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Abstract 

We present an investigation of open-world dialog, centering 
on systems that can perform conversational dialog in an 
open-world context, where multiple people with different 
needs, goals, and long-term plans may enter, interact, and 
leave an environment. We outline and discuss a set of chal-
lenges and core competencies required for supporting the 
kind of fluid multiparty interaction that people expect when 
conversing and collaborating with other people.  Then, we 
focus as a concrete example on the challenges faced by re-
ceptionists who field requests at the entries to corporate 
buildings. We review the subtleties and difficulties of creat-
ing an automated receptionist that can work with people on 
solving their needs with the ease and etiquette expected 
from a human receptionist.  Finally, we review details of the 
construction and operation of a working prototype. 

1. Introduction 

Most spoken dialog research to date can be characterized 

as the study and support of interactions between a single 

human and a computing system within a constrained, pre-

defined communication context. We review challenges 

with dialog among people and computing systems that are 

situated in open-world contexts, where multiple people 

with different and varying intentions enter and leave, and 

communicate and coordinate with each other and with dia-

log systems.  We highlight the opportunity to develop prin-

ciples and methods for addressing the challenges of open-

world dialog that can enable systems capable of supporting 

more natural and fluid interaction with multiple parties in 

open worlds—behaviors and competencies that people 

simply assume as given in human-human interaction. As 

we shall see, solving challenges of open-world dialog has 

great relevance to human-robot interaction, where actors 

and context is generally more complex and uncertain than 

in traditional spoken dialog applications, such as voice te-

lephony with a speech recognition system. 

     We first review the core challenges of moving from 

closed-world to open-world dialog systems.  We outline a 

set of competencies required for engaging in natural lan-

guage interaction in open, dynamic environments. We 

ground the discussion with the review of a real-world trace 

of human-human interaction.  Then, we present details of a 

prototype open-world conversational system.  The system 

brings together multiple components, including speech 

recognition, machine vision, conversational scene analysis, 

and probabilistic models of human behavior.  The system 

can engage with one or more people in a relatively natural 

manner to perform tasks that are typically handled by re-

ceptionists at the front-desk of buildings. We describe the 

set of basic models and inferences running in the current 

system and we highlight via a sample interaction how these 

components are brought together to create a fluid, mixed-

initiative interaction involving multiple parties.  

2.  Open-World Dialog 

To illustrate some of the challenges faced by open-world 

dialog systems, we begin by describing a real-world hu-

man-human interaction between a front-desk receptionist 

and several people who have arrived in need of assistance. 

This interaction was collected as part of an observational 

study at one of the reception desks at our organization. The 

interacting parties and physical configuration can be re-

viewed in the video frame displayed in Figure 1. 

At the beginning of the segment, the receptionist is on 

the phone, handling a request about scheduling a confer-

ence room, viewing availabilities of rooms and times on 

her computer. Participant 1 (P1) is an external visitor, who 

the receptionist has just finished speaking with; he is cur-

rently filling in a visitor registration form. As P1 is com-

pleting the form, the receptionist answers the telephone 

and engages in a phone conversation with participant 4 

(P4).  During this time, participant 2 (P2) enters the lobby 

from inside the building, approaches the reception desk, 

and makes eye contact with the receptionist. The reception-

ist, knowing that P1 needs additional time to complete the 

registration form, and that the conversation can continue 

with P4 while she engages in a fast-paced interaction with 

P2, moves to engage with P2. Apparently relying on infer-

ences from the observation, that P2 came from inside the 

building, the receptionist guesses that P2 most likely needs 

a shuttle to another building on the corporate campus. The 

receptionist lifts her gaze towards P2 and asks P2 quietly 

(while moving her mouth away from the phone micro-

phone), ―Shuttle?‖ P2 responds with a building number. 



While the receptionist continues on the phone with P4 on 

options for arranging a meeting room in the building, she 

interacts with a shuttle ordering system on the computer. 

Soon, participant 3 (P3) approaches the reception desk. At 

this time, P2 re-establishes eye contact with the reception-

ist and indicates with a quick hand gesture and a whisper 

that the shuttle is for two people. The receptionist now un-

derstands that P2 and P3—who have not yet displayed ob-

vious signs of their intention to travel together—are actu-

ally in a group together. The receptionist whispers the shut-

tle identification number to P2 and continues her conversa-

tion and problem solving with P4, without ever directly 

addressing P3. Later, once P1 completes the form, the re-

ceptionist re-engages him in conversation to finalize his 

badge and contact his host within the building.   

The interaction described above highlights two aspects 

of open-world dialog that capture key departures from the 

assumptions typically made in traditional dialog systems. 

The first one is the dynamic, multiparty nature of the inter-

action, i.e., the world typically contains not just one, but 

multiple agents who are relevant to a computational sys-

tem, each with their own goals and needs. The second de-

parture from traditional dialog systems is that the interac-

tion is situated, i.e., that the surrounding physical environ-

ment, including the trajectories and configuration of peo-

ple, provides rich, relevant, streaming context for the inter-

action. Our long term goal is to construct computational 

models that can provide the core skills needed for handling 

such situated interaction in dynamic multiparty settings, 

and work with people with the etiquette, fluidity and social 

awareness expected in human-human interactions.   

In the following two subsections, we discuss the multi-

party and situated aspects of open-world interaction in 

more detail, and we identify the challenges and opportuni-

ties that they frame. In Section 3, we review these chal-

lenges and outline a set of core competencies required for 

open-world dialog. Then, in Sections 4 and 5, we describe 

a prototype situated conversational agent that implements 

multiple components of an open-world dialog and review 

their operation in the receptionist setting. 

2.1.  Multiparty Aspect of Open-World Dialog 

The assumption in spoken dialog research to date that only 

one user interacts with the system is natural for telephony-

based spoken dialog systems and is reasonable for a large 

class of multimodal interfaces. In contrast, if we are inter-

ested in developing systems that can embed their input and 

interaction into the natural flow of daily tasks and activi-

ties, the one-user assumption can no longer be maintained.         

     The open world typically contains more than one rele-

vant agent. Each agent may have distinct actions, goals, in-

tentions, and needs. Furthermore, when we move beyond 

tightly defined closed worlds, we face dynamic and asyn-

chronous states, i.e., agents may enter or leave the observ-

able world at any point in time, and relevant events can 

happen asynchronously with respect to current interactions.     

