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Abstract 

High-scale interactive services demand high throughput 

with low latency and high availability, difficult goals to 

meet with the traditional stateless 3-tier architecture. The 

actor model makes it natural to build a stateful middle 

tier and achieve the required performance. However, the 

popular actor model platforms still pass many distributed 

systems problems to the developers. 

The Orleans programming model introduces the 

novel abstraction of virtual actors that solves a number 

of the complex distributed systems problems, such as 

reliability and distributed resource management, liberat-

ing the developers from dealing with those concerns. At 

the same time, the Orleans runtime enables applications 

to attain high performance, reliability and scalability. 

This paper presents the design principles behind 

Orleans and demonstrates how Orleans achieves a 

simple programming model that meets these goals. We 

describe how Orleans simplified the development of 

several scalable production applications on Windows 

Azure, and report on the performance of those 

production systems. 

1. Introduction 

Building interactive services that are scalable and 

reliable is hard. Interactivity imposes strict constraints 

on availability and latency, as that directly impacts end-

used experience. To support a large number of 

concurrent user sessions, high throughput is essential. 

The traditional three-tier architecture with stateless 

front-ends, stateless middle tier and a storage layer has 

limited scalability due to latency and throughput limits 

of the storage layer that has to be consulted for every 

request. A caching layer is often added between the 

middle tier and storage to improve performance [9][14] 

[19]. However, a cache loses most of the concurrency 

and semantic guarantees of the underlying storage layer. 

To prevent inconsistencies caused by concurrent updates 

to a cached item, the application or cache manager has to 

implement a concurrency control protocol [11]. With or 

without cache, a stateless middle tier does not provide 

data locality since it uses the data shipping paradigm: 

for every request, data is sent from storage or cache to 

the middle tier server that is processing the request. The 

advent of social graphs where a single request may touch 

many entities connected dynamically with multi-hop 

relationships makes it even more challenging to satisfy 

required application-level semantics and consistency on 

a cache with fast response for interactive access. 

The actor model offers an appealing solution to these 

challenges by relying on the function shipping paradigm. 

Actors allow building a stateful middle tier that has the 

performance benefits of a cache with data locality and 

the semantic and consistency benefits of encapsulated 

entities via application-specific operations. In addition, 

actors make it easy to implement horizontal, “social”, 

relations between entities in the middle tier.  

Another view of distributed systems programmabil-

ity is through the lens of the object-oriented program-

ming (OOP) paradigm. While OOP is an intuitive way to 

model complex systems, it has been marginalized by the 

popular service-oriented architecture (SOA). One can 

still benefit from OOP when implementing service 

components. However, at the system level, developers 

have to think in terms of loosely-coupled partitioned 

services, which often do not match the application’s 

conceptual objects. This has contributed to the difficulty 

of building distributed systems by mainstream 

developers. The actor model brings OOP back to the 

system level with actors appearing to developers very 

much like the familiar model of interacting objects. 

Actor platforms such as Erlang [3] and Akka [2] are 

a step forward in simplifying distributed system pro-

gramming. However, they still burden developers with 

many distributed system complexities because of the 

relatively low level of provided abstractions and system 

services. The key challenges are the need to manage the 

lifecycle of actors in the application code and deal with 

inherent distributed races, the responsibility to handle 

failures and recovery of actors, the placement of actors, 

and thus distributed resource management. To build a 

correct solution to such problems in the application, the 

developer must be a distributed systems expert. 

To avoid these complexities, we built the Orleans 

programming model and runtime, which raises the level 

of the actor abstraction. Orleans targets developers who 

are not distributed system experts, although our expert 

customers have found it attractive too. It is actor-based, 

but differs from existing actor-based platforms by 

treating actors as virtual entities, not as physical ones. 

First, an Orleans actor always exists, virtually. It cannot 

be explicitly created or destroyed. Its existence 

transcends the lifetime of any of its in-memory 

instantiations, and thus transcends the lifetime of any 

particular server. Second, Orleans actors are 

automatically instantiated: if there is no in-memory 
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instance of an actor, a message sent to the actor causes a 

new instance to be created on an available server. An 

unused actor instance is automatically reclaimed as part 

of runtime resource management. An actor never fails: if 

a server S crashes, the next message sent to an actor A 

that was running on S causes Orleans to automatically re-

instantiate A on another server, eliminating the need for 

applications to supervise and explicitly re-create failed 

actors. Third, the location of the actor instance is 

transparent to the application code, which greatly 

simplifies programming. And fourth, Orleans can 

automatically create multiple instances of the same 

stateless actor, seamlessly scaling out hot actors.  

Overall, Orleans gives developers a virtual “actor 

space” that, analogous to virtual memory, allows them to 

invoke any actor in the system, whether or not it is 

present in memory. Virtualization relies on indirection 

that maps from virtual actors to their physical instantia-

tions that are currently running. This level of indirection 

provides the runtime with the opportunity to solve many 

hard distributed systems problems that must otherwise 

be addressed by the developer, such as actor placement 

and load balancing, deactivation of unused actors, and 

actor recovery after server failures, which are 

notoriously difficult for them to get right. Thus, the 

virtual actor approach significantly simplifies the 

programming model while allowing the runtime to 

balance load and recover from failures transparently. 

The runtime supports indirection via a distributed 

directory. Orleans minimizes the runtime cost of 

indirection by using local caches that map from actor 

identity to its current physical location. This strategy has 

proven to be very efficient. We typically see cache hit 

rates of well over 90% in our production services. 

Orleans has been used to build multiple production 

services currently running on the Microsoft Windows 

Azure cloud, including the back-end services for some 

popular games. This enabled us to validate the scalability 

and reliability of production applications written using 

Orleans, and adjust its model and implementation based 

on this feedback. It also enabled us to verify, at least 

anecdotally, that the Orleans programming model leads 

to significantly increased programmer productivity. 

While the Orleans programming model is appropri-

ate for many applications, certain patterns do not fit 

Orleans well. One such pattern is an application that 

intermixes frequent bulk operations on many entities 

with operations on individual entities. Isolation of actors 

makes such bulk operations more expensive than 

operations on shared memory data structures. The virtual 

actor model can degrade if the number of actors in the 

system is extremely large (billions) and there is no 

temporal locality. Orleans does not yet support cross-

actor transactions, so applications that require this 

feature outside of the database system are not suitable. 

