
Enhancing Game-Server AI
with Distributed Client Computation

John R. Douceur
Microsoft Research
Redmond, WA

johndo@microsoft.com

Jacob R. Lorch
Microsoft Research
Redmond, WA

lorch@microsoft.com

Frank Uyeda
Univ. of California
San Diego, CA

fuyeda@ucsd.edu

Randall C. Wood
Microsoft Game Studios

Redmond, WA

randallw@microsoft.com

Abstract

In the context of online role-playing games, we evaluate
offloading AI computation from game servers to game clients. In
this way, the aggregate resources of thousands of participating
client machines can enhance game realism in a way that would be
prohibitively expensive on a central server. Because offloading
can add significant latency to a computation normally executing
within a game server’s main loop, we introduce the mechanism of
AI partitioning: splitting an AI into a high-frequency but
computationally simple component on the server, and a low-
frequency but computationally intensive component offloaded to a
client. By designing the client-side component to be stateless and
deterministic, this approach also facilitates rapid handoff,
preemptive migration, and replication, which can address the
problems of client failure and exploitation. To explore this
approach, we develop an improved AI for tactical navigation, a
challenging task to offload because it is highly sensitive to
latency. Our improvement is based on calculating influence
fields, partitioned into server-side and client-side components by
means of a Taylor series approximation. Experiments on a
Quake-based prototype demonstrate that this approach can
substantially improve the AI’s abilities, even with server-client-
server latencies up to one second.

1 Introduction

In Massively Multiplayer Online role-playing Games (MMOGs),
the artificial intelligence (AI) that controls monsters and non-
player characters is exceedingly poor. It is common for gamers to
complain of monsters that are so stupid as to make the game
unchallenging [22]. Despite popular belief, the fundamental
problem is not that game developers cannot write better AI
algorithms. Rather, the problem is that the servers that host
MMOGs have insufficient computing power to support the
computational demands of thousands of even moderately
sophisticated, concurrently running AIs [19]. Adding more back-
end server resources could solve the problem, but at a cost that
would be prohibitive given MMOG operations economics.

MMOGs usually run on servers under control of a game operator,
who bears the direct financial burden of computation and
operations. Switching to a client-based infrastructure [9,13,17]
would provide computational power that scales with the count of
concurrently active players. However, this approach sacrifices the
security and control that is generally considered necessary in
persistent-world games. This is especially true in light of exploits
that have extracted real money from MMOGs [4,15].

In this paper, we consider an approach to harnessing the aggregate
computational power of client machines for improving game AI,
for the purpose of making monsters behave in more interesting
ways and thus improving the MMOG playing experience. Rather
than suggesting a radical restructure of MMOG architecture [6],
we propose supplementing server-based computation by
offloading components of AI onto client machines.

This approach is not without challenges. It adds a substantial
communication delay to code that normally executes within the
game server’s main loop. It relocates critical functionality to
clients that may fail or become disconnected. And, it makes
sensitive computations more readily exploitable by unscrupulous
players who hack their client software.

We focus specifically on the problem of latency, which we
address with the mechanism of AI partitioning: splitting an AI
into a server-side component that retains critical tight-loop control
and a client-side component that computes tuning parameters for
the server-side component. We do not specifically address the
issues of client failure or exploitation; however, these problems
are addressable by migration and replication. AI partitioning can
enable migration and replication by making the client-side
component stateless and deterministic.

As a demonstration of feasibility, we apply AI partitioning to the
latency-sensitive problem of tactical navigation. We develop an
improved navigation AI based on summed influence fields, and
we offload the bulk of the computational effort as a 2D Taylor
series approximation. Experiments demonstrate that the
technique is effective even with latencies in excess of one second.