     The flow of considerations from single-user, closed 

world systems to increasingly open worlds is highlighted 

graphically in Figure 2.  Systems providing service in the 

open world will often have to have competencies for work-

ing with multiple people, some of whom may in turn be 

coordinating with others within and outside an agent’s 

frame of consideration. Such a competency requires the 

abilities to sense and track people over time, and to reason 

jointly about their goals, needs, and attention.  We can 

categorize interactive systems based on the assumptions 

they make regarding the number and dynamics of relevant 

agents and parties involved in the interaction as follows: 

 Single-user interactive systems engage in interaction 

with only one user at a time. Traditional telephony 

based spoken dialog systems, as well as most multi-

modal interfaces such as multimodal mobile systems, 

e.g. [2,3], multi-modal kiosks e.g. [4,5], or embodied 

conversational agents e.g. [6] fall into this category.  

 Fixed multi-participant interactive systems can inter-

act with one or more participants at a given time. The 

number of participants in a given interaction is 

known in advance.  

 Open multi-participant interactive systems can inter-

act with one or more participants. Participants may 

leave or join an interaction at any given time.  

 Open multiparty interactive systems further extend 

the class of open multi-participant systems in that 

they can engage in, pursue, and interleave multiple 

parallel interactions with several different parties. 

The receptionist interaction discussed earlier falls 

into this last category, as does the prototype system 

we shall discuss later, in Sections 4 and 5.     

The pursuit of multi-participant and multiparty interac-

tive systems brings to fore several research challenges. 

First, the multi-participant aspect adds a new dimension to 

several core dialog system problems like dialog manage-

ment, turn taking, and language understanding. Current so-

lutions for these problems typically rely on the single-user 

assumption and do not generalize easily to the multi-

participant case. We also face entirely new types of prob-
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Figure 1. Video frame from a multiparty interaction. 
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Figure 2. Conversational dynamics in: (a) single-user sys-

tem; (b) a fixed multi-participant system; (c) an open multi-

participant system, (d) an open multiparty system 
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lems, such as identifying the source and the target for each 

communicative signal in a multi-participant interaction, or 

handling engagement and disengagement in dynamic 

multi-participant settings. Moving from multi-participant 

to multiparty systems raises additional problems with re-

spect to maintaining multiple interaction contexts, and tri-

aging attention between multiple goals, parties and conver-

sations. We shall discuss these new challenges in more de-

tail in Section 3. First, we shall turn our attention to a sec-

ond central feature of open-world dialog: the situated as-

pect of the interaction. 

2.2. Situated Aspect of Open-World Dialog 

Dialog systems developed to date operate within narrow, 

predefined communication contexts. For example, in te-

lephony-based spoken dialog systems, the audio-only 

channel limits the available context to the information that 

can be gained through dialog. In some cases, a stored user 

profile might provide additional information. Multimodal 

mobile systems might also leverage additional context 

from simple sensors like a GPS locator.  

In contrast, systems designed to be effective in the open 

world will often need to make inferences about multiple 

aspects of the context of interactions by considering rich 

streams of evidence available in the surrounding environ-

ment. Such evidence can be observed by standing sensors 

or actively collected to resolve critical uncertainties.  Peo-

ple are physical, dynamic entities in the world, and the sys-

tem must reason about them as such, and about the conver-

sational scene as a whole, in order to successfully and 

naturally manage the interactions. Concepts like presence, 

identity, location, proximity, trajectory, attention, and in-

ter-agent relationships all play fundamental roles in shap-

ing natural, fluid interactions, and need to become first-

order objects in a theory of open-world dialog.  

Like the multiparty aspect of open-world dialog, the 

situated nature of the interaction raises a number of new 

research challenges and brings novel dimensions to exist-

ing problems. One challenge is creating a basic set of 

physical and situational awareness skills. Interacting suc-

cessfully in open environments requires that information 

from multiple sensors is fused to detect, identify, track and 

characterize the relevant agents in the scene, as well as the 

relationships between these agents. At a higher level, mod-

els for inferring and tracking the activities, goals, and long-

term plans of these agents can provide additional context 

for reasoning within and beyond the confines of a given in-

teraction, and optimizing assistance to multiple parties. Fi-

nally, new challenges arise in terms of integrating this 

streaming context in various interaction processes, like the 

engagement or disengagement process, turn taking, inten-

tion recognition, and multiparty dialog management. 

3.  Core Competencies for Open-World Dialog 

We anchor our discussion of challenges for open-world 

dialog in Clark’s model of language interaction [7]. With 

this model, natural language interaction is viewed as a joint 

activity in which participants in a conversation attend to 

each other and coordinate their actions on several different 

levels to establish and maintain mutual ground. Compo-

nents of Clark’s perspective are displayed in Figure 3.  At 

the lowest level (Channel), the participants coordinate their 

actions to establish, maintain or break an open communica-

tion channel. At the second (Signal) level, participants co-

ordinate the presentation and recognition of various com-

municative signals. At the third (Intention) level, partici-

pants coordinate to correctly interpret the meaning of these 

signals. Finally, at the fourth (Conversation) level, partici-

pants coordinate and plan their overall collaborative activi-

ties and interaction.  

Successfully engaging in dialog therefore requires a 

minimal set of competencies at each of these levels. And 

indeed, most spoken dialog systems are organized architec-

turally in components that closely mirror Clark’s proposed 

model: a voice activity detector and speech (and/or ges-

ture) recognition engine identify the communicative sig-

nals, a language understanding component which extracts a 

corresponding semantic representation, and a dialog man-

agement component which plans the interaction.  

We review in the rest of this section challenges raised by 

the multiparty and situated aspects of open-world dialog in 

each of these areas. We begin at the Channel level.  



3.1. Multiparty Situated Engagement  

As a prerequisite for interaction, participants in a dialog 

must coordinate their actions to establish and maintain an 

open communication channel. In single-user systems this 

problem is often solved in a trivial manner. For instance, in 

telephony-based spoken dialog systems the channel is as-

sumed to be established once a call has been received.  

Similarly, multimodal mobile applications oftentimes re-

solve the channel problem by using a push-to-talk solution.  

Although these solutions are sufficient and perhaps 

natural in closed, single-user contexts, they become inap-

propriate for systems that must operate continuously in 

open, dynamic environments. We argue that such systems 

should ideally implement a multiparty situated engagement 

model that allows them to fluidly engage, disengage and 

re-engage in conversations with one or more participants.  

Observational studies have revealed that humans negoti-

ate conversational engagement via a rich, mixed-initiative, 

coordinated process in which non-verbal cues and signals, 

such as spatial trajectory and proximity, gaze and mutual 

attention, head and hand gestures, and verbal greetings all 

play essential roles [8,9,10]. Successfully modeling this 

coordinated process requires that the system (1) can sense 

and reason about the engagement actions, state and inten-

tions of multiple agents in the scene, (2) can make high-

level engagement control decisions (such as whom to en-

gage with and when), and (3) can render engagement deci-

sions in low-level coordinated behaviors and outputs.  

