
 1

OWeB: A Framework for Offline Web Browsing

Ganesh Ananthanarayanan1
ganeshan@microsoft.com

Sean Blagsvedt1

seanb@microsoft.com

Kentaro Toyama1
kentoy@microsoft.com

1Microsoft Research India

Abstract

Internet browsing is highly dependent on the

real-time network availability and speed. This

becomes a significant constraint when browsing

over slow and intermittent networks. In this

paper, we describe a readily deployable system

designed for web browsing over slow,

intermittent networks – OWeB, that is minimally

dependent on the real-time network availability

and requires no changes on the part of the web

servers. The system subscribes to Really Simple

Syndication (RSS) feeds from web servers and

pre-fetches all new content as specified in the

feed. Since the RSS feeds are published by web

servers they give accurate information about the

new and updated content. Efficiency of network

usage is achieved by employing standard

techniques to handle intermittent networks, and

near-complete utilization of all downloaded

content results in better resilience in case of

interrupted data downloads.

We observed a co-relation between the items in

an RSS feed and the homepage of the

corresponding website (i.e.) the feed items

essentially define the content section of the

homepage. As part of OWeB, we developed an

algorithm for automatically extracting the

template of home pages and then locally

stitching the feed items into the template. This

results in websites being up-to-date and fully

available offline and bandwidth savings, as we

only need to download the RSS feed to construct

the homepage.

1. Introduction

Internet browsing has traditionally been
dependent on the real-time network availability
and speed. This dependency becomes a
significant constraint when accessing the web
over slow and intermittent networks. There is an
inordinate delay in downloading the web pages
and files and this results in an unpleasant
browsing experience. Accessing large chunks of
data, or streaming content across the web often
incurs problems with latency, interruptions, and
poor quality, at least where network connectivity
is questionable.
Successful models for offline data access include
SMS and E-mail synchronization over mobile
phones. The important characteristic of this class
of applications is that the end-user never needs to
wait for access to data. The content is always
available and offline. This results in a positive
user experience as the user is insulated from the
vagaries of the network. The essential point is to
provide a “best-effort” guarantee to ensure that
the latest content is always downloaded and
present on the device.
In this paper, we focus on improving the Internet
experience for websites with associated RSS [14]
feeds. To this end, we have designed and built
an offline web-browsing system, OWeB. The
salient features of the system are (1) intelligent
pre-fetching, (2) robust and resilient measures
for intermittent network handling, (3) Template
Identifier - automatic identification of the core
content area of a home page and template
extraction, and (4) local stitching of the dynamic
content into the template.
OWeB combines the advantages of both pull-
based and push-based techniques. It queries the
web server for the RSS feeds to obtain

 2

information about the new content. These queries
are inexpensive as the RSS feeds are small in
size. The RSS feeds alleviate the problem of
successfully predicting the importance of the
new content since they are defined by the
website authors and hence are accurate. Unlike
traditional push-based models this mechanism is
scalable, as the web server’s role is limited to
just publishing the feed with interested clients
downloading the feed and the content. After
getting the RSS feed, OWeB fetches the new
content as specified in the feed and stores it
locally. The system handles intermittent
networks by employing well-known techniques
like opportunistically downloading the content
when the network is available and queuing
interrupted downloads for re-trials.
While RSS feeds give information about the new
links and web pages on a server, it does not
convey any information about the homepage. We
believe that the homepage is necessary for a
complete and fully offline browsing experience.
Based on the observation of a co-relation
between the homepage and the RSS feed items,
we have developed an algorithm that
automatically identifies the core content area of a
homepage and extracts the template, and then
locally stitches the feed items into the template.
This enables our system to construct the
homepage given only the RSS feed and since the
feeds are significantly smaller than the
homepages, is bandwidth efficient.
The important research contributions of this
paper are – (1) a robust and resilient system to
improve web browsing over slow and
intermittent networks by opportunistic and
intelligent usage of network resources, (2)
template identification algorithm to
automatically identify the core content area of a
webpage, and (3) stitching algorithm to collate
the incoming items from the RSS feeds into the
template. Points (2) and (3) together introduce a
novel mechanism for latency reduction and data
savings by getting to a level of granularity less
than a webpage.
It is to be noted that OWeB is ideally designed
for content-based websites where there is
considerable data to be downloaded and not for
websites that require interaction like web-search,
uploads etc.
The remaining parts of the paper are organized
as follows: Section 2 describes the offline web-
browsing system, as well as the algorithms
required to identify the template of a web page
and stitch the RSS feed items into the template.
Section 3 details our experiments and provides