The next section presents our vision for improving the gameplay
of MMOGs with sophisticated AI. Section 3 surveys issues that
client offloading must deal with, including the issue of latency.
Section 4 introduces AI partitioning, a mechanism for addressing
the latency problem. Section 5 applies the AI partitioning
technique to the problem of enhanced tactical navigation, which
we evaluate in Section 6. We briefly survey related work in
Section 7 and conclude in Section 8.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NOSSDAV'07 Urbana, Illinois USA

Copyright 2007 ACM 978-1-59593-746-9/06/2007...$5.00.

2 A vision of sophisticated AI

We envision MMOGs in which monsters and non-player
characters display behavior that is complex and interesting,
though well within the reaches of present AI technology. We
imagine monsters that travel in packs across a wide range, that
engage in useful or distracting activities rather than just milling
around, that become aware of players by sight, sound, or smell,
and that stalk their victims and pounce when unexpected.
Sophisticated monsters will work together, attacking the same
target and coordinating their efforts. They will assess a group of
players collectively, deciding whether to attack based on an
assessment of comparative strength.

By contrast, current AIs exhibit astonishingly simple behavior.
When unaware of nearby players, a typical monster either waits in
a delineated region or roams along a predetermined path. When a
player comes within a defined distance, the monster launches a
direct attack. When severely wounded, some monsters will fight
to the death, whereas others will try to retreat via a simple path.

The problem of retreating is illustrative. A severely wounded
monster should not run directly into its attackers, who may be
roughly surrounding it. If some of the attackers are wielding
melee weapons, it should try to stay out of their weapons’ range.
It should try to get quickly away from attackers with range
weapons, such as archers, who will likely be standing still. These
influences collectively suggest a particular instantaneous direction
the monster should head. However, the influences will change as
players move and prepare attacks, so the optimal direction will
rapidly vary as the monster retreats. The calculations involved are
not highly complex, but they are computationally demanding,
particularly for a server that is determining the appropriate next
step for thousands of monsters concurrently.

3 Issues in client offloading

Sophisticated AI calculations can be offloaded to clients only if
several issues are addressed, including the availability of client
CPU capacity, communication latency between clients and the
serve, the possible failure of client machines, and the risk of client
exploitation.

For clients to contribute substantially to computation of game AI,
there must be enough spare CPU capacity on the clients that the
local users’ gameplay is not disrupted by the additional
computation load. The popular World of Warcraft MMOG
requires a minimum CPU speed of 800 MHz and recommends a
CPU speed of 1.5 GHz [3], yet 2/3 of desktop machines have
CPUs with speeds in excess of 2 GHz [18,20]. This data suggests
that there is ample spare CPU on game clients’ machines.

Offloading computation to a client may induce a substantial
communication delay, as work that was previously performed in
the server’s main loop is now distributed to clients, processed on
those clients, and sent back to the server. Round-trip latency
between access networks can reach 400 ms [23], and a 56K-dialup
access network can add as much as 500 ms more [10]. Although
some aspects of AI, such as high-level strategic planning, may
tolerate latencies that approach one second, it is not a priori clear
whether tactical-level AI can satisfactorily cope with the lag of
such a network delay.

Client machines can also fail in various ways: They may crash or
spontaneously reboot; network problems can cause intermittent
disconnection; players may abruptly quit the game; or a
competing client application might become active and leave little
available CPU. The server can thus not afford to rely on any
particular client to perform any given computation.

Furthermore, in the absence of a secured execution platform, AI
code that runs on a client machine can be modified by the
machine’s owner. The owner might weaken the AI to make
monsters stupid and easy to kill, or strengthen the AI to make
monsters smarter and readily able to kill competing players. The
server cannot safely assume that clients will calculate results
honestly.

4 AI partitioning

To deal with the problem of latency, we introduce the mechanism
of AI partitioning. This technique can be made amenable to
redundant computation, to address the problems of client failure
and exploitation.