Models for sensing the engagement state, actions, and 

intentions of various agents in the scene are, to a large ex-

tent, predicated on the system’s capabilities to understand 

the physical environment in which it is immersed, i.e. to 

detect, identify and track multiple agents, including their 

location, trajectory, focus of attention, and other engage-

ment cues. Higher-level inferences about the long-term 

goals, plans and activities of each agent can also provide 

informative priors for detecting engagement actions.  

Beyond the engagement sensing problem, at a higher 

level, the system must reason about the boundaries of each 

conversation and make real-time decisions about whom to 

engage (or disengage) with, and when. In a dynamic multi-

party setting these decisions have to take into account addi-

tional streams of evidence, and optimize tradeoffs between 

the goals and needs of the multiple parties involved (e.g., 

interrupting a conversation to attend to a more urgent one). 

In making and executing these decisions, the system must 

consider social and communicative expectations and eti-

quette. Finally, such high-level engagement decisions must 

be signalled in a meaningful, understandable manner to the 

relevant participants. For instance, in an embodied anthro-

pomorphic agent, engagement actions have to be rendered 

into a set of corresponding behaviors (e.g., establishing or 

breaking eye contact, changing body posture, generating 

subtle facial expressions, or issuing greetings) that must of-

ten be coordinated at the millisecond scale. 

3.2. Multiparty Situated Turn Taking 

Going one level up in Clark’s model, at the Signal level, 

the system must coordinate with other participants in the 

conversation on the presentation and recognition of com-

municative signals (both verbal and non-verbal, e.g., ges-

tures and emotional displays.) The coordinated process by 

which participants in a conversation take turns to signal to 

each other is known as turn-taking and has been previously 

investigated in the conversational analysis and psycholin-

guistics communities, e.g. [11,12]. While computational 

models for turn-taking [13,14,15] have also been proposed 

and evaluated to date, most current systems make simplis-

tic one-speaker-at-a-time assumptions and have relied on 

voice activity detectors to identify when the user is speak-

ing. Phenomena like interruptions or barge-ins are often 

handled using ad-hoc, heuristic solutions, which can lead 

to turn-overtaking issues and ultimately to complete inter-

action breakdowns even in single-user systems [16].  

Open-world dialog requires the development of a com-

putational, multiparty situated turn-taking model. On the 

sensing side, such a model should be able to track the 

multi-participant conversational dynamics in real time by 

fusing lower-level evidence streams (e.g., audio and vis-

ual). The model should be able to identify the various 

communicative signals as they are being produced, and, in 

a multi-participant setting, identify the sender, the address-

ees (and potentially the over-hearers) for each signal. In 

addition, the model should be able to track who has the 

conversational floor, i.e. the right to speak, at any given 

point in time. On the control side, a multiparty situated 
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Figure 3. Core competencies for open-world dialog 
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turn-taking model should make real-time decisions (that 

are in line with basic conversational norms) about when 

the system can or should start or stop speaking, take or re-

lease the conversational floor, etc. Finally, the model must 

coordinate the system’s outputs and render them in an ap-

propriate manner. For instance, in an embodied conversa-

tional system, speech, gaze, and gesture must be tightly 

coordinated to signal that the system is addressing a ques-

tion to two conversational participants, or to indicate that 

the system is trying to currently acquire the floor.  

3.3. Multiparty Situated Intention Recognition 

At the Intention level, a dialog system must correctly inter-

pret the meaning of the identified communicative signals. 

In traditional dialog systems this is the realm of the lan-

guage understanding component. Given the static, rela-

tively limited communication context, the language under-

standing challenges tacked in traditional dialog systems 

have been typically limited to generating an appropriate 

semantic representation for the hypotheses produced by a 

speech recognizer, and integrating this information with 

the larger dialog context. In certain domains, issues like el-

lipsis and anaphora resolution also have played an impor-

tant role. Systems that use multiple input modalities (e.g., 

speech and gesture) face the problem of multi-modal fu-

sion at this level: signals received from the lower levels 

must be fused based on content and synchronicity into a 

unified semantic representation of the communicative act.  

The physically situated nature of open-world dialog 

adds new dimensions to each of these problems. In situated 

interactions, the surrounding environment provides rich 

streaming context that can oftentimes be leveraged for in-

tention recognition. For instance, in the receptionist / front-

desk assistance domain, an interactive system might be 

able to infer intentions based on identity (John always 

needs a shuttle at 3pm on Wednesday), spatiotemporal tra-

jectories (people entering the lobby from inside the build-

ing are more likely to want a shuttle reservation than peo-

ple entering the lobby from outside the building), clothing 

and props (a formally-dressed person is more likely a visi-

tor who wants to register than an internal employee), and 

so on. Novel models and formalisms for reasoning about 

the streaming context and fusing it with the observed 

communicative signals to decode intentions and update be-

liefs are therefore required.  

An additional challenge for open-world dialog is that of 

situated language understanding. Physically situated sys-

tems might often encounter referring expressions like 

―Come here!,‖ ―Bring me the red mug,‖ and ―He’s with 

me‖, etc. Resolving these referring expressions requires a 

set of language understanding skills anchored in spatial 

reasoning and a deep understanding of the relevant entities 

in the surrounding environment and of the relationships be-

tween these entities. The same holds true for pointing ges-

tures and other non-verbal communicative signals.  

3.4. Multiparty Situated Dialog Management 

At the fourth level, referred as the Conversation level, par-

ticipants coordinate the high-level planning of the interac-

tion. This is the realm of dialog management. While this 

problem has already received significant attention in the 

spoken dialog systems community, most models proposed 

to date (e.g. [16,17,18,19,20] or for an in-depth review see 

[21]) make an implicit single-user assumption.  

One of the main challenges for open-world spoken dia-

log systems will be the development of models for mixed-

initiative multiparty dialog management. To illustrate 

some of the challenges in this space, consider the situation 

in which a visitor, accompanied by her host, engages in 

dialog with a receptionist to register and obtain a tempo-

rary badge. In order to successfully plan multi-participant 

interactions, a spoken dialog system must model and rea-

son about the individual goals and needs of different con-

versational partners (e.g. get a badge versus accompany the 

visitor), their particular roles in the conversation (e.g. visi-

tor versus host), their different knowledge and capabilities 

(e.g. only the visitor can be assumed to know the license 

plate of her car). Individual contributions, both those ad-

dressed directly to the system, and those that the other par-

ticipants address to each other, need to be integrated with a 

larger multi-participant discourse and situational context.  

