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the proposed algorithm does not require thea priori knowledge of
input signals, it is attractive for use in practical applications where
the environment is unknown or space varying.
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Nonexpansive Pyramid for Image
Coding Using a Nonlinear Filterbank

Ricardo L. de Queiroz, Dinei A. F. Florêncio, and Ronald W. Schafer

Abstract—A nonexpansive pyramidal decomposition is proposed for
low-complexity image coding. The image is decomposed through a non-
linear filter bank into low- and highpass signals and the recursion of the
filterbank over the lowpass signal generates a pyramid resembling that
of the octave wavelet transform. The structure itself guarantees perfect
reconstruction and we have chosen nonlinear filters for performance rea-
sons. The transformed samples are grouped into square blocks and used
to replace the discrete cosine transform (DCT) in the Joint Photographic
Expert Group (JPEG) coder. The proposed coder has some advantages
over the DCT-based JPEG: computation is greatly reduced, image edges
are better encoded, blocking is eliminated, and it allows lossless coding.

I. INTRODUCTION

Multiresolution techniques provide a convenient way of exploring
the several levels of spatial redundancy existing in most images. The
Laplacian pyramid [1] and wavelet transforms [2] became quite pop-
ular for image processing and coding. The Joint Photographic Expert
Group (JPEG) baseline system (DCT-JPEG) [3] is ade factostandard
for lossy image compression. However, it is based on the discrete
cosine transform (DCT), which is somewhat expensive to compute
and can also cause ringing and blocking artifacts [3]. In this paper,
we present a JPEG-based coder, which uses a nonlinear transform
instead of the DCT. The transform is based on a multiresolution
filterbank, does not require multiplications or floating point numbers,
and allows lossless coding. Comparison to the DCT-JPEG at several
bit rates shows the superiority of the proposed coder, both objectively
and subjectively. The JPEG standard also includes a dedicated mode
(non-DCT-based) for lossless coding [3]. We show that it is also
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(a) (b)

(c) (d)

Fig. 1. Interpolation approach. (a) Polyphase components. (b) The samples
x00(n) (marked with�) are found by simple subsampling ofx(n). (c) The
samplesx00(n) are used to interpolate (predict) the value of the samples in
x11(n) (marked with ). (d) The samples ofx00(n) andx11(n) combined
are used to interpolate (predict) the values ofx01(n) and x10(n) (both
marked �). Note that the interpolation step in (c)!(d) is similar to the
interpolation step in (b)!(c) if we just tilt (c) by 45�.

Fig. 2. Generation of a multiresolution pyramid.

outperformed by the proposed nonlinear coder. Besides, since no
dedicated lossless mode is required, the coder is also convenient for
nearly lossless coding.

II. THE TRANSFORM

Perfect reconstruction (PR) in critically decimated systems is
generally guaranteed by imposing conditions on the filter coefficients.
When dealing with nonlinear filters, general conditions are still
unknown [4]. For this reason, nonlinear filterbanks were restricted
to noncritically decimated cases [5], [6]. Recently, a new approach
for critically decimated nonlinear filter banks has been introduced
[7], [8], where PR is obtained by imposing restrictions on the filter
structure instead of on the filtercoefficients. However, the structure
in [7], [8] has been used before with linear filters [9]–[13].

Let the picture elements (pixels or pels) in the input image be
denoted byx(n1; n2) = x(n). The two-dimensional (2-D) polyphase
components of the signal (4-channels) are given byxi(m) = x(2m+
i), for i = [i0; i1]

T , ik 2 0; 1 as shown in Fig. 1. Using the same
notation for the transformed signaly(n), the decomposition (analysis)
for one pyramid level can be described as

y00(n) =x00(n) (1)

y11(n) =x11(n)� F0[x00(n)] (2)

y01; 10(n) =x01; 10(n)� F1[x00(n); x11(n)] (3)

whereFi is any linear or nonlinear function andx01; 10(n) is the
quincunx grid formed byx01(n) and x10(n). It is clear thatx(n)
can be perfectly reconstructed since we can always findxij(n)
as a function ofyij(n) and of previously reconstructed polyphase

Fig. 3. Algorithm for the pyramidal decomposition.

