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Abstract 

In the context of online role-playing games, we evaluate 
offloading AI computation from game servers to game clients.  In 
this way, the aggregate resources of thousands of participating 
client machines can enhance game realism in a way that would be 
prohibitively expensive on a central server.  Because offloading 
can add significant latency to a computation normally executing 
within a game server’s main loop, we introduce the mechanism of 
AI partitioning: splitting an AI into a high-frequency but 
computationally simple component on the server, and a low-
frequency but computationally intensive component offloaded to a 
client.  By designing the client-side component to be stateless and 
deterministic, this approach also facilitates rapid handoff, 
preemptive migration, and replication, which can address the 
problems of client failure and exploitation.  To explore this 
approach, we develop an improved AI for tactical navigation, a 
challenging task to offload because it is highly sensitive to 
latency.  Our improvement is based on calculating influence 
fields, partitioned into server-side and client-side components by 
means of a Taylor series approximation.  Experiments on a 
Quake-based prototype demonstrate that this approach can 
substantially improve the AI’s abilities, even with server-client-
server latencies up to one second. 

1 Introduction 

In Massively Multiplayer Online role-playing Games (MMOGs), 
the artificial intelligence (AI) that controls monsters and non-
player characters is exceedingly poor.  It is common for gamers to 
complain of monsters that are so stupid as to make the game 
unchallenging [22].  Despite popular belief, the fundamental 
problem is not that game developers cannot write better AI 
algorithms.  Rather, the problem is that the servers that host 
MMOGs have insufficient computing power to support the 
computational demands of thousands of even moderately 
sophisticated, concurrently running AIs [19].  Adding more back-
end server resources could solve the problem, but at a cost that 
would be prohibitive given MMOG operations economics. 

MMOGs usually run on servers under control of a game operator, 
who bears the direct financial burden of computation and 
operations.  Switching to a client-based infrastructure [9,13,17] 
would provide computational power that scales with the count of 
concurrently active players.  However, this approach sacrifices the 
security and control that is generally considered necessary in 
persistent-world games.  This is especially true in light of exploits 
that have extracted real money from MMOGs [4,15]. 

In this paper, we consider an approach to harnessing the aggregate 
computational power of client machines for improving game AI, 
for the purpose of making monsters behave in more interesting 
ways and thus improving the MMOG playing experience.  Rather 
than suggesting a radical restructure of MMOG architecture [6], 
we propose supplementing server-based computation by 
offloading components of AI onto client machines. 

This approach is not without challenges.  It adds a substantial 
communication delay to code that normally executes within the 
game server’s main loop.  It relocates critical functionality to 
clients that may fail or become disconnected.  And, it makes 
sensitive computations more readily exploitable by unscrupulous 
players who hack their client software. 

We focus specifically on the problem of latency, which we 
address with the mechanism of AI partitioning: splitting an AI 
into a server-side component that retains critical tight-loop control 
and a client-side component that computes tuning parameters for 
the server-side component.  We do not specifically address the 
issues of client failure or exploitation; however, these problems 
are addressable by migration and replication.  AI partitioning can 
enable migration and replication by making the client-side 
component stateless and deterministic. 

As a demonstration of feasibility, we apply AI partitioning to the 
latency-sensitive problem of tactical navigation.  We develop an 
improved navigation AI based on summed influence fields, and 
we offload the bulk of the computational effort as a 2D Taylor 
series approximation.  Experiments demonstrate that the 
technique is effective even with latencies in excess of one second. 