an analysis of the results. In Section 4, we talk
about related research in intermittent network
handling and data extraction from web pages.
We conclude with a summary and future
directions in Section 5.

2. OWeB Framework

Our aim was to build a readily-deployable offline
web-browsing system that would ensure that the
most recent content is always available on the
client and require no changes on the part of the
web servers. Our approach was to explore the
existing protocols which worked towards this
end and leverage their benefits to build a robust
framework on top of it. One such protocol was
Really Simple Syndication (RSS) [14]. RSS is a
Web Content Syndication format through which
web servers can publish information about new
or updated content on their websites. RSS feeds
are in XML 1.0 format. The RSS feeds can be
visualized as a collection of items with every
item describing a new content on the web server.
The web server can publish information about
anything that is new on its web site – links,
images, audio/video, etc. It is significant that the
site-author defines the items and so this
eliminates the problem of the client having to
predict the importance of the new content. Also,
the fact that RSS is popular makes our
framework easily and readily deployable without
expecting any significant changes on the part of
web site authors.
OWeB queries the server for the RSS feeds and
then downloads the content as specified in the
feed. Obtaining new/updated content over
intermittent connections is a significant
challenge. We address the issue through our
offline web-browsing system by employing
standard techniques in literature like queuing and
periodic re-trials of interrupted downloads. The
aggregation of the benefits provided by RSS,
queuing and re-trials greatly improves the
bandwidth efficiency of the system and adds
resilience under varying connection speeds.
While RSS feeds give information about the new
links on a server, they do not convey any
information about the homepage. We observed
an inherent relation between the homepages and
their corresponding RSS feeds. The RSS feed
items make up the core content area of the
homepage and the remaining parts of a page
namely the directory structure, search bar,
copyright information, etc. can be effectively
assumed to be static. To exploit this, we
developed an algorithm to identify the core

 3

content area of a homepage and essentially
extract its template. We leverage the inherent
tree structure of web pages and compare the
corresponding sub-trees for this purpose. The
RSS feed items can be filled into this template to
construct the homepage and since the feeds are
smaller in size than the homepages themselves,
we achieve a reduction in the amount of data
needed to be downloaded and also a complete
offline browsing experience.

2.1. Component Interaction and Control

Flow

The primary components involved in our system
are:

• User Interface
• Download Manager
• Local repository of downloaded content
• Web Servers (external to the system)

Fig.1. Component Interaction

The components interact in the following manner
in a typical synchronization sequence. Note that
these set of steps are performed periodically,
with a user-settable time period (Fig 1).

1. The application gives the list of feeds to
be synchronized to the download
manager.

2. The download manager contacts the
appropriate Web Servers and requests
for the feed and possible new content.

3. The download manager downloads all
new content from the Web Servers
(Steps 2 and 3 are explained in detail in
the following section).

4. The download manager places the
content in the local repository.

Now that the data is available offline, the user
can browse through them unconcerned about the
network availability.

a. The user requests the application for the
viewing the content.

b. The user interface requests the local
repository for the content.

c. The repository hands over the content to
the interface for rendering.

