
3D-aware Image Editing for Out of Bounds Photography

Amit Shesh∗ Antonio Criminisi† Carsten Rother‡ Gavin Smyth§

Illinois State University Microsoft Research, Cambridge United Kingdom

Figure 1: Example “Out of Bounds images” obtained with our software to ol. The algorithms presented in this paper allow a user to
easily create such depth-rich images starting from single, conventional two-dimensional photographs and paintings. The careful placement of
occlusions and cast shadows is responsible for the strong “pop-out” effect in these images.

ABSTRACT

In this paper, we propose algorithms to manipulate 2D imagesin
a way that is consistent with the 3D geometry of the scene that
they capture. We present these algorithms in the context of creat-
ing “Out of Bounds”(OOB) images - compelling, depth-rich images
generated from single, conventional 2D photographs (fig. 1). Start-
ing from a single image our tool enables rapid OOB prototyping;
i.e. the ability to quickly create and experiment with many differ-
ent variants of the OOB effect before deciding which one bestex-
presses the users’ artistic intentions. We achieve this with a flexible
work-flow driven by an intuitive user interface.

The rich 3D perception of the final composition is achieved byex-
ploiting two strong cues – occlusions and shadows. A realistic-
looking 3D frame is interactively inserted in the scene between seg-
mented foreground objects and the background to generate novel
occlusions and enhance the scene’s perception of depth. This per-
ception is further enhanced by adding new, realistic cast shadows.
The key contributions of this paper are: (i) new algorithms for in-
serting simple 3D objects like frames in 2D images requiringmin-
imal camera calibration, and (ii) new techniques for the realistic
synthesis of cast shadows, even for complex 3D objects. These
algorithms, although presented for OOB photography, may bedi-
rectly used in general image composition tasks.

With our tool, untrained users can turn ordinary photos intocom-
pelling OOB images in seconds. In contrast with existing work-
flows, at any time the artist can modify any aspect of the com-
position while avoiding time-consuming pixel painting operations.
Such a tool has important commercial applications, and is much
more suitable for OOB prototyping than existing image editors.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation— [I.4.9]: Image Processing and Computer Vision—
Applications

∗e-mail: ashesh@ilstu.edu
†e-mail:antcrim@microsoft.com
‡e-mail:carrot@microsoft.com
§e-mail:Gavin.Smyth@microsoft.com

1 INTRODUCTION

Many advanced image editing operations require the knowledge of
the 3D geometry of the scene being visualized. For instance,in-
serting a 3D object into an image so that it looks consistent with
the scene requires knowledge of the depth of all relevant surfaces.
The positions of light sources are also needed to add shadows. For
the task of re-lighting, i.e. moving a light source, the normals of
all surfaces are also necessary. Unfortunately, estimating all such
3D information accurately from a single image is a severely under-
constrained task and is far from being solved. This paper shows
how minimal 3D information extracted from an image can be used
to augment it with new objects, or enhance its depth perception.

The general algorithms described in this paper are presented
through their application to “Out-of-Bounds” (OOB) photogra-
phy. OOB photography is a recent technique which produces
compelling, depth rich images from single, conventional 2Dpho-
tographs (see exemplar results in fig. 1). By placing a 3D graphics
frame in between different depth-layers in the image new occlu-
sions are generated. This, in combination with the additional cast
shadows, increases the sense of depth in conventional 2D images.
The technical challenges in this application are: i) interactively in-
serting a 3D frame into an image in a way which conforms with the
geometry of the scene, and ii) casting realistic shadows forany 3D
object illuminated by an arbitrary light source. This paperdescribes
algorithms to create such compositions quickly and effectively.

The general OOB concept is not new as a famous drawingDrawing
Handsby Escher demonstrates1. The boundary of the paper creates
T-junctions [17] which help us perceive the hands as coming out of
the plane of the paper. This perception is strengthened by internal
shading and by the shadows cast on the desk surface. These arethe
visual cues exploited in OOB.

Existing work-flows. Various techniques to create OOB images
already exist. Fig. 2 illustrates a typical work-flow. Starting from
a photograph, the user places a frame between the selected fore-
ground layer and the background. By replacing the original back-
ground with a clean graphics one, distracting elements are removed
and the foreground brought to life. Shadows cast by the frameand
foreground object(s) further enhance the 3D illusion. Existing al-
gorithms follow this work-flowsequentially, using general purpose
editing tools such as Photoshop and Gimp (see an example tutorial
at http://aczafra.com/2006/09/01/out-of-bounds-photography-using-photoshop/and
example images athttp://www.flickr.com/groups/oob/).

1http://www.mcescher.com : Picture gallery “Back in Holland 1941-1954”

Figure 2: A Typical Work Flow. (a) The original photograph. (b) A frame is positioned in the image consistent with the scene’s geometry. (c)
Objects of interest are segmented out and placed against a clean graphics background. (d) Shadows are cast from the inserted frame and
foreground objects to enhance the scene’s 3D geometry and produce the final OOB composition.

