
Orleans Best Practices

1

Agenda

• Scenarios & General Fit

• Designing Grains

• Implementing Grains

• Persistence

• Deployment & Production Management

• Logging & Testing

• Troubleshooting

2

Scenarios & General Fit

• Consider Orleans when you have
• Significant number of loosely coupled entities (hundreds to millions)
• Entities are small enough to be single-threaded
• Workload is interactive: request-response, start/monitor/complete
• Need or may need to run on >1 server
• No need for global coordination, only between a few entities at a time
• *Different entities used at different times

• Problematic fit
• Entities need direct access to each other’s memory
• Small number of huge entities, multithreaded
• Global coordination/consistency needed
• *Long running operations, batch jobs, SIMD

* it depends

3

Designing Grains

• Actors are not object, although very similar

• Loosely coupled, isolated, mostly independent
• Encapsulate and manage their state independently from other grains
• Can fail independently

• Avoid chatty interfaces between grains
• Message passing is much more expensive than direct memory access
• If two grains constantly talk to each other, maybe they should be one
• Consider size and complexity of arguments, serialization

• Sometimes it’s cheaper to resend a binary message and deserializes it twice

• Avoid bottleneck grains
• Single coordinator/registry/monitor
• Do staged aggregation if necessary

4

Implementing Grains -- Asynchrony

• Everything has to be async (TPL), no thread-blocking operations

• await is the best mechanism to compose async operations

• Typical cases:
• Return a concrete value:

return Task.FromResult(value);
• Return a Task of the same type:

return foo.Bar();
• Await a Task and continue execution:

var x = await bar.Foo();
var y = DoSomething(x);
return y;

• Fan-out:
var tasks = new List<Task>();
foreach(var grain in grains)

tasks.Add(grain.Foo());
await Task.WhenAll(tasks);
DoMore();

5

Implementing Grains

• When to use [StatelessWorker]
• Functional operations: decrypt, decompress, before forwarding for processing
• Multiple activations, always local
• E.g., good for staged aggregation (locally within silo first)

• By default grains are non-reentrant
• Deadlock in case of call cycles, e.g. call itself
• Deadlocks are automatically broken with timeouts
• [Reentrant] to make a grain class reentrant
• Reentrant is still single-threaded but may interleave
• Dealing with interleaving is error prone

• Inheritance
• Inheritance of grain interfaces is easy
• Multiple grain classes implementing same interface may require disambiguation
• Limited inheritance of grain classes

• Declarative persistence breaks inheritance

• Generics are supported

6

Grain Persistence Overview
Orleans grain state persistence APIs are designed to provide extensible storage functionality with easy-to-use API.

• Tutorial: https://orleans.codeplex.com/wikipage?title=Declarative%20Persistence&referringTitle=Step-by-step%20Tutorials

Overview – Grain State Persistence

• Define .NET interface extending Orleans.IGrainState containing fields to be included in grain’s persisted state.

• Grain class should extend GrainBase<T> and adds strongly typed State property to the grain’s base class.

• The first State.ReadStateAsync() will occur automatically before ActivateAsync() is called for a grain.

• Grain should call State.WriteStateAsync() whenever they change data in the grain’s state object

• Grains typically call State.WriteStateAsync() at the very end of grain method, and return the Write promise.

• Storage provider _could_ try to batch Write’s for efficiency, but behavioral contract & config is orthogonal to
storage API used by grain.

• Alternatively grains might use timer to only write updates periodically.
Application can decide how much “eventual consistency” / staleness it can allows – range from immediate /
none to several minutes.

• Each grain class can only be associated with one storage provider.

• The particular provider to use for a grain defined with [StorageProvider(ProviderName=“name”)] attribute.

• Silo config file needs <StorageProvider> entry in silo config file with corresponding name -- see tutorial above
for example.

• Storage provider may be composite provider, Example: ShardedStorageProvider

7

https://orleans.codeplex.com/wikipage?title=Declarative Persistence&referringTitle=Step-by-step Tutorials

Storage Providers
Built-in Storage Providers

• All built-in storage providers live in the Orleans.Storage namespace from OrleansProviders.dll.

• MemoryStorage is ONLY for debug / unit testing – Data stored in-memory with no durable persistence

• AzureTableStorage stores data in Azure table storage

• Configure with Azure storage account info + optional DeleteStateOnClear [hard vs soft delete]

• Data stored in binary format in one Azure table cell using efficient Orleans serializer.
Data size limit == max size of Azure table column == 64KB binary data.
Community contributed code extends to use multiple table columns, for overall max 1MB.

• ShardedStorageProvider writes data across a number of underlying storage providers, based on grain id hash.

• Usage example: https://orleans.codeplex.com/discussions/546730

Storage Provider Debug Tips

• Turn on TraceOverride Verbose3 logging in silo config file for built-in storage providers to get much more info about what is
happening with storage operations.

