
b-Bit Minwise Hashing for Estimating Three-Way Similarities
Ping Li

Dept. of Statistical Science
Cornell University

Arnd Christian König
Microsoft Research

Microsoft Corporation

Wenhao Gui
Dept. of Statistical Science

Cornell University

Abstract
Computing1 two-way and multi-way set similarities is a fundamental problem.
This study focuses on estimating 3-way resemblance (Jaccard similarity) using
b-bit minwise hashing. While traditional minwise hashing methods store each
hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits
(where b ≥ 2 for 3-way). The extension to 3-way similarity from the prior work
on 2-way similarity is technically non-trivial. We develop the precise estimator
which is accurate and very complicated; and we recommend a much simplified
estimator suitable for sparse data. Our analysis shows that b-bit minwise hashing
can normally achieve a 10 to 25-fold improvement in the storage space required
for a given estimator accuracy of the 3-way resemblance.

1 Introduction
The efficient computation of the similarity (or overlap) between sets is a central operation in a variety
of applications, such as word associations (e.g., [13]), data cleaning (e.g., [40, 9]), data mining
(e.g., [14]), selectivity estimation (e.g., [30]) or duplicate document detection [3, 4]. In machine
learning applications, binary (0/1) vectors can be naturally viewed as sets. For scenarios where the
underlying data size is sufficiently large to make storing them (in main memory) or processing them
in their entirety impractical, probabilistic techniques have been proposed for this task.

Word associations (collocations, co-occurrences) If one inputs a query NIPS machine learning,
all major search engines will report the number of pagehits (e.g., one reports 829,003), in addition to
the top ranked URLs. Although no search engines have revealed how they estimate the numbers of
pagehits, one natural approach is to treat this as a set intersection estimation problem. Each word can
be represented as a set of document IDs; and each set belongs to a very large space Ω. It is expected
that |Ω| > 1010. Word associations have many other applications in Computational Linguistics [13,
38], and were recently used for Web search query reformulation and query suggestions [42, 12].

Here is another example. Commercial search engines display various form of “vertical” content
(e.g., images, news, products) as part of Web search. In order to determine from which “vertical”
to display information, there exist various techniques to select verticals. Some of these (e.g., [29,
15]) use the number of documents the words in a search query occur in for different text corpora
representing various verticals as features. Because this selection is invoked for all search queries
(and the tight latency bounds for search), the computation of these features has to be very fast.
Moreover, the accuracy of vertical selection depends on the number/size of document corpora that
can be processed within the allotted time [29], i.e., the processing speed can directly impact quality.

Now, because of the large number of word-combinations in even medium-sized text corpora (e.g.,
the Wikipedia corpus contains > 107 distinct terms), it is impossible to pre-compute and store the
associations for all possible multi-term combinations (e.g., > 1014 for 2-way and > 1021 for 3-way);
instead the techniques described in this paper can be used for fast estimates of the co-occurrences.

Database query optimization Set intersection is a routine operation in databases, employed for
example during the evaluation of conjunctive selection conditions in the presence of single-column
indexes. Before conducting intersections, a critical task is to (quickly) estimate the sizes of the
intermediate results to plan the optimal intersection order [20, 8, 25]. For example, consider the task
of intersecting four sets of record identifiers: A ∩ B ∩ C ∩D. Even though the final outcome will
be the same, the order of the join operations, e.g., (A ∩ B) ∩ (C ∩D) or ((A ∩ B) ∩ C) ∩D, can
significantly affect the performance, in particular if the intermediate results, e.g., A∩B∩C, become
too large for main memory and need to be spilled to disk. A good query plan aims to minimize
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the total size of intermediate results. Thus, it is highly desirable to have a mechanism which can
estimate join sizes very efficiently, especially for the lower-order (2-way and 3-way) intersections,
which could potentially result in much larger intermediate results than higher-order intersections.

