

1

Orleans: Distributed Virtual Actors for Programmability and Scalability

Philip A. Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, Jorgen Thelin

Microsoft Research

Abstract

High-scale interactive services demand high throughput

with low latency and high availability, difficult goals to

meet with the traditional stateless 3-tier architecture. The

actor model makes it natural to build a stateful middle

tier and achieve the required performance. However, the

popular actor model platforms still pass many distributed

systems problems to the developers.

The Orleans programming model introduces the

novel abstraction of virtual actors that solves a number

of the complex distributed systems problems, such as

reliability and distributed resource management, liberat-

ing the developers from dealing with those concerns. At

the same time, the Orleans runtime enables applications

to attain high performance, reliability and scalability.

This paper presents the design principles behind

Orleans and demonstrates how Orleans achieves a

simple programming model that meets these goals. We

describe how Orleans simplified the development of

several scalable production applications on Windows

Azure, and report on the performance of those

production systems.

1. Introduction

Building interactive services that are scalable and

reliable is hard. Interactivity imposes strict constraints

on availability and latency, as that directly impacts end-

used experience. To support a large number of

concurrent user sessions, high throughput is essential.

The traditional three-tier architecture with stateless

front-ends, stateless middle tier and a storage layer has

limited scalability due to latency and throughput limits

of the storage layer that has to be consulted for every

request. A caching layer is often added between the

middle tier and storage to improve performance [9][14]

[19]. However, a cache loses most of the concurrency

and semantic guarantees of the underlying storage layer.

To prevent inconsistencies caused by concurrent updates

to a cached item, the application or cache manager has to

implement a concurrency control protocol [11]. With or

without cache, a stateless middle tier does not provide

data locality since it uses the data shipping paradigm:

for every request, data is sent from storage or cache to

the middle tier server that is processing the request. The

advent of social graphs where a single request may touch

many entities connected dynamically with multi-hop

relationships makes it even more challenging to satisfy

required application-level semantics and consistency on

a cache with fast response for interactive access.

The actor model offers an appealing solution to these

challenges by relying on the function shipping paradigm.

Actors allow building a stateful middle tier that has the

performance benefits of a cache with data locality and

the semantic and consistency benefits of encapsulated

entities via application-specific operations. In addition,

actors make it easy to implement horizontal, “social”,

relations between entities in the middle tier.

Another view of distributed systems programmabil-

ity is through the lens of the object-oriented program-

ming (OOP) paradigm. While OOP is an intuitive way to

model complex systems, it has been marginalized by the

popular service-oriented architecture (SOA). One can

still benefit from OOP when implementing service

components. However, at the system level, developers

have to think in terms of loosely-coupled partitioned

services, which often do not match the application’s

conceptual objects. This has contributed to the difficulty

of building distributed systems by mainstream

developers. The actor model brings OOP back to the

system level with actors appearing to developers very

much like the familiar model of interacting objects.

Actor platforms such as Erlang [3] and Akka [2] are

a step forward in simplifying distributed system pro-

gramming. However, they still burden developers with

many distributed system complexities because of the

relatively low level of provided abstractions and system

services. The key challenges are the need to manage the

lifecycle of actors in the application code and deal with

inherent distributed races, the responsibility to handle

failures and recovery of actors, the placement of actors,

and thus distributed resource management. To build a

correct solution to such problems in the application, the

developer must be a distributed systems expert.

To avoid these complexities, we built the Orleans

programming model and runtime, which raises the level

of the actor abstraction. Orleans targets developers who

are not distributed system experts, although our expert

customers have found it attractive too. It is actor-based,

but differs from existing actor-based platforms by

treating actors as virtual entities, not as physical ones.

First, an Orleans actor always exists, virtually. It cannot

be explicitly created or destroyed. Its existence

transcends the lifetime of any of its in-memory

instantiations, and thus transcends the lifetime of any

particular server. Second, Orleans actors are

automatically instantiated: if there is no in-memory

2

instance of an actor, a message sent to the actor causes a

new instance to be created on an available server. An

unused actor instance is automatically reclaimed as part

of runtime resource management. An actor never fails: if

a server S crashes, the next message sent to an actor A

that was running on S causes Orleans to automatically re-

instantiate A on another server, eliminating the need for

applications to supervise and explicitly re-create failed

actors. Third, the location of the actor instance is

transparent to the application code, which greatly

simplifies programming. And fourth, Orleans can

automatically create multiple instances of the same

stateless actor, seamlessly scaling out hot actors.

Overall, Orleans gives developers a virtual “actor

space” that, analogous to virtual memory, allows them to

invoke any actor in the system, whether or not it is

present in memory. Virtualization relies on indirection

that maps from virtual actors to their physical instantia-

tions that are currently running. This level of indirection

provides the runtime with the opportunity to solve many

hard distributed systems problems that must otherwise

be addressed by the developer, such as actor placement

and load balancing, deactivation of unused actors, and

actor recovery after server failures, which are

notoriously difficult for them to get right. Thus, the

virtual actor approach significantly simplifies the

programming model while allowing the runtime to

balance load and recover from failures transparently.

The runtime supports indirection via a distributed

directory. Orleans minimizes the runtime cost of

indirection by using local caches that map from actor

identity to its current physical location. This strategy has

proven to be very efficient. We typically see cache hit

rates of well over 90% in our production services.

Orleans has been used to build multiple production

services currently running on the Microsoft Windows

Azure cloud, including the back-end services for some

popular games. This enabled us to validate the scalability

and reliability of production applications written using

Orleans, and adjust its model and implementation based

on this feedback. It also enabled us to verify, at least

anecdotally, that the Orleans programming model leads

to significantly increased programmer productivity.

While the Orleans programming model is appropri-

ate for many applications, certain patterns do not fit

Orleans well. One such pattern is an application that

intermixes frequent bulk operations on many entities

with operations on individual entities. Isolation of actors

makes such bulk operations more expensive than

operations on shared memory data structures. The virtual

actor model can degrade if the number of actors in the

system is extremely large (billions) and there is no

temporal locality. Orleans does not yet support cross-

actor transactions, so applications that require this

feature outside of the database system are not suitable.

In summary, the main contributions of this paper are

(a) a novel virtual actor abstraction that enables a

simplified programming model; (b) an efficient and

scalable implementation of the distributed actor model

that eliminates some programming complexities of

traditional actor frameworks with a good level of

performance and scalability; and (c) detailed measure-

ments and a description of our production experience.