In summary, the main contributions of this paper are 

(a) a novel virtual actor abstraction that enables a 

simplified programming model; (b) an efficient and 

scalable implementation of the distributed actor model 

that eliminates some programming complexities of 

traditional actor frameworks with a good level of 

performance and scalability; and (c) detailed measure-

ments and a description of our production experience.  

The outline of the paper is as follows. In Section 2, 

we introduce the Orleans programming model. Section 3 

describes the runtime, with a focus on how the virtual 

actor model enables scalability and reliability. Section 4 

discusses how Orleans is used in practice, and Section 5 

presents measurements on both production and synthetic 

benchmarks. Section 6 compares Orleans to other actor 

frameworks and the early prototype of Orleans reported 

in [5]. Section 7 is the conclusion. 

2. Programming Model 

This section describes the Orleans programming model 

and provides code examples from the Halo 4 Presence 

service (described further in Section 4.1).  

2.1 Virtual Actors 

The Orleans programming model is based on the .NET 

Framework 4.5 [10]. Actors are the basic building blocks 

of Orleans applications and are the units of isolation and 

distribution. Every actor has a unique identity, composed 

of its type and primary key (a 128-bit GUID). An actor 

encapsulates behavior and mutable state, like any object. 

Its state can be stored using a built-in persistence facility. 

Actors are isolated, that is, they do not share memory. 

Thus, two actors can interact only by sending messages.  

Virtualization of actors in Orleans has four facets: 

1. Perpetual existence: actors are purely logical 

entities that always exist, virtually. An actor cannot be 

explicitly created or destroyed and its virtual existence is 

unaffected by the failure of a server that executes it. 

Since actors always exist, they are always addressable. 

2. Automatic instantiation:  Orleans’ runtime 

automatically creates in-memory instances of an actor 

called activations. At any point in time an actor may 

have zero or more activations. An actor will not be 

instantiated if there are no requests pending for it. When 

a new request is sent to an actor that is currently not 

instantiated, the Orleans runtime automatically creates 

an activation by picking a server, instantiating on that 

server the .NET object that implements the actor, and 

invoking its ActivateAsync method for initialization. If 

the server where an actor currently is instantiated fails, 

the runtime will automatically re-instantiate it on a new 

server on its next invocation. This means that Orleans 

has no need for supervision trees as in Erlang [3] and 

Akka [2], where the application is responsible for re-

creating a failed actor.  An unused actor’s in-memory 
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instance is automatically reclaimed as part of runtime 

resource management. When doing so Orleans invokes 

the DeactivateAsync method, which gives the actor an 

opportunity to perform a cleanup operation. 

3. Location transparency: an actor may be 

instantiated in different locations at different times, and 

sometimes might not have a physical location at all. An 

application interacting with an actor or running within an 

actor does not know the actor’s physical location. This is 

similar to virtual memory, where a given logical memory 

page may be mapped to a variety of physical addresses 

over time, and may at times be “paged out” and not 

mapped to any physical address. Just as an operating 

system pages in a memory page from disk automatically, 

the Orleans runtime automatically instantiates a non-

instantiated actor upon a new request  

4. Automatic scale out: Currently, Orleans supports 

two activation modes for actor types: single activation 

mode (default), in which only one simultaneous 

activation of an actor is allowed, and stateless worker 

mode, in which many independent activations of an actor 

are created automatically by Orleans on-demand (up to a 

limit) to increase throughput. “Independent” implies that 

there is no state reconciliation between different 

activations of the same actor. Therefore, the stateless 

worker mode is appropriate for actors with immutable or 

no state, such as an actor that acts as a read-only cache. 

Making actors virtual entities, rather than physical 

ones, has a significant impact on the Orleans 

programming model and implementation.  Automatic 

activation, location transparency and perpetual existence 

greatly simplify the programming model since they 

remove from the application the need to explicitly 

activate or deactivate an actor, as well as supervise its 

lifecycle, and re-create it on failures. 

2.2 Actor Interfaces 

Actors interact with each other through methods and 

properties declared as part of their strongly-typed 

interfaces. All methods and properties of an actor 

interface are required to be asynchronous; that is, their 

return types must be promises (see Section 2.4). 

(1)public interface IGameActor : IActor 

(2){ 

(3)  Task<string> GameName { get; } 

(4)  Task<List<IPlayerActor>> CurrentPlayers { get; } 

(5)  Task JoinGame(IPlayerActor game); 

(6)  Task LeaveGame(IPlayerActor game); 

(7)} 

2.3 Actor References 

An actor reference is a strongly-typed virtual actor proxy 

that allows other actors, as well as non-actor code, to 

invoke methods and properties on it. An actor reference 

can be obtained by calling the GetActor method of the 

factory class, which Orleans automatically generates at 

compile time, and specifying the actor’s primary key. A 

reference may also be received from a remote method or 

property return. An actor reference can be passed as an 

input argument to actor method calls. 

(1) public static class GameActorFactory 
(2){ 

(3)  public static IGameActor GetActor(Guid gameId); 

(4)} 

Actor references are virtual. An actor reference does 

not expose to the programmer any location information 

of the target actor. It also does not have a notion of 

binding. In a traditional RPC model (such as Java RMI, 

CORBA, or WCF) the programmer needs to explicitly 

bind the virtual reference to the service, usually via an 

external registry or location service. In Orleans, actor 

references are created locally by the sender and can 

immediately be used without a bind or register step. This 

simplifies programming and maximizes throughput by 

allowing immediate pipelining of requests to actors 

without waiting to bind or to resolve a service endpoint. 

2.4 Promises 

Actors interact by sending asynchronous messages. As 

in most modern distributed systems programming 

models, these message exchanges are exposed as method 

calls. However, unlike traditional models, Orleans 

method calls return immediately with a promise for a 

future result, rather than blocking until the result is 

returned. Promises allow for concurrency without 

requiring explicit thread management. 

Promises have a three-state lifecycle. Initially, a 

promise is unresolved; it represents the expectation of 

receiving a result at some future time. When the result is 

received, the promise becomes fulfilled and the result 

becomes the value of the promise. If an error occurs, 

either in the calculation of the result or in the 

communication, the promise becomes broken. 

