlinear distor-
tion model for the effect of additive noise and channel. In [6], a
model training algorithm based on irrelevant variability normaliza-
tion (IVN) was proposed. There are some important differences be-
tween IVN-based training and NAT. The proposed NAT algorithm
seeks for ΛX that matches best to the adaptation scheme performed
at runtime, regardless of the true distribution of the clean speech,
whereas IVN decouples ΛY , ΛX and Φ while solving Eq 14 and
tries to find the generic model ΛX that best matches to the true dis-
tribution of the clean speech (irrespective of adaptation scheme per-
formed at runtime). Also, the distortion and model parameters are
solved in two separate steps in IVN, whereas all the parameters are
solved within a single step in NAT.

4. EXPERIMENTS AND RESULTS
To verify the effectiveness of the proposed NAT method, a series
of experiments were conducted on the Aurora 2 and Aurora 3 con-
nected digit recognition corpora. The Aurora 2 consists of data de-
graded with additive noise and channel distortion [7]. Three test
sets provided with the task are contaminated with noise types seen
in the training data (Set A), unseen in the training data (Set B), and
additive noise plus channel distortion (Set C). The acoustic models
were trained using the standard “complex back end” Aurora 2 recipe.
To examine the performance of our algorithm in real data, we also
used the Aurora 3 for the experiments. The Aurora 3 consists of
noisy digit recognition under realistic car environments [8], and con-
tains three experiment conditions: well-matched (WM), medium-



Table 1. Word accuracy for each set of Aurora 2 using models
trained on multi-condition data.

Method Set A Set B Set C Ave.
Baseline 91.68 89.74 88.91 90.35

CMN 92.97 92.62 93.32 92.90
CMVN 93.80 93.09 93.70 93.50

AFE 93.74 93.26 92.21 93.24
VTS 92.20 91.87 93.37 92.30
NAT 93.66 93.77 93.89 93.75

Table 2. Word accuracy for each set of Aurora 2 using models
trained on clean data.

Method Set A Set B Set C Ave.
Baseline 60.43 55.85 69.01 60.31

CMN 68.65 73.71 69.69 70.88
CMVN 84.46 85.55 84.84 84.97

AFE 89.27 87.92 88.53 88.58
VTS 92.61 92.87 92.76 92.75
NAT 92.79 93.26 92.59 92.94

matched (MM), and highly-mismatched (HM). The acoustic models
were trained using the standard “simple back end” scripts included
with the Aurora 3. For both Aurora 2 and 3, 39-dimensional MFCC
features consisting of 13 cepstral features plus delta and delta-delta
features are used in the experiments. The cepstral coefficient of order
zero (C0) is used instead of log energy. The cepstra are computed
based on the spectral magnitudes.

We compared performance obtained by the proposed method
(denoted as NAT), and that of standard VTS model adaptation (de-
noted as VTS). As mentioned earlier, the NAT and the VTS perform
the identical adaptation at test time and only differ in how the HMM
parameters are trained. The HMMs are trained using the standard
ML training for the VTS results, and using the proposed NAT algo-
rithm described in Section 3 for the NAT results. We also compared
the results obtained by several well-known algorithms including cep-
stral mean normalization (CMN), cepstral mean and variance nor-
malization (CMVN), and the ETSI advanced front-end (AFE) [9].
The AFE is a good representation of state of the art in the feature
enhancement style of processing on these tasks.

In Table 1, we present word accuracy results for Aurora 2 using
multi-condition training data. The baseline results were obtained
with no compensation. The proposed NAT method achieves 93.75%
average word recognition accuracy, and outperforms all other meth-
ods. NAT provides 11.97% relative improvement over CMN, 3.85%
relative improvement over CMVN, 7.54% relative improvement over
AFE, and 18.83% relative improvement over the VTS method.

We also applied NAT to the ML trained acoustic models using
clean data to check whether the results could be improved. The set
of results obtained using clean training data is presented in Table
2 for Aurora 2. NAT provides a small improvement over the VTS
model adaptation (92.75% vs. 92.94%) showing that the clean mod-
els are not really clean and the distortion model still has approxima-
tions which we can model in NAT. Also, when the acoustic models
are trained with clean data, both VTS and NAT, perform substan-
tially better than the front-end feature-enhancement methods under
the noisy test conditions, and NAT achieves the highest accuracy.

The baseline results for the Aurora 3 are presented in Table 3
together with the results of the CMN, the CMVN and the AFE.
In Aurora 3, there is no clean data available for training. Hence,
the acoustic models are generated using the standard training data
provided with the database for each experimental conditions. The
proposed NAT algorithm achieves 90.66% average word recognition
accuracy, and outperforms all other methods. NAT provides 39.23%
relative improvement over CMN, 12.63% relative improvement over

Table 3. Word accuracy for the Aurora 3 experimental conditions
Method Well Mid High Ave
Baseline 91.34 78.40 55.84 77.94

CMN 92.97 84.43 71.57 84.63
CMVN 94.22 87.92 83.40 89.31

AFE 95.3 86.79 87.25 90.31
VTS 91.33 80.25 86.57 86.26
NAT 94.44 87.55 88.98 90.66

CMVN, 3.61% relative improvement over AFE, and 32.02% relative
improvement over the VTS model adaptation.

5. CONCLUSION AND FUTURE WORK
In this paper, we propose a noise adaptive training algorithm for
noise robust automatic speech recognition. The NAT algorithm can
use both clean and corrupted speech, and this is especially beneficial
when there is no clean data available for training. We compared the
performance of the NAT with the state-of-the-art (to the best of our
knowledge) model adaptation (VTS) [2] and front-end feature clean-
ing on training and testing (AFE) [8], and demonstrated that the NAT
performs better than both methods in the Aurora 2 and 3 tasks.

The current algorithm is based on the cepstral domain expres-
sion between clean and noisy speech in Eq. 2. This formulation as-
sumes that there is zero cross correlation between speech and noise.
Other researchers have shown that this term can be non-zero, so in
the future, we hope to improve our algorithm by incorporating it into
the algorithm. We also plan to apply the NAT algorithm to a large
vocabulary task to see if it has any effect on state tying.
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