The outline of the paper is as follows. In Section 2,

we introduce the Orleans programming model. Section 3

describes the runtime, with a focus on how the virtual

actor model enables scalability and reliability. Section 4

discusses how Orleans is used in practice, and Section 5

presents measurements on both production and synthetic

benchmarks. Section 6 compares Orleans to other actor

frameworks and the early prototype of Orleans reported

in [5]. Section 7 is the conclusion.

2. Programming Model

This section describes the Orleans programming model

and provides code examples from the Halo 4 Presence

service (described further in Section 4.1).

2.1 Virtual Actors

The Orleans programming model is based on the .NET

Framework 4.5 [10]. Actors are the basic building blocks

of Orleans applications and are the units of isolation and

distribution. Every actor has a unique identity, composed

of its type and primary key (a 128-bit GUID). An actor

encapsulates behavior and mutable state, like any object.

Its state can be stored using a built-in persistence facility.

Actors are isolated, that is, they do not share memory.

Thus, two actors can interact only by sending messages.

Virtualization of actors in Orleans has four facets:

1. Perpetual existence: actors are purely logical

entities that always exist, virtually. An actor cannot be

explicitly created or destroyed and its virtual existence is

unaffected by the failure of a server that executes it.

Since actors always exist, they are always addressable.

2. Automatic instantiation: Orleans’ runtime

automatically creates in-memory instances of an actor

called activations. At any point in time an actor may

have zero or more activations. An actor will not be

instantiated if there are no requests pending for it. When

a new request is sent to an actor that is currently not

instantiated, the Orleans runtime automatically creates

an activation by picking a server, instantiating on that

server the .NET object that implements the actor, and

invoking its ActivateAsync method for initialization. If

the server where an actor currently is instantiated fails,

the runtime will automatically re-instantiate it on a new

server on its next invocation. This means that Orleans

has no need for supervision trees as in Erlang [3] and

Akka [2], where the application is responsible for re-

creating a failed actor. An unused actor’s in-memory

3

instance is automatically reclaimed as part of runtime

resource management. When doing so Orleans invokes

the DeactivateAsync method, which gives the actor an

opportunity to perform a cleanup operation.

3. Location transparency: an actor may be

instantiated in different locations at different times, and

sometimes might not have a physical location at all. An

application interacting with an actor or running within an

actor does not know the actor’s physical location. This is

similar to virtual memory, where a given logical memory

page may be mapped to a variety of physical addresses

over time, and may at times be “paged out” and not

mapped to any physical address. Just as an operating

system pages in a memory page from disk automatically,

the Orleans runtime automatically instantiates a non-

instantiated actor upon a new request

4. Automatic scale out: Currently, Orleans supports

two activation modes for actor types: single activation

mode (default), in which only one simultaneous

activation of an actor is allowed, and stateless worker

mode, in which many independent activations of an actor

are created automatically by Orleans on-demand (up to a

limit) to increase throughput. “Independent” implies that

there is no state reconciliation between different

activations of the same actor. Therefore, the stateless

worker mode is appropriate for actors with immutable or

no state, such as an actor that acts as a read-only cache.

Making actors virtual entities, rather than physical

ones, has a significant impact on the Orleans

programming model and implementation. Automatic

activation, location transparency and perpetual existence

greatly simplify the programming model since they

remove from the application the need to explicitly

activate or deactivate an actor, as well as supervise its

lifecycle, and re-create it on failures.

2.2 Actor Interfaces

Actors interact with each other through methods and

properties declared as part of their strongly-typed

interfaces. All methods and properties of an actor

interface are required to be asynchronous; that is, their

return types must be promises (see Section 2.4).

(1)public interface IGameActor : IActor

(2){

(3) Task<string> GameName { get; }

(4) Task<List<IPlayerActor>> CurrentPlayers { get; }

(5) Task JoinGame(IPlayerActor game);

(6) Task LeaveGame(IPlayerActor game);

(7)}

2.3 Actor References

An actor reference is a strongly-typed virtual actor proxy

that allows other actors, as well as non-actor code, to

invoke methods and properties on it. An actor reference

can be obtained by calling the GetActor method of the

factory class, which Orleans automatically generates at

compile time, and specifying the actor’s primary key. A

reference may also be received from a remote method or

property return. An actor reference can be passed as an

input argument to actor method calls.

(1) public static class GameActorFactory
(2){

(3) public static IGameActor GetActor(Guid gameId);

(4)}

Actor references are virtual. An actor reference does

not expose to the programmer any location information

of the target actor. It also does not have a notion of

binding. In a traditional RPC model (such as Java RMI,

CORBA, or WCF) the programmer needs to explicitly

bind the virtual reference to the service, usually via an

external registry or location service. In Orleans, actor

references are created locally by the sender and can

immediately be used without a bind or register step. This

simplifies programming and maximizes throughput by

allowing immediate pipelining of requests to actors

without waiting to bind or to resolve a service endpoint.

2.4 Promises

Actors interact by sending asynchronous messages. As

in most modern distributed systems programming

models, these message exchanges are exposed as method

calls. However, unlike traditional models, Orleans

method calls return immediately with a promise for a

future result, rather than blocking until the result is

returned. Promises allow for concurrency without

requiring explicit thread management.

Promises have a three-state lifecycle. Initially, a

promise is unresolved; it represents the expectation of

receiving a result at some future time. When the result is

received, the promise becomes fulfilled and the result

becomes the value of the promise. If an error occurs,

either in the calculation of the result or in the

communication, the promise becomes broken.

Promises are exposed as instances of the class

System.Threading.Tasks.Task<T> that represents the

eventual value of a specified type or of the class

System.Threading.Tasks.Task that represents a

completion promise corresponding to void methods.

The main way to use a promise is to schedule a

closure (or continuation) to execute when the promise

is resolved. Closures are usually implicitly scheduled by

using the await C# keyword on a promise. In the

example below the compiler does stack ripping and

transforms the code after ‘await’ into a closure that exe-

cutes after the promise is resolved. Thus, the developer

writes code, including error handling, that executes asyn-

chronously but looks sequential and hence more natural.

(1) IGameActor gameActor =
GameActorFactory.GetActor(gameId);

(2)try{

(3) string name = await gameActor.GameName;

(4) Console.WriteLine(“Game name is ” + name);

(5)}catch(Exception){

(6) Console.WriteLine(“The call to actor failed”);

(7)}

4

2.5 Turns

Actor activations are single threaded and do work in

chunks, called turns. An activation executes one turn at

a time. A turn can be a method invocation or a closure

executed on resolution of a promise. While Orleans may

execute turns of different activations in parallel, each

activation always executes one turn at a time.