Promises are exposed as instances of the class 

System.Threading.Tasks.Task<T> that represents the 

eventual value of a specified type or of the class 

System.Threading.Tasks.Task that represents a 

completion promise corresponding to void methods. 

The main way to use a promise is to schedule a 

closure (or continuation) to execute when the promise 

is resolved. Closures are usually implicitly scheduled by 

using the await C# keyword on a promise. In the 

example below the compiler does stack ripping and 

transforms the code after ‘await’ into a closure that exe-

cutes after the promise is resolved. Thus, the developer 

writes code, including error handling, that executes asyn-

chronously but looks sequential and hence more natural. 

(1) IGameActor gameActor =      
GameActorFactory.GetActor(gameId); 

(2)try{ 

(3)   string name = await gameActor.GameName; 

(4)   Console.WriteLine(“Game name is ” + name); 

(5)}catch(Exception){ 

(6)   Console.WriteLine(“The call to actor failed”); 

(7)} 
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2.5 Turns 

Actor activations are single threaded and do work in 

chunks, called turns. An activation executes one turn at 

a time. A turn can be a method invocation or a closure 

executed on resolution of a promise.  While Orleans may 

execute turns of different activations in parallel, each 

activation always executes one turn at a time. 

The turn-based asynchronous execution model 

allows for interleaving of turns for multiple requests to 

the same activation. Since reasoning about interleaved 

execution of multiple requests is challenging, Orleans by 

default avoids such interleaving by waiting for an 

activation to finish processing one request before 

dispatching the next one. Thus, an activation does not 

receive a new request until all promises created during 

the processing of the current request have been resolved 

and all of their associated closures executed. To override 

this default behavior, an actor class may be marked with 

the [Reentrant] attribute. This indicates that an 

activation of that class may be given another request to 

process in between turns of a previous request, e.g. while 

waiting for a pending IO operation. Execution of turns of 

both requests is still guaranteed to be single threaded, so 

the activation is still executing one turn at a time. But 

turns belonging to different requests of a reentrant actor 

may be freely interleaved. 

2.6 Persistence 

The execution of actor requests may modify the actor 

state, which may or may not be persistent. Orleans 

provides a facility to simplify persistence management. 

An actor class can declare a property bag interface that 

represents the actor state that should be persisted. The 

runtime then provides each actor of that type with a state 

object that implements that interface and exposes 

methods for persisting and refreshing the state.  

(1) // State property bag interface 
(2)public interface IGameState : IState 

(3){ 

(4)  GameStatus Status { get; set } 

(5)  List<IPlayerActor> Players { get; set;} 

(6)} 

(7) 

(8) // Actor class implementation 

(9)public class GameActor : ActorBase<IGameState> 

IGameActor 

(10){ 

(11)   Task JoinGame(IPlayerActor game) 

(12)   { 

(13)     // Update state property bag 

(14)     this.State.Players.Add(IPlayerActor); 

(15)     // Checkpoint actor state 

(16)     return this.State.WriteStateAsync(); 

(17)   } 

(18)} 

It is up to the application logic when to checkpoint 

an actor’s persistent state. For example, it can do so when 

each application request is completed, or periodically 

based on a timer or based on the number of requests 

processed since the last checkpoint. 

The interaction with the underlying storage is 

implemented via persistence providers, which serve as 

adaptors for specific storage systems: SQL database, 

column store, blob store, etc. 

2.7 Timers and Reminders 

There are two kinds of timer facilities in Orleans. 

Transient timers closely mimic the .NET timer interface 

but provide single threading execution guarantees. They 

are created local to an actor activation, and disappear 

when the actor is deactivated.  

A reminder is a timer that fires whether or not the 

actor is active. Thus, it transcends the actor activation 

that created it, and continues to operate until explicitly 

deleted. If a reminder fires when its actor is not activated, 

a new activation is automatically created to process the 

reminder message, just like any other message sent to 

that actor. Reminders are reliable persistent timers that 

produce messages for actors that created them while 

allowing the runtime to reclaim system resources by 

deactivating those actors, if necessary, in between 

reminder ticks. Reminders follow the conceptual model 

of virtual actors that eternally exist in the system and are 

activated in memory only as needed to process incoming 

requests. Reminders are a useful facility to execute 

infrequent periodic work despite failures and without the 

need to pin an actor’s activation in memory forever. 

3. Runtime Implementation 

In this section, we describe the general architecture of 

the runtime, highlight key design choices and their 

rationale. Our guiding principle is to enable a simple 

programming model without sacrificing performance.  

3.1 Overview 

Orleans runs on a cluster of servers in a datacenter, each 

running a container process that creates and hosts actor 

activations. A server has three key subsystems: 

Messaging, Hosting, and Execution. The messaging 

subsystem connects each pair of servers with a single 

TCP connection and uses a set of communication threads 

to multiplex messages between actors hosted on those 

servers over open connections. The hosting subsystem 

decides where to place activations and manages their 

lifecycle. The execution subsystem runs actors’ 

application code on a set of compute threads with the 

single-threaded and reentrancy guarantees. 

When an actor calls another actor, Execution 

converts the method call into a message and passes it to 

Messaging along with the identity of the target actor. 

Messaging consults with Hosting to determine the target 

server to send the message to. Hosting maintains a 

distributed directory to keep track of all actor activations 

in the cluster. It either finds an existing activation of the 

target actor or picks a server to create a new activation 
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of it. Messaging then serializes the message and sends it 

to the already opened socket to the destination server. On 

the receiving end, the call parameters are deserialized 

and marshaled into a set of strongly-typed objects and 

passed to Execution, which schedules it for invocation. 

If the actor is busy processing a previous invocation, the 

request is queued until that request’s execution is 

completed. If the receiving server is instructed to create 

a new activation, it registers the actor in the directory and 

then creates a local in-memory instance of it. The single-

activation guarantees are provided by the directory. 

Hosting is also responsible for locally managing 

resources in the server. If an actor is idle for a 

configurable time or the server experiences memory 

pressure, the runtime automatically deactivates it and 

reclaims its system resources. This simple strategy for 

local resource management is enabled by actor virtuali-

zation. An unused actor can be deactivated and reclaim-

ed independently and locally on any server because it can 

later be transparently re-activated. This approach does 

not require complicated distributed garbage collection 

protocols which involve tracking all physical references 

to an actor before it can be reclaimed. 