Duplicate Detection in Data Cleaning: A common task in data cleaning is the identification of
duplicates (e.g., duplicate names, organizations, etc.) among a set of items. Now, despite the fact
that there is considerable evidence (e.g., [10]) that reliable duplicate-detection should be based on
local properties of groups of duplicates, most current approaches base their decisions on pairwise
similarities between items only. This is in part due to the computational overhead associated with
more complex interactions, which our approach may help to overcome.

Clustering Most clustering techniques are based on pair-wise distances between the items to be
clustered. However, there are a number of natural scenarios where the affinity relations are not
pairwise, but rather triadic, tetradic or higher (e.g. [1, 43]). Again, our approach may improve the
performance in these scenarios if the distance measures can be expressed in the form of set-overlap.

Data mining A lot of work in data mining has focused on efficient candidate pruning in the
context of pairwise associations (e.g., [14]), a number of such pruning techniques leverage minwise
hashing to prune pairs of items, but in many contexts (e.g., association rules with more than 2 items)
multi-way associations are relevant; here, pruning based on pairwise interactions may perform much
less well than multi-way pruning.

1.1 Ultra-high dimensional data are often binary
For duplicate detection in the context of Web crawling/search, each document can be represented as
a set of w-shingles (w contiguous words); w = 5 or 7 in several studies [3, 4, 17]. Normally only the
abscence/presence (0/1) information is used, as a w-shingle rarely occurs more than once in a page
if w ≥ 5. The total number of shingles is commonly set to be |Ω| = 264; and thus the set intersection
corresponds to computing the inner product in binary data vectors of 264 dimensions. Interestingly,
even when the data are not too high-dimensional (e.g., only thousands), empirical studies [6, 23, 26]
achieved good performance using SVM with binary-quantized (text or image) data.

1.2 Minwise Hashing and SimHash
Two of the most widely adopted approaches for estimating set intersections are minwise hashing [3,
4] and sign (1-bit) random projections (also known as simhash) [7, 34], which are both special
instances of the general techniques proposed in the context of locality-sensitive hashing [7, 24].
These techniques have been successfully applied to many tasks in machine learning, databases, data
mining, and information retrieval [18, 36, 11, 22, 16, 39, 28, 41, 27, 5, 2, 37, 7, 24, 21].

Limitations of random projections The method of random projections (including simhash) is
limited to estimating pairwise similarities. Random projections convert any data distributions to
(zero-mean) multivariate normals, whose density functions are determined by the covariance matrix
which contains only the pairwise information of the original data. This is a serious limitation.

1.3 Prior work on b-Bit Minwise Hashing
Instead of storing each hashed value using 64 bits as in prior studies, e.g., [17], [35] suggested to
store only the lowest b bits. [35] demonstrated that using b = 1 reduces the storage space at least
by a factor of 21.3 (for a given accuracy) compared to b = 64, if one is interested in resemblance
≥ 0.5, the threshold used in prior studies [3, 4]. Moreover, by choosing the value b of bits to be
retained, it becomes possible to systematically adjust the degree to which the estimator is “tuned”
towards higher similarities as well as the amount of hashing (random permutations) required.

[35] concerned only the pairwise resemblance. To extend it to the multi-way case, we have to solve
new and challenging probability problems. Compared to the pairwise case, our new estimator is
significantly different. In fact, as we will show later, estimating 3-way resemblance requires b ≥ 2.
1.4 Notation

a
12

f
1 a

a
23

f
3

a
13

f
2

r
1

r
3

s
12

s
s
23

r
2

s
13

Figure 1: Notation for 2-way and 3-way set intersections.



Fig. 1 describes the notation used in 3-way intersections for three sets S1, S2, S3 ∈ Ω, |Ω| = D.

• f1 = |S1|, f2 = |S2|, f3 = |S3|.
• a12 = |S1 ∩ S2|, a13 = |S1 ∩ S3|, a23 = |S2 ∩ S3|, a = a123 = |S1 ∩ S2 ∩ S3|.
• r1 = f1

D
, r2 = f2

D
, r3 = f3

D
. s12 = a12

D
, s13 = a13

D
, s23 = a23

D
, s = s123 = a

D
.