2.2. Intermittent Network Handling

Intermittent network handling is an important
mechanism built into the system. Data transfers
over intermittent networks are often likely to be
interrupted and we overcome this problem by
integrating standard techniques like queuing and
periodic re-trials into our system. OWeB also
provides a highly robust and seamless
mechanism to recover and resume downloads in
case of interrupted data transfers.
Fig.2 illustrates the series of steps in a download
sequence. The first decision box determines
whether the current download is a fresh request
or a resumption of a previously interrupted
download. The backing off between re-trials
ensures that our requests do not clog an already
congested network. After all feeds have been
downloaded and synchronized (or at least an
attempt has been made), then we start servicing
the files slotted for later trials. For every file
listed for re-trial, the same series of steps as
given in Fig.2 is followed. If we are unable to
download a file even in a re-trial, we use an
exponential back-off algorithm and perform
periodic re-trials to obtain it. This re-trial goes
till the earlier of the two times – min (time of
next synchronization attempt, no more files to re-

try).
The synchronization is periodic and happens in
the background. Periodically, the web servers are
queried for the feeds and the latest content
thereby synchronizing the local storage with the
latest available content on the server.

2.2.1. Resilience under Failed Downloads

OWeB is highly resilient in handling interrupted
downloads. It uses the standard browser’s
technique of storing all partially downloaded
data on secondary storage and re-uses them.
Interrupted downloads are always resumed and
not re-started. HTTP’s byte-range request format
[13] is utilized for this purpose. Interrupted
downloads of large audio and video files can be
resumed without duplicating data downloads.

 4

Fig.2. Flowchart for a typical download sequence

2.3. Page Stitching Mechanism

The RSS feed items do not directly convey any
information about the homepages of web servers.
We believe that the homepage is necessary for a
complete and fully offline browsing experience.
The components present in a homepage can be
broadly classified as directory structure, search
bar, core content, advertisements and footnotes.
We developed an algorithm to identify the core
content area of a homepage and essentially
extract its template. The algorithm was based on
the observation that the core content area is the
one housing the items present in the RSS feed
and also the most dynamic part of the page. This
template can be used to collate the items from
the RSS feed to construct the homepage locally.
Fig. 3 illustrates the working of the template
identifier and the feed stitching algorithm. Since
the RSS feed and since the feeds are at least an
order of magnitude smaller than the homepages,
it results in bandwidth efficiency. Most efforts at
reducing latency take a boolean decision on
whether to download a page in full or not. The
fact that OWeB gets to a level of atomicity
below a web page increases its bandwidth
efficiency.

2.3.1. Algorithm Overview

Document Object Model (DOM) is a form of
representation of structured documents as an
object-oriented model. DOM is the official
World Wide Web Consortium (W3C) standard
for representing structured documents in a
platform- and language-neutral manner [1]. A
Document Object Model (DOM) can be obtained
from every well-formed web page.
The DOM structure of a web page is in the form
of a well-defined tree. Our observation was that
the most dynamic part of the DOM tree houses
the items present in the RSS feed or the core
content, and the goal is to identify this sub-tree.
The other parts of the page contain information
like the directory structure, search bar, copyright,
etc. which we assume to be effectively static.
Our approach is to compare the DOM trees of
the page at two distinct points of time. The times
are chosen such that the webpage has had a
change in the area housing the dynamic content
and has got a new RSS feed published. We
associate novelty values with every sub-tree and
the most dynamic region of the page housing the
core content will have a significantly higher
novelty value compared to the others.

 5

Fig. 3. Template Identifier and Feed Items Stitching

2.3.2. Identification of the Most Dynamic Sub-

tree

We observed that the most dynamic sub-tree of
the homepage housed the items from the RSS
feed or the core content, and our algorithm
identifies the most dynamic sub-tree.

We adopt the following definitions on DOM
trees from Shiren Ye et al. [11].

1. The similarity of two nodes n1 and n2, with
attribute sets a1 and a2 and tokens t1 and t2 is
defined as

)(),(),(212121 I aattsnnsim += (1)

where s(21 , tt) =








≠

=

21

21

0

1

ttif

ttif

2. The repeatability of node n1 є T 1 with respect
to tree T2 is

=),(21 TnR +
∈∀

),((max 1
)(2

nnsim
Tnodesn

)))(),((1 nparentnparentsim (2)

3. Normalized repeatability of a node n1 є T 1

with respect to a T2 is

)(),()(1,121

1 TnRTnRnR =
(3)

4. Novelty of a node n1 is

11)(1)(nRnN −=

(4)

5. Novelty of a sub-tree ST is

∑+=)())(()(xSTNSTrootNSTN (5)

where STx is the sub-tree rooted at child-node of
root (ST)

6. ST (n) is the sub-tree rooted at node n.

Now we define the algorithm to identify the most
dynamic sub-tree, FA (feed area) housing the
items from the feed or the core content.