The turn-based asynchronous execution model

allows for interleaving of turns for multiple requests to

the same activation. Since reasoning about interleaved

execution of multiple requests is challenging, Orleans by

default avoids such interleaving by waiting for an

activation to finish processing one request before

dispatching the next one. Thus, an activation does not

receive a new request until all promises created during

the processing of the current request have been resolved

and all of their associated closures executed. To override

this default behavior, an actor class may be marked with

the [Reentrant] attribute. This indicates that an

activation of that class may be given another request to

process in between turns of a previous request, e.g. while

waiting for a pending IO operation. Execution of turns of

both requests is still guaranteed to be single threaded, so

the activation is still executing one turn at a time. But

turns belonging to different requests of a reentrant actor

may be freely interleaved.

2.6 Persistence

The execution of actor requests may modify the actor

state, which may or may not be persistent. Orleans

provides a facility to simplify persistence management.

An actor class can declare a property bag interface that

represents the actor state that should be persisted. The

runtime then provides each actor of that type with a state

object that implements that interface and exposes

methods for persisting and refreshing the state.

(1) // State property bag interface
(2)public interface IGameState : IState

(3){

(4) GameStatus Status { get; set }

(5) List<IPlayerActor> Players { get; set;}

(6)}

(7)

(8) // Actor class implementation

(9)public class GameActor : ActorBase<IGameState>

IGameActor

(10){

(11) Task JoinGame(IPlayerActor game)

(12) {

(13) // Update state property bag

(14) this.State.Players.Add(IPlayerActor);

(15) // Checkpoint actor state

(16) return this.State.WriteStateAsync();

(17) }

(18)}

It is up to the application logic when to checkpoint

an actor’s persistent state. For example, it can do so when

each application request is completed, or periodically

based on a timer or based on the number of requests

processed since the last checkpoint.

The interaction with the underlying storage is

implemented via persistence providers, which serve as

adaptors for specific storage systems: SQL database,

column store, blob store, etc.

2.7 Timers and Reminders

There are two kinds of timer facilities in Orleans.

Transient timers closely mimic the .NET timer interface

but provide single threading execution guarantees. They

are created local to an actor activation, and disappear

when the actor is deactivated.

A reminder is a timer that fires whether or not the

actor is active. Thus, it transcends the actor activation

that created it, and continues to operate until explicitly

deleted. If a reminder fires when its actor is not activated,

a new activation is automatically created to process the

reminder message, just like any other message sent to

that actor. Reminders are reliable persistent timers that

produce messages for actors that created them while

allowing the runtime to reclaim system resources by

deactivating those actors, if necessary, in between

reminder ticks. Reminders follow the conceptual model

of virtual actors that eternally exist in the system and are

activated in memory only as needed to process incoming

requests. Reminders are a useful facility to execute

infrequent periodic work despite failures and without the

need to pin an actor’s activation in memory forever.

3. Runtime Implementation

In this section, we describe the general architecture of

the runtime, highlight key design choices and their

rationale. Our guiding principle is to enable a simple

programming model without sacrificing performance.

3.1 Overview

Orleans runs on a cluster of servers in a datacenter, each

running a container process that creates and hosts actor

activations. A server has three key subsystems:

Messaging, Hosting, and Execution. The messaging

subsystem connects each pair of servers with a single

TCP connection and uses a set of communication threads

to multiplex messages between actors hosted on those

servers over open connections. The hosting subsystem

decides where to place activations and manages their

lifecycle. The execution subsystem runs actors’

application code on a set of compute threads with the

single-threaded and reentrancy guarantees.

When an actor calls another actor, Execution

converts the method call into a message and passes it to

Messaging along with the identity of the target actor.

Messaging consults with Hosting to determine the target

server to send the message to. Hosting maintains a

distributed directory to keep track of all actor activations

in the cluster. It either finds an existing activation of the

target actor or picks a server to create a new activation

5

of it. Messaging then serializes the message and sends it

to the already opened socket to the destination server. On

the receiving end, the call parameters are deserialized

and marshaled into a set of strongly-typed objects and

passed to Execution, which schedules it for invocation.

If the actor is busy processing a previous invocation, the

request is queued until that request’s execution is

completed. If the receiving server is instructed to create

a new activation, it registers the actor in the directory and

then creates a local in-memory instance of it. The single-

activation guarantees are provided by the directory.

Hosting is also responsible for locally managing

resources in the server. If an actor is idle for a

configurable time or the server experiences memory

pressure, the runtime automatically deactivates it and

reclaims its system resources. This simple strategy for

local resource management is enabled by actor virtuali-

zation. An unused actor can be deactivated and reclaim-

ed independently and locally on any server because it can

later be transparently re-activated. This approach does

not require complicated distributed garbage collection

protocols which involve tracking all physical references

to an actor before it can be reclaimed.

3.2 Distributed Directory

Many distributed systems use deterministic placement to

avoid maintaining an explicit directory of the location of

each component, by consistent hashing or range-based

partitioning. Orleans allows completely flexible

placement, keeping the location of each actor in a

distributed directory. This allows the runtime more

freedom in managing system resources by placing and

moving actors as the load on the system changes.

The Orleans directory is implemented as a one-hop

distributed hash table (DHT) [17]. Each server in the

cluster holds a partition of the directory, and actors are

assigned to the partitions using consistent hashing. Each

record in the directory maps an actor id to the location(s)

of its activations. When a new activation is created, a

registration request is sent to the appropriate directory

partition. Similarly, when an activation is deactivated, a

request is sent to the partition to unregister the activation.

The single-activation constraint is enforced by the

directory: if a registration request is received for a single-

activation actor that already has an activation registered,

the new registration is rejected, and the address of the

existing activation is returned with the rejection.

Using a distributed directory for placement and

routing implies an additional hop for every message, to

find out the physical location of a target actor. Therefore,

Orleans maintains a large local cache on every server

with recently resolved actor-to-activation mappings.

Each cache entry for a single-activation actor is about 80

bytes. This allows us to comfortably cache millions of

entries on typical production servers. We have found in

production that the cache has a very high hit ratio and is

effective enough to eliminate almost completely the need

for an extra hop on every message.