Mixed-initiative interaction [22] with multiple partici-

pants requires that the system understands how to decom-

pose the task at hand, and plan its own actions accordingly 

(e.g. directing certain questions only to certain participants, 

etc.) All the while, the dialog planning component must be 

able to adapt to the dynamic and asynchronous nature of 

the open-world. For instance, if the visitor’s host disen-

gages momentarily to greet a colleague in the lobby, the 

system must be able to adjust its conversational plans on-

the-fly to the current situation (e.g. even if it was in the 

middle of asking the host a question at that point)  

Handling multiparty situations (e.g. a third participant 

appears and engages on a separate topic with the host) re-

quires that the system maintain and track multiple conver-

sational contexts, understand potential relationships be-

tween these contexts, and is able to switch between them. 

Furthermore, providing long-term assistance requires that 

the system is able to reason about the goals, activities and 

long-term plans of individual agents beyond the temporal 

confines of a given conversation. To illustrate, consider 

another example from the receptionist domain: after mak-

ing a reservation, a user goes outside to wait for the shuttle. 

A few minutes later the same user re-enters the building 

and approaches the reception desk. The receptionist infers 

that the shuttle probably did not arrive and the user wants 

to recheck the estimated time of arrival or to make another 

reservation; she glances towards the user and says ―Two 

more minutes.‖ Inferences about the long-term plans of 

various agents in the scene can provide valuable context 

for the streamlining the interactions. 



3.5. Other Challenges 

So far, we have made use of Clark’s four-level model of 

grounding to identify and discuss a set of four core compe-

tencies for open-world spoken dialog systems:  multiparty 

situated engagement models, multiparty situated turn-

taking models, situated intention recognition, and mixed-

initiative multiparty dialog management. However, devel-

oping an end-to-end system requires more than a set of 

such individual models. A number of additional challenges 

cut across each of these communicative processes. In the 

remainder of this section, we briefly review five chal-

lenges: situational awareness, robustness and grounding, 

mixed-initiative interaction, learning, and integration.  

Given the situated aspect of open-world interaction, a 

major overarching challenge for open-world spoken dialog 

systems is that of situational awareness. As we have al-

ready seen, the ability to fuse multiple sensor streams and 

construct a coherent picture of the physical surrounding 

environment and of the agents involved in the conversa-

tional scene plays a fundamental role in each of the con-

versational processes we have previously discussed. Open-

world systems should be able to detect, identify, track and 

characterize relevant agents, events, objects and relation-

ships in the scene. Models for reasoning about the high-

level goals, intentions, and long-term plans of the various 

agents can provide additional information for establishing 

rapport and providing long-term assistance. In contrast to 

traditional work in activity recognition (e.g., in the vision 

or surveillance community), interactive systems also pre-

sent opportunities for eliciting information on the fly and 

learning or adapting such models through interaction.  

A second major challenge that spans the communicative 

processes discussed above is that of dealing with the uncer-

tainties resulting from sensor noise and model incomplete-

ness. Uncertainties abound even in human-human commu-

nication, but we are generally able to monitor the conversa-

tion and re-establish and maintain mutual ground. Open-

world dialog systems can benefit from the development of 

similar grounding models that explicitly represent and 

make inferences about uncertainties at different levels and, 

when necessary, take appropriate actions to reduce the un-

certainties and re-establish mutual ground. 

A third important overall challenge is that of mixed-

initiative interaction. So far, we have discussed the notion 

of mixed-initiative in the context of the dialog management 

problem. It is important to notice though that, like situ-

ational awareness and grounding, the notion of mixed-

initiative pervades each of the communicative processes 

we have discussed. At each level, the system’s actions 

need to be tightly coordinated with the actions performed 

by the other agents involved in the conversation.  Exam-

ples include the exchange of cues for initiating or breaking 

engagement, or ―negotiating‖ the conversational floor. 

Mechanisms for reasoning about and managing initiative 

will therefore play a central role in each of these layers.  

A fourth important challenge that cuts across the four 

competencies discussed above is that of learning. Given 

the complexities involved, many of the models we have 

discussed cannot be directly authored but must be learned 

from data. Ideally, we would like to build systems that 

learn throughout their lifetimes, directly from interaction, 

from their experience, without explicit supervision from 

their developers. Furthermore, such systems should be able 

to share the knowledge they acquire with each other.  

Finally, another challenge not be underestimated is that 

of system integration, of weaving together all these differ-

ent components into an architecture that is transparent, 

modular, and operates asynchronously and in real-time to 

create a seamless natural language interaction. 

4.  A Prototype System 

We now describe a concrete implementation of a prototype 

system, named the Receptionist. The Receptionist is a situ-

ated conversational agent that can fluidly engage with one 

or more people and perform tasks typically handled by 

front-desk receptionists (e.g., making shuttle reservations, 

registering visitors, providing directions on campus, etc.) at 

our organization. In previous work in this domain [23], we 

have investigated the use of a hierarchy of Bayesian mod-

els and decision-theoretic strategies for inferring intentions 

and controlling question asking and backtracking in dialog. 

Here, we focus on exploring the broader challenges of 

open-world dialog.  

     The front-desk assistance domain has several properties 

that make it a valuable test-bed for this endeavor. The in-

teractions happen in an open, public space (building lob-

bies) and frequently involve groups of people. The com-

plexity of the tasks involved ranges from the very simple, 

like making shuttle reservations, to more difficult ones re-

quiring complex collaborative problem solving skills. Fi-

nally, a deployed system could provide a useful service and 

its wide adoption would create a constant stream of ecol-

ogically-valid real-world interaction data.  

In the rest of this section, we describe the Receptionist 

system, and discuss an initial set of models that address the 

core competencies for open-world dialog we have previ-

ously outlined. In particular, we focus our attention on the 

situational awareness, engagement, and multi-participant 

turn-taking capabilities of this system. Despite the prelimi-

nary and sometimes primitive nature of these models (they 

represent only a first iteration in this long-term research ef-

fort), as we shall see in Section 5, when weaved together, 

they showcase the potential for seamless natural language 

interaction in open, dynamic environments.  