Fig. 4. Illustration of a 3-stage decomposition. Samples labeled “n+ 1”
are transformed by computing the interpolation error using the four nearest
samples among those labeled “1” through “n.” We can also group the samples
into blocks, as indicated.

components (synthesis). The relative spatial arrangement between the
two rectangular gridsx00 and x11 is the same as that between the
two quincunx gridsx00; 11 andx01; 10. The difference is a rotation
of 45�. Therefore,F1 can be essentially the same asF0. We further
extend the notation to define

xs; i i (n0; n1) = x(2sn0 + 2s�1
i0; 2

s
n1 + 2s�1

i1): (4)

As in the wavelet and pyramid transforms [1], [2], one can connect
the lowpass output of a stage directly to the input of another stage
as shown in Fig. 2.

In image coding applications, the subbands are quantized. We can
avoid excessive accumulation of quantization error across subbands
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Fig. 5. Typical support region of the interpolation filters.

Fig. 6. The structure to generate the filterbank. DEMUX is a 2-D demul-
tiplexer separating input into polyphase components. MUX is a multiplexer
to group the components. The branches are labeled to show their respective
polyphase components.

by using a feedback loop (local reconstruction) similar to that used
in differential pulse code modulation (DPCM) systems. Furthermore,
Fi should be a good interpolator in order to reduce the information
sent along the subbands. The description of the analysis process is
given in Fig. 3, whereQn represents the quantization process at the
nth step. For example, for uniform quantizers with step size�n,
Qnftg = round(t=�n) andQ�1n ftg = t�n. For S = 3 (a depth-3
decomposition), an example of the sequence of pixels used is given
in Fig, 4. In this figure, samples labeled “1” through “n” are used to
interpolate samples labeled “n+ 1.” This pyramid is similar to the
one proposed by Endoh and Yamazaki [9].

Note that we can group the samples into2S � 2
S blocks (as the

8 � 8 block in Fig. 4) to replace traditional block transforms.
The choice of the filters boils down to the choice of an interpolation

method. In Fig. 5, samples in the grid marked by� are available to
interpolate the sample marked with
. Typical support regions use
four or 16 neighbors. Simple nonlinear interpolation has been shown
capable of producing better results than much more complex linear
filters [14]. Instead of exploring a complexad hoc design for the
filter, we decided to settle on the median filter, which is one of the
simplest designs. For four input samples it is defined bydiscarding
the minimum and maximum values and averaging the remaining two.

Fig. 7. Implementation of the transform for each pixel (nonlinear filtering
and a subtraction). The four input pixels are compared in parallel generating
six output bits, which are fed into a simple logic unit that decodes the
addresses of the two intermediary samples (medians). Such addresses are
used to multiplex the numbers and feed them to the arithmetic unit which will
average them and subtract the pixel which is to be interpolated.

Fig. 8. Recursive procedure for JPEG quantizer table design. We start at a the
minimum distortion point and change the quantizers in an organized manner
in several trials. The new set of quantizers is chosen for the set corresponding
to a new(R; D) point whose variation(�R; �D) yields lower inclination.
The process is continued until the desired rate or distortion is reached. It is
straightforward to change the algorithm to start from the point of maximum
distortion.

The median interpolator is convenient for three main reasons. First, it
will likely discard uncommon pixels, e.g., an impulse coinciding with
the sampling grid (a linear filter would blur the impulse). Second, it
will perfectly interpolate sharp edges present in the image, whenever
the edge is horizontal, vertical or at 45� inclination. Last but not
least, it has low computational complexity. It can be implemented
using only four comparisons, one addition and one division by two
(i.e., a shift).