Such a process, while effective has two critical drawbacks.First, it
relies on the artistic ability of the user to draw perspectively correct
frames and realistic-looking shadows. For example, drawing the
frame in fig. 3(left) so that it appears to lie on the ground is not an
easy task for an amateur user. Secondly, the OOB creation process
is inherently experimental in nature. Creating the perfectcompo-
sition in a single attempt is extremely difficult even for themost
seasoned artist, and hence the ability to modify components(e.g.
different frames, shadows in different positions) and rapidly ex-
plore the vast space of possible OOB results is highly desirable (see
fig. 3). However, editing OOB compositions using general purpose
editing tools involves slow and painstaking pixel-painting and often
forces the user to redo many expensive operations from scratch.

Figure 3: Various OOB effects created from the same input photo-
graph (see fig. 13). Being able to interactively modify frame and cast
shadows enables quickly exploring all possible OOB compositions.

Our approach. We propose a new,non-sequential(non-modal) ap-
proach for creating OOB images. Our tool permits the user to mod-
ify any aspect of the composition at any time while automatically
maintaining geometric consistency. For instance when reposition-
ing the frame, both the frame’s shadow and the object shadowscast
on the frame are automatically updated, thus avoiding further man-
ual intervention. We achieve this with our new geometry-driven
frame positioning and shadow casting techniques.

After an overview of related work, we enunciate the problem and
the focus of this paper. Algorithmic details are presented in Sec-
tions 2.1-2.5, followed by comparisons with existing methodolo-
gies in Section 2.6. Results are shown throughout the paper and in
the accompanying video.

Related Work. A vast body of literature in computer vi-
sion and graphics have dealt with the problem of reconstruct-
ing 3D geometry from single or multiple images [6, 7, 9–12,
15, 19, 20] and so have many commercial products like Boujou
(http://www.2d3.com), PhotoModeler (http://www.photomodeler.com), and
Canoma (http://www.canoma.com). However, the problem we face in
this paper is new: we wish to edit a given image in a way that obeys
the scene’s underlying geometry without having to acquire or use
any 3D information about the scene itself. Specifically, we aim to
interactively extract the minimum 3D information needed toma-
nipulate inserted objects and cast convincing shadows. We achieve

Description
Votes

Like OK Dislike

2D (flat) frame, no shadows 27% 53% 20%

3D frame, with shadows 66% 21% 13%

Table 1: Results of our survey. “Like”, “OK” and “Dislike” votes accu-
mulated over 539 participants and 5 different image sets. A majority
expressed a marked preference for the most complete OOB compo-
sition; i.e. with 3D frames and cast shadows for both the frame and
objects (2nd row).

this by borrowing from existing computer vision techniquesand
developing new ones.

The work on spidery mesh [11] and automatic photo pop up [10]
are related since they produce depth perception by enablinglim-
ited view point change without explicitly reconstructing the full 3D
geometry. Also, Chuanget al. [5] invoke 3D perception by using
apparent movement in images. In contrast, our technique enhances
3D perception within single, static images, rendered with conven-
tional display or printing technology.

Problem Statement and Goals.OOB photography comprises the
synergistic effect of 3D perception from a variety of individual ef-
fects: depth discontinuity, flat, 2D/3D and planar/curved frames,
strategically placed shadows, etc. We conducted a preliminary sur-
vey to ascertain the relative importance of some of these effects in
an OOB image and to investigate how an OOB tool could be used
for commercial applications. 539 individuals participated in this
web-based survey over two weeks. They were asked i) whether
they liked the OOB effect and whether they would be interested in
creating such images themselves, ii) to compare and vote forthe
best among two OOB variants and iii) to brainstorm the use of such
images. Participants also voluntarily submitted verbose comments
at every stage. Table 1 summarizes the result.

Participants clearly preferred the OOB variant with both 3Dframes
and cast shadows for both frame and foreground objects2. Their
comments also revealed an overall interest in the OOB framework3,
although a few were not very impressed4. Many interesting appli-
cations were suggested: advertising campaigns, card making, web
design, business presentations, etc. Thus, in this work we focus
on facilitating the two effects that were voted to contribute consid-
erably to the OOB effect: geometrically consistent 3D frames and
cast shadows.

2 FROM PHOTOGRAPHS TO OOB IMAGES

This section outlines the user interface for our OOB tool as well as
technical details of the general object insertion and shadow synthe-
sis algorithms.

2
“I like the third [image] because it doesn’t seem like it’s cut and paste, the shadow makes it realistic”

3
“Being able to turn some of the pictures into 3D works of art like these would be great. I can only imagine the

amount of time it would take in a photo editor to perform this manually”
4

“I don’t like very much edited photos with real humans”

Figure 4: A snapshot of our tool. Creating OOB images involves
quick and intuitive 2D manipulations. See also fig. 2.

2.1 The tool’s user interface

A snapshot of our OOB software tool is shown in fig. 4.

Frame placement. The user places a 3D frame in the image by
simply dragging its four corners; its apparent thickness and depth
are automatically determined to make it look consistent with the 3D
geometry of the existing scene. The actual color, thickness, depth
and shape of the frame can be modified at any time. This topic is
discussed further in Section 2.2.