T 1 and T2 are the two DOM trees of a homepage
at two distinct points in time. We need to choose
the times such that the webpage has had a change
in the area housing the dynamic content and has
got a new RSS feed published.

For all 1n є nodes (T 1)

{
 Calculate),(11 TnR using (2)

 Calculate),(21 TnR using (2)

),(/),()(1121

1 TnRTnRnR = using (3)

11)(1)(nRnN −= using (4)

 Calculate))((1nSTN using (5)

}

Quite obviously, the novelty value of the sub-
tree rooted at the root of T1 would be the
maximum.

For all 1n є nodes (T 1)

{
 maxc (1n) =))((max

)(1
x

nchildx
STN

∈

 diff (1n) =))((1nSTN - maxc (1n)

}

Hence, the node 1n with the maximum diff value

between itself and the child with the maximum
novelty is the root of the most novel sub-tree FA.
FA is that sub-tree in which the difference
between its own novelty and the novelty of the

 6

most novel sub-tree of its children is the
maximum. In other words, this is the point in the
tree which has the most novel children and so we
can deduce that this is the sub-tree that we need
to fill with the incoming data from the RSS feed.
(Note that this algorithm has to be run

periodically to ensure that the page is consistent

with the one at the server. Generally, these

changes are not very frequent and happen only

with a re-design of a site layout).

2.3.3. Stitching the feed items into the

template

Now, that we have identified the most dynamic
sub-tree our job is to fill in the items from the
RSS feeds into this sub-tree. Simply put, we
replace this particular sub-tree with the items
from the RSS feed every time, leaving the other
parts intact, to construct the homepage locally.

Let T1 be the DOM tree at time t1. Let the RSS
feed at time t1 be f1. We use the algorithm
described in the previous section to identify DT1

in T1, the most dynamic sub-tree.

{ }feedtheRSSinitemanisiif 111 |=

where every item { }mdlti ,,,= . t, l, d and m are

the title, link, description and other
miscellaneous items associated with every item i.
DT1 is a collection of sub-trees with one sub-tree
for every item in the RSS feed.

{ }11 |DT fieveryforSTanST ii ∈∀=

and { }mdlti nnnnST ,,,= where mdlt nnnn ,,, are

nodes of the sub-tree STi. These nodes have
attribute values t, l, d and m obtained from the
corresponding item i in f1. Essentially we
consider these nodes as place-holders into which
attribute values can be filled.
Now, let tc be the current time and the feed
available now is

{ }feedtheRSSinitemanisiif ccc |= and we need to

construct the page locally with this feed.
For every element { }ccccc mdlti ,,,= є fc we fill in

the cccc mdlt ,,, values into the attribute values

of imdlt STnnnn ∈,,, in DT1.

The number of items in the feed at time t1 and tc
are not necessarily the same and we need to
account for this when we construct the tree DT1.
Hence, in the event of N (fc) ≠ N (f1), then we
need to make the following changes in the set
DT1.

1. If N (fc) > N (f1), then we need to add (N (fc) –
N (f1)) members to DT1. Every member is of type
STi and the corresponding nodes get their values
from the elements of fc.
2. If N (fc) < N (f1), the remove the excess (N (f1)
– N (fc)) elements from DT1.

Therefore the set DT1 now consists of elements
that have nodes with attribute values filled in
from the new feed fc. So, the tree T1 will now
represent the page for the new feed fc. We leave
the other parts of T1 unchanged and replace only
DT1 every time.
We note that is a deliberate attempt to update
only the core content in the page; we assume that
inconsistencies in the non-static elements in or
above the most novel sub-tree in the stitched
page are tolerable (frequently, they contain
advertisements, etc., and other minor changes
which do not affect the core content).