The next section presents our vision for improving the gameplay 
of MMOGs with sophisticated AI.  Section 3 surveys issues that 
client offloading must deal with, including the issue of latency.  
Section 4 introduces AI partitioning, a mechanism for addressing 
the latency problem.  Section 5 applies the AI partitioning 
technique to the problem of enhanced tactical navigation, which 
we evaluate in Section 6.  We briefly survey related work in 
Section 7 and conclude in Section 8. 
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2 A vision of sophisticated AI 

We envision MMOGs in which monsters and non-player 
characters display behavior that is complex and interesting, 
though well within the reaches of present AI technology.  We 
imagine monsters that travel in packs across a wide range, that 
engage in useful or distracting activities rather than just milling 
around, that become aware of players by sight, sound, or smell, 
and that stalk their victims and pounce when unexpected.  
Sophisticated monsters will work together, attacking the same 
target and coordinating their efforts.  They will assess a group of 
players collectively, deciding whether to attack based on an 
assessment of comparative strength. 

By contrast, current AIs exhibit astonishingly simple behavior.  
When unaware of nearby players, a typical monster either waits in 
a delineated region or roams along a predetermined path.  When a 
player comes within a defined distance, the monster launches a 
direct attack.  When severely wounded, some monsters will fight 
to the death, whereas others will try to retreat via a simple path. 

The problem of retreating is illustrative.  A severely wounded 
monster should not run directly into its attackers, who may be 
roughly surrounding it.  If some of the attackers are wielding 
melee weapons, it should try to stay out of their weapons’ range.  
It should try to get quickly away from attackers with range 
weapons, such as archers, who will likely be standing still.  These 
influences collectively suggest a particular instantaneous direction 
the monster should head.  However, the influences will change as 
players move and prepare attacks, so the optimal direction will 
rapidly vary as the monster retreats.  The calculations involved are 
not highly complex, but they are computationally demanding, 
particularly for a server that is determining the appropriate next 
step for thousands of monsters concurrently. 

3 Issues in client offloading 

Sophisticated AI calculations can be offloaded to clients only if 
several issues are addressed, including the availability of client 
CPU capacity, communication latency between clients and the 
serve, the possible failure of client machines, and the risk of client 
exploitation. 

For clients to contribute substantially to computation of game AI, 
there must be enough spare CPU capacity on the clients that the 
local users’ gameplay is not disrupted by the additional 
computation load.  The popular World of Warcraft MMOG 
requires a minimum CPU speed of 800 MHz and recommends a 
CPU speed of 1.5 GHz [3], yet 2/3 of desktop machines have 
CPUs with speeds in excess of 2 GHz [18,20].  This data suggests 
that there is ample spare CPU on game clients’ machines. 

Offloading computation to a client may induce a substantial 
communication delay, as work that was previously performed in 
the server’s main loop is now distributed to clients, processed on 
those clients, and sent back to the server.  Round-trip latency 
between access networks can reach 400 ms [23], and a 56K-dialup 
access network can add as much as 500 ms more [10].  Although 
some aspects of AI, such as high-level strategic planning, may 
tolerate latencies that approach one second, it is not a priori clear 
whether tactical-level AI can satisfactorily cope with the lag of 
such a network delay. 

Client machines can also fail in various ways:  They may crash or 
spontaneously reboot; network problems can cause intermittent 
disconnection; players may abruptly quit the game; or a 
competing client application might become active and leave little 
available CPU.  The server can thus not afford to rely on any 
particular client to perform any given computation. 

Furthermore, in the absence of a secured execution platform, AI 
code that runs on a client machine can be modified by the 
machine’s owner.  The owner might weaken the AI to make 
monsters stupid and easy to kill, or strengthen the AI to make 
monsters smarter and readily able to kill competing players.  The 
server cannot safely assume that clients will calculate results 
honestly. 

4 AI partitioning 

To deal with the problem of latency, we introduce the mechanism 
of AI partitioning.  This technique can be made amenable to 
redundant computation, to address the problems of client failure 
and exploitation. 

The key idea is to split the AI that controls each subject into two 
components: a server-side AI and a client-side AI.  The server-
side AI is fairly simple, highly tunable, and high-frequency in that 
it runs at the same rate as the server’s game loop.  It performs any 
job that is intolerant of lag, such as targeting.  The client-side AI 
is smart, complex, and potentially quite slow.  Its function is to 
compute tuning parameters for the server-side AI, to support tasks 
such as long-term planning.  The split between the two AIs 
isolates the server not only from the communication delay to the 
client but also from the computation delay of complex AI logic. 