The key idea is to split the AI that controls each subject into two
components: a server-side AI and a client-side AI. The server-
side AI is fairly simple, highly tunable, and high-frequency in that
it runs at the same rate as the server’s game loop. It performs any
job that is intolerant of lag, such as targeting. The client-side AI
is smart, complex, and potentially quite slow. Its function is to
compute tuning parameters for the server-side AI, to support tasks
such as long-term planning. The split between the two AIs
isolates the server not only from the communication delay to the
client but also from the computation delay of complex AI logic.

Periodically, the server sends a glimpse of the game state to the
client, and the client responds with advice. A glimpse is a
snapshot of limited scope, containing data of proximate relevance
to the AI’s subject. This glimpse is input to the client-side AI
computation. The output of the computation is advice for the
server-side AI, typically in the form of parameters and
coefficients. Because glimpses and advice consume bandwidth, it
is important to keep them fairly small.

It is advantageous to design the server-side AI to be tolerant of
stale advice. Communication delays, varying client CPU
availability, and the possibility of client failure preclude any
guarantee of promptly returned advice. Thus, the server-side AI
should not require advice for any particular execution frame;
rather, advice should be useful over a range of execution time.
Punctuality may be beneficial, but it should not be critical. In the
extreme case in which no advice is received for an extended
period of time, the server-side AI should have a fallback mode in
which it can operate independently of client advice.

There are several advantages to designing the client-side AI to be
stateless. By this, we mean that each glimpse-advice computation
is independent of prior computations, with no client-side state
carried forward. If a client fails or becomes disconnected, and the
server hands off the computation to another client, the new client
can immediately pick up where the previous one left off. In
addition, the server can temporally limit the effect of each client
on the server-side AI by preemptively migrating the client-side
AI: assigning successive computations for the same subject to
different clients.

There are also advantages to designing the client-side AI to be
deterministic, meaning that identical glimpses produce identical
advice. To tolerate failures and exploits, the server can
redundantly issue the same glimpse to multiple clients, effectively
replicating the client-side AI. To deal with simple failures, the
server can accept the first advice it receives. Alternatively, to deal
with attempted client exploits, the server can wait for multiple
replies and use plurality voting to determine the correct advice;
however, this may increase latency as the server waits for replies
from multiple clients. If the client-side AI computation needs to
include randomness, the seed for the random-number generator
should be selected by the server and sent with the glimpse to
clients, thereby keeping the client-side AI deterministic.

5 Example – tactical navigation

To evaluate the feasibility of offloading AI to clients, we consider
the problem of tactical navigation. This is a particularly
challenging task because it is highly sensitive to latency. The
intent of the example is not to demonstrate a particularly
impressive AI; rather, it is to illustrate how AI calculations can be
effectively partitioned in a way that tolerates the latency of remote
computation.

5.1 Classic navigation

The conventional approach to game-AI navigation [19,21] is first
to select a goal and then to move toward that goal via a series of
predetermined waypoints. If the goal is an opponent, then when
the opponent comes within a defined range, navigation switches
to a mode of random selection among preprogrammed attack
movements such as charging, feinting, and strafing.

The main benefit of this approach is computational efficiency,
since the complex logic for selecting a new goal is performed
sporadically rather than reevaluated on every frame, and detailed
path calculations are performed offline prior to game execution.

However, this approach has at least two significant weaknesses.
First, it only allows for one goal at a time. In contrast, humans
can simultaneously weigh several goals and devise a path that
optimizes over all of them. Second, this approach does not
readily adapt to quickly changing circumstances, such as the
virtual locations of teammates and opponents. Consequently, this
approach cannot execute interesting and intelligent movement
patterns, such as the complex retreating behavior described in
Section 2.

5.2 Improvement: aggregate influence fields

We address the two weaknesses noted above with a more flexible
approach to tactical game navigation. Rather than navigating
toward a single selected goal, the approach is to calculate a vector
field that characterizes the collective influence of all entities in the
vicinity, and then to move in the direction indicated by the field.
This field optimizes over both the explicit primary goal and
implicit secondary goals, and it can be readily recalculated as
entities move.