• LogPrefix=”Storage” for all providers, or specific type using “Storage.Memory” / ”Storage.Azure” / “Storage.Shard”.

• Can use Fiddler to debug & optimize REST API calls to/from Azure storage. http://t.co/JV8N7fgW5k

Dealing With Failure of Storage Operations

• Either grains or storage providers can await storage operations and retry any failures if desired.

• If unhandled, failure will be propagated back to caller / client as a broken promise.

• No concept currently of activations getting destroyed automatically if storage operation fails [except initial Read]

• Built-in storage providers do not retry failing storage operations by default.

8

https://orleans.codeplex.com/discussions/546730
http://t.co/JV8N7fgW5k

Grain Persistence – Hints & Tips
Grain Sizing

• For throughput, usually better to use many smaller grains than few large grains,
but overall best to choose grain size & types based on application domain model, Example: Users, Orders, etc

External Changing Data

• Grain can re-read current state data from underlying backing storage using State.ReadStateAsync()
This is good way to force “resync” with underlying DB changes.

• Alternately, grain can use a timer to re-read data from backing storage periodically,
based on suitable “staleness” decisions for an application. Example: Content Cache grain.

• Adding / Removing Fields

• Storage provider in use will determine effects of adding / removing additional fields from persisted state.

• Due to no-schema, Azure table storage should automatically adjust to extra fields, but best to test thoroughly!

Writing Custom Storage Providers

• Storage providers are a major extensibility point for Orleans, and easy to write.

• Tutorial: https://orleans.codeplex.com/wikipage?title=Custom%20Storage%20Providers&referringTitle=Step-by-
step%20Tutorials

• Storage API contract for grains driven by the GrainState API – Write/Clear/ReadStateAsync()

• Storage behavior contract defined by storage provider, typically configurable.
Example: Batch Write’s, Hard vs Soft Delete, etc

9

https://orleans.codeplex.com/wikipage?title=Custom Storage Providers&referringTitle=Step-by-step Tutorials

Cluster Management

• Orleans automatically manages cluster liveness
• Worker roles (silo) may fail and join at any time
• Orleans membership handles all automatically
• Silo instance table for diagnostics
• Tunable configuration options: more aggressive vs. more lenient failure detection

• Failures are the norm, can happen any time
• Lost grains will be automatically reactivated
• In-process grain calls will fail or timeout
• Orleans provides best effort message delivery
• Any network message can be lost, should be retried by application code if

important (usual practice is to retry end to end from the client/front end).

• Currently no graceful shutdown
• Azure upgrade/reboot is treated as node failure

10

Deployment & Production Management

• Service monitoring
• Utilize info provided by Orleans

• Windows perf counters
• Compact Azure metrics table
• Very detailed Azure statistics table.
• Watch for specific log events in Trace

• Add your own perf counters

• Scaling out and in
• Monitor your SLA, utilization
• Add/remove instance
• Orleans automatically rebalances and takes advantage of the new HW

• Version management
• No in-place code upgrade, have to restart the silo
• If the change is backward compatible, can restart silos one by one, e.g. Azure upgrade
• Otherwise have to restart the whole deployment

• Azure VIP swap vs. downtime
• Beware of storage accounts when two deployments are running in parallel
• Fully stop old deployment before starting the new one or be idempotent

11

Logging & Testing

• Logging, tracing & monitoring
• Use GrainBase.GetLogger() that exposes Info(), Warn(), Error(), Verbose()

• By default output goes to .NET Trace along with Runtime traces, to local file

• Easy to consume by Windows Azure Diagnostics

• Can install your own log consumer via Logger.LogConsumer.Add()

• Can override default trace levels for grains or runtime components;
• <TraceLevelOverride LogPrefix="Application" TraceLevel=“Verbose" />

• <TraceLevelOverride LogPrefix=“Runtime" TraceLevel=“Warning" />

• Testing
• Will publish UnitTestBase class for easy unit testing

• Starts two (or more) silos in app domains and a client in the main app domain

• Simplifies version of what we use internally

12

Troubleshooting
• Logs, logs, logs: silo logs, client (frontend) logs

• WAD may or may not pick up the logs in case of startup failures
• RDP to the machines to be sure

• Use Azure Table-based membership for development/testing
• Works with Azure Storage Emulator for local troubleshooting
• OrleansSiloInstances table shows state of the cluster
• Use unique deployment IDs (partition key) for simplicity

• Silo doesn’t start
• Look at OrleansSiloInstances – did the silo register there?
• Is firewall open for TCP ports 11111 & 30000 (by default, can change in config)?
• Look at the log, there’s an extra one for startup errors
• RDP to the server or Worker Role instance and try to start it manually

• Client (frontend) can’t connect to silo cluster
• Has to be in the same hosted service as silos
• Look at OrleansSiloInstances – are there silos (gateways) registered?
• Look at the client log – does it find gateways listed in OrleansSiloInstances table?
• Look at the client log – can it connect to one or more gateways?

13

Questions?

14