• u = r1 + r2 + r3 − s12 − s13 − s23 + s.

We define three 2-way resemblances (R12, R13, R23) and one 3-way resemblance (R) as:

R12 =
|S1 ∩ S2|
|S1 ∪ S2| , R13 =

|S1 ∩ S3|
|S1 ∪ S3| , R23 =

|S2 ∩ S3|
|S2 ∪ S3| , R = R123 =

|S1 ∩ S2 ∩ S3|
|S1 ∪ S2 ∪ S3| . (1)

which, using our notation, can be expressed in various forms:

Rij =
aij

fi + fj − aij
=

sij

ri + rj − sij
, i 6= j, (2)

R =
a

f1 + f2 + f3 − a12 − a23 − a13 + a
=

s

r1 + r2 + r3 − s12 − s23 − s13 + s
=

s

u
. (3)

Note that, instead of a123, s123, R123, we simply use a, s, R. When the set sizes, fi = |Si|, can be
assumed to be known, we can compute resemblances from intersections and vice versa:

aij =
Rij

1 + Rij
(fi + fj), a =

R

1−R
(f1 + f2 + f3 − a12 − a13 − a23) .

Thus, estimating resemblances and estimating intersection sizes are two closely related problems.

1.5 Our Main Contributions
• We derive the basic probability formula for estimating 3-way resemblance using b-bit hash-

ing. The derivation turns out to be significantly much more complex than the 2-way case.
This basic probability formula naturally leads to a (complicated) estimator of resemblance.

• We leverage the observation that many real applications involve sparse data (i.e., ri = fi

D ≈
0, but fi/fj = ri/rj may be still significant) to develop a much simplified estimator, which
is desired in practical applications. This assumption of fi/D → 0 significantly simplifies
the estimator and frees us from having to know the cardinalities fi.

• We analyze the theoretical variance of the simplified estimator and compare it with the
original minwise hashing method (using 64 bits). Our theoretical analysis shows that b-
bit minwise hashing can normally achieve a 10 to 25-fold improvement in storage space
(for a given estimator accuracy of the 3-way resemblance) when the set similarities are not
extremely low (e.g., when the 3-way resemblance > 0.02). These results are particularly
important for applications in which only detecting high resemblance/overlap is relevant,
such as many data cleaning scenarios or duplicate detection.

The recommended procedure for estimating 3-way resemblances (in sparse data) is shown as Alg. 1.

Algorithm 1 The b-bit minwise hashing algorithm, applied to estimating 3-way resemblances in a
collection of N sets. This procedure is suitable for sparse data, i.e., ri = fi/D ≈ 0.
Input: Sets Sn ∈ Ω = {0, 1, ..., D − 1}, n = 1 to N .
Pre-processing phrase:
1) Generate k random permutations πj : Ω → Ω, j = 1 to k.
2) For each set Sn and permutation πj , store the lowest b bits of min (πj (Sn)), denoted by en,t,πj , t = 1 to b.
Estimation phrase: (Use three sets S1, S2, and S3 as an example.)
1) Compute P̂12,b = 1

k

∑k
j=1

{∏b
t=1 1{e1,t,πj = e2,t,πj}

}
. Similarly, compute P̂13,b and P̂23,b.

2) Compute P̂b = 1
k

∑k
j=1

{∏b
t=1 1{e1,t,πj = e2,t,πj = e3,t,πj}

}
.

3) Estimate R by R̂b =
4bP̂b−2b(P̂12,b+P̂13,b+P̂23,b)+2

(2b−1)(2b−2)
.

4) If needed, the 2-way resemblances Rij,b can be estimated as R̂ij,b =
2bP̂ij,b−1

2b−1
.