The complexity of the transform in aper-pixel basis is the com-
plexity of the interpolation plus a subtraction to find the interpolation
error. This is because all subbands are calculated essentially using
the same method but involving different pixels. Besides the low-
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TABLE I
PREDETERMINED QUANTIZER STEP SIZE SETS

Fig. 9. Plot of PSNR versus bit rate for several images. Dashed line is for regular DCT-based JPEG. Solid line is for recursively designed quantizers.
(*) are results found using quantizers from the pictorial set. (+) are results found using quantizers from the graphical set. In all cases, optimized Huffman
codes were used. Image cameraman has 256� 256 pixels while the others have 512� 512 pixels.

complexity software implementation, the proposed pyramid can be
easily implemented in hardware. A block diagram for one stage
is given in Fig. 6. The samples are demultiplexed into polyphase
components, making memory management easier. Fig. 7 shows a
simple scheme to implement the nonlinear filter, which also computes
the interpolation error. This diagram demands only four stages of very
simple logic units. It is suitable for hardware implementation (e.g.,
through ASIC or FPGA) for a fast pixel throughput rate because
most operations can be parallelized or piped. A key feature of
this interpolator is that, unlike most linear transforms, it can be
implemented using fixed point arithmetic in software or hardware
with B-bit precision, whereB is the number of bits per pixel of

the input signal. Therefore, the complexity per pixel is far below its
linear counterparts such as the cosine and the wavelet transforms.

The pyramid lies in the intersection of hierarchical filterbanks and
interpolative predictive systems. It can be viewed as a nonlinear
filterbank pyramid, being a particular association of building blocks
presented in [4]. However, it can also be viewed as a hierarchical
interpolative DPCM, since it applies the same concept used in
[10]–[13].

III. JPEG-BASED CODING

We embedded the proposed transform into JPEG. The idea is to
replace the DCT coefficients by our pyramid samples. This has been
done before by replacing the DCT by the discrete wavelet transform
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TABLE II
PERFORMANCE (INB/PIXEL) OF SOME LOSSLESSCOMPRESSORS. FOR

LOSSLESSJPEG WE ALWAYS SELECTED THE BEST PREDICTOR

(DWT) and using the rest of the JPEG coder [15], [16]. Here, we
follow the same principle: using three stages (S = 3) and grouping
the pyramid samples into blocks as shown in Fig. 4. We, therefore,
refer to our coder as NLP-JPEG.

The image is transformed using the nonlinear pyramid with quan-
tizer feedback, where2S+1 = 7 step sizes are selected for uniform
quantizers. The lowpass samples are encoded using a 2-D DPCM as

~xS; 00(n) =
1

2
(x̂S; 00(n� [

1

0]) + x̂S; 00(n� [
0

1])) (5)

yS; 00(n) =xS; 00(n)� ~xS; 00(n) (6)

ŷS; 00(n) =Q
�1

1 fQ1fyS;00(n)gg (7)

x̂S; 00(n) = ŷS; 00(n) + ~xS; 00(n) (8)

where we encode the value ofQ1fyS; 00(n)g. The transformed
samples are grouped into blocks of2S � 2S = 8 � 8 samples as
in Fig. 4. For each block, the quantized samples are reorganized
into a vector. The samples are scanned from those labeled “1” to
those labeled “7” in Fig. 4. The quantized samples are encoded using
standard JPEG entropy coding based on Huffman codes.

The DCT-JPEG employs 64 uniform quantizers (one for each DCT
coefficient), while the proposed one uses only seven for three stages.
We propose two approaches for step size selection. We can either
select from a predefined set of quantizer steps or design them using
image-dependent recursive algorithms.

When compression time is not crucial, we can apply a recursive
optimizationalgorithm to find the quantizer steps for a given bit rate.
We use a variation of Wu and Gersho’s algorithm [17], which is
based on a rate-distortion criteria and was developed for DCT-JPEG
[17]. The original approach is too complex, but for the NLP-JPEG
it is a practical solution. The difference is because the NLP-JPEG
runs faster than DCT-JPEG and because the search in 7-dimensional
space is more manageable than in a 64-dimensional one. The iterative
procedure is illustrated in Fig. 8. Because of the nonlinearity of the
transform and because of its recursive nature (quantizer feedback),
better results are obtained if we constrain the step sizes to be
nondecreasing. On a SPARCStation 20 the quantizer steps for a 512
� 512-pels image (Lena) are found in 1 min 30 s for 1 b/pel. It takes
3 min 30 s to obtain the quantizer steps for 0.5 b/pel and 6 min for 0.3
b/pel. For decompression, the quantizer design method is irrelevant.
If compression time is crucial we recommend using the predefined
quantizer sets given in Table I, in which case the NLP-JPEG would
run about twice as fast as DCT-JPEG. The predefined quantizer tables
are divided into sets of graphical and pictorial data in order to better
suit to different image classes. The quantizer sets presented are basic
anchor points and, whenever desired, one mayinterpolatebetween
quantizer step values in order to achieve the desired bit rate.