From the subject’s perspective, each other entity exudes an
attractive or repulsive radial influence field with a magnitude of

m

W d
−

=v

where d is distance from the subject, m is a decay factor, and W is
a weight. Most entities are attractive, such as the primary goal,
targeted opponents, weapons, ammunition, and health packs.
Some entities may be repulsive, such as a powerful opponent who
is currently attacking the subject.

The aggregate influence field is the sum of the fields from nearby
entities. For a subject at point p in virtual space, the aggregate
field f from a set of � entities can be calculated as

() ()
()

()
1

1

�
m k

k k

k

W k
− −

=

= − −∑f p p p p p

where the weight W and decay factor m are functions that vary per
entity. In general, the weight and decay functions are affected by
the state of the subject; for example, as the subject’s health
decreases, it becomes more repulsed by attacking opponents and
more attracted by health packs.

We can reformulate the above expression for f as

()

() () ()()
()

() ()()
2 1 2

2 2

1

,

� m k

k k k k

k

x y

W k x x y y x x y y
− −

=

=

− + − − + −∑

f

i j

where i and j respectively represent unit vectors in the X and Y
dimensions. By simplifying the latter formulation, the cost of
calculating the aggregate field is five additions, six
multiplications, and one exponentiation per entity in the subject’s
vicinity.

Fig. 1a illustrates a sample aggregate influence field. The subject
is repelled by the attacking enemy, attracted to the other enemy,
and more attracted to the health pack.

5.3 Offloading: Taylor-approximate fields

The cost calculating the aggregate influence field is proportional
to the count of entities in the area. To offload the bulk of this
effort to a client, we use AI partitioning, as described in Section 4.
Specifically, in the server-side AI, we replace the calculation of
the actual influence field f with the calculation of a second-order
two-dimensional Taylor series approximation:

()

()

()

2 2

0 1 2 3 4 5

2 2

0 1 2 3 4 5

,

A A A A

B B B B

x x y y

A x y x y A x y

B x y x y B x y

+ ∆ + ∆ ≈

+ ∆ + ∆ + ∆ + ∆ + ∆ ∆

+ + ∆ + ∆ + ∆ + ∆ + ∆ ∆

f

i

j

% %

The cost of this computation is merely 12 additions and 13
multiplications, irrespective of the count of entities in the vicinity.

The Taylor-series coefficients, A0 to A5 and B0 to B5, are
computed by the client-side AI, based on a glimpse of the game

state provided by the server when the subject is at point (x% , y%) in
virtual space.

Fig. 1b illustrates a 2D Taylor series approximation of the
aggregate influence field in Fig. 1a. Within the region highlighted
by the circle, the approximation closely follows the actual
influence field.

The edges of Fig. 1 show that the approximation can be wildly
wrong, as the Taylor-series accuracy diminishes with distance

from the point (x% , y%). Therefore, as the subject moves away
from this point over time, the advice returned by the client-side AI

becomes less valuable. In addition, even if the subject stays in
place, the positions of the other entities will change, rendering the

advice stale. We quantify this effect in the next section.

6 Evaluation

To determine how well AI partitioning can work in practice, we
built a prototype of our Taylor-series-based tactical navigation.
Because we want our experiments to evaluate partitioned AI
performance even at high latencies, we do not provide a server-
side fallback mode. We also do not implement replication;
however, the client-side AI is both stateless and deterministic, so
replication would be fairly straightforward to add.

6.1 Prototype implementation

Due to our unfamiliarity with available MMOG code bases [7,8],
we evaluate the above mechanism in an open-source first-person-
shooter (FPS) game, specifically Quake III. Although FPS games
are quite different from MMOGs in many respects, the basic game
loop and combat AI logic are very similar [1,19].

We built a prototype implementation of partitioned AI inside
Quake III’s bot code. We employ Quake III’s standard AI [21]
for every aspect of bot control except the direction of motion,
which we determine by a Taylor-approximate influence field.
Notably, we did not modify the target-selection logic or shooting
accuracy.