2.3.4. Homepages with Multiple Feeds

There are a few homepages composed of
multiple sections with each section populated by
a different feed. Examples of such pages are
general news websites that have a section and a
corresponding feed, each for politics, health,
sports, finance etc. We need to make minor
modifications to our feed stitching algorithm to
handle such cases.
The structure of these pages is such that the
multiple content sections aggregate under a
common parent at some level in the DOM tree of
the homepage. So, the template identifier would
identify that node as the root of the most
dynamic sub-tree DT.
Now, we need to find the individual trees DT1,
DT2… DTf in DT corresponding to the various
sections for the different RSS feeds. Every DTi
would have the items from a single feed as its
children. Hence there is a direct co-relation
between the children of these trees and the items
from a feed. By making a direct comparison
between the values (title, link and description)
present in the child nodes of every DTi and the
values of the items from every feed, we can find
the corresponding DTi for every feed and hence
obtain the mapping between the various feeds
and the DTi’s. Once we have the corresponding
DTi for every feed, we can apply the feed
stitching algorithm as described in the previous
section.

 7

3. Experiments and Results

We implemented OWeB on a smartphone
running Windows Mobile 2003 SE. We used the
General Packet Radio Service (GPRS) as the
channel to connect to the Internet over the
cellular network. GPRS connectivity is
intermittent and unreliable and hence is a good
test case for our system. We focused on
evaluating the three most important criteria – the
accuracy of the template identifier and page
stitching algorithm, amount of savings in the
data downloaded because of employing the
stitching algorithm and the performance
improvement because of the robustness and
resilience in the system.

3.1. Accuracy of Template Identifier and

Page Stitching Algorithm

We tested our template identification and feed
stitching algorithm on the homepages of 22
different websites covering diverse classes like
news, sports, technology, entertainment and
education including prominent websites like
Microsoft Watch, Slashdot, Smartmobs,
Engadget, Reuters and Google News. Table 2
(Appendix-A) has the complete list of sites and
their corresponding feeds used to test the
accuracy and effectiveness of the template
detection algorithm and the stitching algorithm.
Of these 22 websites, five of them had
homepages which were composed of multiple
sections with an RSS feed for every section.
In all the test cases, the most dynamic sub-tree
was accurately identified and corresponded to
the core content section of the homepage
populated by the items from the RSS feed. We
take this result as a validation of our observation
that these web pages have a core content section
that is the most dynamic and described by the
items in the RSS feeds, and also of the
effectiveness and accuracy of our template
identification algorithm.
The stitching algorithm functioned successfully
in 19 of the 22 test cases including all the five
instances where the homepages were fed by
multiple RSS feeds. We considered the stitching
algorithm to be successful if the stitched
webpage and the original webpage from the
server have no difference in the content section
and the static portions. Inconsistencies in other
non-static portions like advertisements etc. were
considered to be tolerable and hence ignored.
The cases where the stitching algorithm failed

were when the content section of the homepage
was described by multiple RSS feeds or when a
single RSS feed defined multiple sections of the
page with no clear co-relations. Note that even in
these cases, the template identifier accurately
identified the most dynamic portion of the
webpage. In Table 2 (Appendix-A), while Slate
had a single feed describing multiple sections,
Movies.Com and BBC News had no clear relation
between the feed and the content section.

3.2. Data Savings

The reduction in the amount of data downloaded
because of the local construction of the
homepage was also analyzed. We considered a
sample of four websites (Microsoft Watch,

Slashdot, The Hindu, and Smartmobs) for this
purpose. Please refer to Table 3 (Appendix-A) for
details about the individual web sites. The size of
the homepages of the four test web sites together
was 217 kilobytes and the size of their RSS feeds
put together was 56 kilobytes. The testing was
done for a period of three days during which the
sites updated their contents and hence their
homepages 76 times. So, every time there was a
change in the page, we could save on the amount
of data downloaded by just getting the feed and
not the complete page. We could reduce the
amount of data downloaded by 3032 kilobytes
which was an appreciable 70% reduction. This
value would obviously increase if the testing is
done for a longer time including more websites.
This particular set of four websites is purely
random and we do not expect significant changes
in results on a different set.