We begin with a high-level overview of the hardware 

and software architecture. The current prototype takes the 

form of an interactive multi-modal kiosk, illustrated in 

Figure 4. On the input side, the system uses four sensors: a 

wide-angle camera with 140° field of view and a resolution 



of 640x480 pixels; a 4-element linear microphone array 

that can provide sound-source localization information in 

10° increments; a 19‖ touch-screen; and a RFID badge 

reader. As output, the system displays a realistic talking 

avatar head, which is at times complemented by a graphi-

cal user interface (e.g. when speech recognition fails the 

GUI is displayed and users can interact via the touch-

screen – see Figure 5.c). The system currently runs on a 

3.0GHz dual-processor Intel Xeon machine (total 8 cores).  

Data gathered by the sensors is forwarded to a scene 

analysis module that fuses the incoming streams and con-

structs (in real-time) a coherent picture of what is happen-

ing in the surrounding environment. This includes detect-

ing and tracking the location of multiple agents in the 

scene, reasoning about their attention, activities, goals and 

relationships (e.g. which people are in a group together), 

and tracking the current conversational context at different 

levels (e.g. who is currently engaged in a conversation, 

who is waiting to engage, who has the conversational floor, 

who is currently speaking to whom, etc.) The individual 

models that implement these functions are described in 

more detail in the sequel. 

The conversational scene analysis results are then for-

warded to the control level, which is structured in a two-

layer reactive-deliberative architecture. The lower-level, 

reactive layer implements and coordinates various low-

level behaviors (e.g. for engagement and conversational 

floor management, for coordinating spoken and gestural 

outputs, etc). The higher-level, deliberative layer makes 

conversation control decisions, planning the system dialog 

moves and high-level engagement actions.  

4.1. Situational Awareness 

The system currently implements the following situational 

awareness capabilities.  

Face detection and tracking. A multiple face detector 

and tracker is used to detect and track the location 𝑥𝑎(𝑡) of 

each agent 𝑎 in the scene. The face detector runs at every 

frame and is used to initialize a mean-shift tracker. The 

frame-to-frame face correspondence problem is resolved 

by a proximity-based algorithm. These vision algorithms 

run on a scaled-up image (1280x960 pixels), which allows 

us to detect frontal faces up to a distance of about 20 feet. 

Apart from the face locations 𝑥𝑎(𝑡) and sizes 𝑤𝑎(𝑡), the 

tracker also outputs a face confidence score 𝑓𝑐𝑎(𝑡), which 

is used to prune out false detections but also to infer focus 

of attention (described later.) 

Pose tracking. While an agent is engaged in a conversa-

tion with the system, a face-pose tracking algorithm runs 

on a cropped region of interest encompassing the agent’s 

face. In group conversations, multiple instances of this al-

gorithm run in parallel on different regions of interest. The 

pose tracker provides 3D head orientation information for 

each engaged agent 𝜔𝑎    (𝑡), which is in turn used to infer 

the focus of attention (see below.) 

Focus of attention. At every frame, a direct conditional 

model is used to infer whether the attention of each agent 

in the scene is oriented towards the system or not: 

𝑃(𝑓𝑜𝑎𝑎 𝑡 |𝑓𝑐𝑎 𝑡 , 𝜔𝑎    (𝑡)). This inference is currently 

based on a logistic regression model that was trained using 

a hand-labelled dataset. The features used are the confi-

dence score from the face tracker 𝑓𝑐𝑎 𝑡  (this is close to 1 

when the face is frontal), and the 3D head orientation gen-

erated by the pose tracker 𝜔𝑎    (𝑡), when available (recall 

that the pose tracker runs only for engaged agents.) 

Agent characterization. In addition to face detection 

and tracking, the system also performs a basic visual 

analysis of the clothing for each detected agent. The prob-

ability that the agent is formally or casually dressed 

𝑃(𝑓𝑜𝑟𝑚𝑎𝑙𝑎 𝑡 ) is estimated based on the color variance in 

a rectangular patch below the face (e.g. if a person is wear-

ing a suit, this typically leads to high variance in this image 

patch). This information is further used to infer the agent’s 

likely affiliation, based on a simple conditional model 

𝑃(𝑎𝑓𝑓𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛𝑎 𝑡 |𝑓𝑜𝑟𝑚𝑎𝑙𝑎 𝑡 ). Casually dressed agents 

are more likely to be Microsoft employees; formally 

dressed ones are more likely to be visitors. 

Figure 4. Receptionist system: (a) prototype, (b) architectural overview, and (c) runtime conversational scene analysis 
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Group inferences. Finally, the Receptionist system also 

performs a pairwise analysis of the agents in the scene to 

infer group relationships. The probability of two agents be-

ing in a group together 𝑃 𝑔𝑟𝑜𝑢𝑝(𝑎1 , 𝑎2)  is computed by a 

logistic regression model that was trained on a hand-

labelled dataset. The model uses as features the size, loca-

tion and proximity of the faces, but also observations col-

lected through interaction. For instance, the system might 

ask a clarification question like ―Are the two of you to-

gether?‖ A positive or negative response to this question is 

also used as evidence by the group inference model. 

4.2. A Multiparty Situated Engagement Model 

We now turn our attention to the problem of engagement 

[21], the process by which participants in a conversation 

establish, maintain and terminate their interactions (corre-

sponding to the first level of coordinated action in Clark’s 

language interaction model).  

The engagement model currently used in the Reception-

ist system is centered around a reified notion of conversa-

tion. In the system, a conversation is a basic unit of sus-

tained interaction. Each conversation has a specific pur-

pose (e.g. register a visitor, etc.), and might involve one or 

multiple participants. The system can be engaged in at 

most one conversation at a time, but it can simultaneously 

keep track of additional, suspended conversations. En-

gagement is then viewed as the joint activity of the system 

and its users by which conversations are initiated, termi-

nated, suspended, resumed, joined or abandoned.  

To manage this coordinated process, the system: (1) 

constantly monitors the engagement state, actions and in-

tentions of surrounding agents, (2) makes high-level deci-

sions about whom to engage (or disengage) with and when, 

and (3) renders these decisions via behaviors such as estab-

lishing or breaking eye contact, issuing and responding to 

verbal greetings, etc. In the following subsections, we dis-

cuss each of these components in more detail.  

4.2.1. Engagement State, Actions, and Intentions 

The basis for making engagement decisions is provided by 

a model that tracks the engagement state 𝐸𝑆𝑎(𝑡), actions 

𝐸𝐴𝑎(𝑡) and intentions 𝐸𝐼𝑎(𝑡) for each agent in the scene.  