2 The Precise Theoretical Probability Analysis
Minwise hashing applies k random permutations πj : Ω −→ Ω, Ω = {0, 1, ..., D − 1}, and then
estimates R12 (and similarly other 2-way resemblances) using the following probability:

Pr (min(πj(S1)) = min(πj(S2))) =
|S1 ∩ S2|
|S1 ∪ S2| = R12. (4)

This method naturally extends to estimating 3-way resemblances for three sets S1, S2, S3 ∈ Ω:

Pr (min(πj(S1)) = min(πj(S2)) = min(πj(S3))) =
|S1 ∩ S2 ∩ S3|
|S1 ∪ S2 ∪ S3| = R. (5)

To describe b-bit hashing, we define the minimum values under π and their lowest b bits to be:

zi = min (π (Si)) , ei,t = t-th lowest bit of zi.

To estimate R, we need to computes the empirical estimates of the probabilities Pij,b and Pb, where

Pij,b = Pr

(
b∏

t=1

1{ei,t = ej,t} = 1

)
, Pb = P123,b = Pr

(
b∏

t=1

1{e1,t = e2,t = e3,t} = 1

)
.

The main theoretical task is to derive Pb. The prior work[35] already derived Pij,b; see Appendix A.
To simplify the algebra, we assume that D is large, which is virtually always satisfied in practice.

Theorem 1 Assume D is large.

Pb = Pr

(
b∏

i=1

1{e1,i = e2,i = e3,i} = 1

)
=

Z

u
+ R =

Z + s

u
, (6)

where u = r1 + r2 + r3 − s12 − s13 − s23 + s, and

Z =(s12 − s)A3,b +
(r3 − s13 − s23 + s)

r1 + r2 − s12
s12G12,b + (s13 − s)A2,b +

(r2 − s12 − s23 + s)

r1 + r3 − s13
s13G13,b

+(s23 − s)A1,b +
(r1 − s12 − s13 + s)

r2 + r3 − s23
s23G23,b + [(r2 − s23)A3,b + (r3 − s23)A2,b]

(r1 − s12 − s13 + s)

r2 + r3 − s23
G23,b

+ [(r1 − s13)A3,b + (r3 − s13)A1,b]
(r2 − s12 − s23 + s)

r1 + r3 − s13
G13,b

+ [(r1 − s12)A2,b + (r2 − s12)A1,b]
(r3 − s13 − s23 + s)

r1 + r2 − s12
G12,b,

Aj,b =
rj(1− rj)

2b−1

1− (1− rj)2
b

, Gij,b =
(ri + rj − sij)(1− ri − rj + sij)

2b−1

1− (1− ri − rj + sij)2
b

, i, j ∈ {1, 2, 3}, i 6= j.

Theorem 1 naturally suggests an iterative estimation procedure, by writing Eq. (6) as s = Pbu−Z.
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Figure 2: Pb, for verifying the probability formula in Theorem 1. The empirical estimates and the
theoretical predictions essentially overlap regardless of the sparsity measure ri = fi/D.

A Simulation Study For the purpose of verifying Theorem 1, we use three sets corresponding
to the occurrences of three common words (“OF”, “AND”, and “OR”) in a chunk of real world Web
crawl data. Each (word) set is a set of document (Web page) IDs which contained that word at least
once. The three sets are not too sparse and D = 216 suffices to represent their elements. The ri = fi

D
values are 0.5697, 0.5537, and 0.3564, respectively. The true 3-way resemblance is R = 0.47.



We can also increase D by mapping these sets into a larger space using a random mapping, with
D = 216, 218, 220, or 222. When D = 222, the ri values are 0.0089, 0.0087, 0.0056.

Fig. 2 presents the empirical estimates of the probability Pb, together with the theoretical predictions
by Theorem 1. The empirical estimates essentially overlap the theoretical predictions. Even though
the proof assumes D →∞, D does not have to be too large for Theorem 1 to be accurate.

3 The Much Simplified Estimator for Sparse Data
The basic probability formula (Theorem 1) we derive could be too complicated for practical use. To
obtain a simpler formula, we leverage the observation that in practice we often have ri = fi

D ≈ 0,
even though both fi and D can be very large. For example, consider web duplicate detection [17].
Here, D = 264, which means that even for a web page with fi = 254 shingles (corresponding to the
text of a small novel), we still have fi

D ≈ 0.001. Note that, even when ri → 0, the ratios, e.g., r2
r1

,
can be still large. Recall the resemblances (2) and (3) are only determined by these ratios.