Foreground selection. Foreground objects are extracted in the
form of an alpha matte by a brush-based interface using existing
techniques. See Section 2.3 for details.

Shadow generation and manipulation.Cast shadows are gener-
ated for the frame and the selected foreground objects. An intuitive
user interface allows the user to select the position of the illuminant
(e.g.the sun), the shadow sharpness, etc. Shadows may be directly
dragged with the mouse. Section 2.5 discusses the details.

Background editing. The original background is replaced by a
new image, gradient effects or some transformation of the original
image itself. Details are discussed in Section 2.4.

Non-sequential interaction. An important aspect of our work is
that the user is free to editany aspect of the composition inany
order. Corresponding geometric entities are automatically updated.

2.2 Computer assisted frame placement

The inserted frame provides important 3D cues as it producesnew
occlusions between itself and the foreground objects, and makes
them stand out. Our survey showed that additional frame depth, i.e.
a 3D instead of 2D frame, was one of the factors that improved the
3D feel of the final composition. Thus, correct perspective render-
ing of all sides of the frame is critical to produce a convincing illu-
sion. We assume the frame to be a convex quadrilateral. More gen-
eral shapes can be handled by parameterizing them as inscribed in
such a quadrilateral (currently the tool also allows elliptical frames).

Our goal is to design a simple, interactive interface to place a 3D
frame within an existing image, consistent with the scene geometry.
One option could be to provide a conventional 3D track-ball inter-
face. However this method offers too many unnecessary degrees of
freedom (6 DOFs for 3D pose and also camera parameters). Also,
3D interface metaphors do not blend well with the otherwise 2D
operations in OOB creation. Alternatively, a simple 2D polygon-
drawing interface could be adopted in which the user may freely
move all vertices of the polygon (16 for a 3D frame). This interface
places the burden of achieving correct perspective on the user.

We propose an easy-to-use 2D interface which exposes only the
minimum, necessary parameters to generate convincing 3D frames.

The user only needs to position the four corners of the frame’s front
face and adapt the frame’s thickness and depth. The positions of
the remaining 12 corners in the image are automatically computed
via the “calibrated” geometric approach described next. Fig. 5 il-
lustrates an example and motivates the importance of our approach.

2.2.1 Camera calibration for frame rendering

Camera calibration is a common task in computer vision. Its goal
is to compute the cameraintrinsic andextrinsicparameters. A con-
ventional approach exploits cues in the image like parallelism and
orthogonality, e.g. of a building, to perform this task [9].Since
such cues might not be present in a generic image, the user hasto
provide them. In our work we only use the drawn frame’s front face
(i.e.only four corners) to estimate all camera parameters. Unfortu-
nately, the camera has more DOFs than the constraints provided
by the imaged frame. Therefore, reasonable prior values must be
assigned to a number of geometric unknowns such as the pixel’s
aspect ratio and skew. Our contribution is a closed-form, real-time
solution for the remaining unknown camera parameters.

Assuming a conventional pinhole camera model, a world 3D point
X is projected into the corresponding image pointx as

x ∼ K[R|t]X (1)

where∼ indicates equality up to scale. The pointsx andX are rep-
resented by 3- and 4-vectors, respectively, in homogeneouscoordi-
nates. The 3×3 matrixR represents the camera rotation (3 DOFs).
The 3-vectort represents the camera center, and the 3×3 matrixK
represents the camera intrinsics.

Intrinsics. We start by estimating the intrinsics matrixK. A com-
monly used model forK is:

K =





fx σ px
0 fy py
0 0 1



 . (2)

The principal point(px, py)
⊤ is chosen to be the center of the image

by default. Also, the camera CCD pixels are safely assumed tobe
square,i.e. fx = fy = f with skewσ = 0. This leaves us with the
focal lengthf as the only remaining unknown. The assumption that
the four corners of the frame’s front face form a rectangle provides
a quadratic constraint onf from which a closed form solution is
computed (Details in appendixA5).

Extrinsics. To determine the extrinsic parameters (rotation and
translation) we assume that the frame: i) lies on theZ = 0 plane
in the world coordinate system, and ii) forms a parallelogram with
unknown heighth, length l and skews. Ideally we would like to
enforce its skews= 0 (i.e. the frame being a proper rectangle in-
stead of a parallelogram); however, that would negate guarantees of
a solution to the problem in all cases (selectings as one additional
unknown is the best choice to guarantee a closed-form, consistent
solution in 3D and yet give freedom to the user to drag the 4 points
independently). Formally, the four frame corner points are:

X1 = (0,0,0,1)⊤ , X2 = (l ,0,0,1)⊤ ,

X3 = (l +s,h,0,1)⊤ , X4 = (s,h,0,1)⊤

Consequently, the four frame sides are(X1,X2), (X2,X3),
(X3,X4), (X4,X1). This provides a total of 9 unknowns:l ,s,h,R (3
DOFs) andt (3 DOFs). Letx1···4 be the corresponding four image
points dragged by the user. The 8 linearly independent equations
provided by eqn. (1) suffice to solve for the 9 unknowns, sincethe