3.3 Strong Isolation

Actors in Orleans do not share state and are isolated from

each other. The only way that actors can communicate is

by sending messages, which are exposed as method calls

on an actor reference. In this respect, Orleans follows the

standard actor paradigm. In addition, method-call

arguments and the return value are deep copied

synchronously between actor calls, even if the two actors

happen to reside on the same machine, to guarantee

immutability of the sent data.

To reduce the cost of deep copying, Orleans uses two

complementary approaches. First, an application can

specify that it will not mutate an argument by using a

markup generic wrapping class Immutable<T> in the

actor method signature. This tells the runtime it is safe

not to copy the argument. This is very useful for pass-

through functional style scenarios, when the actor code

never mutates the arguments. An example of such

functionality is the Router actor in the Halo 4 presence

service (Section 4.1), which performs decompression of

the passed data blob without storing or mutating it. For

the cases where the actual copy has to happen, Orleans

uses a highly optimized copying module that is part of

the serialization subsystem (Section 3.7 below).

3.4 Asynchrony

Orleans imposes an asynchronous programming style,

using promises to represent future results. All calls to

actor methods are asynchronous; the results must be of

type Task or Task<T> to indicate that they will be

resolved later. The asynchronous programming model

introduced in .NET 4.5, based on the async and await

keywords, greatly simplifies code to handle promises.

Orleans’ pervasive use of asynchrony is important

for the simplicity and scalability of applications. Pre-

venting application code from holding a thread while

waiting for a result ensures that system throughput is

minimally impacted by the cost of remote requests. In

our tests, increased distribution leads to higher latency

due to more off-box calls, but has almost no impact on

throughput in a communication-intensive application.

3.5 Single-Threading

Orleans ensures that at most one thread runs at a time

within each activation. Thus, activation state is never

accessed by multiple threads simultaneously, so race

conditions are impossible and locks and other synchro-

nization primitives are unnecessary. This guarantee is

provided by the execution subsystem without creating

per-activation threads. While single-threading does limit

performance of individual activations, the parallelism

across many activations handling different requests is

6

more than sufficient to efficiently use the available CPU

resources, and actually leads to better overall system

responsiveness and throughput.

3.6 Cooperative Multitasking

Orleans schedules application turns using cooperative

multitasking. That means that once started, an applica-

tion turn runs to completion, without interruption. The

Orleans scheduler uses a small number of compute

threads that it controls, usually equal to the number of

CPU cores, to execute all application actor code.

To support tens of thousands to millions of actors on

a server, preemptive multitasking with a thread for each

activation would require more threads than modern

hardware and operating systems can sustain. Even if the

number of threads did not exceed the practical limit, the

performance of preemptive multitasking at thousands of

threads is known to be bad due to the overhead of context

switches and lost cache locality. By using only

cooperative multitasking, Orleans can efficiently run a

large number of activations on a small number of

threads. Cooperative multitasking also allows Orleans

applications to run at very high CPU utilization. We have

run load tests with full saturation of 25 servers for many

days at 90+% CPU utilization without any instability.

A weakness of cooperative multitasking is that a

poorly behaved component can take up an entire pro-

cessor, degrading the performance of other components.

For Orleans, this is not a major concern since all of the

actors are owned by the same developers. (Orleans is not

currently intended for a multi-tenant environment.)

Orleans does provide monitoring and notification for

long-running turns to help troubleshooting, but we have

generally not seen this as a problem in production.

3.7 Serialization

Marshaling complex objects into a byte stream and

later recreating the objects is a core part of any

distributed system. While this process is hidden from

application developers, its efficiency can greatly affect

overall system performance. Serialization packages such

as Protocol Buffers [12] offer excellent performance at

the cost of limiting the types of objects that may be

passed. Many serializers do not support dynamic types

or arbitrary polymorphism, and many do not support

object identity (so that two pointers to the same object

still point to the same object after deserialization). The

standard .NET binary supports any type marked with the

[Serializable] attribute, but is slow and may create

very large representations.

For better programmability, Orleans allows any data

type and maintains object identity through the serializer.

Structs, arrays, fully polymorphic and generic objects

can be used. We balance this flexibility with a highly-

optimized serialization subsystem that is competitive

with the best ones available on “standard” types. We

achieve this by automatically generating custom

serialization code at compile time, with hand-crafted

code for common types such as .NET collections. The

serialized representation is compact and carries a

minimal amount of dynamic type information.

3.8 Reliability

Orleans manages all aspects of reliability automatically,

relieving the programmer from the need to explicitly do

so. The only aspect that is not managed by Orleans is an

actor’s persistent state: this part is left for the developer.

The Orleans runtime has a built-in membership

mechanism for managing servers. Servers automatically

detect failures via periodic heartbeats and reach an

agreement on the membership view. For a short period

of time after a failure, membership views on different

servers may diverge, but it is guaranteed that eventually

all servers will learn about the failed server and have

identical membership views. The convergence time

depends on the failure detection settings. The production

services that use Orleans are configured to detect failures

and converge on cluster membership within 30 to 60

seconds. In addition, if a server was declared dead by

the membership service, it will shut itself down even if

the failure was just a temporary network issue.

When a server fails, all activations on that server are

lost. The directory information on the failed server is lost

if directory partitions are not replicated. Once the

surviving servers learn about the failure, they scan their

directory partitions and local directory caches and purge

entries for activations located on the failed server. Since

actors are virtual, no actor fails when a server fails.

Instead, the next request to an actor whose activation was

on the failed server causes a new activation to be created

on a surviving server. The virtual nature of the actors

allows the lifespan of an individual actor to be com-

pletely decoupled from the lifespan of the hosting server.

A server failure may or may not lose an actors’ state

on that server. Orleans does not impose a checkpointing

strategy. It is up to the application to decide what actor

state needs to be checkpointed and how often. For

example, an actor may perform a checkpoint after every

update to its in-memory state, or may perform a check-

point and wait for its acknowledgment before returning

success to its caller. Such an actor never loses its state

when a server fails and is rehydrated with its last

checkpointed state when reactivated on a different

server. However, such rigorous checkpointing may be

too expensive, too slow or simply unnecessary for some

actors. For example, an actor that represents a device,

such as a cellphone, sensor, or game console, may be a

mere cache of the device’s state that the device

periodically updates by sending messages to its actor.