3.2 Distributed Directory 

Many distributed systems use deterministic placement to 

avoid maintaining an explicit directory of the location of 

each component, by consistent hashing or range-based 

partitioning. Orleans allows completely flexible 

placement, keeping the location of each actor in a 

distributed directory. This allows the runtime more 

freedom in managing system resources by placing and 

moving actors as the load on the system changes.  

The Orleans directory is implemented as a one-hop 

distributed hash table (DHT) [17]. Each server in the 

cluster holds a partition of the directory, and actors are 

assigned to the partitions using consistent hashing. Each 

record in the directory maps an actor id to the location(s) 

of its activations. When a new activation is created, a 

registration request is sent to the appropriate directory 

partition. Similarly, when an activation is deactivated, a 

request is sent to the partition to unregister the activation. 

The single-activation constraint is enforced by the 

directory: if a registration request is received for a single-

activation actor that already has an activation registered, 

the new registration is rejected, and the address of the 

existing activation is returned with the rejection.  

Using a distributed directory for placement and 

routing implies an additional hop for every message, to 

find out the physical location of a target actor. Therefore, 

Orleans maintains a large local cache on every server 

with recently resolved actor-to-activation mappings.  

Each cache entry for a single-activation actor is about 80 

bytes. This allows us to comfortably cache millions of 

entries on typical production servers. We have found in 

production that the cache has a very high hit ratio and is 

effective enough to eliminate almost completely the need 

for an extra hop on every message.  

3.3 Strong Isolation 

Actors in Orleans do not share state and are isolated from 

each other. The only way that actors can communicate is 

by sending messages, which are exposed as method calls 

on an actor reference. In this respect, Orleans follows the 

standard actor paradigm. In addition, method-call 

arguments and the return value are deep copied 

synchronously between actor calls, even if the two actors 

happen to reside on the same machine, to guarantee 

immutability of the sent data. 

To reduce the cost of deep copying, Orleans uses two 

complementary approaches. First, an application can 

specify that it will not mutate an argument by using a 

markup generic wrapping class Immutable<T> in the 

actor method signature. This tells the runtime it is safe 

not to copy the argument. This is very useful for pass-

through functional style scenarios, when the actor code 

never mutates the arguments. An example of such 

functionality is the Router actor in the Halo 4 presence 

service (Section 4.1), which performs decompression of 

the passed data blob without storing or mutating it. For 

the cases where the actual copy has to happen, Orleans 

uses a highly optimized copying module that is part of 

the serialization subsystem (Section 3.7 below). 

3.4 Asynchrony 

Orleans imposes an asynchronous programming style, 

using promises to represent future results. All calls to 

actor methods are asynchronous; the results must be of 

type Task or Task<T> to indicate that they will be 

resolved later. The asynchronous programming model 

introduced in .NET 4.5, based on the async and await 

keywords, greatly simplifies code to handle promises. 

Orleans’ pervasive use of asynchrony is important 

for the simplicity and scalability of applications. Pre-

venting application code from holding a thread while 

waiting for a result ensures that system throughput is 

minimally impacted by the cost of remote requests. In 

our tests, increased distribution leads to higher latency 

due to more off-box calls, but has almost no impact on 

throughput in a communication-intensive application. 

3.5 Single-Threading 

Orleans ensures that at most one thread runs at a time 

within each activation. Thus, activation state is never 

accessed by multiple threads simultaneously, so race 

conditions are impossible and locks and other synchro-

nization primitives are unnecessary. This guarantee is 

provided by the execution subsystem without creating 

per-activation threads. While single-threading does limit 

performance of individual activations, the parallelism 

across many activations handling different requests is 
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more than sufficient to efficiently use the available CPU 

resources, and actually leads to better overall system 

responsiveness and throughput. 

3.6 Cooperative Multitasking 

Orleans schedules application turns using cooperative 

multitasking. That means that once started, an applica-

tion turn runs to completion, without interruption. The 

Orleans scheduler uses a small number of compute 

threads that it controls, usually equal to the number of 

CPU cores, to execute all application actor code.  

To support tens of thousands to millions of actors on 

a server, preemptive multitasking with a thread for each 

activation would require more threads than modern 

hardware and operating systems can sustain. Even if the 

number of threads did not exceed the practical limit, the 

performance of preemptive multitasking at thousands of 

threads is known to be bad due to the overhead of context 

switches and lost cache locality. By using only 

cooperative multitasking, Orleans can efficiently run a 

large number of activations on a small number of 

threads. Cooperative multitasking also allows Orleans 

applications to run at very high CPU utilization. We have 

run load tests with full saturation of 25 servers for many 

days at 90+% CPU utilization without any instability. 

A weakness of cooperative multitasking is that a 

poorly behaved component can take up an entire pro-

cessor, degrading the performance of other components. 

For Orleans, this is not a major concern since all of the 

actors are owned by the same developers. (Orleans is not 

currently intended for a multi-tenant environment.) 

Orleans does provide monitoring and notification for 

long-running turns to help troubleshooting, but we have 

generally not seen this as a problem in production.  

3.7 Serialization 

Marshaling complex objects into a byte stream and 

later recreating the objects is a core part of any 

distributed system. While this process is hidden from 

application developers, its efficiency can greatly affect 

overall system performance. Serialization packages such 

as Protocol Buffers [12] offer excellent performance at 

the cost of limiting the types of objects that may be 

passed. Many serializers do not support dynamic types 

or arbitrary polymorphism, and many do not support 

object identity (so that two pointers to the same object 

still point to the same object after deserialization). The 

standard .NET binary supports any type marked with the 

[Serializable] attribute, but is slow and may create 

very large representations. 

For better programmability, Orleans allows any data 

type and maintains object identity through the serializer. 

Structs, arrays, fully polymorphic and generic objects 

can be used. We balance this flexibility with a highly-

optimized serialization subsystem that is competitive 

with the best ones available on “standard” types. We 

achieve this by automatically generating custom 

serialization code at compile time, with hand-crafted 

code for common types such as .NET collections. The 

serialized representation is compact and carries a 

minimal amount of dynamic type information. 

3.8 Reliability 

Orleans manages all aspects of reliability automatically, 

relieving the programmer from the need to explicitly do 

so. The only aspect that is not managed by Orleans is an 

actor’s persistent state: this part is left for the developer. 