5Supplementary material can be found at
http://research.microsoft.com/en-us/projects/i3l/i3l oob.aspx

Figure 5: Effect of camera calibration on the geometry of the inserted 3D frame. (a) The frame rendered with incorrect camera parameters.
The borders do not have uniform width and the internal sides do not look right. (b) The frame using our calibration technique and a fixed focal
length of the camera, corresponding to a standard 50mm lens (f = 750 pixels). The borders’ widths are correct but the internal sides still look
unrealistic. (c) Our final result. Correct estimation of the camera intrinsic parameters yields a correct looking 3D frame. See Section 2.2.

Figure 6: Constrained frame manipulation. (a) The frame is con-
strained to have two sides intersect at a point on the horizon line. This
ensures geometric consistency as it implies that in the world these
two sides of the 3D frame are parallel to the ground. (b) Allowing
unconstrained placement may lead to inconsistent-looking frames.

overall scale can be set arbitrarily (e.g.by imposing the extra con-
straint||t||2 = 1). Appendix B6 shows how a closed form solution
for all camera parameters is obtained for any givenx1···4. This is
true even for extreme cases like when two frame sides intersect each
other in the image; in which case, one or more of the 3D corners
lie behind the camera. Finally, to add realism the frame faces are
shaded based on the surface normals.

Note that our method of computing camera parameters from the
drawn frame is not guaranteed to acquire the parameters of the ac-
tual camera which captured the picture. This is largely because the
user places a frame in the image without any knowledge of actual
camera parameters, solely so that it looks consistentvisually. This
possible discrepancy is not a problem, and may even be exploited
to our advantage. For instance, the selected frame may yielda con-
siderably shorter focal length than the true one and hence may be
used to deliberately enhance perspective distortion to strengthen the
“pop-out” effect.

2.2.2 Constraining the frame geometry

So far we have allowed the user to position the frame freely inthe
image. However, there are many scenarios where strong geometric
cues (e.g.the ground plane or vertical structures) are visible in the
image. In such cases the inserted frame should look “consistent”
with the scene geometry.

Our tool implements the most common scenario,i.e. that of a vis-
ible ground plane. As shown in fig. 6 if the vanishing line of the
ground plane (the horizon line) is known (automatically computed
or manually entered) then the frame can be constrained to have two
of its sides intersect at a point on the vanishing line (fig. 6(a)). This
corresponds to imposing that two sides of the frame are parallel to
the ground and helps ensure scene consistency. We can also force
the bottom side of the frame to lie on the ground (as in fig. 2(d)). To

6Supplementary material can be found at
http://research.microsoft.com/en-us/projects/i3l/i3l oob.aspx

Figure 7: Camera calibration for 3D object insertion. Once the
camera and the ground plane have been calibrated, additional 3D
objects can be inserted into an existing image. (Left) a wire-frame
box was added in a perspectively correct manner to the picture in fig.
13. (Right) As a proof of concept, we also inserted Stonehenge into
this picture. Light position and color were adjusted manually.

achieve this we compute the normal to the ground plane asn= KT l,
given the horizon linel and the camera intrinsicsK [9].

2.2.3 Camera calibration for 3D object insertion

The approximate camera calibration allows us to insert generic 3D
objects into the scene easily. Specifically our calibrationprocedure
provides us with all the terms in eqn. 1, as well as the 3D position
of the ground plane. With this, it is possible to projectany3D point
in the world coordinate system into the image. Fig. 7 shows an
example.

2.3 Foreground extraction

GrabCut [21] is used to interactively select the foregroundregions
and extract their alpha matte. Foreground objects are thosewe wish
to have “popping-out”. Note that the user only needs to extract
accurate boundaries in those areas outside the frame; otherbound-
aries can be coarse. This reduces the amount of manual interaction
and increases speed of execution. The ability to iterate back and
forth between the different algorithmic steps means that only min-
imal segmentation effort is required to achieve the desiredresult.
For high resolution images, we use 2-scale multi-resolution energy
minimization [16] for efficiency.

2.4 Background editing
Strong 3D effects are achieved by replacing the original background
with a simple, uncluttered one. This focuses the viewers’ attention
onto the foreground object and removes distracting background el-
ements, as dictated by basic photographic principles. Thisstrategy
is supported by the many OOB examples on Flickr. Alternatives in-
clude modifying the original background (e.g.frosted glass effect)
or replacing it with an entirely new image (example in fig 14).

2.5 Shadow generation and editing
Most subjects in our survey considerably preferred OOB images
with cast shadows. In fact, shadows provide important visual cues

Figure 8: Consistency of directional cast shadows. (a) A compos-
ite image where the left person (and her shadow) has been added
to an existing image. It is visually disturbing as the two shadows
are inconsistent. This could be a potential result of [14] assuming a
perfectly extracted and color-corrected shadow. (b) A geometrically
consistent composition created with our tool. Consistent shadows
improve the realism of the final image. Incorrect internal shading and
attached shadows are less noticeable as shown in [3].

that “anchor” the object onto the ground plane and enhance a com-
position’s overall sense of realism.