The engagement state of an agent 𝐸𝑆𝑎 𝑡  is modeled as 

a deterministic variable with two possible values: engaged 

and not-engaged. This state is updated based on the joint 

actions of the agent and the system. For instance, if (1) an 

agent takes an engaging action and (2) the system responds 

by triggering the Engage behavior, and (3) this behavior 

succeeds, then the engagement state for that agent is up-

dated from not-engaged to engaged. The engagement be-

haviors, their success and failure, as well as their effects on 

the engagement state, are discussed later, in 4.2.3. 

A second engagement variable, 𝐸𝐴𝑎(𝑡), models the ac-

tions that an agent takes to initiate, maintain and terminate 

engagement (i.e. to transition between engagement states). 

There are four possible engagement actions: engage, no-

action, maintain, disengage. An agent can take the first 

two actions only from the not-engaged state and the last 

two only from the engaged state. Currently, a direct condi-

tional model 𝑃(𝐸𝐴𝑎(𝑡)|𝐸𝑆𝑎(𝑡), Ψ(t)) is used to estimate 

an agent’s engagement action based on the current en-

gagement state and additional evidence Ψ(t) gathered from 

various sensors and processes in the system. Examples in-

clude the detection of greetings or calling behaviors (e.g. 

―Hi!‖ or ―Laura!‖), the establishment or the breaking of a 

conversation frame (e.g. the agent approaches and posi-

tions himself in front of the system; or the agent departs), 

continued attention (or lack thereof) to the system, etc.   

Apart from the engagement state and actions, the system 

also keeps track of a third variable, the engagement inten-

tion 𝐸𝐼𝑎 (𝑡) of each agent in the scene; this can be engaged 

or not-engaged. Intentions are tracked separately from ac-

tions since an agent might intend to engage the system, but 

not take a direct, explicit engagement action. A typical 

case is that in which the system is already engaged in a 

conversation and the participant is simply waiting in line. 

More generally, the engagement intention corresponds to 

whether or not the user would respond positively should 

the system initiate engagement. Currently, the engagement 

intention is inferred using a handcrafted direct conditional 

model 𝑃(𝐸𝐼𝑎(𝑡)|𝐸𝑆𝑎(𝑡), 𝐸𝐴𝑎(𝑡), Ψ(𝑡)) that leverages in-

formation about the current engagement state and action, 

as well as additional evidence gleaned from the scene in-

cluding the spatiotemporal trajectory of the participant, the 

level of sustained mutual attention, etc. 

While these initial models for inferring engagement ac-

tions and intentions are handcrafted, we are currently in-

vestigating approaches for learning these models through 

interaction.  

4.2.2. Engagement decisions  

Based on the inferred state, actions and intentions of the 

agents in the scene, as well as other additional evidence, 

the system makes high-level decisions about when and 

with whom to engage in conversation. The action-space at 

contains two actions, Engage and Disengage, each param-

eterized with an agent and a conversation. The actual sur-

face realization of these actions in terms of low-level be-

haviors, such as greetings, making or breaking eye contact, 

etc. is discussed in more detail in the following subsection. 

As the Receptionist system operates in an open, multi-

party environment, the engagement decisions can become 

quite complex. For instance, new participants might arrive 

and wait to engage while the system is already engaged in 

an interaction; in some cases, they might even actively try 

to barge-in and interrupt the current conversation. In such 

cases, the system needs to reason about the multiple tasks 

at hand, and balance the goals and needs of multiple par-

ticipants in the scene and resolve various trade-offs, for in-

stance between continuing the current conversation and 

temporarily interrupting it to address a new (perhaps 

shorter and more urgent task).  



Currently, a simple heuristic model is used for making 

these decisions. If the system is not currently engaged in a 

conversation, it conservatively waits for a user to initiate 

the engagement process (e.g. 𝐸𝐴𝑎(𝑡)=engage), before 

making the decision to engage. In addition, if the system is 

currently engaged in a conversation, but other agents are 

present and waiting to engage (e.g. 𝐸𝐼𝑎(𝑡)=engaged, 

𝐸𝐴𝑎(𝑡)=no-action), the system may suspend the current 

conversation to momentarily engage a waiting agent in a 

short interaction to either let them know that they will be 

attended to momentarily, or to inquire about their goals 

(this is illustrated in more detail in Section 5.) This deci-

sion is made by taking into account the appropriateness of 

suspending the current conversation at that point, and the 

waiting time of the agent in the background. We are cur-

rently exploring more principled models for optimizing the 

scheduling of assistance to multiple parties under uncer-

tainties about the estimated goals and needs, the duration 

of the interactions, time and frustration costs, social eti-

quette, etc.  

4.2.3. Engagement behaviors  

Each high-level engagement decision (e.g. Engage / Dis-

engage) is rendered into a set of coordinated lower-level 

behaviors, such as making and breaking eye contact, issu-

ing greetings, etc.  

The sequencing of these lower-level behaviors is highly 

dependent on the current situation in the scene, including 

the estimated engagement state, actions and intentions for 

each agent, the evolving state of the environment and sys-

tem (e.g. is the system in a conversation or not, are there 

other agents in the scene, what is their focus of attention, 

etc.) For instance, consider the case when the system is not 

yet engaged in any conversations and a high-level decision 

is made to engage a certain agent. If mutual attention has 

already been established, the Engage behavior triggers a 

greeting. In contrast, if the agent’s focus of attention is not 

on the system, the Engage behavior attempts to draw the 

agent’s attention by gazing towards him or her and saying 

―Excuse me!‖ in a raised voice. After the initial salutation 

the system monitors the spatiotemporal trajectory of the 

agent, and, if the agent approaches the system, establishes 

or maintains mutual attention, and responds to the greeting, 

the Engage behavior completes successfully; the agent’s 

engagement state is updated to engaged. Alternatively if a 

period of time elapses and the agent does not establish mu-

tual attention (or leaves the scene), the Engage behavior 

completes with failure (which is signalled to the higher en-

gagement control layer). The system implements several 

other engagement and disengagement behaviors dealing 

with agents joining or leaving an existing conversation. 

While a full description of these behaviors is beyond the 

scope of this paper, instances of various engagement be-

haviors are illustrated in the sample interaction discussed 

in Section 5. 

4.3. Multi-Participant Turn Taking 

While engaged in a conversation, the system coordinates 

with other conversational participants on the presentation 

and recognition of various communicative signals. Our 

current prototype attends to verbal signals (i.e.. spoken ut-

terances) and to signals received from the graphical user 

interface, which can be accessed via the touch-screen. On 

the output side, the system coordinates spoken outputs with 

gaze and various gestures such as smiles, and furrowed or 

questioning eye-brows.  