The Orleans runtime has a built-in membership 

mechanism for managing servers. Servers automatically 

detect failures via periodic heartbeats and reach an 

agreement on the membership view. For a short period 

of time after a failure, membership views on different 

servers may diverge, but it is guaranteed that eventually 

all servers will learn about the failed server and have 

identical membership views. The convergence time 

depends on the failure detection settings. The production 

services that use Orleans are configured to detect failures 

and converge on cluster membership within 30 to 60 

seconds.  In addition, if a server was declared dead by 

the membership service, it will shut itself down even if 

the failure was just a temporary network issue.  

When a server fails, all activations on that server are 

lost. The directory information on the failed server is lost 

if directory partitions are not replicated. Once the 

surviving servers learn about the failure, they scan their 

directory partitions and local directory caches and purge 

entries for activations located on the failed server. Since 

actors are virtual, no actor fails when a server fails. 

Instead, the next request to an actor whose activation was 

on the failed server causes a new activation to be created 

on a surviving server. The virtual nature of the actors 

allows the lifespan of an individual actor to be com-

pletely decoupled from the lifespan of the hosting server. 

A server failure may or may not lose an actors’ state 

on that server. Orleans does not impose a checkpointing 

strategy. It is up to the application to decide what actor 

state needs to be checkpointed and how often. For 

example, an actor may perform a checkpoint after every 

update to its in-memory state, or may perform a check-

point and wait for its acknowledgment before returning 

success to its caller. Such an actor never loses its state 

when a server fails and is rehydrated with its last 

checkpointed state when reactivated on a different 

server. However, such rigorous checkpointing may be 

too expensive, too slow or simply unnecessary for some 

actors. For example, an actor that represents a device, 

such as a cellphone, sensor, or game console, may be a 

mere cache of the device’s state that the device 

periodically updates by sending messages to its actor. 

There is no need to checkpoint such an actor. When a 

server fails, it will be reactivated on a different server 

and its state will be reconstructed from data sent later by 
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the device. Another popular strategy, if the application 

can afford to infrequently lose small updates to the state, 

is to checkpoint actor state periodically at a fixed time 

interval. This flexibility in checkpointing policy, 

coupled with the ability to use different backend storage 

providers, allows developers to reach the desired tradeoff 

between reliability and performance of the application. 

There are situations where the directory information 

used to route a message is incorrect. For instance, the 

local cache may be stale and have a record for an 

activation that no longer exists, or a request to unregister 

an activation may have failed. Orleans does not require 

the directory information used by message routing to be 

perfectly accurate. If a message is misdirected, the 

recipient either reroutes the message to the correct 

location or returns the message to the sender for 

rerouting. In either case, both the sender and receiver 

take steps to correct the inaccuracy by flushing a local 

cache entry or by updating the distributed directory entry 

for the actor. If the directory has lost track of an existing 

activation, new requests to that actor will result in a new 

activation being created, and the old activation will 

eventually be deactivated.  

3.9 Eventual Consistency 

In failure-free times, Orleans guarantees that an actor 

only has a single activation. However, when failures 

occur, this is only guaranteed eventually. 

Membership is in flux after a server has failed but 

before its failure has been communicated to all survivors. 

During this period, a register-activation request may be 

misrouted if the sender has a stale membership view. The 

target of the register request will reroute the request if it 

is not the proper owner of the directory partition in its 

view. However, it may be that two activations of the 

same actor are registered in two different directory 

partitions, resulting in two activations of a single-

activation actor. In this case, once the membership has 

settled, one of the activations is dropped from the direc-

tory and a message is sent to its server to deactivate it.  

We made this tradeoff in favor of availability over 

consistency to ensure that applications can make 

progress even when membership is in flux. For most 

applications this “eventual single activation” semantics 

has been sufficient, as the situation is rare. If it is insuffi-

cient, the application can rely on external persistent 

storage to provide stronger data consistency. We have 

found that relying on recovery and reconciliation in this 

way is simpler, more robust, and performs better than 

trying to maintain absolute accuracy in the directory and 

strict coherence in the local directory caches. 

3.10 Messaging Guarantees 

Orleans provides at-least-once message delivery, by 

resending messages that were not acknowledged after a 

configurable timeout. Exactly-once semantics could be 

added by persisting the identifiers of delivered messages, 

but we felt that the cost would be prohibitive and most 

applications do not need it. This can still be implemented 

at the application level.  

General wisdom in distributed systems says that 

maintaining a FIFO order between messages is cheap 

and highly desirable. The price is just a sequence number 

on the sender and in the message header and a queue on 

the receiver. Our original implementation followed that 

pattern, guaranteeing that messages sent from actor A to 

actor B were delivered to B in order, regardless of 

failures. This approach however does not scale well in 

applications with a large number of actors.  The per-

actor-pair state totals n2 sequence numbers and queues. 

This is too much state to maintain efficiently. Moreover, 

we found that FIFO message ordering is not required for 

most request-response applications.  Developers can 

easily express logical data and control dependencies in 

code by a handshake, issuing a next call to an actor only 

after receiving a reply to the previous call. If the 

application does not care about the ordering of two calls, 

it issues them in parallel.  

4. Applications 

Orleans has been used as a platform for building and 

running multiple cloud services by different teams, 

including all cloud services for the Halo 4 video game. 

This section describes three services built for two dif-

ferent games. Those services used Orleans to implement 

different parts of the game backend logic, with distinctly 

different usage patterns and performance characteristics. 

Most of the production scale and performance figures are 

confidential, so we report on measurements we 

performed in our lab in pre-production testing. 

4.1 Halo 4 Presence service 

The Presence service is responsible for keeping track of 

all active game sessions, their participating players, and 

evolving game status. It enhances the matchmaking 

experience for players, allows joining an active game, 

enables real-time viewing of a game session, and other 

functionality. Each game console running Halo 4 makes 

regular heartbeat calls to the service to report its status of 

the game in progress. The frequency of the heartbeat 

calls is controlled by the service, so it may be increased 

for more interactive experiences, such as real-time 

viewing of a game via a companion mobile application. 

Additional service calls allow querying and joining live 

sessions, but we limit our description to just heartbeats. 