There has been some debate about how realistic synthesized shad-
ows have to be in order to deceive the human eye. For instance,Ca-
vanaugh [3] observed that incorrectattachedshadows andshading
may sometimes go unnoticed. However OOB images often con-
tain strongcastshadows of nearby objects against a clean graphics
background, making inconsistencies more prominent and thecom-
position unrealistic (see fig. 8). Therefore we believe thata prin-
cipled approach to generating realistic shadows is essential for a
convincing illusion. We propose simple algorithms to generate and
manipulate cast shadows effectively. These algorithms transcend
OOB photography; they can be used directly in generic image com-
position. Fig. 8 shows an example.

If strong cast shadows for the foreground object already exist in the
original image, we can simply “import” them by means of existing
brush-based techniques [22] (e.g.fig. 1 leftmost image). However,
shadow matting is often difficult (e.g. the original ground plane
is highly textured or bumpy - see original images in fig. 13), or
even impossible (e.g.the shadow is very faint or not visible at all).
Also, shadow matting techniques are unsuitable if shadows have
to be projected onto the inserted frame. Thus, synthesizingnovel,
realistic-looking shadows is desirable.

To this purpose one could think of first reconstructing the complete
3D scene and then using ray-tracing to generate the shadow ofin-
terest. However, despite recent advances, existing techniques for
3D reconstruction fromsingle images [6, 10, 12, 20] are still com-
plex and thus not suitable for our purposes. Moreover, they are
often an “overkill”. In fact, as shown later, knowing the complete
scene geometry is often unnecessary. Since the end product is an-
other 2D image we keep all operations in 2D by means of planar
projective transformations. Note that as we do not need explicit 3D
reconstruction we can also bypass the task of accurately calibrating
the camera which captured the original picture. Instead, weuse the
approximate calibration described in Section 2.2.1 to initialize the
unknown degrees of freedom of the necessary projective transfor-
mations. Next we describe the details of our algorithm.

2.5.1 Casting the frame’s shadow

By construction the frame’s 3D position with respect to the ground
is known (Section 2.2). Given the position of the light source, the
shadow cast by the frame onto the ground is promptly computedby
ray-casting (this can also be formulated as a projective matrix trans-
formation [1]). The frame’s internal self-shadows are computed in
the same way.

The position of the frame shadow is easily manipulated via a con-
ventional click-and-drag interface. This corresponds to changing
the position of the illuminant, assumed to lie on a hemisphere with
infinite radius.

2.5.2 Casting the object’s shadow

In contrast to the frame, the 3D coordinates of the segmentedfore-
ground object(s) are not known. Hence a more elaborate approach
is necessary.

The following schematic figure illustrates the geometry of shadow
casting for a simple planar object.

In the image plane, the mapping between points on the object and
the corresponding shadow points can be compactly describedby
a planar homology[6]. More formally, given the 2D image of
an object pointp (in homogeneous coordinates), the correspond-
ing shadow pointps is given byps = Hp, with H a 3× 3 matrix
representing the homology transformation. A homology matrix H
has 5 DOFs and can be parameterized by a vertexv, an axisa and
a characteristic cross-ratioµ as:

H = I + µ
va⊤

v⊤ ·a
(3)

whereI is the identity matrix.v is the image of the light source
anda is the image of the line of intersection of between the object’s
plane and the ground plane. The scalar parameterµ encapsulates
all remaining 3D DOFs such as camera intrinsics, distance ofthe
light source, etc. In fact, there are many camera/object geometric
configurations which all produce the same 2D image. A homology
represents theminimalmodel that provides the user with sufficient
control to generate and manipulate the shadow ofanyplanar object.

In theory we can use the above approach to cast shadows of objects
approximated as triangle meshes, where each triangle has its own
homology. However, having 5 DOFs per triangle would overwhelm
the user. Therefore, we attempt to model each object with as few
planes as possible (an approximating plane may pass throughthe
middle of the 3D object and not correspond to any existing sur-
face.). More precisely, we split the extracted 2D object mask into
a series of vertical strips in the image, each with its own homol-
ogy, as shown in fig. 9. The bottom sides of these strips are their
intersections with the ground, and thus define the series of axes of
the respective homology matrices. In practice, manipulating these
axes, together with the 2D light position is a sufficiently flexible,
yet simple interface.

This approach works well for a wide variety of complex objects
(see fig. 9). The exceptions are objects where i) the depth variation
within a single strip is very large and ii) such depth variation shows
up in the cast shadow. Fig. 9(c,d) provides an example in which the
front legs of the spider are poorly approximated by a single plane.
Using multiple planes suffice to generate realistic shadowsfor such
objects (fig. 9(e,f)). (This is related to the observation in[4] that
for some objects, morphological details of their shadows are less
important.) More examples with a single axis are shown in fig.1(2
middle images), fig. 3, and fig. 14(dinosaur and playground).