A voice activity detector is used to identify and segment 

out spoken utterances from background noise. The speaker 

𝑆𝑢  for each utterance 𝑢 is identified by a model that inte-

grates throughout the duration of the utterance the sound 

source localization information provided by the micro-

phone array with information from the vision subsystem, 

specifically the location of the agents in the scene. For 

each identified utterance, the system infers whether the ut-

terance was addressed to the system or not. This is accom-

plished by means of a model that integrates over the user’s 

inferred focus of attention throughout the duration of the 

spoken utterance 𝑃(𝑇𝑢 = 𝑠𝑦𝑠𝑡𝑒𝑚|𝑓𝑜𝑎𝑆𝑢
 𝑡 ). If the user’s 

focus of attention stays on the system, the utterance is as-

sumed to be addressed to the system; otherwise, the utter-

ance is assumed to be directed towards the other partici-

pants engaged in the conversation. Touch events detected 

by the graphical user interface are assumed to be generated 

by the closest agent, and addressed to the system.  

In order to fluidly coordinate its own outputs (e.g. spo-

ken utterances, gestures, GUI display) with the other 

agents engaged in the conversation, the system implements 

a simple multiparty situated turn-taking model. The model 

tracks where or not each engaged agent currently holds the 

conversational floor 𝐹𝑆𝑎 𝑡   (i.e. has the right to speak), 

and what the floor management actions each engaged agent 

takes at any point in time 𝐹𝐴𝑎(𝑡): No-Action, Take-Floor, 

Release-to-System, Release-to-Other, Hold-Floor. These 

actions are inferred based on a set of handcrafted rules that 

leverage information about the current state of the floor 

{𝐹𝑆𝑎 𝑡 }, the current utterance 𝑢, its speaker 𝑆𝑢  and its ad-

dressees 𝑇𝑢 . For instance, a Take-Floor action is detected 

when a participant does not currently hold the floor but 

starts speaking or interacts with the GUI; a Release-to-

System action is detected when a participant finishes speak-

ing, and the utterance was addressed to the system; and so 

on. The floor state for each agent 𝐹𝑆𝑎(𝑡) is updated based 

on the joint floor-management actions of the system and 

engaged agents. For instance if a user currently holds the 

floor and performs a Release-to-System action, immedi-

ately afterwards the floor is assigned to the system.  

Based on who is currently speaking to whom and on 

who holds the floor, the system coordinates its output with 

the other conversational participants. For instance, the sys-

tem behavior that generates spoken utterances verifies first 

that the system currently holds the floor. If this is not true, 



a floor management action is invoked for acquiring the 

floor. The lower level behaviors render this action by coor-

dinating the avatar’s gaze, gesture and additional spoken 

signals (e.g. ―Excuse me!‖, if the system is trying to take 

the floor but a participant is holding it and speaking to an-

other participant).  

The current multi-participant turn-taking model is an 

initial iteration. It employs heuristic rules and limited evi-

dential reasoning, treats each participant independently, 

and does not explicitly take into account the rich temporal-

ity of interactions. We are exploring the construction and 

use of more sophisticated data-driven models for jointly 

tracking through time the speech source 𝑆𝑢 , target 𝑇𝑢 , fo-

cus of attention 𝑓𝑜𝑎𝑎 𝑡   and floor state 𝐹𝑆𝑎 𝑡  and actions 

𝐹𝐴𝑎 𝑡  in multi-participant conversation, by fusing 

through time audio-visual information with additional in-

formation about the system actions (e.g. its pose and gaze 

trajectory, etc.) and the history of the conversation: 

𝑃(𝑆𝑢 , 𝑇𝑢 , 𝑓𝑜𝑎 𝑎  𝑡 , 𝐹𝑆 𝑎  𝑡 , 𝐹𝐴 𝑎 (𝑡)|Ψ 𝑡 ) 

4.4. Situated Intention Recognition 

To infer user goals and intentions, the Receptionist system 

makes use of several hybrid belief updating models that in-

tegrate streaming evidence provided by the situational con-

text, with evidence collected throughout the dialog. For in-

stance, the system relies on a conditional goal inference 

model 𝑃(𝐺𝑎 |𝑎𝑓𝑓𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛𝑎 , 𝑔𝑟𝑜𝑢𝑝(𝑎, 𝑎𝑖), 𝑆𝐺𝑎) that cur-

rently takes that takes into account the estimated actor af-

filiation and whether or not the actor is part of a larger 

group (e.g. Microsoft employees are more likely to want 

shuttles than to register as visitors, people in a group are 

more likely to register as visitors, etc.) If the probability of 

the most likely goal does not exceed a grounding threshold, 

the system collects additional evidence - 𝑆𝐺𝑎  - through in-

teraction, by directly asking or confirming the speculated 

goal. Similarly, in case an agent’s goal is to make a shuttle 

reservation, the number of people for the reservation is in-

ferred by a model that integrates information from the 

scene (e.g. how many people are present) with data gath-

ered through dialog. The runtime behavior of these models 

is illustrated in more detail in the following section.  

5.  A Sample Interaction 

We now illustrate how the models outlined in the previous 

section come together to create a seamless multiparty situ-

ated interaction, by describing a sample interaction with 

the receptionist system. Figure 5 shows several successive 

snapshots from a recorded interaction, with the runtime 

annotations created by the various models, as well as a 

capture of the system’s display and a transcript of the con-

versation. A full video capture is available online [1].  

Initially two participants are approaching the system 

(A14 and A15 in Figure 5). The system detects and tracks 

their location. As the users get closer and orient their atten-

tion towards the system, the engagement model indicates 

that they are performing an engaging action. In response, 

the avatar triggers an engaging behavior, greets them and 

introduces itself (line 3 in Figure 5).  

After the initial greeting, the system attempts to ground 

the goals of the two participants. The group inference 

model indicates that, with high likelihood (0.91 in Figure 

5.a) the two participants are in a group together. The cloth-

ing and affiliation models indicate that the two participants 

and dressed casually, and therefore most likely Microsoft 

employees. Based on this information, the system infers 

that the participants most likely want a shuttle. Since the 

likelihood of the shuttle goal does not exceed the ground-

ing threshold, the system confirms this information through 

dialog, by glancing at the two participants and asking: ―Do 

you need a shuttle?‖ A14 confirms.  

Next, the system asks ―Which building are you going 

to?‖ At this point (see also Figure 5.b) the first participant 

(A14) turns towards the second one (A15) and initiates a 

side conversation (lines 8-12). By fusing information from 

the microphone array, the face detector and pose tracker, 

the multiparty turn-taking model infers that the two par-

ticipants are talking and releasing the floor to each other. 