There is no need to checkpoint such an actor. When a

server fails, it will be reactivated on a different server

and its state will be reconstructed from data sent later by

7

the device. Another popular strategy, if the application

can afford to infrequently lose small updates to the state,

is to checkpoint actor state periodically at a fixed time

interval. This flexibility in checkpointing policy,

coupled with the ability to use different backend storage

providers, allows developers to reach the desired tradeoff

between reliability and performance of the application.

There are situations where the directory information

used to route a message is incorrect. For instance, the

local cache may be stale and have a record for an

activation that no longer exists, or a request to unregister

an activation may have failed. Orleans does not require

the directory information used by message routing to be

perfectly accurate. If a message is misdirected, the

recipient either reroutes the message to the correct

location or returns the message to the sender for

rerouting. In either case, both the sender and receiver

take steps to correct the inaccuracy by flushing a local

cache entry or by updating the distributed directory entry

for the actor. If the directory has lost track of an existing

activation, new requests to that actor will result in a new

activation being created, and the old activation will

eventually be deactivated.

3.9 Eventual Consistency

In failure-free times, Orleans guarantees that an actor

only has a single activation. However, when failures

occur, this is only guaranteed eventually.

Membership is in flux after a server has failed but

before its failure has been communicated to all survivors.

During this period, a register-activation request may be

misrouted if the sender has a stale membership view. The

target of the register request will reroute the request if it

is not the proper owner of the directory partition in its

view. However, it may be that two activations of the

same actor are registered in two different directory

partitions, resulting in two activations of a single-

activation actor. In this case, once the membership has

settled, one of the activations is dropped from the direc-

tory and a message is sent to its server to deactivate it.

We made this tradeoff in favor of availability over

consistency to ensure that applications can make

progress even when membership is in flux. For most

applications this “eventual single activation” semantics

has been sufficient, as the situation is rare. If it is insuffi-

cient, the application can rely on external persistent

storage to provide stronger data consistency. We have

found that relying on recovery and reconciliation in this

way is simpler, more robust, and performs better than

trying to maintain absolute accuracy in the directory and

strict coherence in the local directory caches.

3.10 Messaging Guarantees

Orleans provides at-least-once message delivery, by

resending messages that were not acknowledged after a

configurable timeout. Exactly-once semantics could be

added by persisting the identifiers of delivered messages,

but we felt that the cost would be prohibitive and most

applications do not need it. This can still be implemented

at the application level.

General wisdom in distributed systems says that

maintaining a FIFO order between messages is cheap

and highly desirable. The price is just a sequence number

on the sender and in the message header and a queue on

the receiver. Our original implementation followed that

pattern, guaranteeing that messages sent from actor A to

actor B were delivered to B in order, regardless of

failures. This approach however does not scale well in

applications with a large number of actors. The per-

actor-pair state totals n2 sequence numbers and queues.

This is too much state to maintain efficiently. Moreover,

we found that FIFO message ordering is not required for

most request-response applications. Developers can

easily express logical data and control dependencies in

code by a handshake, issuing a next call to an actor only

after receiving a reply to the previous call. If the

application does not care about the ordering of two calls,

it issues them in parallel.

4. Applications

Orleans has been used as a platform for building and

running multiple cloud services by different teams,

including all cloud services for the Halo 4 video game.

This section describes three services built for two dif-

ferent games. Those services used Orleans to implement

different parts of the game backend logic, with distinctly

different usage patterns and performance characteristics.

Most of the production scale and performance figures are

confidential, so we report on measurements we

performed in our lab in pre-production testing.

4.1 Halo 4 Presence service

The Presence service is responsible for keeping track of

all active game sessions, their participating players, and

evolving game status. It enhances the matchmaking

experience for players, allows joining an active game,

enables real-time viewing of a game session, and other

functionality. Each game console running Halo 4 makes

regular heartbeat calls to the service to report its status of

the game in progress. The frequency of the heartbeat

calls is controlled by the service, so it may be increased

for more interactive experiences, such as real-time

viewing of a game via a companion mobile application.

Additional service calls allow querying and joining live

sessions, but we limit our description to just heartbeats.

In a multiplayer game session, each console sends

heartbeat messages with game status updates to the

service independently. The game session state is not

saved to durable storage. It is only kept in memory

because the ground truth is always on the consoles, and

it takes only a single heartbeat update from any player to

8

recover the game session state in case of a failure. The

payload of a heartbeat message contains compressed

session data including the unique session ID, the player

IDs, and additional game data. The session data has to be

de-compressed before processing.

Game
Session Actor

A

Player Actor
X

Heartbeat
calls

Observer

Game
Session Actor

B

Game
Session Actor

C

Router Actor
Player Actor

Y

Player Actor
Z

Notifications

Figure 1: Halo 4 Presence Service

The structure of the Presence service is shown in

Figure 1. There are 3 types of actors: Router, Game

Session, and Player. Incoming heartbeat requests from

consoles arrive to the Router actor, which decompresses

the data, extracts the session ID, and forwards the request

to the right Session actor. There is one Game Session

actor for every session ID. The Session actor updates its

internal in-memory state, and periodically, but not on

every heartbeat, calls Player actors using the player IDs

extracted from the heartbeat data. Player actors also

serve as rendezvous points for an external observer, such

as the mobile phone companion application, for finding

the current game session for a given user. The observer

first calls the user’s Player actor using her ID as the key.

The Player actor returns a reference to the Game Session

actor that the player is currently playing. Then the

Observer subscribes to receive real-time notifications

about updates to the game session directly from the

Game Session actor.

Since the Router actor is stateless, Orleans dynami-

cally creates multiple activations of this single logical

actor up to the number of CPU cores on each server.

These activations are always local to the server that

received the request to eliminate an unnecessary network

hop. The other three actor types run in a single-activation

mode, having 0 or 1 activation at any time, and their

activations are randomly spread across all the servers.

The implementation of the service benefited from the

virtual nature of actors, as the code the developers had to

write for making calls to actors was rather simple: create

a reference to the target actor based on its type and

identity, and immediately invoke a method on the

promptly-returned actor reference object. There was no

need to write code to locate or instantiate the target actor

and manage failures of servers.

4.2 Halo 4 Statistics Service

Statistics is another vital Halo 4 service. It processes

results of completed and in-progress games with details

of important events, such as successful shots, weapons

used, locations of events on the map, etc. This data

accounts for players’ achievements, rank progression,

personal statistics, match-making, etc. The service also

handles queries about players’ details and aggregates

sent by game consoles and the game’s web site. Halo 4

statistics are very important, as players hate to lose their

achievements. Therefore, any statistics report posted to

the service is initially pushed through a Windows Azure

Service Bus [18] reliable queue, so that it can be

recovered and processed in case of a server failure.