Figure 9: Casting shadows via homologies. To cast shadows, an object is approximated by a series of planes. Such planes are vertical strips
which subdivide the object mask. Results are shown for two planes (a,b), a single plane (c,d) and four planes (e,f), where the respective left
image is for illustration purpose only. The single axis in (c,d) was computed automatically. However, it approximates the underlying 3D geometry
poorly (note the lack of shadow for the spider’s front leg). Using more planes (e,f) leads to a better 3D proxy and thus more accurate results, at
a cost of more complex interaction. Since the shadow contact points on the ground (tips of legs) are most important to be correctly detected, we
advise the user to place an axis through them.

User interaction. The following series of operations take place
from the user’s point of view: i) an object is segmented; ii) by de-
fault a the cast shadow is computed automatically by using a sin-
gle plane whose axis andµ parameter are computed automatically.
This step requires no user input; iii) if the shadow looks unsatisfac-
tory, the user can move the position of the axis or add more axes.
The user can also move the light source, changeµ or locally edit the
shadow with a brush interface. To our knowledgeonly the single
plane approach with manually set parameters has been described
before [2]. Next, we describe our approach for automatically pre-
dicting the homology’s axis.

Estimating the homology axis.Given an unknown 3D object we
wish to automatically estimate the optimal, single approximating
plane; i.e. the plane which cuts through the object and minimizes
the depth error. This is a challenging task. However we observe
that a 3D plane which is parallel to the image plane is often a
good choice, yielding reasonable shadows. A more importantob-
servation is the following: consider all 3D points of the object’s
surface which touch the ground. We call themground contact
points. A subset of these points areshadow contact points, where
the light source transitions from being “visible” to “invisible” (the
light source is visible from a 3D point if the 3D segment connecting
the light and the point does not intersect the object, see fig.10). The
shadow must “start” at these points to have the object appear“an-
chored” to the ground. This is the key difference between oursolu-
tion and the naive one in fig. 11. The importance of these shadow
contact points is related to the study in [13] which showed (to some
extent) how the presence of such contact points provides approx-
imate information about the object’s height. We detect the most
likely shadow contact points and fit an axis through them. Thelight
is assumed in a default position.

We detect ground contact points by: i) projecting the objectmask
onto the ground, using our “roughly” calibrated geometry; ii) or-
thographically projecting the light and the camera positions onto
the ground (see fig. 10), and iii) assigning to each pointp on the
silhouetteS of the projected object mask a beliefg for it being a
ground contact point, as follows:

g(p) = e
−

(

h(p)−1
0.2

)2

with h(p) = (py −ymin)/(ymax−ymin)

whereymin,ymax are the vertical coordinates of the bounding box
of S. The formula forg is based on the observation that as the
viewing direction of the camera is typically not from the top, pixels
towards the bottom are more likely on the ground (potentially the
object-class-specifictraining approach of Lalondeet al. [14] could
improve this step further). Next, we estimatev(p) which is the
belief for a pointp∈Sbeing visible from the light source, assuming
it to be on the ground plane. We usev(p) = 1−g(q), whereq is the
first intersection point withSof the ray joining the light source and
p (andv(p) = 1 if p = q). Finally, we compute a functiont(p) that
has a high value (1.0) if the light ray at pointp is tangential toS, and
a low value (e.g.0.1) otherwise. (We first smooth the object mask

Figure 10: Predicting the homology axis. Explanation of the re-
sults presented in fig. 11(c). The object mask projected onto the
ground plane is visualized in white. The red curve visualizes the
quantity g(p) (brighter red indicates points which are more likely to
be ground contact points). The cyan dots indicate points where the
light direction is tangent to the silhouette (where t(p) = 1); i.e. poten-
tial shadow contact points. Our estimated axis (green line) passes
through the true shadow contact points (both v(p) = 1). A third tan-
gent point (above axis) is correctly discarded by our method, due to
a low visibility cost (v(p) = 0.17 in that case).

Figure 11: Comparison of shadow synthesis algorithms. (a) The
original image with a cast shadow. (b) Naive shadow obtained by
simply scaling and rotating the object mask. The shadow looks incor-
rect, especially near the feet. (c) Our perspectively correct shadow
generated using an automatically estimated axis and scale factor µ .

with a Gaussian(σ = 3) to condition the tangent point detection
algorithm.) We now determine the pair of pointspi (i ∈ 1,2) that
maximizes∏i g(pi)v(pi)t(pi) (see fig. 10). The axis we seek is the
line passing through this pair. For stability we constrain the point
pair to have a minimum distance (50% of the maximum distance
of any two tangent points) and the axis to have a minimum angle
(10o) with respect to the camera direction (in case no pair satisfies
these constraints, an axis parallel to the image plane and through
the optimal pointp is chosen).
The algorithm described above has been found to work well on
many examples of up-right objects (e.g.fig. 11, fig. 2, and dinosaur
in fig. 14). Our algorithm could be extended to predicting multiple
axes; however we found it better to leave this choice to the user.