Periodically, the server sends a glimpse of the game state to the 
client, and the client responds with advice.  A glimpse is a 
snapshot of limited scope, containing data of proximate relevance 
to the AI’s subject.  This glimpse is input to the client-side AI 
computation.  The output of the computation is advice for the 
server-side AI, typically in the form of parameters and 
coefficients.  Because glimpses and advice consume bandwidth, it 
is important to keep them fairly small. 

It is advantageous to design the server-side AI to be tolerant of 
stale advice.  Communication delays, varying client CPU 
availability, and the possibility of client failure preclude any 
guarantee of promptly returned advice.  Thus, the server-side AI 
should not require advice for any particular execution frame; 
rather, advice should be useful over a range of execution time.  
Punctuality may be beneficial, but it should not be critical.  In the 
extreme case in which no advice is received for an extended 
period of time, the server-side AI should have a fallback mode in 
which it can operate independently of client advice. 

There are several advantages to designing the client-side AI to be 
stateless.  By this, we mean that each glimpse-advice computation 
is independent of prior computations, with no client-side state 
carried forward.  If a client fails or becomes disconnected, and the 
server hands off the computation to another client, the new client 
can immediately pick up where the previous one left off.  In 
addition, the server can temporally limit the effect of each client 
on the server-side AI by preemptively migrating the client-side 
AI: assigning successive computations for the same subject to 
different clients. 



There are also advantages to designing the client-side AI to be 
deterministic, meaning that identical glimpses produce identical 
advice.  To tolerate failures and exploits, the server can 
redundantly issue the same glimpse to multiple clients, effectively 
replicating the client-side AI.  To deal with simple failures, the 
server can accept the first advice it receives.  Alternatively, to deal 
with attempted client exploits, the server can wait for multiple 
replies and use plurality voting to determine the correct advice; 
however, this may increase latency as the server waits for replies 
from multiple clients.  If the client-side AI computation needs to 
include randomness, the seed for the random-number generator 
should be selected by the server and sent with the glimpse to 
clients, thereby keeping the client-side AI deterministic. 

5 Example – tactical navigation 

To evaluate the feasibility of offloading AI to clients, we consider 
the problem of tactical navigation.  This is a particularly 
challenging task because it is highly sensitive to latency.  The 
intent of the example is not to demonstrate a particularly 
impressive AI; rather, it is to illustrate how AI calculations can be 
effectively partitioned in a way that tolerates the latency of remote 
computation. 

5.1 Classic navigation 

The conventional approach to game-AI navigation [19,21] is first 
to select a goal and then to move toward that goal via a series of 
predetermined waypoints.  If the goal is an opponent, then when 
the opponent comes within a defined range, navigation switches 
to a mode of random selection among preprogrammed attack 
movements such as charging, feinting, and strafing. 

The main benefit of this approach is computational efficiency, 
since the complex logic for selecting a new goal is performed 
sporadically rather than reevaluated on every frame, and detailed 
path calculations are performed offline prior to game execution. 

However, this approach has at least two significant weaknesses.  
First, it only allows for one goal at a time.  In contrast, humans 
can simultaneously weigh several goals and devise a path that 
optimizes over all of them.  Second, this approach does not 
readily adapt to quickly changing circumstances, such as the 
virtual locations of teammates and opponents.  Consequently, this 
approach cannot execute interesting and intelligent movement 
patterns, such as the complex retreating behavior described in 
Section 2. 

5.2 Improvement: aggregate influence fields 

We address the two weaknesses noted above with a more flexible 
approach to tactical game navigation.  Rather than navigating 
toward a single selected goal, the approach is to calculate a vector 
field that characterizes the collective influence of all entities in the 
vicinity, and then to move in the direction indicated by the field.  
This field optimizes over both the explicit primary goal and 
implicit secondary goals, and it can be readily recalculated as 
entities move. 