Figure 2 shows a simplified architecture of the Statistics

service with a number of secondary pieces omitted to

save space. The front-end server that receives an HTTP

request with a statistics data payload saves the data in the

Azure Service Bus reliable queue. A separate set of

worker processes pull the requests from the queue and

call the corresponding Game Session actors using the

session ID as the actor identity. Orleans routes this call

to an activation of the Game Session actor, instantiating

a new one if necessary. The Game Session actor first

saves the payload as-is to Azure BLOB store, then

unpacks it and sends relevant pieces to Player actors of

the players listed in the game statistics. Each Player actor

then processes its piece and writes the results to Azure

Table store. That data is later used for serving queries

about player’s status, accomplishments, etc.

Game
Session Actor

A

Game
Session Actor

B

Game
Session Actor

C

Player Actor
X

Player Actor
Y

Player Actor
Z

Player Actor
U

Player Actor
W

Query

BLOB
Store

Table
Store

Save Game Statistics

Save Player
Statistics

Post Statistics

Query

Read Player
Statistics

Figure 2: Halo 4 Statistics Service

The operations of writing game and player statistics

to the store are idempotent, so they can be safely

replayed in case of a failure. If the request fails to be

processed (times out or fails with an exception), the

worker that dequeued the request will resubmit it.

Orleans keeps Game actors in memory for the

duration of the game. The actors process and accumulate

9

partial statistics in a cache for merging at the end of the

game. Similarly, a Player actor stays in memory while it

is used for processing statistics or serving queries, and

caches the player’s data. In both cases, caching reduces

IO traffic to the storage and lowers latency.

4.3 Galactic Reign Services

Galactic Reign is a turn-based, head-to-head game of

tactical expansion and conquest for phones and PCs.

Each player submits battle orders for a game turn. The

game processes the turn and advances to the next one.

Galactic Reign uses four types of actors: stateful

Game Session and stateless Video Manager, House-

keeper, and Notification actors. Each Game Session

actor executes the game logic when battle orders for the

turn are received from the players, and produces results

that are written-through to persistent Azure Storage.

Then it sends a request to the video rendering service to

generate a set of short (up to 90s) videos for the turn.

Game Turn
Commands

Video
Manager

Actors

Video
Rendering

System

Input
Queue

Output
Queue

Game Turn
Results

Game
Session

Data
Read / Update

Game State

Game
Session Actor

A

Game
Session Actor

B

Game
Session Actor

C Housekeeper

Notification
Actors

Figure 3: Galactic Reign Game Services

Each Game Session actor holds a cached copy of the

current session state for that game. The game state data

can be large (multi-megabyte) and takes some time to

read and rehydrate from the storage, so the system keeps

active sessions in memory to reduce processing latency

and storage traffic. Inactive game sessions are

deactivated over time by the Orleans runtime. They are

automatically re-activated later when needed.

A pool of Video Manager actors handles submission

of jobs to the video rendering system, and receiving

notifications when render jobs are completed. Since

these actors are stateless, the Orleans runtime

transparently creates additional activations of them to

handle increased workload. The actors set up timers to

periodically poll for completed rendering jobs, and

forward them to the Notification actors.

Once a game turn is completed and its video clips are

generated, a Notification actor sends a message to the

game clients running on devices. The Housekeeper actor

sets up a timer that periodically wakes it up to detect

abandoned games and clean up the persisted game

session data which is no longer needed.

4.4 Database Session Pooling

 A common problem in distributed systems is

managing access to a shared resource, such as a database,

queue, or hardware resource. An example is the case of

N front-end or middle tier servers sharing access to a

database with M shards. When each of the servers opens

a connection to each of the shards, N×M database

connections are created. With N and M in the hundreds,

the number of connections explodes, which may exceed

limitations of the network, such as the maximum number

of ports per IP address of the network load balancer.

Orleans provides an easy way to implement a pool of

shared connections. In this application, an actor type

Shard is introduced to encapsulate an open connection to

a database shard. Instead of opening direct connections,

the application uses Shard actors as proxies for sending

requests to the shards. The application has full control of

the number of Shard actors, and thus of the database

connections, by mapping each database shard to one or a

few Shard actors via hashing. An added benefit of

implementing the connection pool with virtual actors is

the reliability of the proxies, as they are automatically

reactivated after a server failure. In this scenario, Orleans

is used to implement a stateful connection pool for

sharing access to the limited resources in a dynamic,

scalable, and fault tolerant way.

5. Performance

In this section we study the performance of Orleans. We

start with synthetic micro benchmarks targeting specific

parts of the system. Next we report on whole-system

performance running the production code of the Halo

Presence service described in Section 4.1. The synthetic

micro benchmarks were run 5 times for 10 minutes each

and the production performance evaluation runs were

done for 30 minutes each.

The measurements were performed on a cluster of up

to 125 servers, each with two AMD Quad-Core Opteron

processors running at 2.10GHz for a total of 8 cores per

server, 32GB of RAM, all running 64 bit Windows

Server 2008 R2 and .NET 4.5 framework.

5.1 Synthetic Micro Benchmarks

Asynchronous IO and cooperative multi-tasking

In this benchmark we evaluated the effectiveness of

asynchronous messaging with cooperative multi-tasking.

We show how these two mechanisms can efficiently

mask latency in the actor’s work. This test uses 1000

actors and issues requests from multiple load generators

to fully saturate the system. Every request models a

situation where an actor issues a remote call to another

actor or an external service, such as storage. We vary the

latency. Since the remote invocation is asynchronous,

the current request is not blocked and thus the calling

10

thread can be released to do work on another request.

Figure 4 shows that the increased latency of the simu-

lated external calls from within actors has very little

impact on the overall throughput of the system.

Figure 4: Latency masking with async IO and

cooperative multi-tasking

Figure 5: Small number of cooperative threads

Cooperative multitasking and threads

The Orleans scheduler uses a small number of compute

threads, usually equal to the number of CPUs, with

cooperative multitasking. This is known to be more

efficient than using a large number of threads. We run a

throughput test with short ping messages and different

numbers of threads used by the Orleans scheduler. The

result is shown in Figure 5. As expected, we see a steady

degradation of the throughput, as the number of threads

increases due to increasing overhead of the thread

context switching, extra memory, longer OS scheduling

queues and reduced cache locality.