IV. CODER PERFORMANCE

Since�n = 1 leads to lossless coding, we compared the per-
formance of the NLP-JPEG for lossless compression against three
dedicated lossless coders: 1) non-DCT lossless JPEG coder; 2)

(a)

(b)

(c)

Fig. 10. Test images: (a) Baby (512� 512 pels). (b) Graphics (512� 512
pels). (c) Cameraman (256� 256 pels).

Huffman-based Said–Pearlman lossless coder [18]; and 3) GnuZIP,
which is a popular LZW-based compressor. Results are shown in
Table II.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Baby image encoded at 0.45 b/pixel. (a) NLP-JPEG (PSNR= 30.04 dB). (b) DCT-JPEG (PSNR= 29.22 dB). Graphics image encoded at
0.44 b/pixel. (c) NLP-JPEG (PSNR= 35.35 dB). (d) DCT-JPEG (PSNR= 32.70 dB). Cameraman image. (e) NLP-JPEG (PSNR= 32.48 dB at 0.907
b/pixel). (f) DCT-JPEG (PSNR= 30.26 dB at 0.914 b/pixel).
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Tests were carried to compare the performances of NLP- and DCT-
JPEG. Fig. 9 shows peak signal-to-noise ratio (PSNR) values for
typical images. Resolution is 256� 256-pels for the cameraman
image and 512� 512 pels for the others. In these plots, we used
optimized Huffman codes in JPEG for both the DCT and NLP based
schemes. We used three sets of quantizers for the NLP-JPEG: 1)
optimized quantizers found by recursive methods; 2) quantizers in
the pictorial set; 3) quantizers in the graphical set. If we replace the
nonlinear predictor by a linear one (average of the four neighbors),
PSNR performance drops typically by 0.1–0.3 dB.

Although, in most cases, both approaches yield relatively close
PSNR results, they generate images that look radically different in
terms of the artifacts they produce. The DCT-JPEG approach at
low bit rates produces the familiar ringing and blocking artifacts.
The NLP-JPEG approach has no ringing or blocking and generally
encodes edges well, but it does not accurately encode texture regions.
Neither coder will reproduce texture regions well at lower bit rates.
While the NLP-JPEG removes the texture, DCT-JPEG attempts to
produce a diffuse approximation. NLP-JPEG may be advantageous
in applications where sharp edges are more important than texture
regions.

For the original images shown in Fig. 10, examples of recon-
structed images (using both NLP-JPEG and DCT-JPEG) are presented
for subjective comparison in Fig. 11.

The NLP-JPEG is aimed as a less-complex replacement for the
DCT-JPEG. JPEG was not designed to work at low bit rates. The
block sizes and the entropy coding stage make both coders suitable
for moderate compression ratios, i.e., 0.2 b/pixel and above.1 More
sophisticated coders do exist that easily outperform DCT-JPEG
and NLP-JPEG at a higher computational cost. Examples are the
Said–Pearlman (SP) coder [19] and Joshi–Crump–Fisher (JCF) coder
[20]. The NLP-JPEG runs about five to six times faster than the SP
coder and well over 50 times faster than the JCF coder. Furthermore,
these coders require buffering the whole image, which can be difficult
for large images such as scanned documents (typically 30 MB per
color channel at 600 spots per inch).

Other papers deal with similar pyramidal structures for image
coding. In [8], the reported results point to a performance inferior
to DCT-JPEG for the bit rates of interest. In [13] high-performance
is obtained with a nonprefiltered pyramid, but applying classification
and trellis coded quantization (TCQ). It is fairly more complex than
NLP-JPEG and requires buffering the image. While [13] reports
PSNR gains over DCT-JPEG ranging from 0.5–2 dB, it also reports
improvements of up to 6 dB by applying its more sophisticated
classification and coding procedures. This may hint at future research
directions.