In a multiplayer game session, each console sends 

heartbeat messages with game status updates to the 

service independently. The game session state is not 

saved to durable storage. It is only kept in memory 

because the ground truth is always on the consoles, and 

it takes only a single heartbeat update from any player to 
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recover the game session state in case of a failure. The 

payload of a heartbeat message contains compressed 

session data including the unique session ID, the player 

IDs, and additional game data. The session data has to be 

de-compressed before processing. 
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Player Actor
X

Heartbeat 
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Observer

Game
Session Actor

B

Game
Session Actor

C

Router Actor
Player Actor

Y

Player Actor
Z

Notifications

 
Figure 1: Halo 4 Presence Service 

The structure of the Presence service is shown in 

Figure 1. There are 3 types of actors: Router, Game 

Session, and Player. Incoming heartbeat requests from 

consoles arrive to the Router actor, which decompresses 

the data, extracts the session ID, and forwards the request 

to the right Session actor. There is one Game Session 

actor for every session ID. The Session actor updates its 

internal in-memory state, and periodically, but not on 

every heartbeat, calls Player actors using the player IDs 

extracted from the heartbeat data. Player actors also 

serve as rendezvous points for an external observer, such 

as the mobile phone companion application, for finding 

the current game session for a given user. The observer 

first calls the user’s Player actor using her ID as the key. 

The Player actor returns a reference to the Game Session 

actor that the player is currently playing. Then the 

Observer subscribes to receive real-time notifications 

about updates to the game session directly from the 

Game Session actor. 

Since the Router actor is stateless, Orleans dynami-

cally creates multiple activations of this single logical 

actor up to the number of CPU cores on each server. 

These activations are always local to the server that 

received the request to eliminate an unnecessary network 

hop. The other three actor types run in a single-activation 

mode, having 0 or 1 activation at any time, and their 

activations are randomly spread across all the servers. 

The implementation of the service benefited from the 

virtual nature of actors, as the code the developers had to 

write for making calls to actors was rather simple: create 

a reference to the target actor based on its type and 

identity, and immediately invoke a method on the 

promptly-returned actor reference object. There was no 

need to write code to locate or instantiate the target actor 

and manage failures of servers. 

4.2 Halo 4 Statistics Service 

Statistics is another vital Halo 4 service. It processes 

results of completed and in-progress games with details 

of important events, such as successful shots, weapons 

used, locations of events on the map, etc. This data 

accounts for players’ achievements, rank progression, 

personal statistics, match-making, etc. The service also 

handles queries about players’ details and aggregates 

sent by game consoles and the game’s web site. Halo 4 

statistics are very important, as players hate to lose their 

achievements. Therefore, any statistics report posted to 

the service is initially pushed through a Windows Azure 

Service Bus [18] reliable queue, so that it can be 

recovered and processed in case of a server failure.  

Figure 2 shows a simplified architecture of the Statistics 

service with a number of secondary pieces omitted to 

save space. The front-end server that receives an HTTP 

request with a statistics data payload saves the data in the 

Azure Service Bus reliable queue. A separate set of 

worker processes pull the requests from the queue and 

call the corresponding Game Session actors using the 

session ID as the actor identity. Orleans routes this call 

to an activation of the Game Session actor, instantiating 

a new one if necessary. The Game Session actor first 

saves the payload as-is to Azure BLOB store, then 

unpacks it and sends relevant pieces to Player actors of 

the players listed in the game statistics. Each Player actor 

then processes its piece and writes the results to Azure 

Table store. That data is later used for serving queries 

about player’s status, accomplishments, etc.  
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Figure 2: Halo 4 Statistics Service 

The operations of writing game and player statistics 

to the store are idempotent, so they can be safely 

replayed in case of a failure. If the request fails to be 

processed (times out or fails with an exception), the 

worker that dequeued the request will resubmit it. 

Orleans keeps Game actors in memory for the 

duration of the game. The actors process and accumulate 
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partial statistics in a cache for merging at the end of the 

game. Similarly, a Player actor stays in memory while it 

is used for processing statistics or serving queries, and 

caches the player’s data. In both cases, caching reduces 

IO traffic to the storage and lowers latency. 

4.3 Galactic Reign Services 

Galactic Reign is a turn-based, head-to-head game of 

tactical expansion and conquest for phones and PCs. 

Each player submits battle orders for a game turn. The 

game processes the turn and advances to the next one. 

Galactic Reign uses four types of actors: stateful 

Game Session and stateless Video Manager, House-

keeper, and Notification actors. Each Game Session 

actor executes the game logic when battle orders for the 

turn are received from the players, and produces results 

that are written-through to persistent Azure Storage. 

Then it sends a request to the video rendering service to 

generate a set of short (up to 90s) videos for the turn.   
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Figure 3: Galactic Reign Game Services 

Each Game Session actor holds a cached copy of the 

current session state for that game. The game state data 

can be large (multi-megabyte) and takes some time to 

read and rehydrate from the storage, so the system keeps 

active sessions in memory to reduce processing latency 

and storage traffic. Inactive game sessions are 

deactivated over time by the Orleans runtime. They are 

automatically re-activated later when needed. 

A pool of Video Manager actors handles submission 

of jobs to the video rendering system, and receiving 

notifications when render jobs are completed. Since 

these actors are stateless, the Orleans runtime 

transparently creates additional activations of them to 

handle increased workload. The actors set up timers to 

periodically poll for completed rendering jobs, and 

forward them to the Notification actors.  

Once a game turn is completed and its video clips are 

generated, a Notification actor sends a message to the 

game clients running on devices. The Housekeeper actor 

sets up a timer that periodically wakes it up to detect 

abandoned games and clean up the persisted game 

session data which is no longer needed.  

4.4 Database Session Pooling 

 A common problem in distributed systems is 

managing access to a shared resource, such as a database, 

queue, or hardware resource. An example is the case of 

N front-end or middle tier servers sharing access to a 

database with M shards. When each of the servers opens 

a connection to each of the shards, N×M database 

connections are created. With N and M in the hundreds, 

the number of connections explodes, which may exceed 

limitations of the network, such as the maximum number 

of ports per IP address of the network load balancer. 

Orleans provides an easy way to implement a pool of 

shared connections. In this application, an actor type 

Shard is introduced to encapsulate an open connection to 

a database shard. Instead of opening direct connections, 

the application uses Shard actors as proxies for sending 

requests to the shards. The application has full control of 

the number of Shard actors, and thus of the database 

connections, by mapping each database shard to one or a 

few Shard actors via hashing. An added benefit of 

implementing the connection pool with virtual actors is 

the reliability of the proxies, as they are automatically 

reactivated after a server failure. In this scenario, Orleans 

is used to implement a stateful connection pool for 

sharing access to the limited resources in a dynamic, 

scalable, and fault tolerant way. 