Initialising µ. In order to complete the homology estimation we
also need to compute the scalarµ. In the single plane (axis) case
µ is initialized by assuming the plane to be perpendicular to the
ground. Exploiting our initial 3D set-up, we first project the axis
onto the ground plane. Then a new 3D point is computed by moving
an arbitrary 3D point lying on the axis perpendicular to the ground.
This new point and its shadow gives two linear constraints onH,

Figure 12: Shadow transfer from the ground plane (a) onto an arti-
ficially added plane (b). (c) Let HO and HF be the homologies of the
shadows of two objects O and F onto the ground respectively. Then
the homology for the shadow of O onto F is given by H−1

F HO.

sufficient to deriveµ. If the result is unsatisfactory, the user can
change the value ofµ interactively.

Multiple planes. Although the axes for multiple planes are interac-
tively selected, the correspondingµ ’s are computed automatically.
The value ofµ for the first plane is given as described earlier. Now,
let p be the image of a 3D point which lies at the intersection of the
first plane and its neighboring plane. As above,p and its shadow
provide two linear constraints which suffice to obtain the value of
µ of the neighboring plane. By repeating this operation for pairs of
neighboring planes all values ofµ are derived.

2.5.3 Shadow manipulation and transfer

As with frame shadows, object shadows can be moved simply by a
“click-and-drag” interface. If the light is dragged to lie on or near
the ground plane, the cast shadow degenerates to a line. While this
is artistically undesirable, it can easily be avoided. Furthermore, the
appearance of the shadow may be edited using a 2-brush interface
(pen/erase). Typically, this step is used to remove minor inaccu-
racies in the shadow mask. Such edits are projected back onto(a
copy) of the object mask (pre-homology warping). This allows us
to move the shadow consistently after its mask has been manually
edited. Such an operation would be very difficult to achieve with
an explicit 3D reconstruction since the user may provide conflicting
edits after moving the shadow. Our homology-based approachalso
allows us to cast the object shadow onto the frame (see fig. 12 for
an example).

Other parameters like darkness, opacity and gradient of theshadow
can be interactively controlled to improve its appearance.These
DOFs correspond to changing the area of the light source, strength
of ambient (e.g.reflection from the sky) and indirect lighting. Sim-
ilar to [14], the shadow gradient is computed as a function ofthe
distance from the object mask, modulated by the belief of an object
mask point to be a ground contact point. Similar parameters and
effects have been used to alter existing shadows in images [18] or
to produce customized non-photorealistic shadows [8].

2.6 Comparison with Existing Approaches

Our techniques can be seen as building upon existing features of
conventional photo editors, and adding new features to focus on
rapid OOB prototyping. Specifically we impose critical dependen-
cies between image layers to make them geometrically and mu-
tually consistent, and facilitate 3D-aware operations like shadow
creation and movement which greatly reduce the time required to
create and switch between OOB variants. Without these depen-
dencies, a user would have to resort to independently manipulating
each layer (shadows, frames) to move from one OOB variant to an-
other. Not only is this redundant, but also expensive because mov-
ing a frame in existing tools involves redrawing it with the correct
perspective, and moving a shadow involves actually repainting it

Comparison for changing one OOB variant into another
Change from Change to Actual task Gimp (sec) Our tool (sec)

fig. 3(middle) fig. 3(right) Move shadow 105 5
fig. 3(middle) fig. 3(left) Move frame 115 11

Comparison for creating OOB images from scratch
Individual task Gimp (sec) Our tool (sec)

Frame editing 66 11
Shadow editing 112 15
Foreground selection 136 22
Remaining tasks 37 7
Total time 352 55

Table 2: Comparing speed with existing tools.

from scratch. Also, the burden of making them look realisticrests
on the artistic and pixel-painting abilities of the user.

To demonstrate this, we asked an experienced user to create new
OOB images and change one OOB variant to another using our
tool and the popular photo editor Gimp. Table 2 shows the results
of this rudimentary experiment. The speed-ups in the upper table
are mainly because the shadow had to be repainted from scratch
and the frame had to be redrawn with the correct perspective.
The lower table shows timings averaged over creating fig. 1(third),
fig. 3(middle) and fig. 15(left). It shows how the two OOB tasksthat
we focus on can be completed significantly faster in our tool than
in Gimp. It should be noted that the time for frame manipulation
in Gimp is without any “trial-and-error”, and the faster timings for
foreground selection in our tool are because of Grabcut [21]which
is not a contribution of this paper.

Thus we believe many ordinary users who would not otherwise find
the OOB creation process worthwhile due to the above limitations
of current work-flows and tools would now be willing to devotethe
minimal effort required by our tool to create them.

Figure 13: Some original images used to create OOB images in
fig. 3, 9, and 14. Note that the objects’ shadows are often not strong,
or cast on non-flat ground.