V. CONCLUSIONS

We presented a PR critically decimated nonlinear pyramidal struc-
ture for image compression based on the cascade of a two-step
nonlinear filterbank. Image coding tests were carried using JPEG
and replacing the DCT by the proposed pyramidal scheme. The
proposed scheme shows comparable or superior performance over
DCT-JPEG both objectively and subjectively. It also outperforms the
alternative non-DCT-based JPEG algorithm for lossless coding. The
most appealing feature of the pyramid is its complexity, as it is far less
complex than most popular linear transforms such as the DCT and is
suitable for hardware implementation. In a software implementation,
the NLP-JPEG runs about twice as fast as the DCT-JPEG.

1For default Huffman codes, JPEG uses 6 b per 64-pel block (0.094 b/pixel)
just to encode a constant image.

Future research directions point to giving up some of the simplicity
inherent in the NLP-JPEG for an increase in performance. This can
be done by applying adaptive classification methods and by using
entropy-constrained TCQ [13] to the quincunx pyramid described in
Section II.
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[7] D. F. Florêncio and R. W. Schafer, “A nonexpansive pyramidal mor-
phological image coder,” inProc. IEEE Int. Conf. Image Processing,
Austin, TX, 1994, vol. 2, pp. 331–334.

[8] O. Egger and W. Li, “Very low bit rate image coding using morpholog-
ical operators and adaptive decompositions,” inProc. IEEE Int. Conf.
Image Processing,Austin, TX, 1994, vol. 2, pp. 326–330.

[9] T. Endoh and Y. Yamazaki, “Progressive coding scheme for multi level
images,” inProc. Picture Coding Symp.,Tokyo, Japan, Apr. 1986, pp.
21–22.

[10] P. Roos, M. Viergever, M. C. Van Dijke, and J. H. Peters, “Reversible
image compression of medical images,”IEEE Trans. Med. Imag.,vol.
7, pp. 328–336, Dec. 1988.

[11] R. L. de Queiroz and J. T. Yabu-Uti, “On a hybrid predictive-
interpolative scheme for reducing processing speed in DPCM TV
CODEC’s,” in Proc. Europ. Signal Processing Conf.,Barcelona, Spain,
Sept. 1990, vol. II, pp. 797–780.

[12] H. Sahinoglou and S. D. Cabrera, “A high-speed pyramid image coding
algorithm for a VLSI implementation,”IEEE Trans. Circuits Syst. Video
Technol.,vol. 1, pp. 369–374, Dec. 1991.

[13] E. Gifford, B. R. Hunt, and M. Marcellin, “Image coding using adaptive
recursive interpolative DPCM,”IEEE Trans. on Image Processing,vol.
4, pp. 1061–1069, Aug. 1995.

[14] D. F. Flor̂encio and R. W. Schafer, “Post-sampling aliasing control for
images,” inProc. Int. Conf. Acoustics, Speech and Signal Processing,
Detroit, MI, 1995, vol. II, pp. 893–896.

[15] R. de Queirozet al., “Wavelet transforms in a JPEG-like image coder,”
in Proc. SPIE Conf. VCIP,1994, SPIE, vol. 2308, pp. 1662–1673.

[16] J. Bradley, C. Brislawn, and T. Hopper, “The FBI wavelet/scalar
quantization standard for gray-scale fingerprint image compression,” in
Proc. SPIE VCIP,Orlando, FL, 1993, vol. 1961, pp. 293–304.

[17] S. Wu and A. Gersho, “Rate-constrained picture-adaptive quantization
for JPEG baseline coders,” inProc. Int. Conf. Acoustics, Speech, Signal
Processing,Minneapolis, MN, 1993, vol. V, pp. 389–392.

[18] A. Said and W. A. Pearlman, “Reversible image compression via
multiresolution representation and predictive coding,” inProc. SPIE
Conf. Vis. Commun. Image Processing,Cambridge, MA, 1993, SPIE,
vol. 2094, pp. 664–674.

[19] A. Said and W. A. Pearlman, “A new, fast, and efficient image CODEC
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst. Video Technol.,vol. 6, pp. 243–250, June 1996.

[20] R. Joshi, V. Crump, and T. R. Fisher, “Image subband coding using
arithmetic and trellis coded quantization,”IEEE Trans. Circuits Syst.
Video Technol.,vol. 5, pp. 512–523, Dec. 1995.