3.3. Resilience

We used feeds from sources listed in Table 1
(Appendix-A) for evaluating the robustness and
resilience of the framework. These news feeds
provide audio and video files of the telecasts and
so are good test cases for the application. The
robustness and resilience of the system was very
significant when downloading huge audio and
video files. The ability to resume downloads and
re-try in case of interruptions considerably
reduced the time taken and the net amount of
data downloaded.

 8

4. Related Work

4.1. Intermittent Network Handling

The problem of handling intermittent networks
has been looked into from multiple angles.
Client-pull based techniques [2] try to
intelligently predict the time of change of data at
the server and pull the data. Also, intelligence is
needed to pull only the “relevant and useful”
data. Studies have been conducted to see the
effects of trade-off in the coherency of the data
versus the network overload in obtaining it.
Push-based techniques shifted the onus on the
server to push relevant data to the
clients/proxies. This clearly reduced the
problems of coherency and prediction of data
change on the client side. Also, this ensured that
there wasn’t a huge pile of unnecessary data
transfers due to faults in the prediction.
Notification systems [3] were part of this work.
But push-based techniques faced an important
issue of not being scalable. Both push and pull
based techniques faced the important problem
determining the importance of the content [4].
Really Simple Syndication (RSS) [5] is a
synchronization mechanism through which web
servers can publish information about the new
and updated content on their web sites. OWeB
combines the advantages of both pull-based and
push-based techniques by following a two-step
approach – first, it gets the RSS feed from the
website and hence gets information about the
new content on the server and in the second step,
downloads the content as specified by the feed.
Since the RSS feeds are very small in size, the
first step is a very inexpensive operation and by
virtue of the fact that the feeds are site-authored,
unambiguously lists the new content. This
mechanism is scalable as the web server’s role is
limited to just publishing the feed with interested
clients downloading it when required.
RSS aggregators are applications that take in
RSS feeds from the web servers and notify the
clients of the availability of new data. While one
of the components of OWeB performs the same
function as any standard RSS aggregator, our
system differs from the RSS aggregators on two
important counts – (1) In addition to obtaining
the RSS feeds, OWeB also fetches the new
content specified in the RSS feed in a network
resilient manner, and (2) OWeB has an in-built
automatic template identification and stitching
algorithm for homepages of the websites.
Work was also done around distribution of data
from the content server to geographically

distributed caches. These caches reduced the
access time from the server to the clients
resulting in lower latency and better experiences.
Caches needed to maintain coherency and also
and relevant” data. Replication in web content
also needed to conserve bandwidth by
“intelligently” pulling only the “useful has
problems and issues associated with it [6].

4.2. Data Extraction and Template

Generation

The problem of segregating the dynamic parts of
a web page is heavily significant in the context
of intermittent networks as it reduces the amount
of data needed to be downloaded. This work
draws significantly from the existing work done
in extracting information from web pages.
The work of extracting information from web
pages can broadly be classified into two
categories – semantic based techniques and
structure based techniques. The semantic
techniques are not quite mature enough and also
not generically applicable. The structural
techniques try to exploit the tree arrangement of
the data blocks and are, in general, more
deterministic. In our case, we have decided to
use structure based techniques because (a) the
accuracy requirement is very stringent (b) the
diversity of pages we are dealing with is not
enormous and (c) the problem can be modeled in
a deterministic fashion such that we can apply
structure based techniques with a good level of
assurance.
Semantic based techniques are generally
applicable in scenarios where the accuracy
requirement is reasonably soft. Input pages are
treated as a list of tokens, and regular
expressions are used as the templates [7].
Research also went into formulating template
generation algorithms [8]. It used the tag trees of
web pages to generate explicit regular tree
templates and hence took advantage of the
hierarchical structure information contained in
trees.
The structure based techniques for information
extraction are more deterministic and work with
relatively better accuracy levels. Techniques
were designed to extract data from lists and
tables in pages [9] [10]. But these made
assumptions about the presence of well formed
tables and lists in the pages. Also, we have to
deal with more complicated and generic cases,
where the assumptions about the presence of
certain components are not acceptable.