3 FURTHER RESULTS , L IMITATIONS AND FUTURE WORK

Resulting OOB pictures of different kinds are shown in
figs. 1, 3, 5, 9, 14, 15 and in the accompanying video. In contrast,
the original photographs (examples in fig. 13) look rather flat. The
time to create these results varied between 15 seconds and about a
minute.

A current limitation of our tool is its ability to handle onlypla-
nar frames. An example with a non-planar frame is shown in fig.
14(rightmost), which is created using a conventional photoeditor.
Adding this feature would only involve implementing a more com-
plete curve drawing interface.

An important outstanding question is: “For which pictures does the
OOB effect work?” In general, landscapes and pictures with no
prominent foreground objects are bad OOB candidates. Fig. 16 il-
lustrates such an example. Firstly, the oranges do not form an inter-
esting, prominent foreground. Secondly, the purpose of theframe
is to emphasize existing large depth discontinuities (foreground-to-

Figure 14: Out of Bounds pictures from photographs of very different nature. The rightmost image with a curved frame was not created with
our existing tool, but a conventional photo editor, and motivates future development.

Figure 15: Transforming a video sequence into an Out of Bounds slide sho w. (please see accompanying video)

Figure 16: Limitations. An attempted OOB picture (left) from an
image with no prominent foreground object (right).

background), which are not present in this case (the frame passes
straight through the oranges’ box in 3D).

These insights pose interesting research questions: “How can we
automatically detect good OOB candidate pictures?” Ideally, the
OOB tool should be able to browse through users’ photo collections
and select OOB candidate images automatically. Another newline
of research could be to simplify a video into a static OOB scene,
or to create a new OOB video with animated frames. Handling
video is in many ways simpler since depth cues, such as occlusion,
can be extracted more easily due to frame coherence, thus possibly
enabling fully automatic frame placement.

4 ACKNOWLEDGEMENTS

We are grateful to Rick Szeliski for his useful inputs and John Winn
for lending his voice in the accompanying video. We also thank the
anonymous reviewers for their helpful comments and critique.

REFERENCES

[1] J. Blinn. Me and my (fake) shadow.IEEE Comput. Graph. Appl.,
8(1):82–86, 1988.

[2] X. Cao, Y. Shen, M. Shah, and H. Foroosh. Single view compositing
with shadows.The Visual Computer, 21(8-10):639–648, 2005.

[3] P. Cavanaugh. The artist as neuroscientist.Nature, 434:301–307,
2005.

[4] P. Cavanaugh and Y. Leclerc. Shape from shadows.J. Experimental
Psychology, 15:3–27, 1989.

[5] Y.-Y. Chuang, D. B. Goldman, K. C. Zheng, B. Curless, D. H.Salesin,
and R. Szeliski. Animation pictures with stochastic motiontextures.
In SIGGRAPH, pages 853–860, 2005.

[6] A. Criminisi. Accurate Visual Metrology from Single and Multiple
Uncalibrated Images. Springer Verlag, 2001.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering
architecture from photographs: a hybrid geometry- and image-based
approach. InSIGGRAPH, pages 11–20, 1996.

[8] C. DeCoro, F. Cole, A. Finkelstein, and S. Rusinkiewicz.Stylized
shadows. InProc. NPAR, pages 77–83, 2007.

[9] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edi-
tion, 2004.

[10] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up.
pages 577–584, 2005.

[11] Y. Horry, K. ichi Anjyo, and K. Arai. Tour into the picture: using
a spidery mesh interface to make animation from a single image. In
SIGGRAPH, pages 225–232, 1997.

[12] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching interface
for 3d freeform design. InSIGGRAPH, pages 409–416, 1999.

[13] D. Kersten, D. Knill, P. Mamassian, and Bulthoff. Illusory motion
from shadows.Nature, 379(6560):31, 1996.

[14] J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn,and A. Cri-
minisi. Photo clip art. InSIGGRAPH, 2007.

[15] D. Liebowitz, A. Criminisi, and A. Zisserman. Creatingarchitectural
models from images. InProc. Eurographics, pages 39–50, 1999.

[16] H. Lombaert, Y. Sun, L. Grady, and C. Xu. A multilevel banded graph
cuts method for fast image segmentation. InProc. ICCV, pages 259–
265, 2005.

[17] D. Marr. Vision: a computational investigation into the human repre-
sentation and processing of visual information. W. H. Freeman, San
Francisco, 1982.

[18] A. Mohan, J. Tumblin, and P. Choudhury. Editing soft shadows in a
digital photograph.IEEE Comput. Graph. Appl., 27(2):23–31, March
2007.

[19] B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based modeling
and photo editing. InSIGGRAPH, pages 433–442, 2001.

[20] M. Prasad and A. Fitzgibbon. Single view reconstruction of curved
surfaces. InProc. CVPR, pages 1345–1354, 2006.

[21] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive fore-
ground extraction using iterated graph cuts. InSIGGRAPH, pages
309–314, 2004.

[22] T.-P. Wu, C.-K. Tang, M. S. Brown, and H.-Y. Shum. Natural shadow
matting.ACM Trans. Graph., 26(2):8, 2007.