Price of isolation

The isolation of actors in Orleans implies that arguments

in actor calls have to be deep copied. In this benchmark

the client calls a first actor with a given argument which

calls a second actor with the same argument, once passed

as is and once passed as Immutable (meaning it is not

copied). In the benchmark, 50% of the calls are local and

50% remote. In general, the larger the fraction of remote

calls, the smaller the throughput drop due to deep

copying, since the overhead of serialization and remote

messaging increases. In a large application running on

hundreds of servers the majority of the calls would be

remote and thus the price of deep copy would shrink.

Table 1 shows the price of deep copying (request

throughput) for three data types. For a simple byte[] it

is very small, about 4%. For a dictionary, more data is

copied, but the price is still below 10%. With a

complicated data structure, a dictionary each element of

which is itself a mutable complex type, the overhead

grows significantly.

Argument type Description Don’t

Copy

Copy %

Decreas

e

Byte[] 100 bytes array 7300 7000 4.3%

Dictionary<int
, string>

Dictionary with

100 elements

6300 5700 9.5%

Dictionary<int
, List<int>>

Dictionary with

100 elements,

each list of size 1.

6500 3400 47.7

%

Table 1: Price of Isolation – throughput of

requests with different argument types.

Figure 6: Throughput of Halo 4 Presence service.

Linear scalability as number of server increases.

5.2 Halo Presence Performance Evaluation

Scalability in the number of servers

We run the production actor code of Halo 4 Presence

service in our test cluster, with 1 million actors. We use

enough load generators to fully saturate the Orleans

nodes with generated heartbeat traffic and measure the

maximum throughput the service can sustain. In this test

the nodes run stably at 95-97% CPU utilization the

whole time. Each heartbeat request incurs at least two

RPCs: client to a Router actor and the Router actor to a

Session actor. The first call is always remote, and the

second is usually remote because of random placement

11

of Halo 4 Session actors. We see in Figure 6 that the

throughput of 25 servers is about 130,000 heartbeats per

second (about 5200 per server). This throughput scales

almost linearly as the number of servers grows to 125.

Scalability in the number of actors

In this test the number of servers was fixed at 25 and we

saturate the system with multiple load generators. In

Figure 7 we see that the throughput remains almost the

same as the number of actors increases from 2 thousand

to 2 million. The small degradation at the large numbers

is due to the increased size of internal data structures.

Figure 7: Throughput of Halo 4 Presence service.

Linear scalability as number of actors increases.

Figure 8: Latency as a function of load

Latency as a function of load

We measured the latency of heartbeat calls. The number

of servers was fixed at 25 and we vary the load by

increasing the number of load generators. In Figure 8 the

x-axis depicts the average CPU utilization of the 25

servers. The median latency is about 6.5 milliseconds

(ms) for up to 19% CPU utilization and grows to 10ms

and 15ms for 34% and 55% CPU utilization. Recall that

every heartbeat is 2 RPC calls including a CPU intensive

blob decompression. In addition, a small fraction of

heartbeats trigger additional actors which were omitted

from our description above. The latency of those

heartbeats is naturally higher due to the extra hop and the

additional CPU intensive processing. This contributes to

the higher mean, standard deviation, and 95th percentile.

6. Related Work

We compare Orleans to general-purpose distributed

programming frameworks and to actor frameworks.

6.1 Distributed Programming Frameworks

Although Orleans runs on both Windows Azure and

Windows Server, nearly all current applications use

Azure. It is therefore comparable to any framework for

cloud application development. One well known

framework is Google App Engine (GAE). Although both

GAE and Orleans offer object-oriented programming

models, they differ in two main respects. First, GAE’s

object model is that of Java or Python, with synchronous

RPC and multithreading. By contrast, Orleans offers an

actor model, with asynchronous RPC and single-

threading. Second, Orleans is agnostic about database

services. By contrast, GAE has a built-in database

service with transactions.

Distributed object models such as Enterprise Java

Beans (EJB), Distributed Component Object Model

(DCOM), and the Common Object Request Broker

Architecture (CORBA) have some similarities with actor

frameworks. Unlike Orleans, they are primarily based on

synchronous communications, although some also

provide asynchronous communication too, such as

Message-Driven Beans in EJB. Unlike Orleans, they

require static placement of objects, e.g., by mapping

class-to-server or class-partition-to-server, and allow

multithreaded servers where objects can share state.

None of them offers a virtual actor abstraction. However,

they do provide many useful functions beyond those in

Orleans: transactions, reliable messaging, request

queuing, and publish-subscribe.

A lot of work has been done to improve the

performance of multi-tier architectures via caching

([9][11][13][14][16][19]). This however moves the

burden of ensuring data consistency and data integrity

semantics to the application. The function shipping

paradigm like the actor model eliminates this problem.

6.2 Actor Frameworks

Orleans combines techniques from many previous actor

systems. The comparison of actor frameworks in [7]

identifies five key properties: state encapsulation, safe

message passing (pass by value with deep copy),

location transparency, mobility, and fair scheduling.

Orleans fully supports the first three. It supports weak

mobility—an actor can be moved from one machine to

12

another but not while processing a request. It supports

best-effort fair scheduling: in a well-behaved application

every actor receives its fair share of CPU time.

Erlang is a functional programming language with

an associated actor model [3]. An Erlang actor is called

a process. As in Orleans, each actor is single-threaded,

accessed via a logical reference, and communicates with

other actors via one-way messages. In principle, an actor

has only private state, though in practice actors often

share state in tables or a registry. Unlike Orleans, Erlang

actors are explicitly created. The spawn operation creates

an Erlang process on either the caller’s server (the

default) or a remote server (specified in an argument).

After the process is created, its location cannot be

changed. This prevents important optimizations found in

Orleans: dynamic load balancing across servers, actor

migration, and automatic server failure-handling by

restarting its actors on other servers.

An Erlang application explicitly controls how errors

propagate from one process to another by using the link

operation. If a process is not linked to another process

and raises an unhandled exception, it silently dies. By

contrast, in Orleans, exceptions automatically propagate

across the distributed call chain via promises.