 9

Most methods of data extraction, also, do not
quite lead to reducing network latency. It is more
about manipulating the data extracted and
presenting it in a more regulated and concise
information [11] [12]. Here we are trying to use
the data extraction algorithm in a novel fashion
which results in better user experience in terms
of network latency and visualization of pages.

5. Conclusion

In this research, we proposed and implemented a
system, OWeB to improve the Internet browsing
experience over slow and intermittent networks.
OWeB made the browsing experience
significantly independent of the network
availability. The OWeB framework was made
robust and resilient by employing standard
techniques like queuing and re-trials. We
observed a co-relation between the core content
section of homepages and the items in the RSS
feeds and devised an algorithm to automatically
extract the template of a web page and stitch the
incoming RSS feeds into the template locally,
thereby achieving significant savings in the data
downloaded. Our system implementation results
validated the correctness of our observation and
also illustrated the accuracy of our template
identifier and stitching algorithm in addition to
appreciable data savings.
Going forward, we plan to integrate OWeB with
standard browsers so as to effect a seamless
migration from the present-day web browsing
experience.
Also, the current semantics available with RSS
and HTML do not allow for specifying the static
and dynamic parts of the web page. We plan to
explore if the specifications can be extended to
represent these details and other important
details necessary for intermittent networks. An
example in this regard is for the web page to
specify the importance level of the objects in its
page.
As mentioned in Section 3, our algorithm works
only when every content section is defined by a
single RSS feed. We plan to extend our
algorithm to work in scenarios where a single
content section is defined by multiple RSS feeds
and when a single RSS feed defines multiple
sections of the page.

6. References

[1] DOM, http://www.w3.org/TR/DOM-Level-2-
HTML/

[2] Q. Yang and H. H. Zhang. Integrating web
prefetching and caching using prediction models,
World Wide Web, 4(4: 299-321), 2001.

[3] Roberto S. Silva Filho et al. The design of a
configurable, extensible and dynamic notification
service, Proceedings of the 2nd international

workshop on Distributed event-based systems, 2003.

[4] J. Beaver et al. Scalable Dissemination: what’s hot
and what’s not, Proceedings of the 7th International
Workshop on the Web and Databases: colocated with

ACM SIGMOD/PODS, 2004.

[5] RSS, http://blogs.law.harvard.edu/tech/rss

[6] S. Sivasubramanian et al. Replication for Web
hosting systems, ACM Computing Surveys (CSUR),
36(3: 291-334), 2004.

[7] V. Crescenzi et al. RoadRunner: Towards
automatic data extraction from large Web sites,
Proceedings of the 2001 International Conference on

Very Large Data Bases, 2001.

[8] S. L. Chuang. Automatic generation of tree-
structured templates for information extraction from
html documents. Master’s thesis, National Taiwan
University, 1999.

[9] B. Liu et al. Mining data records in Web pages,
Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, 2003.

[10] K.Lerman et al. Automatic data extraction from
lists and tables in Web sources, IJCAI-01, Workshop

on Adaptive Text Extraction and Mining, 2001.

[11] Shiren Ye and Tat-Seng Chua. Detecting and
Partitioning Data Objects in Complex Web Pages,
Proceedings of the IEEE/WIC/ACM International

Conference on Web Intelligence (WI’04), 2004.

[12] A. Arasu and H. Garcia-Molina. Extracting
structured data from Web pages. Proceedings of the
2003 ACM SIGMOD International Conference on

Management of Data, pages, 2003.

[13] http://www.w3.org/Protocols/rfc2616/rfc261
6.html. Hypertext Transfer Protocol -- HTTP/1.1: RFC
2616.