We analyzed the distribution of fi

D using two real-life datasets: the UCI dataset containing 3 × 105

NYTimes articles; and a Microsoft proprietary dataset with 106 news articles [19]. For the UCI-
NYTimes dataset, each document was already processed as a set of single words. For the anonymous
dataset, we report results using three different representations: single words (1-shingle), 2-shingles
(two contiguous words), and 3-shingles. Table 1 reports the summary statistics of the fi

D values.

Table 1: Summary statistics of the fi

D values in two datasets

Data Median Mean Std.
3× 105 UCI-NYTimes articles 0.0021 0.0022 0.0011
106 Microsoft articles (1-shingle) 0.00027 0.00032 0.00023
106 Microsoft articles (2-shingle) 0.00003 0.00004 0.00005
106 Microsoft articles (3-shingle) 0.00002 0.00002 0.00002

For truly large-scale applications, prior studies [3, 4, 17] commonly used 5-shingles. This means
that real world data may be significantly more sparse than the values reported in Table 1.

3.1 The Simplified Probability Formula and the Practical Estimator
Theorem 2 Assume D is large. Let T = R12 + R13 + R23. As r1, r2, r3 → 0,

Pb = Pr

(
b∏

i=1

1{e1,i = e2,i = e3,i} = 1

)
=

1

4b

{
(2b − 1)(2b − 2)R + (2b − 1)T + 1

}
. (7)

Interestingly, if b = 1, then P1 = 1
4 (1 + T ), i.e., no information about the 3-way resemblance R is

contained. Hence, it is necessary to use b ≥ 2 to estimate 3-way similarities.

Alg. 1 uses P̂b and P̂ij,b to respectively denote the empirical estimates of the theoretical probabilities
Pb and Pij,b. Assuming r1, r2, r3 → 0, the proposed estimator of R, denoted by R̂b, is

R̂b =
4bP̂b − 2b

(
P̂12,b + P̂13,b + P̂23,b

)
+ 2

(2b − 1)(2b − 2)
. (8)

Theorem 3 Assume D is large and r1, r2, r3 → 0. Then R̂b in (8) is unbiased with the variance

V ar
(
R̂b

)
=

1

k

1

(2b − 1)(2b − 2)

{
1 + (2b − 3)T +

(
4b − 6× 2b + 10

)
R− (2b − 1)(2b − 2)R2

}
.

(9)

It is interesting to examine several special cases:

• b = 1: V ar(R̂1) = ∞, i.e., one must use b ≥ 2.
• b = 2: V ar(R̂2) = 1

6k

(
1 + T + 2R− 6R2

)
.

• b = ∞: V ar(R̂∞) = 1
kR(1−R) = V ar(R̂M ). R̂M is the original minwise hashing esti-

mator for 3-way resemblance. In principle, the estimator R̂M requires an infinite precision
(i.e., b = ∞). Numerically, V ar(R̂M ) and V ar(R̂64) are indistinguishable.



3.2 Simulations for Validating Theorem 3
We now present a simulation study for verifying Theorem 3, using the same three sets used in Fig. 2.

Fig. 3 presents the resulting empirical biases: E(R̂b)−Rb. Fig. 4 presents the empirical mean square
errors (MSE = bias2+variance) together with the theoretical variances V ar(R̂b) in Theorem 3.
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Figure 3: Bias of R̂b (8). We used 3 (word) sets: “OF”, “AND”, and “OR” and four D values: 216,
218, 220, and 222. We conducted experiments using b = 2, 3, and 4 as well as the original minwise
hashing (denoted by “M”). The plots verify that as ri decreases (to zero), the biases vanish. Note
that the set sizes fi remain the same, but the relative values ri = fi

D decrease as D increases.
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Figure 4: MSE of R̂b (8). The solid curves are the empirical MSEs (=var+bias2) and the dashed
lines are the theoretical variances (9), under the assumption of ri → 0. Ideally, we would like to see
the solid and dashed lines overlap. When D = 220 and D = 222, even though the ri values are not
too small, the solid and dashed lines almost overlap. Note that, at the same sample size k, we always
have V ar(R̂2) > V ar(R̂3) > V ar(R̂4) > V ar(R̂M ), where R̂M is the original minwise hashing
estimator. We can see that, V ar(R̂3) and V ar(R̂4) are very close to V ar(R̂M ).