The Open Telecom Platform (OTP) extends Erlang’s

runtime with capabilities that insulate the application

from fault tolerance, distribution, and concurrency

aspects. To enable application-specific error handling, it

has an optional module that keeps track of a supervision

tree, which is the tree of processes induced by process

creation. It offers two options for handling a child

failure: either its supervisor recreates it or its siblings are

killed and the supervisor recreates them. While flexible,

this requires the developer to explicitly manage each

actor’s lifecycle. By contrast, in Orleans, there is no

creation hierarchy. Actors are automatically created and

garbage collected by the runtime. If an actor’s server

fails, the actor is automatically re-created on a different

server. This automatic lifecycle management greatly

simplifies programming.

Akka [2] is an actor-based programming framework

for Java and Scala. Like Orleans, each actor is single-

threaded, has only private state and is accessed via a

logical reference. Akka guarantees at-most-once

message delivery and FIFO ordering between every pair

of actors. Unlike Orleans and like Erlang, actors are

explicitly created in Akka and the creation hierarchy

drives exception handling.

In Akka, each actor is logically named by a path ex-

pression that reflects the supervision hierarchy. Orleans

uses a class type and a key. Akka uses physical paths for

remote actor references. As in Erlang, an actor’s location

is fixed at creation time, which prevents dynamic load

balancing, actor migration, and automatic handling of

machine failures.

Akka has features not covered by Orleans, such as

the ability to load new code into an actor at runtime and

a transaction mechanism, which ensures the effect of a

set of actor invocations is atomic. However, these only

apply to actors on the same machine and are thus

inapplicable to a distributed actor model.

A prototype of Orleans was described in [5]. That

earlier version did not support all aspects of virtual

actors. Rather, it required explicit lifecycle management

of actors. It automatically persisted actor state on every

call, which was too expensive for our production users.

This led us to the persistence mechanism in Section 2.6.

It used a more explicit syntax for promises and

continuations, which we replaced by the more succinct

async-await syntax of .NET 4.5 and a modified

Orleans runtime to support it. It offered a multi-master

replication scheme for multi-activation actors, which we

dropped because it failed to deliver good performance

and our users found it too complex. The measurements

in [5] were only for micro-benchmarks, not large-scale

production scenarios as in Section 5.

Other Actor Frameworks - There is a variety of other

actor programming models. Kilim [16] focuses on

single-node execution, and uses thread-switching for

modeling actor execution and inter-actor communica-

tions. ActorFoundry [1] uses synchronous send/receive

communication between actors instead of asynchronous,

continuation-based APIs used in Orleans. Thorn [4] (and

Erlang) use loosely-typed, dynamic actor interfaces

which require care to match sender and receiver code to

ensure correct messaging semantic. Orleans uses

strongly-typed interfaces, which allow easy compile-

time consistency checking. Monterey is an actor-based

framework for Java [12]. As in Orleans, an application

uses a key to obtain an actor reference. Unlike Orleans,

it requires explicit lifecycle management of actors. It al-

lows synchronous communication (though it warns this

may cause performance problems) and multithreaded

actors. Orleans allows neither.

7. Conclusion

In this paper, we described Orleans, a framework for

building reliable, efficient, and scalable cloud applica-

tions. We introduced the virtual actor abstraction,

showed its benefits for programmability, and discussed

implementation. We described production uses of

Orleans and gave measurements of its performance.

There are many ways Orleans could be extended to

simplify access to underlying platform capabilities and

enrich them with more services. High on our list are

exactly once semantics for messaging, event streaming,

primary-copy replication, and transactions. Although

these are all mature technologies, we expect innovation

will be needed to make them reliable, efficient and

scalable enough for ordinary developers.

13

8. References

[1] ActorFoundry, http://osl.cs.uiuc.edu/af/

[2] Akka documentation, http://akka.io/docs/

[3] Armstrong, J.: Erlang. CACM, 53, 9 (Sept. 2010),

68-75

[4] Bloom, B., Field, J., Nystrom, N., Östlund, J.,

Richards, G., Strnisa, R., Vitek, J. and Wrigstad, T.

Thorn: Robust, Concurrent, Extensible Scripting on

the JVM. In OOPSLA 2009, 117-136.

[5] Bykov, S., Geller, A., Kliot, G., Larus, J., Pandya,

R., and Thelin, J.: Orleans: Cloud Computing for

Everyone. In SOCC 2011, 16:1-16:14.

[6] Eker, J., Janneck, J. W., Lee, E. A., Jie, L., Xiaojun,

L., Ludvig, J., Neuendorffer, S., Sachs, S. and

Yuhong, X. Taming: Heterogeneity - the Ptolemy

Approach. Proc. of the IEEE 91, 1 (January 2003),

127-144.

[7] Karmani, R. K., Shali, A. and Agha, G.: Actor

Frameworks for the JVM Platform: A Comparative

Analysis. In Proc.of the 7th Int'l Conf. on the

Principles and Practice of Prog. in Java, 2009, 11-

20.

[8] Liskov, B. and Shrira, L. Promises: Linguistic

Support for Efficient Asynchronous Procedure Calls

in Distributed Systems. In SIGPLAN 1988, 260-267.

[9] Memcached, http://memcached.org/

[10] Microsoft .NET, http://www.microsoft.com/net/

[11] Miller, M. S., Tribble, E. D. and Shapiro, J.:

Concurrency Among Strangers: Programming in E

as Plan Coordination. In Proc. of the Int'l Symp. on

Trustworthy Global Computing, 2005, Springer,

195-229.

[12] Monterey,

http://www.cloudsoftcorp.com/products/monterey/

[13] Ports, D.R.K., T. Clements, I. Zhang, S. Madden,

and B. Liskov: Transactional Consistency and

Automatic Management in an Application Data

Cache. OSDI 2010: 279-292

[14] Power, R., and J. Li: Piccolo: Building Fast,

Distributed Programs with Partitioned Tables.

OSDI 2010: 293-306

[15] Protocol Buffers,

http://code.google.com/p/protobuf/

[16] Srinivasan, Sriram and Mycroft, Alan, Kilim:

Isolation-Typed Actors for Java, European

Conference on Object-Oriented Programming, 2008

[17] Stoica, I., Morris, R., Karger D.R., Kaashoek, M. F.,

Balakrishnan, H.: Chord: A scalable peer-to-peer

lookup service for internet applications. SIGCOMM

2001: 149-160.

[18] Windows Azure Service Bus,

http://www.windowsazure.com/en-us/home/

features/messaging/

[19] Windows Azure Cache,

http://www.windowsazure.com/en-

us/documentation/services/cache/