Because our focus is on the AI-offloading technique, rather than
on bot tactics, we did not perform extensive experimentation for
optimal weights and decay factors in the field equations. Instead,
we thought of a few basic strategies for tactical bot behavior. We
then tinkered with parameter settings and parametric functions
until we found a set that seemed to work reasonably well. The
main considerations are that higher weights result in a greater
influence, and higher decay factors increase the localization of the
influence. Ultimately, we settled on four strategies of increasing
sophistication:

seekplayer: The goal, identified by existing Quake III bot logic,
is strongly attractive even at a distance (W = 60, m = 1); other bots
are attractive when they are nearby (W = 20, m = 2); and items,
such as weapons, ammunition, and health packs, are neutral.

seekall: Like seekplayer, except that nearby items are also
attractive (W = 20, m = 2.5) if considered useful. An item is
designated useful if acquiring it will change the bot’s state: a
weapon of a type not currently possessed, ammunition if the bot
has less than the allowable limit, and a health pack if the bot has
less than perfect health.

selfaware: Like seekall, except the state of the bot can cause
some useful items to be designated as critical. This applies to
weapons and ammunition when the bot has no ammunition left,
and to health packs when the bot is below 20% health. Critical
items are extra attractive (W = 40, m = 2).

avoidattacker: Like selfaware, except that when the bot’s health
is below 50%, it is repulsed by the last enemy to have damaged it
recently. The repulsion is determined by whether the attacker
wields a range weapon, in which case it is moderately repulsive
when nearby (W = –10, m = 2), or a melee weapon, which makes
it more repulsive but only when very close (W = –30, m = 3).

(a) actual field (b) second-order Taylor series approximation

Fig. 1: Aggregate influence field – subject ™, attacking enemy ®, non-attacking enemy ß, health pack ©

♠
♥

♦

♣

♠
♥

♦

♣

6.2 Experiments

Our virtual test environment is a flat space with no fixed
obstacles, intended to resemble an open outdoor area as can be
found in an MMOG. Since Quake environments must be
bounded, we use the Quake map editor to build the largest
allowable map, and we locate all items of interest in rough
proximity to the center, to make the bots disinclined to go near the
edges of the world. We also severely limit the availability of
ammunition, to produce a relatively even balance of melee and
ranged combat.

We evaluate our implementation by staging a series of six-bot, all-
against-all “deathmatch” tournaments. Each tournament consists
of nine ten-minute games, each involving three enhanced bots and
three standard bots. By default, all bots are set to median skill
(level 3 in the range from 1 to 5). To simulate wide-area network
latency, we add a tunable delay to the client-server
communication path. For each tournament, we measure the mean
score difference between the enhanced bots and the standard bots.
We vary the round-trip latency, the navigation strategy of the
enhanced bots, and the skill level of the standard bots.

6.3 Results

Fig. 2 plots the difference between the mean scores of enhanced
bots and the mean scores of standard bots, as a function of round-
trip latency, for the four strategies enumerated above. It also plots
95% confidence intervals for these score differences. Even with
latencies up to one second, our enhanced bots outperform the
standard bots. We stress that this improvement has nothing to do
with targeting or shooting accuracy, which we did not change.
We replaced only the navigation logic.

The ability to tolerate a round-trip latency of one second suggests
that the partitioning technique would be effective even in the
high-latency environment described in Section 3. As the latency
increases beyond this point, the standard bots begin to outperform
our enhanced bots, as the advice from the client-side AI becomes
increasingly stale. This suggests that a threshold of one second is
a reasonable cutoff point for invoking a fallback navigation mode,
as mentioned in Section 4. An obvious choice for fallback code is
the standard bot navigation logic, which requires no advice from
the client.

The confidence intervals for the four strategies overlap each other,
implying that the four strategies are not significantly different in
their effectiveness, or at least that any differences are too minor
for our small set of experiments to demonstrate. Perhaps the
ability to optimize over multiple goals, which is present in all four
strategies, is the dominant factor responsible for the improved
performance of field-based bots over standard bots.