[14] http://web.resource.org/rss/1.0/spec - RDF Site
Summary (RSS) 1.0.

 .

 10

Appendix – A

Table 1 – Feeds to test the robustness and resilience of the framework

S. No. Feed Name Feed URL

1 Science Friday http://www.sciencefriday.com/audio/scifriaudio.xml
2 Microsoft Watch – Mary Jo Foley http://feeds.ziffdavis.com/ziffdavis/MicrosoftWatch
3 Slashdot http://rss.slashdot.org/Slashdot/slashdot
4 Ick Music http://feeds.feedburner.com/Ickmusic
5 ESPN - Sports http://sports.espn.go.com/espn/rss/news
6 The Hindu http://www.hindu.com/rss/01hdline.xml
7 Smartmobs http://www.smartmobs.com/archive/feeds/index.xml
8 Slate News http://www.slate.com/rss/

Table 2 – Pages and their feeds to test the template identifier and stitching algorithm

S. No. Feed Name Page URL Feed URL

1 Microsoft Watch –
Mary Jo Foley

 http://www.microsoft-watch.com/ http://feeds.ziffdavis.com/ziffdavis/MicrosoftWatc
h

2 Slashdot http://slashdot.org/ http://rss.slashdot.org/Slashdot/slashdot
3 The Hindu http://www.thehindu.com http://www.hindu.com/rss/01hdline.xml
4 Smartmobs http://www.smartmobs.com http://www.smartmobs.com/archive/feeds/index.x

ml
5 Google News –

US
 http://news.google.com/?ned=us&topic=n http://news.google.com/?ned=us&topic=n&output

=rss
6 CNN – US http://www.cnn.com/US/ http://rss.cnn.com/rss/cnn_us.rss
7 Slate News ┴ http://www.slate.com/ http://www.slate.com/rss/
8 Google News † http://www.news.google.com/ http://news.google.com/?output=rss
9 Grand Prix † http://www.grandprix.com/ http://www.grandprix.com/rss.xml
10 Mac Daily News http://www.macdailynews.com/ http://macdailynews.com/index.php/weblog/rss_2.0
11 Wired News http://www.wirednews.com/ http://feeds.wired.com/wired/topheadlines
12 Movies.Com ┴ http://movies.go.com/ http://movies.go.com/xml/rss/reviews.xml
13 Engadget http://www.engadget.com/ http://www.engadget.com/rss.xml
14 Wall Street

Journal
 http://www.wsj.com/ http://online.wsj.com/xml/rss/3_7011.xml

15 New York Times http://www.nytimes.com/ http://www.nytimes.com/services/xml/rss/nyt/Hom
ePage.xml

16 Rediff † http://www.rediff.com http://ia.rediff.com/push/rss.htm
17 Reuters † http://www.reuters.com http://today.reuters.com/rss/newsrss.aspx
18 Gadling http://www.gadling.com/ http://www.gadling.com/rss.xml
19 Yahoo News † http://news.yahoo.com/ http://news.yahoo.com/rss;_ylt=AqF4O8azzo51uU

3nn0kVwCWs0NUE;_ylu=X3oDMTA2cXY4cTA
0BHNlYwNudA--

20 BBC News ┴ http://www.bbc.co.uk/?ok http://newsrss.bbc.co.uk/rss/newsonline_world_edi
tion/front_page/rss.xml

21 AutoBlog http://www.autoblog.com/ http://www.autoblog.com/rss.xml
22 Guardian Football http://football.guardian.co.uk/ http://www.guardian.co.uk/rssfeed/0,,5,00.xml

† - Web Pages with multiple associated RSS feeds
┴ - Web Pages where the feed stitching algorithm failed

Table 3 – Data Savings by using the stitching algorithm

Website Homepage

Size (KB)

RSS Feed

Size (KB)

Number of

updates

Data Savings

(KB)

The Hindu 27 10 6 102
Smartmobs 57 22 30 1050
Slashdot 59 17 32 1344
Microsoft Watch – Mary
Jo Foley

74 7 8 536