5. Performance 

In this section we study the performance of Orleans. We 

start with synthetic micro benchmarks targeting specific 

parts of the system. Next we report on whole-system 

performance running the production code of the Halo 

Presence service described in Section 4.1. The synthetic 

micro benchmarks were run 5 times for 10 minutes each 

and the production performance evaluation runs were 

done for 30 minutes each. 

The measurements were performed on a cluster of up 

to 125 servers, each with two AMD Quad-Core Opteron 

processors running at 2.10GHz for a total of 8 cores per 

server, 32GB of RAM, all running 64 bit Windows 

Server 2008 R2 and .NET 4.5 framework.  

5.1 Synthetic Micro Benchmarks 

Asynchronous IO and cooperative multi-tasking 

In this benchmark we evaluated the effectiveness of 

asynchronous messaging with cooperative multi-tasking. 

We show how these two mechanisms can efficiently 

mask latency in the actor’s work. This test uses 1000 

actors and issues requests from multiple load generators 

to fully saturate the system. Every request models a 

situation where an actor issues a remote call to another 

actor or an external service, such as storage. We vary the 

latency. Since the remote invocation is asynchronous, 

the current request is not blocked and thus the calling 
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thread can be released to do work on another request.  

Figure 4 shows that the increased latency of the simu-

lated external calls from within actors has very little 

impact on the overall throughput of the system. 

 

Figure 4: Latency masking with async IO and 

cooperative multi-tasking 

 
Figure 5: Small number of cooperative threads  

Cooperative multitasking and threads 

The Orleans scheduler uses a small number of compute 

threads, usually equal to the number of CPUs, with 

cooperative multitasking. This is known to be more 

efficient than using a large number of threads. We run a 

throughput test with short ping messages and different 

numbers of threads used by the Orleans scheduler. The 

result is shown in Figure 5. As expected, we see a steady 

degradation of the throughput, as the number of threads 

increases due to increasing overhead of the thread 

context switching, extra memory, longer OS scheduling 

queues and reduced cache locality. 

Price of isolation 

The isolation of actors in Orleans implies that arguments 

in actor calls have to be deep copied. In this benchmark 

the client calls a first actor with a given argument which 

calls a second actor with the same argument, once passed 

as is and once passed as Immutable (meaning it is not 

copied). In the benchmark, 50% of the calls are local and 

50% remote. In general, the larger the fraction of remote 

calls, the smaller the throughput drop due to deep 

copying, since the overhead of serialization and remote 

messaging increases. In a large application running on 

hundreds of servers the majority of the calls would be 

remote and thus the price of deep copy would shrink. 

Table 1 shows the price of deep copying (request 

throughput) for three data types. For a simple byte[] it 

is very small, about 4%. For a dictionary, more data is 

copied, but the price is still below 10%. With a 

complicated data structure, a dictionary each element of 

which is itself a mutable complex type, the overhead 

grows significantly. 

Argument type Description Don’t 

Copy 

Copy % 

Decreas

e 

Byte[] 100 bytes array 7300 7000 4.3% 

Dictionary<int
, string> 

Dictionary with 

100 elements 

6300 5700 9.5% 

Dictionary<int
, List<int>> 

Dictionary with 

100 elements, 

each list of size 1. 

6500 3400 47.7

% 

Table 1: Price of Isolation – throughput of 

requests with different argument types. 

 
Figure 6: Throughput of Halo 4 Presence service. 

Linear scalability as number of server increases. 

5.2 Halo Presence Performance Evaluation 

Scalability in the number of servers 

We run the production actor code of Halo 4 Presence 

service in our test cluster, with 1 million actors. We use 

enough load generators to fully saturate the Orleans 

nodes with generated heartbeat traffic and measure the 

maximum throughput the service can sustain. In this test 

the nodes run stably at 95-97% CPU utilization the 

whole time. Each heartbeat request incurs at least two 

RPCs: client to a Router actor and the Router actor to a 

Session actor. The first call is always remote, and the 

second is usually remote because of random placement 
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of Halo 4 Session actors. We see in Figure 6 that the 

throughput of 25 servers is about 130,000 heartbeats per 

second (about 5200 per server). This throughput scales 

almost linearly as the number of servers grows to 125.  

Scalability in the number of actors 

In this test the number of servers was fixed at 25 and we 

saturate the system with multiple load generators. In 

Figure 7 we see that the throughput remains almost the 

same as the number of actors increases from 2 thousand 

to 2 million. The small degradation at the large numbers 

is due to the increased size of internal data structures.

 

Figure 7: Throughput of Halo 4 Presence service. 

Linear scalability as number of actors increases. 

 
Figure 8: Latency as a function of load 

Latency as a function of load 

We measured the latency of heartbeat calls. The number 

of servers was fixed at 25 and we vary the load by 

increasing the number of load generators. In Figure 8 the 

x-axis depicts the average CPU utilization of the 25 

servers. The median latency is about 6.5 milliseconds 

(ms) for up to 19% CPU utilization and grows to 10ms 

and 15ms for 34% and 55% CPU utilization. Recall that 

every heartbeat is 2 RPC calls including a CPU intensive 

blob decompression. In addition, a small fraction of 

heartbeats trigger additional actors which were omitted 

from our description above. The latency of those 

heartbeats is naturally higher due to the extra hop and the 

additional CPU intensive processing. This contributes to 

the higher mean, standard deviation, and 95th percentile. 

6. Related Work 

We compare Orleans to general-purpose distributed 

programming frameworks and to actor frameworks. 

6.1 Distributed Programming Frameworks 

Although Orleans runs on both Windows Azure and 

Windows Server, nearly all current applications use 

Azure. It is therefore comparable to any framework for 

cloud application development. One well known 

framework is Google App Engine (GAE). Although both 

GAE and Orleans offer object-oriented programming 

models, they differ in two main respects. First, GAE’s 

object model is that of Java or Python, with synchronous 

RPC and multithreading. By contrast, Orleans offers an 

actor model, with asynchronous RPC and single-

threading. Second, Orleans is agnostic about database 

services. By contrast, GAE has a built-in database 

service with transactions. 