We are somewhat surprised that sophisticated decision-making, as
performed by the selfaware and avoidattacker strategies, has little
effect on the game outcome, relative to our simpler enhancement
strategies. However, this may be due to a quirk of FPS games that
is not representative of MMOGs, namely that dying can be
beneficial. A respawned bot regains full health and a partly
loaded weapon, which is often an improvement over the bot’s
state prior to being killed. Thus, a strategy designed to avoid
dying may not improve game score.

Fig. 3 plots the score difference of level-3 enhanced selfaware
bots versus standard bots of skill levels 3, 4, and 5. As already
shown in Fig. 2, enhanced bots outperform standard bots of the
same level even with latencies up to one second. In addition, at
lower latencies, enhanced bots outperform standard bots of higher
skill level, despite the fact that these higher-level bots have better
target-selection logic and greater shooting accuracy. This is even
more noteworthy considering that our replacement of the
navigation logic had the side effect of removing classic combat
maneuvers such as feinting and strafing, which the standard bots
continued to employ.

Overall, our experiments show that an enhanced AI, partitioned
into server and client components, can improve on an AI’s
abilities, even with high round-trip latency.

7 Related work

Several prior researchers have investigated offloading workload
from game servers to clients. Kabus et al. [11] forms clients into
a multicast tree that disseminates server updates. FreeMMG [6] is
a hybrid model, mainly peer-to-peer but with a server to help
failed clients recover. Others have proposed completely replacing
servers with peer-to-peer systems [9,13,17] running on clients.

Fig. 2: Score difference for various strategies

-10

0

10

20

30

0 250 500 1000 1500 2000

s
c

o
r
e

 d
if

fe
r
e

n
c

e

server-client-server latency (msec)

seekplayer seekall

selfaware avoidattacker

Fig. 3: Score difference for various standard bot levels

-20

-10

0

10

20

30

0 250 500 1000 1500 2000

s
c

o
r
e

 d
if

fe
r
e

n
c

e

server-client-server latency (msec)

skill 3 skill 4 skill 5

In a different context, researchers have explored client-donated
CPU cycles for distributed computing tasks, such as SETI@home
and the other BOINC projects [2], and Folding@home and
Genome@home [14].

The use of vector fields for directional guidance originated in the
AI community, where it was applied to actual physical robots
[5,12]. Mamei et al. [16] employed vector fields for strategically
coordinating bots in Quake III; this is a sophisticated AI task to
which our offloading technique could perhaps be applied directly.

8 Conclusions and future work

In this paper, we propose enhancing the AI of game servers by
offloading computation to clients. To address the problem of
latency, we partition each computation into a critical tight-loop
server-side AI and an advice-giving client-side AI. As an
exemplar, we design an enhanced AI for tactical navigation based
on influence fields, and we partition it using Taylor series
approximation. Prototype experiments show substantial
improvement in AI abilities, even with round-trip latencies up to
one second.

A further step with our prototype is to replicate the client-side AI
and test its ability to deal with client failure. Another step is to
add a local fallback mode to the server-side AI and investigate the
transition between advised and unadvised AI behavior. A minor
but practically important improvement is to execute the client-side
AI on a low-priority thread, to ensure that it does not disturb the
gameplay of the user on the client machine. Moreover, we would
like to implement partitioned AI in an MMOG and conduct a user
study to see whether it improves the game as we expect.

One aspect of client exploitation we did not consider is
information leakage, in which clients inspect glimpses from the
server to learn details of game state they should not be allowed to
observe. We would like to investigate anonymization and
obfuscation techniques to limit client visibility into offloaded
computations.

9 Acknowledgements

The authors thank Mike Calligaro for insightful early discussions
of ideas in this paper, Jeff Pang for his assistance with the Quake
III code base, and the anonymous NOSSDAV reviewers for their
very helpful suggestions in improving the paper.