From the subject’s perspective, each other entity exudes an 
attractive or repulsive radial influence field with a magnitude of 

m

W d
−

=v
 

where d is distance from the subject, m is a decay factor, and W is 
a weight.  Most entities are attractive, such as the primary goal, 
targeted opponents, weapons, ammunition, and health packs.  
Some entities may be repulsive, such as a powerful opponent who 
is currently attacking the subject. 

The aggregate influence field is the sum of the fields from nearby 
entities.  For a subject at point p in virtual space, the aggregate 
field f from a set of � entities can be calculated as 
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where the weight W and decay factor m are functions that vary per 
entity.  In general, the weight and decay functions are affected by 
the state of the subject; for example, as the subject’s health 
decreases, it becomes more repulsed by attacking opponents and 
more attracted by health packs. 

We can reformulate the above expression for f as 
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where i and j respectively represent unit vectors in the X and Y 
dimensions.  By simplifying the latter formulation, the cost of 
calculating the aggregate field is five additions, six 
multiplications, and one exponentiation per entity in the subject’s 
vicinity. 

Fig. 1a illustrates a sample aggregate influence field.  The subject 
is repelled by the attacking enemy, attracted to the other enemy, 
and more attracted to the health pack. 

5.3 Offloading: Taylor-approximate fields 

The cost calculating the aggregate influence field is proportional 
to the count of entities in the area.  To offload the bulk of this 
effort to a client, we use AI partitioning, as described in Section 4.  
Specifically, in the server-side AI, we replace the calculation of 
the actual influence field f with the calculation of a second-order 
two-dimensional Taylor series approximation: 

( )

( )

( )

2 2

0 1 2 3 4 5

2 2

0 1 2 3 4 5

,

A A A A

B B B B

x x y y

A x y x y A x y

B x y x y B x y

+ ∆ + ∆ ≈

+ ∆ + ∆ + ∆ + ∆ + ∆ ∆

+ + ∆ + ∆ + ∆ + ∆ + ∆ ∆

f

i

j

% %

 

The cost of this computation is merely 12 additions and 13 
multiplications, irrespective of the count of entities in the vicinity.  

The Taylor-series coefficients, A0 to A5 and B0 to B5, are 
computed by the client-side AI, based on a glimpse of the game 

state provided by the server when the subject is at point ( x% , y% ) in 
virtual space. 



Fig. 1b illustrates a 2D Taylor series approximation of the 
aggregate influence field in Fig. 1a.  Within the region highlighted 
by the circle, the approximation closely follows the actual 
influence field. 

The edges of Fig. 1 show that the approximation can be wildly 
wrong, as the Taylor-series accuracy diminishes with distance 

from the point ( x% , y% ).  Therefore, as the subject moves away 
from this point over time, the advice returned by the client-side AI 

becomes less valuable.  In addition, even if the subject stays in 
place, the positions of the other entities will change, rendering the 

advice stale.  We quantify this effect in the next section. 

6 Evaluation 

To determine how well AI partitioning can work in practice, we 
built a prototype of our Taylor-series-based tactical navigation.  
Because we want our experiments to evaluate partitioned AI 
performance even at high latencies, we do not provide a server-
side fallback mode.  We also do not implement replication; 
however, the client-side AI is both stateless and deterministic, so 
replication would be fairly straightforward to add. 

6.1 Prototype implementation 

Due to our unfamiliarity with available MMOG code bases [7,8], 
we evaluate the above mechanism in an open-source first-person-
shooter (FPS) game, specifically Quake III.  Although FPS games 
are quite different from MMOGs in many respects, the basic game 
loop and combat AI logic are very similar [1,19]. 