We can summarize the results in Fig. 3 and Fig. 4 as follows:
• When the ri = fi

D values are large (e.g., ri ≈ 0.5 when D = 216), the estimates using
(8) can be noticeably biased. The estimation biases diminish as the ri values decrease. In
fact, even when the ri values are not small (e.g., ri ≈ 0.05 when D = 220), the biases are
already very small (roughly 0.005 when D = 220).

• The variance formula (9) becomes accurate when the ri values are not too large. For exam-
ple, when D = 218 (ri ≈ 0.1), the empirical MSEs largely overlap the theoretical variances
which assumed ri → 0, unless the sample size k is large. When D = 220 (and D = 222),
the empirical MSEs and theoretical variances overlap.

• For real applications, as we expect D will be very large (e.g., 264) and the ri values (fi/D)
will be very small, our proposed simple estimator (8) will be very useful in practice, be-
cause it becomes unbiased and the variance can be reliably predicted by (9).

4 Improving Estimates for Dense Data Using Theorem 1
While we believe the simple estimator in (8) and Alg. 1 should suffice in most applications, we
demonstrate here that the sparsity assumption of ri → 0 is not essential if one is willing to use the
more sophisticated estimation procedure provided by Theorem 1.

By Eq. (6), s = Pbu− Z, where Z contains s, sij , ri etc. We first estimate sij (from the estimated
Rij) using the precise formula for the two-way case; see Appendix A. We then iteratively solve for
s using the initial guess provided by the estimator R̂b in (8). Usually a few iterations suffice.

Fig. 5 reports the bias (left most panel, only for D = 216) and MSE, corresponding to Fig. 3 and
Fig. 4. In Fig. 5, the solid curves are obtained using the precise estimation procedure by Theorem 1.
The dashed curves are the estimates using the simplified estimator R̂b which assumes ri → 0.



Even when the data are not sparse, the precise estimation procedure provides unbiased estimates
as verified by the leftmost panel of Fig. 5. Using the precise procedure results in noticeably more
accurate estimates in non-sparse data, as verified by the second panel of Fig. 5. However, as long as
the data are reasonably sparse (the right two panels), the simple estimator R̂b in (8) is accurate.
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Figure 5: The bias (leftmost panel) and MSE of the precise estimation procedure, using the same
data used in Fig. 3 and Fig. 4. The dashed curves correspond to the estimates using the simplified
estimator R̂b in (8) which assumes ri → 0.

5 Quantifying the Improvements Using b-Bit Hashing

This section is devoted to analyzing the improvements of b-bit minwise hashing, compared to using
64 bits for each hashed value. Throughout the paper, we use the terms “sample” and “sample size”
(denoted by k). The original minwise hashing stores each “sample” using 64 bits (as in [17]). For
b-bit minwise hashing, we store each “sample” using b bits only. Note that V ar(R̂64) and V ar(R̂M )
(the variance of the original minwise hashing) are numerically indistinguishable.

As we decrease b, the space needed for each sample will be smaller; the estimation variance at
the same sample size k, however, will increase. This variance-space trade-off can be quantified by
B(b) = b× Var

(
R̂b

)
× k, which is called the storage factor. Lower B(b) is more desirable. The

ratio B(64)
B(b) precisely characterizes the improvements of b-bit hashing compared to using 64 bits.