References

[1] T. Alexander, Massively Multiplayer Game Development,
Charles River, 2003.

[2] D. P. Anderson, “BOINC: A System for Public-Resource
Computing and Storage,” 5th IEEE/ACM GRID, 2004.

[3] Blizzard, “Minimum system requirements for World of
Warcraft,” World of Warcraft Community Site,
http://www.blizzard.com/support/wow/?id=aww0823p

[4] G. Block, “World of Hackcraft: Fooling The Warden,”
CTOFORADAY: The Journal of Gregory Block,
http://www.ctoforaday.com/articles/000059.html

[5] J. Borenstein, Y. Koren, "Real-time Obstacle Avoidance for
Fast Mobile Robots," IEEE Trans. Systems, Man, and
Cybernetics, 19 (5), 1989.

[6] F. R. Cecin, R. de Oliveira Jannone, C. F. R. Geyer, M. G.
Martins, J. L. V. Barbosa. “FreeMMG: A Hybrid Peer-to-
Peer and Client-Server Model for Massively Multiplayer
Games,” �etGames, 2004.

[7] Crossfire, “Crossfire – The Multiplayer Adventure Game,”
http://crossfire.real-time.com/

[8] Daimonin, “Daimonin MMORPG – Free Fantasy Online
Multiplayer Game,” http://www.daimonin.net/

[9] C. GauthierDickey, D. Zappala, V. Lo. “A Fully Distributed
Architecture for Massively Multiplayer Online Games,”
�etGames 2004.

[10] T. Jehaes, D. De Vleeschauwer, T. Coppens, B. Van
Doorselaer, E. Deckers, W. Naudts, K. Spruyt, R. Smets,
“Access Network Delay in Networked Games,” �etGames
2003.

[11] P. Kabus, W. Terpstra, M. Cilia, A. Buchmann. “Addressing
Cheating in Distributed MMOGs,” �etGames 2005.

[12] O. Khatib, "Real-Time Obstacle Avoidance for Manipulators
and Mobile Robots," IEEE Robotics and Automation, 1985.

[13] B. Knutsson, H. Lu, W. Xu, B. Hopkins. “Peer-to-Peer
Support for Massively Multiplayer Games,” IEEE
I�FOCOM 2004.

[14] S. M. Larson, C. D. Snow, M. R. Shirts, V. S. Pande,
“Folding@Home and Genome@Home: Using Distributed
Computing to Tackle Previously Intractable Problems in
Computational Biology,” Computational Genomics, 2002.

[15] J. Lee, “Wage Slaves,” Computer Gaming World,
07.05.2005, http://www.1up.com/do/feature?cId=3141815

[16] M. Mamei, F. Zambonelli, “Motion Coordination in the
Quake 3 Arena Environment: A Field-Based Approach,”
E4MAS, 2004.

[17] M. Merabti, A. El Rhalibi. “Peer-to-Peer Architecture and
Protocol for a Massively Multiplayer Online Game,” IEEE
Globecom 2004.

[18] PC Pitstop, “PC Pitstop General Statistics: Processor MHz
Ranges,” PC Pitstop Research,
http://www.pcpitstop.com/research/cpurange.asp

[19] B. Schwab, AI Game Engine Programming, Charles River,
2004.

[20] Valve, “Valve Survey Summary,” Steam,
http://steampowered.com/status/survey.html

[21] J. M. P. van Waveren, “The Quake III Arena Bot,” MS
Thesis, TU Delft, 2001.

[22] R. C. Wood, “The Seven Deadly Sins of MMO Developers,
Part II: Brain-dead AI,” Windows Live Spaces - Cranius,
http://cranius.
spaces.live.com/blog/cns!6174BA0350BAA452!418.entry

[23] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, G.
Wang, "Measurement-Based Analysis, Modeling, and
Synthesis of the Internet Delay Space," IMC 2006.