Throughout this side conversation (lines 8-12) the avatar’s 

gaze follows the speaking participant. In addition, the rec-

ognition system is still running and the system overhears 

the building number from this side conversation.  When the 

two participants turn their attention again towards the sys-

tem, the turn-taking model identifies a Release-To-System 

floor action. At this point, the system continues the conver-

sation by confirming the overheard information: ―So 

you’re going to 9, right?‖ A14 confirms again.  

Next, the system grounds how many seats are needed for 

this reservation. Here, a belief updating model fuses infor-

mation gathered from the scene analysis with information 

collected through interaction. Based on the scene, the sys-

tem infers that most likely this shuttle reservation is for 

two people (A14 and A15). The likelihood however does 

not exceed a grounding threshold (since at this point a third 

agent has already appeared in the background – A16). The 

system therefore confirms the number of seats through dia-

log, by asking ―And this is for both of you, right?‖ Once 

the number of people is grounded, the system notifies A14 

and A15 that it is currently making a reservation for them.  

As we have already noted, while A14 and A15 where 

engaged in the side conversation (lines 8-12), a new par-

ticipant (A16) entered the scene – see Figure 5.b. When the 

new participant appears, the system glances for a fraction 

of a second at him (this is a hard-coded reactive behavior). 

The group models indicate that A16 is most likely not in a 

group with A14 and A15. The clothing and affiliation 

models for A16 indicate that this participant is dressed 

formally and therefore most likely to be an external visitor. 

As a consequence, the activity and goal models indicate 

that A16 is waiting for the receptionist with the intention to 

register.  



After the avatar notifies A14 and A15 that it is making 

their shuttle reservation, these two participants turn again 

to each other and begin another side conversation. The sys-

tem decides to temporarily suspend its conversation with 

A14 and A15 and engages with A16 by asking ―Are you 

visiting someone?‖ A16 confirms, and the system notifies 

A16 that it will help with the registration momentarily. The 

decision to suspend the conversation with A14 and A15 is 

taken by the high-level engagement control model, which 

is aware of the fact that the current conversation is inter-

ruptable at this point (the system is waiting for the shuttle 

backend to respond and A14 and A15 are talking to each 

other), and that, with high likelihood, there is an additional 

participant in the scene (A16) waiting for assistance.  

After the system notifies A16 that it would attend to his 

needs momentarily (line 22), the shuttle backend responds 

with the initial reservation. The system turns its attention 

again at A14 and A15, and attempts to resume that conver-

sation, by invoking a corresponding engagement behavior. 

Since the two participants are still talking to each other and 

not paying attention to the system, the Resume-

Conversation behavior triggers an ―Excuse me!‖ prompt 

1 A14, A15: [approaching, talking  to each other] 
2 A14, A15: [getting close and turning their attention to the system] 
3 S: Hi, my name is Laura and today I’m here to help the recep-

tionist with shuttle reservation 
4 A14: I’m Dan and this is Eric 
5 S: [glancing at both participants]  

Nice to meet you. Do you need a shuttle? 
6 A14: Yes 
7 S: [turns to A14]  

Which building are you going to? 
8 A14: [turns to A15]  

I forget where are we going? 
9 S:  [quickly glances at A16, who just entered the scene; then fol-

lows the side conversation that A14 and A15 are having, by 
turning its attention towards the speaking participant]  

10 A15: [turns to A14]  
I think it’s building 9? 

11 A14:  [still looking at A15]  
Are you sure? 

12 A15:  [still looking at A14]  
Yes 

13 A14,A15: [both turn back towards the system] 
14 S: [glancing at both A14 and A16] 

So you’re going to building 9, right? 
15 A14: Yes 
16 S: And this if for both of you, right? 
17 A14: Yes 
18 S: I’m making a shuttle reservation for building 9 for 2 people. In 

case you want to correct anything, say or press start over.  
19 S:  [turning to A16] 

Are you visiting someone? 
20 A16: Yes 
21 S: I’ll help you register in just a moment.  
22 S: [turning back to A14 and A15] 

Excuse me. 
23 A14,A15: [turning their attention back to the system] 
24 S: You will be on shuttle 53. It should be here any second.  
25 A14: All right, thank you. Bye 
26 S:  [glancing at A14 and A15] 

Bye-bye 
27 A16: [approaching]  

Hi 

 

(a) 

(b) 

(c) 

(d) 

Figure 5. Sample interaction with Receptionist. 



(line 22). As soon at A14 and A15’s attention turns back to 

the system, the avatar provides the information about the 

shuttle number and estimated time of arrival (line 24). The 

two participants then disengage and the system turns its at-

tention back to and engages with A16.  

Conclusion and Future Work 

We have outlined a research agenda aimed at developing 

computational systems that can interact naturally and pro-

vide assistance with problem-solving needs over extended 

periods of time in open, relatively unconstrained environ-

ments. We first introduced the pursuit and challenges of 

developing systems competent in open-world dialog—with 

the ability to support conversation in an open-world con-

text, where multiple people with different needs, goals, and 

long-term plans may enter, interact, and leave an environ-

ment, and where the physical surrounding environment 

typically provides streaming evidence that is important for 

organizing and conducting the interactions.  

The dynamic, multiparty and situated nature of open-

world dialog brings new dimensions to traditional spoken 

dialog problems, like turn-taking, language understanding 

and dialog management. We found that existing models are 

limited in that they generally make an implicit single-user 

assumption and are not equipped to leverage the rich 

streaming context available in situated systems. Open-

world settings pose new problems like managing the con-

versation engagement process in a multiparty setting, 

scheduling assistance to multiple parties, and maintaining a 

shared frame that includes inferences about the long-term 

plans of various agents--inferences that extend beyond the 

confines of an acute interaction. 

To provide focus as well as an experimental testbed for 

the research agenda outlined in this paper, we have devel-

oped a prototype system that displays several competencies 

for handling open-world interaction. The prototype weaves 

together a set of early models addressing some of the open-

world dialog challenges we have identified, and showcases 

the potential for creating systems that can interact with 

people on problem-solving needs with the ease and eti-

quette expected from a human.  

We take the research agenda and the prototype described 

in this paper as a starting point. We plan to investigate the 

challenges we have outlined, and to develop and empiri-

cally evaluate computational models that implement core 

competencies for open-world dialog. We hope others will 

join us on the path towards a new generation of interactive 

systems that will be able embed interaction and computa-

tion deeply into the natural flow of daily tasks, activities 

and collaborations. 
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