Distributed object models such as Enterprise Java 

Beans (EJB), Distributed Component Object Model 

(DCOM), and the Common Object Request Broker 

Architecture (CORBA) have some similarities with actor 

frameworks. Unlike Orleans, they are primarily based on 

synchronous communications, although some also 

provide asynchronous communication too, such as 

Message-Driven Beans in EJB. Unlike Orleans, they 

require static placement of objects, e.g., by mapping 

class-to-server or class-partition-to-server, and allow 

multithreaded servers where objects can share state. 

None of them offers a virtual actor abstraction. However, 

they do provide many useful functions beyond those in 

Orleans: transactions, reliable messaging, request 

queuing, and publish-subscribe. 

A lot of work has been done to improve the 

performance of multi-tier architectures via caching 

([9][11][13][14][16][19]). This however moves the 

burden of ensuring data consistency and data integrity 

semantics to the application. The function shipping 

paradigm like the actor model eliminates this problem. 

6.2 Actor Frameworks 

Orleans combines techniques from many previous actor 

systems. The comparison of actor frameworks in [7] 

identifies five key properties: state encapsulation, safe 

message passing (pass by value with deep copy), 

location transparency, mobility, and fair scheduling. 

Orleans fully supports the first three. It supports weak 

mobility—an actor can be moved from one machine to 
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another but not while processing a request. It supports 

best-effort fair scheduling: in a well-behaved application 

every actor receives its fair share of CPU time.  

Erlang is a functional programming language with 

an associated actor model [3]. An Erlang actor is called 

a process. As in Orleans, each actor is single-threaded, 

accessed via a logical reference, and communicates with 

other actors via one-way messages. In principle, an actor 

has only private state, though in practice actors often 

share state in tables or a registry. Unlike Orleans, Erlang 

actors are explicitly created. The spawn operation creates 

an Erlang process on either the caller’s server (the 

default) or a remote server (specified in an argument). 

After the process is created, its location cannot be 

changed. This prevents important optimizations found in 

Orleans: dynamic load balancing across servers, actor 

migration, and automatic server failure-handling by 

restarting its actors on other servers. 

An Erlang application explicitly controls how errors 

propagate from one process to another by using the link 

operation. If a process is not linked to another process 

and raises an unhandled exception, it silently dies. By 

contrast, in Orleans, exceptions automatically propagate 

across the distributed call chain via promises. 

The Open Telecom Platform (OTP) extends Erlang’s 

runtime with capabilities that insulate the application 

from fault tolerance, distribution, and concurrency 

aspects. To enable application-specific error handling, it 

has an optional module that keeps track of a supervision 

tree, which is the tree of processes induced by process 

creation. It offers two options for handling a child 

failure: either its supervisor recreates it or its siblings are 

killed and the supervisor recreates them. While flexible, 

this requires the developer to explicitly manage each 

actor’s lifecycle. By contrast, in Orleans, there is no 

creation hierarchy. Actors are automatically created and 

garbage collected by the runtime. If an actor’s server 

fails, the actor is automatically re-created on a different 

server. This automatic lifecycle management greatly 

simplifies programming. 

Akka [2] is an actor-based programming framework 

for Java and Scala. Like Orleans, each actor is single-

threaded, has only private state and is accessed via a 

logical reference. Akka guarantees at-most-once 

message delivery and FIFO ordering between every pair 

of actors. Unlike Orleans and like Erlang, actors are 

explicitly created in Akka and the creation hierarchy 

drives exception handling.  

In Akka, each actor is logically named by a path ex-

pression that reflects the supervision hierarchy. Orleans 

uses a class type and a key. Akka uses physical paths for 

remote actor references. As in Erlang, an actor’s location 

is fixed at creation time, which prevents dynamic load 

balancing, actor migration, and automatic handling of 

machine failures.  

Akka has features not covered by Orleans, such as 

the ability to load new code into an actor at runtime and 

a transaction mechanism, which ensures the effect of a 

set of actor invocations is atomic. However, these only 

apply to actors on the same machine and are thus 

inapplicable to a distributed actor model.  

A prototype of Orleans was described in [5]. That 

earlier version did not support all aspects of virtual 

actors. Rather, it required explicit lifecycle management 

of actors. It automatically persisted actor state on every 

call, which was too expensive for our production users. 

This led us to the persistence mechanism in Section 2.6. 

It used a more explicit syntax for promises and 

continuations, which we replaced by the more succinct 

async-await syntax of .NET 4.5 and a modified 

Orleans runtime to support it. It offered a multi-master 

replication scheme for multi-activation actors, which we 

dropped because it failed to deliver good performance 

and our users found it too complex. The measurements 

in [5] were only for micro-benchmarks, not large-scale 

production scenarios as in Section 5. 

Other Actor Frameworks - There is a variety of other 

actor programming models. Kilim [16] focuses on 

single-node execution, and uses thread-switching for 

modeling actor execution and inter-actor communica-

tions. ActorFoundry [1] uses synchronous send/receive 

communication between actors instead of asynchronous, 

continuation-based APIs used in Orleans. Thorn [4] (and 

Erlang) use loosely-typed, dynamic actor interfaces 

which require care to match sender and receiver code to 

ensure correct messaging semantic. Orleans uses 

strongly-typed interfaces, which allow easy compile-

time consistency checking. Monterey is an actor-based 

framework for Java [12]. As in Orleans, an application 

uses a key to obtain an actor reference. Unlike Orleans, 

it requires explicit lifecycle management of actors. It al-

lows synchronous communication (though it warns this 

may cause performance problems) and multithreaded 

actors. Orleans allows neither.   

7. Conclusion 

In this paper, we described Orleans, a framework for 

building reliable, efficient, and scalable cloud applica-

tions. We introduced the virtual actor abstraction, 

showed its benefits for programmability, and discussed 

implementation. We described production uses of 

Orleans and gave measurements of its performance. 

There are many ways Orleans could be extended to 

simplify access to underlying platform capabilities and 

enrich them with more services. High on our list are 

exactly once semantics for messaging, event streaming, 

primary-copy replication, and transactions. Although 

these are all mature technologies, we expect innovation 

will be needed to make them reliable, efficient and 

scalable enough for ordinary developers. 
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