We built a prototype implementation of partitioned AI inside 
Quake III’s bot code.  We employ Quake III’s standard AI [21] 
for every aspect of bot control except the direction of motion, 
which we determine by a Taylor-approximate influence field.  
Notably, we did not modify the target-selection logic or shooting 
accuracy. 

Because our focus is on the AI-offloading technique, rather than 
on bot tactics, we did not perform extensive experimentation for 
optimal weights and decay factors in the field equations.  Instead, 
we thought of a few basic strategies for tactical bot behavior.  We 
then tinkered with parameter settings and parametric functions 
until we found a set that seemed to work reasonably well.  The 
main considerations are that higher weights result in a greater 
influence, and higher decay factors increase the localization of the 
influence.  Ultimately, we settled on four strategies of increasing 
sophistication: 

seekplayer:  The goal, identified by existing Quake III bot logic, 
is strongly attractive even at a distance (W = 60, m = 1); other bots 
are attractive when they are nearby (W = 20, m = 2); and items, 
such as weapons, ammunition, and health packs, are neutral. 

seekall:  Like seekplayer, except that nearby items are also 
attractive (W = 20, m = 2.5) if considered useful.  An item is 
designated useful if acquiring it will change the bot’s state: a 
weapon of a type not currently possessed, ammunition if the bot 
has less than the allowable limit, and a health pack if the bot has 
less than perfect health. 

selfaware:  Like seekall, except the state of the bot can cause 
some useful items to be designated as critical.  This applies to 
weapons and ammunition when the bot has no ammunition left, 
and to health packs when the bot is below 20% health.  Critical 
items are extra attractive (W = 40, m = 2). 

avoidattacker:  Like selfaware, except that when the bot’s health 
is below 50%, it is repulsed by the last enemy to have damaged it 
recently.  The repulsion is determined by whether the attacker 
wields a range weapon, in which case it is moderately repulsive 
when nearby (W = –10, m = 2), or a melee weapon, which makes 
it more repulsive but only when very close (W = –30, m = 3). 

(a) actual field  (b) second-order Taylor series approximation 

Fig. 1: Aggregate influence field – subject ™, attacking enemy ®, non-attacking enemy ß, health pack © 
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6.2 Experiments 

Our virtual test environment is a flat space with no fixed 
obstacles, intended to resemble an open outdoor area as can be 
found in an MMOG.  Since Quake environments must be 
bounded, we use the Quake map editor to build the largest 
allowable map, and we locate all items of interest in rough 
proximity to the center, to make the bots disinclined to go near the 
edges of the world.  We also severely limit the availability of 
ammunition, to produce a relatively even balance of melee and 
ranged combat. 

We evaluate our implementation by staging a series of six-bot, all-
against-all “deathmatch” tournaments.  Each tournament consists 
of nine ten-minute games, each involving three enhanced bots and 
three standard bots.  By default, all bots are set to median skill 
(level 3 in the range from 1 to 5).  To simulate wide-area network 
latency, we add a tunable delay to the client-server 
communication path.  For each tournament, we measure the mean 
score difference between the enhanced bots and the standard bots.  
We vary the round-trip latency, the navigation strategy of the 
enhanced bots, and the skill level of the standard bots. 

6.3 Results 

Fig. 2 plots the difference between the mean scores of enhanced 
bots and the mean scores of standard bots, as a function of round-
trip latency, for the four strategies enumerated above.  It also plots 
95% confidence intervals for these score differences.  Even with 
latencies up to one second, our enhanced bots outperform the 
standard bots.  We stress that this improvement has nothing to do 
with targeting or shooting accuracy, which we did not change.  
We replaced only the navigation logic. 

The ability to tolerate a round-trip latency of one second suggests 
that the partitioning technique would be effective even in the 
high-latency environment described in Section 3.  As the latency 
increases beyond this point, the standard bots begin to outperform 
our enhanced bots, as the advice from the client-side AI becomes 
increasingly stale.  This suggests that a threshold of one second is 
a reasonable cutoff point for invoking a fallback navigation mode, 
as mentioned in Section 4.  An obvious choice for fallback code is 
the standard bot navigation logic, which requires no advice from 
the client. 