Fig. 6 confirms the substantial improvements of b-bit hashing over the original minwise hashing
using 64 bits. The improvements in terms of the storage space are usually 10 (or 15) to 25-fold
when the sets are reasonably similar (i.e., when the 3-way resemblance > 0.1). When the three sets
are very similar (e.g., the top left panel), the improvement will be even 25 to 30-fold.
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Figure 6: B(64)
B(b) , the relative storage improvement of using b = 2, 3, 4, 6 bits, compared to using 64

bits. Since the variance (9) contains both R and T = R12 +R13 +R23, we compare variances using
different T/R ratios. As 3R ≤ T always, we let T = αR, for some α ≥ 3. Since T ≤ 3, we know
R ≤ 3/α. Practical applications are often interested in cases with reasonably large R values.



6 Evaluation of Accuracy
We conducted a duplicate detection experiment on a public (UCI) collection of 300,000 NYTimes
news articles. The task is to identify 3-groups with 3-way resemblance R exceeding a threshold R0.
We used a subset of the data; the total number of 3-groups is about one billion. We experimented
with b = 2, 4 and the original minwise hashing. Fig. 7 presents the precision curves for a represen-
tative set of thresholds R0’s. Just like in [35], the recall curves are not shown because they could not
differentiate estimators. These curves confirm the significant improvement of using b-bit minwise
hashing when the threshold R0 is quite high (e.g., 0.3). In fact, when R0 = 0.3, using b = 4 re-
sulted in similar precisions as using the original minwise hashing (i.e., a 64/4=16-fold reduction in
storage). Even when R0 = 0.1, using b = 4 can still achieve similar precisions as using the original
minwise hashing by only slightly increasing the sample size k.
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Figure 7: Precision curves on the UCI collection of news data. The task is to retrieve news article
3-groups with resemblance R ≥ R0. For example, consider R0 = 0.2. To achieve a precision of
at least 0.8, 2-bit hashing and 4-bit hashing require about k = 500 samples and k = 260 samples
respectively, while the original minwise hashing (denoted by M ) requires about 170 samples.

7 Conclusion
Computing set similarities is fundamental in many applications. In machine learning, high-
dimensional binary data are common and are equivalent to sets. This study is devoted to simul-
taneously estimating 2-way and 3-way similarities using b-bit minwise hashing. Compared to the
prior work on estimating 2-way resemblance [35], the extension to 3-way is important for many
application scenarios (as described in Sec. 1) and is technically non-trivial.

For estimating 3-way resemblance, our analysis shows that b-bit minwise hashing can normally
achieve a 10 to 25-fold improvement in the storage space required for a given estimator accuracy,
when the set similarities are not extremely low (e.g., 3-way resemblance > 0.02). Many applications
such as data cleaning and de-duplication are mainly concerned with relatively high set similarities.

For many practical applications, the reductions in storage directly translate to improvements in pro-
cessing speed as well, especially when memory latency is the main bottleneck, which, with the
advent of many-core processors, is more and more common.

Future work: We are interested in developing a b-bit version for Conditional Random Sampling
(CRS) [31, 32, 33], which requires only one permutation (instead of k permutations) and naturally
extends to non-binary data. CRS is also provably more accurate than minwise hashing for binary
data. However, the analysis for developing the b-bit version of CRS appears to be very difficult.

A Review of b-Bit Minwise Hashing for 2-Way Resemblance
Theorem 4 ([35]) Assume D is large.

P12,b = Pr

(
b∏

i=1

1 {e1,i = e2,i} = 1

)
= C1,b + (1− C2,b) R12

where C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
, C2,b = A1,b

r1

r1 + r2
+ A2,b

r2

r1 + r2
,

A1,b =
r1 [1− r1]

2b−1

1− [1− r1]
2b

, A2,b =
r2 [1− r2]

2b−1

1− [1− r2]
2b

.

If r1, r2 → 0, P12,b = 1+(2b−1)R12
2b and one can estimate R12 by 2bP̂12,b−1

2b−1
, where P̂12,b is the

empirical observation of P12,b. If r1, r2 are not small, R12 is estimated by (P̂12,b−C1,b)/(1−C2,b).
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