The confidence intervals for the four strategies overlap each other, 
implying that the four strategies are not significantly different in 
their effectiveness, or at least that any differences are too minor 
for our small set of experiments to demonstrate.  Perhaps the 
ability to optimize over multiple goals, which is present in all four 
strategies, is the dominant factor responsible for the improved 
performance of field-based bots over standard bots. 

We are somewhat surprised that sophisticated decision-making, as 
performed by the selfaware and avoidattacker strategies, has little 
effect on the game outcome, relative to our simpler enhancement 
strategies.  However, this may be due to a quirk of FPS games that 
is not representative of MMOGs, namely that dying can be 
beneficial.  A respawned bot regains full health and a partly 
loaded weapon, which is often an improvement over the bot’s 
state prior to being killed.  Thus, a strategy designed to avoid 
dying may not improve game score. 

Fig. 3 plots the score difference of level-3 enhanced selfaware 
bots versus standard bots of skill levels 3, 4, and 5.  As already 
shown in Fig. 2, enhanced bots outperform standard bots of the 
same level even with latencies up to one second.  In addition, at 
lower latencies, enhanced bots outperform standard bots of higher 
skill level, despite the fact that these higher-level bots have better 
target-selection logic and greater shooting accuracy.  This is even 
more noteworthy considering that our replacement of the 
navigation logic had the side effect of removing classic combat 
maneuvers such as feinting and strafing, which the standard bots 
continued to employ. 

Overall, our experiments show that an enhanced AI, partitioned 
into server and client components, can improve on an AI’s 
abilities, even with high round-trip latency. 

7 Related work 

Several prior researchers have investigated offloading workload 
from game servers to clients.  Kabus et al. [11] forms clients into 
a multicast tree that disseminates server updates.  FreeMMG [6] is 
a hybrid model, mainly peer-to-peer but with a server to help 
failed clients recover.  Others have proposed completely replacing 
servers with peer-to-peer systems [9,13,17] running on clients. 

Fig. 2: Score difference for various strategies 
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Fig. 3: Score difference for various standard bot levels 
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In a different context, researchers have explored client-donated 
CPU cycles for distributed computing tasks, such as SETI@home 
and the other BOINC projects [2], and Folding@home and 
Genome@home [14]. 

The use of vector fields for directional guidance originated in the 
AI community, where it was applied to actual physical robots 
[5,12].  Mamei et al. [16] employed vector fields for strategically 
coordinating bots in Quake III; this is a sophisticated AI task to 
which our offloading technique could perhaps be applied directly. 

8 Conclusions and future work 

In this paper, we propose enhancing the AI of game servers by 
offloading computation to clients.  To address the problem of 
latency, we partition each computation into a critical tight-loop 
server-side AI and an advice-giving client-side AI.  As an 
exemplar, we design an enhanced AI for tactical navigation based 
on influence fields, and we partition it using Taylor series 
approximation.  Prototype experiments show substantial 
improvement in AI abilities, even with round-trip latencies up to 
one second. 

A further step with our prototype is to replicate the client-side AI 
and test its ability to deal with client failure.  Another step is to 
add a local fallback mode to the server-side AI and investigate the 
transition between advised and unadvised AI behavior.  A minor 
but practically important improvement is to execute the client-side 
AI on a low-priority thread, to ensure that it does not disturb the 
gameplay of the user on the client machine.  Moreover, we would 
like to implement partitioned AI in an MMOG and conduct a user 
study to see whether it improves the game as we expect. 

One aspect of client exploitation we did not consider is 
information leakage, in which clients inspect glimpses from the 
server to learn details of game state they should not be allowed to 
observe.  We would like to investigate anonymization and 
obfuscation techniques to limit client visibility into offloaded 
computations. 
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